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Abstract 

The paper sheds some light on the issue of geographically mediated knowledge 

spillovers from university research activities to regional knowledge production in high 

tech industries in Austria. Knowledge spillovers occur because knowledge created by 

university is typically not contained within that institution, and thereby creates value for 

others. 

 

The conceptual framework for analysing geographic spillovers of university research on 

regional knowledge production is derived from Griliches (1979). It is assumed that 

knowledge production in the high tech sectors essentially depends on two major 

sources of knowledge: the university research that represents the potential pool of 

knowledge spillovers and R&D performed by the high tech sectors themselves. 

Knowledge is measured in terms of patents, university research and R&D in terms of 

expenditures. We refine the standard knowledge production function by modelling 

research spillovers as a spatially discounted external stock of knowledge. This enables 

us to capture regional and interregional spillovers. Using district-level data and 

employing spatial econometric tools evidence is found of university research spillovers 

that transcend the geographic scale of the political district in Austria. It is shown that 

geographic boundedness of the spillovers is linked to a decay effect. 

 

JEL Classification: O31, H41, O40  

Keywords: knowledge production function, patents, high tech R&D, spatial 

econometrics 
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1. Introduction 

Technology – in form of a new product or process – invariably combines codified 

information drawn from previous experience and formal scientific activity with 

uncodified knowledge that is industry-specific or even firm-specific, and shows some 

degree of tacitness. Following Polanyi (1967), tacitness refers to those elements of 

knowledge that persons have which are ill-defined, uncodified and which they 

themselves can not fully articulate and which differ from person to person, but which 

may to some degree be shared by collaborators who have a common experience. In 

most cases a piece of knowledge can be located between these two extremes. 

Knowledge is not created codified and is always at least partly tacit in the minds of 

those who create it. Codification is required because knowledge creation is a collective 

process that requires complex mechanisms of communication and transfer (Saviotti 

1988). As tacit components – such as common practice based on modes of 

interpretations, perceptions and value systems – in the firm’s knowledge base 

increase, knowledge accumulation becomes more experienced based. Such forms of 

knowledge can only be shared, communicated or transferred through network types of 

relationships (Fischer 2001). This kind  of knowledge has to be carefully distinguished 

from information in the usual sense. It will often require more complex mechanisms of 

communication and transfer. It can more easily be appropriated privately and requires 

special learning processes.  

 

Spillovers stem  from specific features of knowledge. In particular,  knowledge is a non-

rivalrous and partially excludable good. Non-rivalry implies that a new piece of 

knowledge can be utilized many times and in many different circumstances, for 

example by combining with knowledge coming from another domain. Lack of 
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excludability, on the other hand, implies that it is difficult for firms that have devoted 

resources to R&D fully to appropriate the benefits and prevent others from using the 

knowledge without compensation or with compensation less than the value of the 

knowledge (Teece 1986). While knowledge is subject to spillovers, however, it is only 

imperfectly excludable. With  the use of patents or other devices such as secrecy 

knowledge producing firms capture at least part of the social benefits associated with 

the production of knowledge, and this is an incentive for their R&D investment (OECD 

1992). The interest of users of knowledge (i.e. firms other than the knowledge 

producing firm) is thus best served if – once produced – knowledge is widely available 

and diffused at the lowest possible cost. This implies low appropriability for knowledge 

producers or – put another way – an environment rich in knowledge spillovers. 

 

The term spillover is used in economics to capture the idea that some of the economic 

benefits of R&D activities accrue to economic agents other than the party that 

undertakes the research. Competing firms that initiate a successful innovation, and 

firms whose own research benefits from observation of the successes and failures of 

others’ research efforts all garner such spillover benefits. These examples suggest that 

such spillovers are created by a combination of the new knowledge resulting from a 

R&D effort, and the commercialisation of the new technology in terms of a new product 

or process that is successfully implemented in the market place (Jaffe 1996). Research 

spillovers have been defined by Cohen and Levinthal (1989) to include any original 

valuable knowledge generated in the research process that becomes publicly 

accessible whether it be knowledge fully characterising an innovation or knowledge of 

a more intermediate nature. They have been also termed disembodied or knowledge 

spillovers to emphasize that they do not necessarily relate to knowledge embodied in 

machinery or equipment. Knowledge spillovers are an example of a positive externality. 

The concept of positive externalities is very closely related to the concept of public 
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goods. In the limit the benefits of an activity may be so diffuse that no firm would 

undertake the activity on their own, such as national defense. R&D fall in an 

intermediate range in which the activity creates sufficient benefit  to the party 

undertaking it that market forces generate some, but not enough of the activity. 

 

Fundamental research of the quality and on the scale that can lead to major scientific 

advances takes place in relatively few firms. It calls for high thresholds of R&D 

investment and a corporate research environment conducive to developing and 

discussing ideas with other researchers. Knowledge developed within firms also raises 

proprietary issues. For such reasons, the advance towards reliable and public scientific 

knowledge primarily takes place within the institutions (universities, learned societies 

and academies) specially devised for the production of fundamental, general and public 

knowledge. 

 

The majority of technological process innovations and most product innovations, 

especially in Pavitt’s (1984) science-based industries, such as chemicals, 

biotechnology and electronics, do not occur without access to rather sophisticated 

forms of scientific knowledge. In this context the role of universities is crucial. 

Knowledge spillovers from university flow through a number of distinct channels. They 

occur when graduates who have the requisite levels of scientific and technological 

knowledge leave the university and take a job at a firm or start their own. They also 

occur between academic researchers and industry sector researchers – even without 

formal collaborative projects that bring the two together. In many technology-intensive 

industries, such as the computer industry or biotechnology industry, the research 

personnel of firms attend academic conferences, present academic papers and 

regularly engage in academic discussion with researchers in universities. It is also true 

that many industry sector researchers who do not attend academic conferences 
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nevertheless follow the academic literature and receive spillovers from reading 

academic papers. It is moreover not uncommon for university professors to act as a 

formal consultant to individual firms.  

 

In fact, several studies have recently identified the extent to which knowledge spillovers 

take place within the US innovation system. An important finding of Jaffe (1989); Acs, 

Audretsch and Feldman (1991); Anselin, Varga and Acs (1997) and Varga (1998) was 

that investment in R&D made by private corporations and universities spills over for 

economic exploitation by third-party firms. Moreover, Anselin, Varga and Acs (1997) 

found that such spillovers are most likely to be geographically bounded rather than 

occurring freely across US regions. While the cost of transmitting information may be 

increasingly invariant to distance, presumably the cost of transmitting – particularly tacit 

– knowledge rises with distance. If knowledge spillovers are as important as much of 

the theoretical literature assumes (see, for example, Romer 1990, Krugman 1991a, b) 

and as empirical studies in the US suggest, then knowledge spillovers should be 

observed in the Austrian innovation system, especially in high technology industries 

where such spillovers are likely to play the most important role. The purpose of this 

contribution is to shed some light on this issue in Austria. The study is empirical in 

nature and has an explanatory dimension.  

 

We consider two major sources of corporate knowledge production in the high 

technology sectors – R&D performed by the high technology sectors and the pool of 

basic research for the high technology sectors – and model geographically mediated 

research spillovers as a spatially discounted external stock of knowledge within a 

knowledge production function framework as introduced by Griliches (1979). In the 

following section of the paper, we introduce the conceptual framework for analysing 

geographic knowledge spillovers, the formal model  underlying the knowledge 
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production function and the specification of the geographic scope of spillovers. We next 

briefly describe the variables and the data set and  outline subsequently some 

methodological issues in specifying and estimating the model, before presenting the 

empirical results of our study. The paper concludes with a brief summary and 

evaluation of our findings. 

2. The Conceptual Framework 

Our interest is focused on regional  corporate knowledge production in the high 

technology sectors in Austria as an aggregate, and on university research spillovers. 

Corporate knowledge is difficult to define and even more difficult to measure (see 

Radding 1998). In this study we follow Jaffe (1989) and others to use patents as a 

quantitative and rather direct indicator of invention to proxy the output  of the 

knowledge production process. We are aware that the use of patent counts to identify 

the effect of spatially mediated spillovers is not without pitfalls. The use might be 

particularly sensitive to what Scherer (1983) has termed the propensity to patent. There 

is evidence that the propensity to patent does not appear to be invariant across 

industries (see, for example, Fischer, Fröhlich and Gassler 1994). For example, 

technology in the pharmaceuticals sector allows easy copying of newly developed 

drugs, and thus patent protection is essential. In other sectors, such as for example 

aerospace, the propensity to patent is typically smaller. 

 

The existence of knowledge spillovers suggests that production of knowledge by a 

particular firm or industry not only depends on its own research efforts, but also on 

outside efforts or – more generally – on the knowledge pool available to it. Following 

the standard literature in the field (see Griliches 1979, Jaffe 1989), we assume that 
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corporate knowledge production in the high technology sectors essentially depends on 

two major sources of knowledge: industrial R&D performed in the high technology 

sectors and academic basic research. Academic basic research, however, will not 

necessarily result in useful knowledge for every industry. But scientific knowledge from 

certain scientific fields or academic institutes is expected to be more important for high 

technology industries. In particular, the transfer sciences1 tend to play a major role in 

bridging the gap between the type of knowledge produced by basic science and the 

type of knowledge needed by high tech firms in their knowledge producing activities. To 

capture the relevant pool of knowledge, scientific fields were assigned to relevant high 

technology sectors using the survey of industrial R&D managers by Levin et al. (1987). 

 

Our conceptual framework for analysing geographic knowledge spillovers utilises the 

two factor Cobb-Douglas knowledge production function as introduced by Griliches 

(1979) that describes the relationship between various inputs and the output of the 

knowledge production process at the micro- or macro-level.  

 

K = α0 R
α1 Uα2 ε (1) 

 

where K is measured in terms of patents as a proxy for new corporate knowledge 

generated by high tech firms, R is industry R&D and U university research [relevant for 

high technology industries] measured in terms of expenditures, with α0  a constant, and 

α1 and α2 as associated parameters. ε is a vector of stochastic error terms. If we would 

have had more and better data we could try a more complex description of the 

production process, using more general functional forms such as the CES or the 

translog, and using more parameters to be estimated.  

 

 7  



  

Introducing a spatial dimension into the model, the knowledge production function 

reads in log-linear form as follows 

 

log Ki = α0 + α1 log Ri + α2 log Ui + εi  (2) 

 

where i = 1,..., N indexes the spatial unit of observation (political districts in Austria in 

this study). University research spillovers are modelled as an external stock of 

knowledge, represented by variable U. It is assumed that these spillovers do not reach 

beyond the geographic boundaries of the spatial unit chosen. A positive and significant 

coefficient for α2 indicates the presence of localised spatial spillovers from university 

research on regional knowledge production. The higher the value of this coefficient, the 

more intensive the effect of university-to-firm knowledge flows on regional knowledge 

production. By contrast, the lack of significance of α2 would suggest that all knowledge 

production is generated internally to the high tech sectors, that is, exclusively through 

the variable R. 

 

The above model appears to be unsatisfactory if the spatial range of interaction 

between industry R&D and university research reaches beyond the district where R&D 

is performed. To capture potential interregional knowledge spillovers that originate from 

universities outside the R&D district we introduce a measure of accessibility, U
iA  to 

university knowledge for each industry R&D district i (i = 1,...,N) with respect to all 

university districts j ≠ i (j =1,..., N1 < N) in the national Austrian innovation system: 

 

∑
≠

−=
ij

ß
jij

U
i dUA  (3) 
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where Uj is defined as before, dji is a measure of impedance from j to i or, in other 

words, the economic or technological distance from j to i as perceived by high 

technology industry located in i to get in touch with knowledge producers at university 

in j. In this study we use road distance as a crude proxy for d. ß > 0 is an exponent 

assumed to equal to 2 in accordance with Sivitanidou and Sivitanides (1995). 

Evidently, Equation (3) is closely related to accessibility indices derived from spatial 

interaction theory (see, for example, Weibull 1976). When an industry district i and an 

university district j coincide, no distance decay is applied to the U variable in order to 

avoid the familiar self-potential problem (see Frost and Spence 1995). 

 

In a similar manner, the accessibility measure AR
i  is introduced 

 

∑
≠

−=
ij

ß
jij

R
i dRA  (4) 

 

to capture potential interregional knowledge spillovers between R&D laboratories 

located in districts i and j ≠ i. Ri is as before, and dji  is a measure of impedance. Again, 

ß is assumed to equal to 2. Then the knowledge production function model becomes  

 

log Ki = α0 + α1 log Ω i + α2 log Φ i + ε i (5) 

 

with 
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Model (5) – (7) is the basis for our investigation and may be termed Basic Model for 

Regional Corporate Knowledge Production. University research spillovers are modelled 

as a spatially discounted external  stock of knowledge [see Equation (7)]. Variable Φ 

consists of two components. The first captures knowledge spillovers that do not reach 

beyond the geographic boundaries of the political district, and the second those that 

transcend the geographic scale of the political district. The accessibility measure 

assumes that these follow a clear distance decay pattern. A positive and significant 

coefficient for α2 indicates the presence of localised geographic spillovers from 

university research on regional knowledge production. The higher the value of this 

coefficient, the more intense the effect of university-to-firm knowledge flows on regional 

knowledge production. By contrast, the level of signficance of α2  would suggest that all 

knowledge production is generated internally to the high tech sectors, with or without 

cooperation between R&D laboratories [variable Ω in Equation (5)]. This does not 

preclude the presence of  additional externalities that is, the presence of agglomeration 

economies. Following general practice in the literature to capture such externalities, we 

add the location quotient Z to Patent Equation (5) that measures the concentration of 

high technology production. This leads to the following Extended Model for Regional 

Corporate Knowledge Production: 
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log Ki = α0 + α1 log Ω i + α2 log Φ i + α3 Zi + ε i (8) 

 

together with Equations (6)-(7). Zi denotes the share of high technology employment in 

the national total; Ω i, Φ i, α0, α1, α2, α3 and εi  are in the same notation as above. 

3. Data and Variable Definitions 

The analysis of spatial processes is handicapped by a lack of data for what might be 

considered to be the ideal unit of observation. We adopt the political district as the 

spatial unit of observation in our study. This is at best a crude proxy of the relevant 

functional economic region. But the spatial scale of political districts is the finest spatial 

resolution at which the relevant data are available or may be estimated at least. 

Measurement problems arise both in the case of output and in the case of inputs of the 

knowledge production process. 

 

Account of corporate patent applications has been used as the dependent variable in 

the geographic knowledge production functions [K in Equation (5) and Equation (8)]. 

We obtained a tape from the Austrian Patent Office containing the following 

information: the exact application date, name of the assignee(s), address of the 

assignee(s) including the zip-code, name of the inventor(s), location of the inventor(s), 

one or more International Patent Classification (IPC) codes, an assignment code 

indicating whether the organisation is foreign or domestic and some information on the 

technology field of the patent application. Corporate patents were taken to be all 

patents that – based on their assignment code – were assigned by the applicant to 

either a domestic or foreign corporation located in Austria. An extensive effort was 

made to identify patent-applying subsidiaries. Several protocols were adopted to 
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ensure that patents were in fact linked to the correct company or subsidiary. Postal 

code information made it possible to trace patent activity back to the region of 

knowledge production. In the case of multiple assignees we followed the standard 

procedure of proportionate assignment. At the sector of scale, the patent data were 

assigned to the two-digit International Standard Industrial Classification (ISIC) system. 

The absence of detailed R&D spending data at a more micro-level impedes to utilise 

the more appropriate three- and four-digit levels. The total for each political district that 

is used in the study is based on the application year 1993 rather than 1991 assuming a 

lag structure between the time when a particular R&D project starts and the moment it 

leads to an invention. 

 

Our interest focuses in the high technology sectors as an aggregate. Clearly, it is not 

unambiguous to determine the high technology sectors. A number of different 

classifications have been suggested in the literature (for example, Premus 1982, 

Malecki 1986, Glasmeier 1991), In general, the objective is to identify sectors 

dominated by the importance of non-routine functions, in contrast to standardised mass 

production. A number of criteria have been suggested in the literature, such as, for 

example, the percentage of scientists and engineers employed, and the number of 

innovations per employee. We considered patents in six ‘high technology’ sectors, 

broadly defined as Computers & Office Machines (ISIC 30); Electronics & Electrical 

Engineering (ISIC 31-32); Scientific Instruments (ISIC 33); Machinery & Transportation 

Vehicles (ISIC 29, 34-35); Oil Refining, Rubber & Plastics (ISIC 23, 25), and Chemistry 

& Pharmaceuticals (ISIC 24) in the International Standard Industrial Classification 

(ISIC) system. These six categories contain most of the three- and four-digit-ISIC 

sectors that are typically categorised as high technology sectors. But at the two-digit 

ISIC-level it is virtually impossible to designate industries as pure high technology. To 

the extent that the sectoral mix in these sectors shows systematic variation over space 
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in its ‘pure’ high tech content, our results on the relationship between patents and 

research could be affected. But we are confident that we will be able to detect such 

systematic variations by means of careful specification tests for spatial effects (see 

Anselin 1988a). 

 

We used the MERIT concordance table between patent classes (International Patent 

Classes, IPC) and industrial sectors (ISIC) to match the patent data with the two-digit 

ISIC codes that form the high technology sectors (Verspagen, Moergastel and 

Slabbers 1994). It assigns the technical knowledge in the patent classes to the 

industrial sector best corresponding to the origin of this knowledge. Knowledge on a 

machine for food processing, for example, will be assigned to machinery (ISIC 29) and 

not to the food sector. Appendix A gives the assignment of IPC patent classes to the 

high technology industry sectors. 

 

The R&D expenditure figures for high technology firms [variable R in Equation (6)] are 

based on the definition of the Frascati/Oslo manual. They stem from a R&D survey 

carried out by the Austrian Chamber of Commerce in 1991. The questionnaire was 

sent to 5,670 manufacturing firms in Austria. The response rate was 34.04 percent. In 

the survey firms were questioned in a very conventional way about their R&D activities. 

The sample can be seen to cover nearly all firms performing R&D activities in Austria. 

The ZIP code has been used to trace R&D activities back to the origin of knowledge 

production. The expenditure data are broken down by the Industrial Classification 

System of the Chamber of Commerce. Unfortunately, this scheme can be converted to 

the International Standard Classification System only at the fairly broad two-digit ISIC-

level.  
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Finally, we need data on the amount of university research relevant to the two-digit 

high-tech ISIC industries. There are great differences in the scope and commercial 

applicability of university research undertaken in different scientific fields. Academic 

research will not necessarily result in useful knowledge for every high tech industry. But 

scientific knowledge from certain scientific fields [especially the transfer sciences] is 

expected to be important for specific industries. To capture the relevant pool of 

knowledge scientific fields/academic disciplines are assigned to relevant industrial 

fields of two-digit high tech ISIC industries using the survey of industrial R&D managers 

by Levin et al. (1987). For example, product innovation activities in drugs (ISIC 24) is 

linked to research in medicine, biology, chemistry and chemical engineering.  

 

Unfortunately, university research expenditure data disaggregated by scientific fields/ 

academic disciplines are not available in Austria, but they may be estimated roughly on 

the basis of two types of data provided by the Austrian Federal Ministry for Science and 

Research: first, national totals of university research expenditures 1991 disaggregated 

by broad scientific areas [natural sciences, technical sciences, social sciences, 

humanities, medicine, agricultural sciences], and, second, data on the number of 

professional researchers employed in 1991 [that is, university professors, university 

assistants and contract research assistants] disaggregated by scientific areas and 

political districts. University research expenditure disaggregated by scientific 

field/academic discipline and political district has estimated by the following procedure 

 

RDP = 
RAN  PDP (9) PAN 

 

where RDP stands for university research expenditure in a specific discipline/scientific 

field D and in political district P, RAN for national research expenditure in a particular 
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scientific area A, PAN  for the national total of professional researchers in scientific area 

A, and PDP for the number of professional researchers working in university institutes 

belonging to discipline D and located in political district P. The assignment of academic 

disciplines/scientific fields to two-digit ISIC high technology industries is documented in 

Appendix B.  

 

In the Extended Knowledge Production Function Model [see Equation (8) together with 

Equations (6) – (7)] the variable Z was added to account for potential agglomeration 

economies, Z is proxied by the share of high technology employment 1991 in the 

national total. The Austrian Central Statistical Office was the source for this exogenous 

variable. 

 

We use the Cobb-Douglas specification for the knowledge production function. The 

implied log-linear form [see Equations (5) – (7) and Equations (6) – (8)] creates a 

particular sample selection problem in so far that only observations for which all the 

variables (dependent and independent) are non-zero can be utilised. Thus, our final 

data set only included those political districts for which there were patents and R&D 

expenditures available. This resulted in 72 observational units. The sample districts 

represent 100 percent of the university research expenditures (1991); 93.3 percent of 

the industry R&D activities (1991) and 99.96 percent of the patent applications (1993) 

in the high tech sectors. The data and specifications used are listed in Appendix C. 

4. Estimation Issues 

The use of a cross-sectional sample may lead to a spatial dependence [spatial 

autocorrelation] in the regression equations and, thus, cause serious problems in 
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specifying and estimating the models. We assess this by means of a Langrange 

Multiplier [LM] test using six different spatial weights matrices W that reflect different a 

priori notions on the spatial structure of dependence: 

 

• the simple contiguity weights matrix [CONT] 

• the inverse distance weights matrix [IDIS1] 

• the square inverse distance weights matrix [IDIS2], and 

• distance based matrices for 50 km [D50], 75 km [D75] and 100 km [D100] between 

the administrative centres of the political districts. 

 

This test is used here to assess the extent to which remaining unspecified spatial 

knowledge spillovers may be present in the basic knowledge production function model 

and in its extended version. Spatial dependence can be incorporated in two distinct 

ways into the model: as an additional regressor in the form of a spatially lagged 

dependent variable W K, or in the error structure. The former is referred to as a Spatial 

Lag Model and the latter to as a Spatial Error Model. The Spatial Lag Model for 

Regional Knowledge Production can be expressed in matrix notation as 

 

K = ρ W K + X α + ξ (10) 

 

where K is a (72,1)-vector of observations on the patent variable, W K is the 

corresponding lag for the (72,72)-weights matrix W, X is a (72,M)-matrix of 

observations on the explanatory variables, including a constant term [extended model: 

M = 4], with matching regression coefficients in the vector α. ξ is a 72 by 1 vector of 

normally distributed random error terms, with mean 0 and constant homoskedastic 

variance σ2. ρ is the spatial autoregressive parameter. W K is correlated with the 
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disturbances, even when the latter are i.i.d. Consequently, the spatial lag term has to 

be treated as an endogenous variable and proper estimation procedures have to 

account for this endogeneity. Ordinary least squares will be biased and inconsistent 

due to the simultaneity bias. 

 

The second way to incorporate spatial autocorrelation into the regression model for 

knowledge production is to specify a spatial process for the disturbance terms. The 

resulting error covariance will be non-spherical, thus ordinary least squares [OLS] while 

unbiased will be inefficient. Different spatial processes lead to different error 

covariances with varying implications about the range and extent of spatial interaction 

in the model (Anselin and Bera 1998). The most common specification is a spatial 

autoregressive process in the error terms that results into the following spatial error 

model for regional knowledge production 

 

K = X α + ξ (11) 

 

with 

 

ξ = λ W ξ + η (12) 

 

that is a linear regression with error vector ξ, where λ is the spatial autoregressive 

coefficient for the error lag W ξ. X is a 72 by M matrix of observations on the 

explanatory variables, α  a M by 1 vector of regression  coefficients. The errors ξ are 

assumed to follow a spatial autoregressive process with autoregressive coefficients, 

and a white noise error η. 
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The similarity between the Spatial Error Model (11) – (12) and the Spatial Lag Model 

(10) for knowledge production complicates specification testing in practice, since tests 

designed for a spatial lag specification will also have power against a spatial error 

specification, and vice versa. But as evidenced in a large number of Monte Carlo 

simulation experiments in Anselin and Rey (1991), the joint use of the Lagrange 

Multiplier tests for spatial lag and spatial error dependence suggested by Anselin 

(1988a, b) provides the best guidance for model specification. When both tests have 

high values indicating significant spatial dependence in the data, the one with the 

highest value [lowest probability] will indicate the correct specification. It is worthwhile 

to note that the conventional R2 model performance measure is not applicable to the 

spatial lag and the spatial error models. Instead, an adjusted R2 measure defined as the 

ratio of the variance of the predicted values over the variance of the observed values 

for the dependent variable can be used. 

5. Empirical Results 

Table 1 presents the results of the estimation of the cross-sectional regression of the 

geographic knowledge production function for 72 political districts in Austria. All 

variables are in logarithms. In addition to the Basic Model [see Equations (5) – (7)], 

reported in the first column of the table, we also estimated the Extended Model [see 

Equation (8) with Equations (6) – (7)] that includes a local economic characteristic as 

an explanatory variable to capture agglomeration economies [reported in column 2], 

and the Spatial Error Model that incorporates spatial dependence into the error 

structure of the knowledge production function [reported in column 3]. All estimation 

and specification tests were carried out with SpaceStat Software (Anselin 1995). 
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Locate Table 1 about here 

 

 

An influence of Ω on patent activities at the district level indicates knowledge 

production internally to the high tech sectors including geographically mediated 

spillovers between R&D laboratories. We interpret an influence of Φ on patent activities 

at the district level as evidence of the existence of geographically mediated academic 

spillovers. All regressions yield highly significant and positive coefficients for both 

university research and industry R&D [at p < 0.01], confirming the results obtained in 

the US American studies mentioned above. The university research elasticities range 

in magnitude from 0.128 for the Basic Model to 0.130 for the Spatial Error Model. The 

university research effect is much smaller than the industry R&D effect. But 

agglomeration effects are twice as important as industry R&D effects. 

 

For all models, diagnostic tests were carried out for hetereoskedasticity, using the 

White (1980) test. In addition, specification tests for spatial dependence and spatial 

error were performed, utilising the Lagrange Multiplier test. The tests for spatial 

autocorrelation were computed for six different spatial weights matrices [CONT, IDIS1, 

IDIS2, D50, D75 and D100]. Only the results for the most significant diagnostic are 

reported in Table 1. No evidence of hetereoskedasticity was found, but the Lagrange 

Multiplier test for Spatial Error Dependence shows a strong indication of 

misspecification. 

 

 19  



  

The starting point of modelling was the basic model for knowledge production. It 

confirms the strong significance of university research spillovers and industry R&D on 

the level of patent activity in the high tech sectors in a political district. There is a clear 

dominance of the coefficient of industry R&D over university research, indicating an 

elasticity that is about three times higher. No statistically significant evidence was found 

of interregional spillovers between industry R&D laboratories [measured in terms of AR
i ]. 

There is no evidence of hetereoskedasticity, but the Lagrange Multiplier test for spatial 

error dependence strongly indicates misspecification of the model. 

 

When the local economic variable is added [see column 2], the model fit increases from 

R2 = 0.60 to R2 = 0.69, with a positive and significant effect for agglomeration effects. 

Industry R&D and geographically mediated university research spillovers remain 

positive and significant. But the addition of the variable causes the elasticity of both to 

drop more or less substantially: industry R&D elasticity from 0.402 to 0.211 and 

university research elasticity from 0.128 to 0.100. There is no evidence of 

hetereoskedasticity, but the Lagrange Multiplier test for spatial error dependence 

strongly indicates misspecification2. 

 
The correct interpretation should, thus, be based on the spatial error model that 

removes any misspecification in the form of spatial autocorrelation. The other results. 

are only reported for completeness sake. The significant parameter of the error term 

[λ], the significant value of the Likelihood Ratio test in spatial error dependence as well 

as the missing indication for spatial lag dependence and heteroskedasticity (Breusch-

Pagan test, see Breusch and Pagan 1979) are taken as evidence for the correctness of 

the model. There is little change between the interpretation of the model with and 

without spatial autocorrelation which is to be expected. The main effect of the spatial 
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error autocorrelation is on the precision of the estimates, but in this case it is not 

sufficient to alter any indication of significance 

 

In sum, the maximum likelihood [ML]-estimates in column 3 of Table 1 can be reliably 

interpreted to indicate the influence of university research on patent activity in a political 

district, not only of university research in the district itself, but also in the surrounding 

districts. The geographic boundedness of university research spillovers is directly 

linked to a distance decay effect. By contrast, the effect of industry R&D seems to be 

contained within the political district itself. There is no evidence of a significant and 

positive influence of interregional spillovers between industry R&D laboratories. 

6. Conclusions 

The research question of whether knowledge spillovers are bounded by geographical 

proximity or not has received increasing attention in recent years (see, for example, 

Jaffe 1989, Anselin, Varga and Acs 1997, Echeverri-Carrol and Brennan 1999). There 

is general agreement that knowledge spills over, but substantial disagreement as 

whether such knowledge spillovers are geographically bounded or not (see Karlsson 

and Manduchi 2001). Indeed, the relationship between knowledge spillovers and space 

is extremely complex and only partially understood. This is partly due to the fact that 

knowledge spillovers are invisible and leave no paper trail by which they may be 

measured and tracked as Krugman (1991a, p. 53) has noted. But Jaffe (1989) found 

that investment in R&D made by private corporations and universities provides an 

important knowledge input that influences the patent activity of third-party firms.  
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The key assumption we made in analysing the link between knowledge spillovers and 

corporate patent activity is that knowledge externalities are more prevalent in high 

technology industries where new technological and scientific knowledge plays a crucial 

role. New technological and scientific knowledge is captured by industry R&D and 

university research. Our empirical results clearly indicate the presence of 

geographically mediated knowledge spillovers from university that transcend the 

geographic scale of the political district in accordance with our conceptual framework. 

The results also demonstrate that such spillovers follow a clear distance decay pattern. 

But these externalities appear to be relatively small in comparison to the agglomeration 

effects identified. It is also important to emphasise that the statistical relationship is only 

suggestive. More detailed examination of university data will  be required to determine 

if the university research spillover effects materialise in reality. One can not really 

interpret the results structurally in the sense of predicting the resulting change in 

patents if research spending would be increased exogenously. 

 

The findings are important in that they highlight the relevance of modelling knowledge 

spillovers in form of a spatially discounted external stock of knowledge. They also 

demonstrate the importance of carefully specifying spatial effects by employing spatial 

econometric tools. But, some cautionary remarks are in order as well. First, our 

analysis is limited by the use of a single cross-section. Unfortunately, there is no 

update of the 1991 industry R&D expenditure data for later points in time available, 

precluding an extension of the cross-sectional framework to incorporate the time 

dimension as well. Second, we have chosen to focus on those districts where patent 

activity and R&D research in the high tech sectors were observed. This leaves aside 

the issue of why certain locations have R&D and patent activity and others do not, 

especially when one of the two is present, but the other not. Third, we were forced to 

define the high tech sectors on the basis of two-digit ISIC industries. Many products 
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manufactured by our high tech industries are medium- or even low-tech. This 

aggregation level, thus, masks considerable underlying heterogeneity and may be too 

crude to capture university research effects. Finally, it is worthwhile noting that the 

results will be partially affected by the chosen spatial scale of analysis. Political districts 

qualify as appropriate spatial units of observation, but at the price that intra- and 

interregional university spillovers can not be separated within our conceptual 

framework. No doubt, there is a need for studies that compare and carefully contrast 

results at different levels of spatial aggregation in an attempt to detect and measure the 

importance of knowledge spillovers.  

7. Endnotes 

1 The notion of transfer sciences involves a distinction between two classes of sciences: pure sciences and transfer 

sciences. Characteristics of pure sciences include the exploration of the boundaries of knowledge without concern for 

the practical implication of the findings. Transfer sciences share with the pure sciences a concern for predictive 

science, but otherwise they have rather different characteristics. Their activity is driven principally by the urge to solve 

problems. A large part of their findings comes from industry and their graduates are usually employed by industry 

(OECD 1992). The communities of scientists active in research are very close to the professions most concerned by 

application of their results. But it would be wrong to see them simply as applied science just downstream of 

fundamental science. Their bridging function does not imply that they are not fields or disciplines with their own 

organising principles. Transfer sciences may straddle the normal borders separating science and technology. Their 

boundaries are not always clear-cut. They are often multidisciplinary (for example, material science). Their analytical 

development largely reflects social and economic needs and their functions include those of any scientific discipline, 

namely creation, transmission and organisation of certain types of knowledge together with the aim of undertaking or 

improving technical projects (OECD 1992). 

 

2 Exogeneity of R and U were also checked by applying the Durbin-Wu-Hausman test. The null hypothesis of   

exogeneity was not rejected (p=0.22) suggesting that the single equation estimation methods utilized are correct. 
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APPENDIX A  Assignment of Patent Classes to the High Technology 
Sectors at the 2-Digit ISIC-Level 

 
ISIC 
Category Industry Sector IPC Patent Classes 

30 Computers & Office 
Machinery 

B41J, B41L [50%], G06C, G06E, G06F, G06G, G06J, G06K, 
G06M, G11B, G11C 

31-32 Electronics & Electrical 
Engineering 

A45D [40%], A47J [80%], A47L [40%], A61H [30%], B03C, 
B23Q [10%], B60Q, B64F [20%], F02P, F21H, F21K, F21L; 
F21M, F21P, F21Q, F21S, F21V, F27B [10%], G08B, G08G, 
H01B, H01F, H01G, H01H, H01J, H01K, H01M, H01R, H01S, 
H01T, H02B, H02G, H02H, H02J, H02K, H02M, H02N, H02P, 
H03M, H05B, H05C, H05F, H05H, G08C, G09B [50%],  
H01C, H01L, H01P, H01Q, H03B, H03C, H03D, H03F, H03G, 
H03H, H03J, H03K, H03L, H04A, H04B, H04G, H04H, H04J, 
H04K, H04L, H04M, H04N, H04Q, H04R, H04S, H05K 

33 Scientific Instruments A61B, A61C, A61D, A61F, A61G [90%], A61H [40%], A61L 
[60%], A61M, A61N, A62B [50%], B01L, B64F [10%], C12K 
[25%], C12Q, F16P [60%], F22B [20%], F22D [20%], F22G 
[20%], F22X [20%], F23N, F23Q [10%], F24F [20%], F41G, 
G01B, G01D, G01F [60%], G01H, G01J, G01K, G01L, G01M, 
G01N, G01P, G01R, G01S, G01T, G01V, G01W, G02B, 
G02C, G02F, G03B, G03C, G03D, G03G, G03H, G04B, 
G04C, G04F, G04G, G05B, G05C, G05D, G05F, G05G, 
G06D, G07B, G07C, G07D, G07F, G07G, G09G, G12B, 
G21F, G21G, G21H, G21K, H05G 

29,34-35 Machinery & 
Transportation Vehicles 

A01B, A01C, A01D, A01F, A01G [10%], A01J [80%], A01K 
[30%], A21B, A21C, A21D [30%], A22B [50%], A22C [70%], 
A23C[10%], A23G [10%], A23N, A23P, A24C, A24D [50%], 
A43D, A61H [30%], A62B [30%], B01B, B01D, B01F, B01J, 
B02B [50%], B02C, B03B, B03D, B04B, B04C, B05B [50%], 
B05C [95%], B05D, B05X [50%], B06B, B07B, B07C, B08B, 
B09B [25%], B22C [10%], B23Q [70%], B25J, B27J, B28B 
[60%], B28C [60%], B28D [70%], B29B [80%], B29C [80%], 
B29D [50%], B29F [80%], B29G [50%], B29H [50%], B29J 
[40%], B30B, B31B, B31C [90%], B31D [80%], B31F [80%], 
B41B, B41D, B41F, B41G, B42C [50%], B60C [20%], B65 B, 
B65C, B65G [40%], B65H, B66B, B66C, B66D, B66F, B66G, 
B67B [50%],B67C, B67D, C02F [30%], C10F, C12H, C12L, 
C12M, C13C, C13G, C13H, C14B [50%], C14C [50%],D01B 
[50%], D01C [50%], D01D [50%], D01F [50%], D01G [50%], 
D01H [50%], D02D, D02G [50%], D02H [50%], D02J [50%], 
D03D [50%],D03J, D04B [50%], D04C [50%], D04D [50%], 
D04G [50%], D04H [50%], D06C, D06F [70%], D06G, D06H 
[70%], D21F, D21G, E01B [50%], E01C [50%], E01H [80%], 
E02D [30%], E03B [30%], E04D [25%], E21B [45%], E21C, 
E21D [50%], F01B, F01C, F01D, F01K, F01L, F01M, F01N, 
F01P, F02B, F02C, F02D, F02F, F02G, F02K, F03B, F03C, 
F03D, F03G, F03H, F04B, F04C, F04D, F04F, F15B, F15C, 
F15D, F16C, F16J [80%], F16K, F16N, F16T, F23B, F23C, 
F23D, F23G, F23H, H23J, F23K, F23L, F23M, F23Q [60%], 
F23R, F24F [80%], F24J [30%], F25B, F25C, F25D, F25J, 
F26B, F27B [90%], F27D, F28B, F28C, F28D, F28G, F41A, 
F41B, F41C, F41D, F41F, F41H [50%], F42B, F42C, F42D 
[50%], G01F [40%], G01G, G21J 
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23,25 Oil Refining, Rubber & 
Plastics 

A47G [50%], A47K [40%], A61J [40%], A62B [20%], B29H 
[50%], B60C [80%], C10B, C10C, C10G, C10L, C10M, D06N 
[50%], F42D [50%] 

24 Chemistry & 
Pharmaceuticals 

A01M [20%], A01N, A61J [30%], A61K [95%], A61L [40%], 
A62D, B09B [75%], B27K [70%], B29B [20%], B29C [20%], 
B29D [50%], B29F [20%], B29G [50%], B29K, B29L, B41M 
[15%], B44D [50%], C01B, C01C, C01D, C01F, C01G, C02F 
[50%], C05B, C05C, C05D, C05F, C05G, C06B, C06C, C06D, 
C06F, C07B [95%], C07C [95%], C07D [95%], C07F [95%], 
C07G [95%], C07H [90%], C07J, C07K, C08B, C08C, C08F, 
C08G, C08H, C08J, C08K, C08L, C09B, C09C, C09D, C09F, 
C09G, C09H, C09J, C09K, C10H, C10J, C10K, C10N, C11B 
[50%], C11C [50%], C11D, C12D [90%], C12K [75%], C12N 
[80%], C12P [50%], C12R [10%], C12S, C14C [50%], E04D 
[25%], F41H [50%] 

 

Note:       The assignment is based on the MERIT concordance table (Verspagen, Moergastel and Slabbers 1994) 
between the International Patent Classification (IPC) and the International Standard Industrial Classification of 
all economic activities (ISIC-rev.2) of the United Nations. The percentages in brackets in the last column of 
the table give the share of the patents in the IPC-class assigned to the accessory ISIC-category if not all 
patents in the IPC-class are assigned to the corresponding ISIC-category. A percentage of 80%, for example, 
therefore means that all patents in the IPC-class are assigned to the corresponding ISIC-category 
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APPENDIX B   Linking Scientific Fields/Academic Disciplines  to the 
2-Digit High Technology Sectors 

 
ISIC 
Category 

Industry Sector Associated Scientific Fields/Academic Disciplines 

30 Computers & Office 
Machinery 

Fields connected with Information Technologies: Micro-
Electronics, Automation and Robotics, Computer Sciences, 
etc. 

31-32 Electronics & Electrical 
Engineering 

Electrical Engineering, Micro-Electronics, Technical 
Mathematics, Automation and Robotics, Computer Sciences, 
etc. 

33 Scientific Instruments Engineering Fields such as Mechanical Engineering, Electrical 
Engineering, Micro-Electronics, Automation and Robotics, 
Technical Mathematics, Computer Sciences, Physics-Related 
Fields, Medicine-Related Fields, Biology-Related Fields, 
Materials Sciences, etc. 

29,34-35 Machinery & 
Transportation Vehicles 

Engineering Fields including Mechanical Engineering and 
Electrical Engineering, Heat Science, Thermodynamics, 
Material Sciences, Computer Sciences, Technical 
Mathematics, Astronomy, Transport Science 

23,25 Oil Refining, Rubber & 
Plastics 

Chemistry-Related Fields including Materials Sciences, 
Chemical Engineering and Care Chemistry except for certain 
sectors such as Quantum Chemistry, Biochemistry and 
Geochemistry 

24 Chemistry & 
Pharmaceuticals 

Chemistry-, Pharmaceuticals- and Medicine-Related Fields 
including Microbiology, Pharmaceutical Chemistry, 
Biochemistry, etc. 

 

Source: On the basis of the survey of industrial R&D managers by Levin et al. (1987); only the most important 
academic disciplines [scientific fields] are listed 
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APPENDIX C  Patent Applications (1993), Industry R&D (1991) and 
University Research (1991) for 72 Austrian Political 
Districts 

 
Political District Patent Applications 

[Variable K] 
Industry R&D 
[Variable R] 

University Research 
and Out-of-District 
Access to University 

Research 
[Variable Φ ] 

Eisenstadt-Umgebung 3.00  35.45  1.24  
Neusiedl am See 3.00  7.29  1.38  
Oberpullendorf 1.00  3.80  0.52  
Klagenfurt (Stadt) 19.50  3.29  36.14  
Villach(Stadt) 8.00  16.16  0.13  
Hermagor 1.00  0.34  0.09  
Sankt Veit an der Glan 1.00  3.16  0.26  
Spittal an der Drau 4.00  0.41  0.10  
Villach Land 6.50  35.01  0.14  
Wolfsberg 2.00  6.24  0.35  
Feldkirchen 2.00  0.35  0.20  
Krems (Stadt) 2.50  17.74  0.71  
Sankt Pölten (Stadt) 7.50  21.34  1.01  
Waidhofen (Stadt) 3.00  6.60  0.31  
Wiener Neustadt (Stadt) 5.00  14.24  1.65  
Amstetten 16.00  87.49  0.37  
Baden 27.50  360.98  4.80  
Gänserndorf 3.00  14.33  3.19  
Korneuburg 12.50  46.70  9.82  
Mödling 22.40  213.57  12.97  
Neunkirchen 10.00  61.54  1.01  
Sankt Pölten (Land) 3.50  4.61  1.45  
Scheibbs 1.00  4.98  0.42  
Tulln 2.80  34.12  3.29  
Waidhofen an der Thaya 1.00  1.20  0.28  
Wiener Neustadt (Land) 6.60  11.75  1.55  
Vienna-Umgebung 14.60  323.08  25.35  
Linz (Stadt) 62.30  1144.26  218.16  
Steyr (Stadt) 28.60  1123.43  0.36  
Wels (Stadt) 12.50  30.87  0.44  
Braunau am Inn 8.50  14.73  0.13  
Gmunden 19.10  103.77  0.20  
Grieskirchen 10.00  49.42  0.24  
Kirchdorf an der Krems 12.30  7.21  0.25  
Linz-Land 10.70  111.67  2.74  
Perg 13.00  26.41  0.44  
Ried im Innkreis 5.30  11.96  0.17  
Rohrbach 3.00  3.11  0.22  
Schärding 5.00  10.34  0.14  
Steyr-Land 8.00  10.43  0.28  
Vöcklabruck 43.80  318.82  0.20  
Wels-Land 5.00  77.04  0.28  
Salzburg (Stadt) 34.30  36.70  117.1  
Hallein 8.10  107.28  0.53  
Salzburg-Umgebung 23.80          20.92           0.70  
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Zell am See 5.00  4.57  0.12  
Graz (Stadt) 84.30  399.49  1195.15  
Bruck an der Mur 4.30  9.17  1.09  
Deutschlandsberg 5.50  93.80  0.97  
Feldbach 1.00  2.08  0.81  
Fürstenfeld 2.00  12.38  0.61  
Graz-Umgebung 8.50  347.15  8.75  
Hartberg 1.00  5.53  0.65  
Judenburg 12.00  42.26  0.38  
Knittelfeld 3.00  20.34  0.48  
Leibnitz 4.00  2.23  1.09  
Leoben 3.00  5.93  98.51  
Liezen 4.00  25.22  0.22  
Mürzzuschlag 1.00  9.84  0.55  
Voitsberg 10.00  7.88  1.57  
Weiz 4.00  123.45  1.68  
Innsbruck-Stadt 9.00  5.54  852.03  
Innsbruck-Land 29.40  39.07  8.38  
Kitzbühel 7.00  15.91  0.18  
Kufstein 9.00  329.98  0.25  
Lienz 3.00  8.73  0.08  
Schwaz 15.00  80.21  2.58  
Bludenz 1.00  17.86  0.06  
Bregenz 12.00  66.74  0.04  
Dornbirn 11.00  146.49  0.04  
Feldkirch 14.00  90.23  0.05  
Vienna 383.70  6999.29  3345.06  

 

Notes: Industry R&D and University Research were measured in terms of expenditures, all figures are in millions of 
1991 ATS; Patent and industry R&D data refer to high technology industries; University research data include 
those academic institutes that are expected to be important for the high technology industries; Universities are 
located in seven political districts: Vienna hosting six universities, Graz (Stadt), Innsbruck (Stadt), Salzburg 
(Stadt), Linz (Stadt), Klagenfurt (Stadt) and Leoben; all the other political districts have only out-of-district 
access to university research. 

Sources:  Patent data were compiled from the Austrian Patent Office database; Industry R&D data were compiled from 
the 1991 Industry R&D Survey of the Austrian Chamber of Commerce; University research date were 
estimated on the basis of information provided by the Austrian Federal Ministry for Science and Research 
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Table 1 Regression results for log (Patent Applications) at the level of Austrian political 
districts (N = 72, 1993) 

 
Model Basic 

Model 
(OLS) 

Extended Model 
(OLS) 

Spatial Error 
Model 
(ML) 

 
Constant 
 
 
Log Ω 
 
 
Log Φ 
[University Research Spillover] 
 
Log Z 
 
 
Spatial Autoregressive 
Coefficient λ 

 
   0.608*** 

(0.182) 
 

   0.402*** 
(0.504) 

 
   0.128*** 

(0.040) 

 
   3.741*** 

(0.783) 
 

   0.211*** 
(0.065) 

 
   0.100*** 

(0.037) 
 

   0.512*** 
(0.125) 

 
   3.315*** 

(0.764) 
 

   0.213*** 
(0.064) 

 
   0.130*** 

(0.037) 
 

   0.438*** 
(0.121) 

 
 0.366* 
(0.190) 

 
Adjusted R2 0.598 0.672 0.699 
 
Multicollinearity Condition 
Number 
 
White Test for Heteroscedasticity 
 
Breusch-Pagan Test for 
Heteroscedasticity 
 
Likelihood Ratio Test for Spatial  
Error Dependence 
 
Lagrange Multiplier Test for 
Spatial Error Dependence 
 
Lagrange Multiplier Test for 
Spatial Lag Dependence 
 

 
3.978 

 
 

3.210 
 
 
 
 
 
 
 

10.092 
(D100) 

 
0.551 
(D50) 

 
21.341 

 
 

8.839 
 
 
 
 
 
 
 

3.444 
(D100) 

 
0.889 
(D75) 

 
21.341 

 
 
 
 

2.277 
 
 

2.863 
(D100) 

 
 
 
 

0.382 
(IDIS2) 

 

Notes:  Estimated standard errors in parentheses; critical values for the White statistic respectively 5 and 9 degrees of 
freedom are 11.07 and 16.92 (p = 0.05); critical value for the Breusch-Pagan statistic with 3 degrees of freedom 
is 7.82 (p = 0.05); critical values for Lagrange Multiplier Lag and Lagrange Multiplier Error statistics are 3.84 (p = 
0.05) and 2.71 (p = 0.10); critical value for Likelihood Ratio-Error statistic with one degree of freedom is 3.84 
(p=0.05); spatial weights matrices are row-standardized: D100 is a distance-based contiguity for 100 kilometers; 
D75 a distance-based contiguity for 75 kilometers; D50 a distance-based contiguity for 50 kilometers; IDIS2 
inverse distance squared; only the highest values for a spatial diagnostics are reported; * denotes significance 
at the 10 percent level, ** significance at the 5 percent level and *** significance at the one percent level 
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