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Account of Different Views in Dynamic Choice Processes

Manfred M. Fischer, Gimter Haag, Micheel Sonis and Wolligang Weidlich

1. Introduction

In the past years, the use of disaggregate choice models has been strongly advocated (see,
for example, Golledge and Timmermans 1988, Ben Akiva and Lerman 1985, Bahrenberg,
Fischer and Nijkamp 1884, Pitfield 1984, Johnson and Hensher 1982), as such models
enable to encapture stochastic and behavioural aspects of spatial decision processes.
Starting from the observation that modelling at the level of the individual actor in the spatial
system (consumers or suppliers of activities, such as, for example, migrants, travellers, real
estate developers or local government decision makers) offers the promise of new insights
into decision making and choice behaviour processes, various researchers have devoted
considerable efforts to the development of behavioural spatial choice models capable of
considering individual choices from a set of discrete alternatives at a point in time. The
emphasis of such discrete choice models has been - with very few exceptions - strictly
cross-sectional even if the choice processes studied were inherently dynamic in nature.

Quite recently, there has been increasing attention laid on modelling change processes.
The reasons for such a focus are well known and relate essentially to a concern with
economic, social and environmental change in general and to an interest in identifying the
influences on change and understanding the dynamics of choice behaviour in particular. In
the last few years several approaches to modelling dynamic choice processes have been
developed. These approaches widely differ in scope and in methodology. A major
distinction among these approaches can be made with respect to the temporal unit of
analysis (continuous versus discrete). Correspondingly discrete-time and continuous-time
dynamic approaches may be distinguished. Continuous-time approaches avoid the
potentially arbitrary nature of the definition of time of the discrete-time approaches and
enable to explicitly incorporate time in specific change points, while discrete-time approaches
have to identify 'natural’ decision periods which are invariant across the population of sampled
individuals. The parameters derived in the latter case are generally not invariant to the
positions of and the length between the time separation points. Discrete- and continuous-
time approaches may be further disaggregated according to the nature of choice (discrete
versus continuous choice). Thus, four broad types of approaches modelling dynamic choice
processes may be distinguished (see Figure 1). Only very recently there have been
attempts to integrate continuous and discrete choices intertemporally (see, for example,
Hensher 1988).



Fig. 1. Different Classes of Dynamic Choice Modelling Approaches

The emphasis in this paper is on discrete-time and continuous-time discrete choice model
approaches.First, the panel data-based discrete-time discrete choice model approach will
be described. Then, two continuous-time discrete choice modelling approaches will be
discussed: the master equation and the ecological deterministic approaches in modelling
dynamic choice processes. In section 3 the master equation approach and its relation to
the (static) multinomial logit model will be summarized. The ecological deterministic view
leading to dynamic extensions and generalizations of the multinomial logit and dogit
models will be characterized in section 4. Of course, there are several other important and
promising approaches to modelling the dynamics of choice processes which can not be
discussed due to space constraints.

2.The Panel Data-Based Discrete Choice Approach ® Modeliing the Dynamics of
Choice Processes

In the recent past social and economic scientists have developed an increasing interest in the
potential which the panel data approach offers to measure and model the components of
behavioural change at the individual level (see, for example, Coleman 1881, Tuma and
Hannan 1984, Hensher and Wrigley 1984, Hensher 1988b, Wrigley 1886). The most
proclaimed reason for this approach is the ability to examine the role of temporally-specific
phenomena on choice behaviour at different points in time.

The essence of panel data is information on a (more or less) fixed sample of decision-makers
acrosstime such that statements can be made about behavioural response at the individual
level. Panel data may be obtained by classical panel surveys which involve repeated
measurements on the same individuals at different points in time, by rotating panel surveys
which arecharacterized by a process of planned 'retirement’ of sample units and systematic
‘refreshment’ by new representative sample units, or by mixed panel surveys which are



hybrids of classical panel surveys on the one hand and rotating panel surveys or repeated
cross-sectional surveys on the other hand.

The great potential of panel data for dynamic modelling stems from both the temporal nature
of the data and the data linkage for each decision-maker. Panel data enable one to explicitly
recognize the intertemporal nature of choice outcomes, especially the role of state
dependence and habit persistence (cumulative inertia). Moreover, it is expected that the use
of panel data results in greater efficiency, in both statistical and behavioural terms, than the
estimation of separate relationships in the case of a repeated cross-sectional sample (see
Johnson and Hensher 1982, Coleman 1981). A major shortcoming of repeated cross-
sectional surveys refers to the fact that the sample units are not retained from one time period
to the next. There is no possibility to decompose observed change in behaviour over time
into the two components: changes in population composition and changes in sample
behaviour. Thus, there is no doubt that dynamic models of discrete choice have to be based
on panel data.

Over the past few years standard random utlity based discrete choice theory has been
extended to accomodate a temporal dimension. Panel data-based discrete-time discrete
choice models are concerned with a range of intertemporal formulations of the choice
processes. The critical issues in an intertemporal specification of a choice model are related
to the proper treatment of three types of systematic variation: heterogeneity, non-
stationarity and structural state dependency. Heterogeneity refers to the variation among
individuals due to both observed and unobserved external influences including variation
caused by the censoring of the panel data base . This form of dependency may be treated in
a number of different, but not necessarily mutually exclusive ways. For example, the set of
decision makers may be disaggregated by exogeneous characteristics or by decision
process characteristics in order to account for heterogeneity or taste variation. Alternatively,
the presence of heterogeneity may be controlled for through the use of equal likelihood
conditioning sequences (see Crouchley, Pickles and Davies 19882). Non-stationarity refers to
the variation in individual and aggregate choice probabilities resulting from changes in the
behavioural environment affecting the decision maker and/or the choice options. The third
type of variation , structural state dependency (also termed feedback effects), refers to the
dependency of current individual choice probabilities on preceding individual history.
Structural state dependence effects may arise due to several reasons. Choice outcomes may
depend on previous choices (markovianeffects ), on the length of time the current state has
been occupied (duration-dependence effects), on previous interchoice times (/agged
duration-dependence effecits ) and on the number of times different states have been
occupied (occurrence-dependence effects ) (Wrigley 1988). For practical reasons it might be
useful to assume that one or more of these sources of state dependence are unimportant
and, thus, may be neglected for the choice processes under consideration.



The methodological problem posed to the analyst by the presence of all three types of
systematic variation in the data is very considerable. It is already not an easy task to
disentangle the influences of intertemporal state dependence and heterogeneity, especially
when some choice-relevant influences are unobserved (i.e. neglected or unmeasurable)
and if they are temporally invariant and , thus, correlated with any time invariant observable
variable. Moreover, omitted variables may and most likely do introduce a spurious time-
dependence effect and bias into the parameter estimates of the observed exogeneous
variables. The so-called ‘cumulative inertia’ effect identified in residential mobility studies is a
typical example of spurious time-dependence effects resulting from omitted variables (see
Wrigley 19886, Wrigley, Longley and Dunn 1988). itis clear that the identification of the three
types of systematic variation and in particular of state dependence effects is of vital
importance for satisfactory modelling the dynamics in choice processes in the framework of a
panel data-based discrete-time discrete choice context.

In the rapidly growing field of panel data-based discrete-time choice modeis four major
categories of intertemporal formulations of the choice process may be distinguished: first,
Bernouilli models; second, markov models and their generalizations in form of Polya
process models; third, models with habit persistence, and finally renewal models of
structural state dependence (see Heckman 1981, Hensher and Wrigley 1984).

Bemouilli model approaches including the independent trials, the random effects and the
fixed effects Bernouilli models are the simplest and most familiar models of dynamic
stochastic behaviour (especially in the context of stochastic buying behaviour). The
independent trials model is based on the assumption that the probability of choosing an
alternative azA={1,..,A’} is constant over time. This model version does neither account for
heterogeneity nor for structural state dependency and non-stationarity. The rigid
homogeneity assumption has been ralaxed by the more sophisticated random and fixed
effects model versions which account for the presence of unobserved temporally correlated
error components (heterogeneity). But they do not generate structural relationships
between choice outcomes in different time periods. The random effects model assigns to
each individual an ’incidental ' or individual-specific parameter drawn from a population
density whereas the fixed effects model permits the analyst to estimate rather than to impose
the population density for the incidental parameters.

Structural dependence among time-ordered discrete choice outcomes can be analysed by all
the other model categories which accountfor structural state dependence effects. Markov
models (including time-homogeneous and time-inhomogeneous model versions) have
been used quite frequently to study the dynamics of choice behaviour. This is especially true
for the first order modeis which assume that choices made in the last time period are the only
prior choices relevant to current choices. Of course, they are accounting for what has been
termed markovian effects. The conventional model versions assume homogeneity and
stationarity, i.e. that the transition probabilities apply to all individuals in the population and that
the transition probability matrix is independent of time. Itis worth noting that most of the



non-inventory-based variety-seeking models are based on the concept of first-order markov
chains in attempting to predict switching probabilities from concepts of variety-seeking (see
Timmermansand Borgers 1985). Where an entire event history of the choice outcomes is
relevant to current decision making, as it is suggested in several human capital models in
labour economics, then a Polya process is assumed. Modeis for Polya type processes might
be considered to be generalizations of markov models (see Heckman 1981 for more details
on this issue). In the more sophisticated versions heterogeneity in unmeasured variables is
introduced.

Models with habit persistence (including Coleman's ‘latent markov' model) form the third
category. They assume that prior propensities to choose a state rather than prior
occupancies per se influence the current probability that a state is occupied or changed.
They ignore markov effects but account for lagged effects and allow relative evaluations in
other periods to determine current choice outcomes. The models capture the notion of
‘naive’ habit persistence contrasting with the first order markov model or the Polya process
models which capture only the chosen-state dependencies (Hensher and Wrigley 1984).
The model version outlined in Heckman (1981) might be considered as a discrete data
analogue to the distributed lag models.

The final model category , the renewal process models of structural state dependence,
assumes that the only effect of previous state occupancy on current choices is from the most
recent current spell in the state or in other words that the current continuous duration in a
state is influencing the decision to continue in or to leave the state. When the decision maker
leaves the state the experience is lost and, thus, irrelevant to future decisions. Heterogeneity
not accounted for in the conventional model version can easily be introduced (see Heckman
1981).

Consequently, a general intertemporal representation of individual choice behaviour ideally
requires to include terms to represent all the dimensions of intertemporal causality
captured by the four model categories and importantly to enable to separate these
intertemporal relationships from persistent individual-specific effects (heterogeneity) (see
Hensher and Wrigley 1984), i.e.

Current Choice =

current, past ‘effects of the cumufative of the

f f and/or future f relevant enlire f e f most recent [accounting for
1 levels of 112 | (or part) past |5 3(hab|t pemstence}, 4 continuaus ) Tg | pereroneneity
exogenous variables history OEPORENGe

in a state

Markov/Polya Model with Habit Renewal
Process Model Persistence Process Model



A model which fulfills this requirement has been developed by Heckman (1981). His
general model of discrete-time individual choice behaviour is sufficiently flexible to take into
account time-dependent explanatory variables and to account for complex structural state
dependence inter-relationships and for a general characterization of heterogeneity.

Heckman’s model is based upon the following ideas. It is assumed thatfrom arandom sample
I={1....,1"t of choice makers or individuals information on the presence or absence of an event
(ie. choice outcome) in each of T equi-spaced time periods is assembled. The key
assumption of the model is that discrete outcomes are generated by continuous variables
with cross-thresholds ;or more precisely that an event for decision maker ie | in time period t
occurs, it and only if a continuous latent random variable y;; crosses a threshold. In
applications, such continuous variables may be related to well defined economic concepts.
For example, in Domencich and McFadden (1975) the continuous variables producing
discrete choices are differences in utilities of possible choice.

Only for convenience this threshold may be assumed to be zero. The random variable y;; is
supposed to consist of two components: a deterministic component v;; which is a function of
exogeneous, predetermined and measured endogeneous variables affecting current

choices; and a purely random disturbance component & , i.e.

Yit = Vit * S (M
with
i 2 0 if and only if dj = 1 (2)
and
yg < O ifand only if dy - O (3)

where d;; is a dummy variable denoting the occurrence of the event under consideration.
The distribution of the d's is generated by the distributions of the ¢;'s and vi;'s where
adopting a multinomial probit formulation itis assumed that €; is normally distributed with
mean zero and a (T,T)-positive definite covariance matrix. This normality assumption
generates a model which admits a rather general characterization of heterogeneity. It is
worthwile mentioning that alternative assumptions of vy and €; give rise to a variety of other
interesting models useful for analysing discrete panel data.

Assuming that the latent variable y;; is alinear function of observed choice-relevant attributes
(including past exogeneous variables, current exogeneous variables and expectations of



future exogeneous variables), represented in the vector x;, of lagged values y;; and of past
outcomes dy with t'< t, Heckman'’s general model may be written as

vi=xg B+ X Vet dipj + b Ajt-j IT dyy; + G(L) yi ieht=1,..T  (4)

j=1,...,% j=li,00 =1,

where f is a vector of parameters of X4 G(0)=0 and G(L)=gq L+go L2+...+g kLk is a general lag
operator, LX y=yj.. The initial conditions dp and yj for t=0,-1,-2,... (in other words, the
relevant presample history of the process) are assumed to be predetermined or exogeneous.
This assumption, however, is only valid if the unobserved choice-relevant charateristics
generating the process are serially independent.

The first term at the right-hand side of (4) may incorporate past and current information and
future expectations on exogeneous choice-relevant attributes affecting current choices, as
already mentioned above. The second term represents the effects of the entire past history
on choice behaviour at time t and, thus, structural state dependence effects. This term is
assumed to be finite. The coefficients for past events (i.e. Vt-jt) are considered to be functions
of the current time period t and the time period t-j in which the event occurred. The third term
denotes the cumulative effect on current choices of the most recent experience in a state. It
is assumed to be finite. The A's denote parameters. Finally, the last term in (4) representing
the effect of previous relative evaluations of the two states on current choices captures the
action of habit persistence.

Heckman (1981) has shown that the above mentioned models, namely the Bermouilli
models, the markov and Polya process models, the models with habit persistence and the
renewal process models of structural state dependence, emerge as restricted versions of this
general panel data-based discrete-time choice model by imposing certain restrictions on the
parameters.

Even if a probit formulation requiring a fairly general error covariance matrix is theoretically
rather attractive to handle state dependence and heterogeneity, it is in practice only of limited
use for more than three choice options per time period (see Hensher 1988) . Thus, current
efforts in computationally tractable discrete-time discrete choice models for multiple
(unordered) choices in the presence of state dependence and serial correlation are directed
to take the cross-sectional multinomial logit rather than the multinomial probit model as a
starting point. An important example is the generalized beta-logistic model for longitudinal
data which permits heterogeneity to be controlled in the estimation of the structural
parameters of the determinants of choice behaviour and incorporates time-varying
exogeneous variables as well as feedback effects. An application to residential mobility within
the County Borough of Leeds is described in Davies (1984).



In these efforts three broad modelling approaches may be distinguished according to
Hensher and Wrigley (1984) (see also Hensher 1986a). The first approach involves
estimating wave-specific (i.e. time period specific) models separately for each wave and taking
the estimated choice probabilities in order to identify a choice sequence probability.
Although exogeneous variables can be included to represent previous period choice
outcomes or propensities to occupy states in previous periods, strong assumptions such as
zero serial correlation are invoked (see Hensher and Le Plastrier 1985). In the second
approach the data is pooled, with inter-period linkages represented by a lagged index, one for
each exogeneous variable. The use of such a lagged index is a way to deal with state
dependence without serial correlation attributable to lagged endogeneous variables (for
more details see also Davies 1984). The third approach considers the data as an explicit
sequence wherein the likelihood function associated with the choice sequence probability
has two major components. One component accounts for the time-invariant influences
(including the initial conditions) and the other one incorporates the time-varying influences.
The separation of these components provides the formal mechanism for explicitly handling
heterogeneity (for more details see Smith, Hensher and Wrigley 1985). Of course, the
modelling style increases in complexity as one moves from the first to the third approach.

Much progress has been made in panel data-based discrete-time discrete choice modelling
in the last few years. But unquestionably, there are several problems which are not yet
satisfactorily solved up to now, such as, for example, the problem of attrition bias, the problem
of initial conditions, the problem to account for heterogeneity due to variation outside the
sample period, the problem of non-stationarity etc.

3. The Master Equation View in Dynamic Choice Processes

An interesting alternative to the panel data-based discrete-time approach for analysing
dynamic choice processes can be found in the so-called master equation approach. This
approach which has already a long tradition in physics (especially in the context of laser theory
and spin relaxation) has been brought to the attention of the regional science community in
the early 1980s by Smith (1881), Kanaroglou, Liaw and Papageorgiou (1986a,b) and
especially by Haag and Weidlich (1983, 1984, 1988). In the last few years much research has
been undertaken by Haag and Weidlich and their associates (see inter alia Weidlich 1987,
Munz and Reiner 1987, Haag 1988, Weidlich and Haag 1988) to open a large field of
applications in the social and economic sciences in general and regional science in particular
where special emphasis has been laid on the dynamics of migration processes.

A master equation describes the evolution of the probability function, representing the
transition probabilities for well defined states of a dynamic micro-based system of actors. By
using, for example, a mean value approach an elegant link can be established between micro -



levels and macro--levels of a system, so that structural changes in dynamic systems can be
analysed in a statistically satisfactoryway.

There are several cogent reasons for using the master equation approach in analysing
dynamic choice processes. A first reason is its flexibility and generality. The ranges of possible
behaviours embodied in master equations is aimost unlimited (Smith 1981). In the second
place, this approach allows to take account of synergetic effects in the behaviour of different
individuals (such as adaptation processes and learning effects). The socio-configuration
includes then the individual transition probabilities based on joint interaction effects. A third
major advantage of the master equation approach is that it links the micro-level decisions of
individuals with the macro-level behaviour of collective variables (seeFigure 2). Feedback
elements, heterogeneity (variation between individuals) and non-stationarity (variation over
time) can be taken care of.

Socio-Economic Processes

Micro-Level Decisions

Macro-Level Behaviour

of Collective Variables of Individuals

Master Equation

Fig. 2. The Master Equation Point of View: The Relationship between the Micro- and Macro-
Level in Decision Processes

The purpose of this section is to briefly outline this approach in general terms and to illustrate
its relationship between the master equation approach and the static multinomial logit model.
Let us start with some preliminary notational remarks. As usually Is={1,...I' s} may denote a set
of decision makers or individuals belonging to population segment s=1,...,S’. Without loss of
generality the subindex s is dropped in the sequel in order to facilitate notation. Each
individual has to select one alternative a out of a set A={1,...,A"} of choice options. The macro
state of the decision system at any time t may be described by the so-called decision

configuration (i.e. the distribution of choice frequencies):

n = {ng, Ny, ..., Na} ®)



with

I'=2X N, (6)
aeA

consisting of A’ integer variables n, where n, denotes the number of individuals who have
chosen option a.

In the course of time transitions can take place from any initial decision configuration n into
one of the neighbouring configurations n + k ={ny+ky, np + Ky, ..., na» + ka} where k,
(a=1,..,A") is positive or negative integer with k{+ko+ ... +kp =0. These possible transitions
arise because any one of the I' decision makers who originally preferred alternative b now
makes a transition to alternative a. The individual transition rates between all alternatives give
rise to a total transition rate @ (n + k n) , per unit time, for the transition from decision
configuration n to decision configuration n+k

Since these transition processes are probabilistic rather than deterministic in nature, the
decision configuration evolves with time stochastically. For this type of motion there is the
well-established general theory for stochastic markov systems in terms of an equation of
motion, the so-called master equation, for the probability distribution over the configurations
of such systems.

Let us introduce the probability distribution function as
P(nlt) . P(n1l n2|"'l nA'lt) (7)

which is, by definition, the probability that the decision configuration n is realized attime t. Of
course, P(n,t) must satisfy at all times the following probability normalization condition

TPy =1. 8)
n

If the configurational transition rates w(n+kn) fromany n to all neighbouring n+k are
given, then an equation of motion for P(n,t) can be derived. This equation which describes
the dynamics for P(n.t) at the probabilistic level follows by specification of the general master
equation for markov systems to the decision system athand (see for more details Haag and
Weidlich 1984, Haag 1988). Itreads

dP(nt)/ dt = X [w(n, n+k) P(n+kt) - w(n+kn) P, t) (9
k

where the sum on the right-hand side of (9) extends over all k with non-vanishing
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configurational transition rates w(n,n+k) and w{n+kn), respectively. The change with time of
the probability of decision configuration n is caused by two effects of opposite direction, first
by the probability flux from all neighbouring configurations n+k into n (first term of the right
hand side of the equation) and second by the probability flux from n toall n+k (second term
of the right hand side). The solution of this equation (8), namely the time-dependent
distribution P(n, t), contains all information about the choice process at the most detailed
level. In particular not only the mean value of n (t), but also their mean square deviations due
to fluctuations in the decision process can be calculated.

In order to make the model explicit the transition rates w(n+k, n) governing the dynamics of
the system by (9) have to be constructed. This can be done as follows: First, so-called
dynamic advantage or utility functions (describing the advantage for an individual to adopt
choice option a) have to be introduced; second, the individual transition rates (describing
changes of probability per unit time with the dimension 1/(time), namely that an individual will
choose alternative b att+7 given that alternative a has been chosen at t) have to be defined;
and finally the fotal transition rates between decision configurations (describing changes of
probability per unit time from one decision configuration to a neighbouring decision
configuration) have to be specified.

The desirability of an alternative a for a choice maker may be described by a so-called dynamic
advantage or utility function u,. Of course, the utility of an alternative a for an individual
depends on the socio-economic situation of the system at hand , to be expressed by the
configuration n (t) and by certain trend parameters which in tum depend on various
push/pull terms. Itis important to note that the concept of dynamic advantage utilities is not an
ordinal, but a cardinal one. Moreover, it should be emphasized that interaction effects
among choice makers may be taken into account via their dependence on n (t).

The dynamic advantage functions remain purely theoretical quantities unless their influence
on the dynamics of the decision process is specified. The dynamics are governed by the
individual transition rates (per unit of time), the py,,'s , of any individual who originally preferred
alternative a and now makes a transition to alternative b. In order to make the relationship
between the master equation approach and the static multinomial logit model clear, it is
assumed that the py, 's are functions of the above mentioned utilities, namely that

Ppal®) = v exp [up(n) - uxm)] a,beA (10)

where v is the overall flexibility parameter of subpopulation |; with respect to changes in
attitude and essentially accounts for gliobal effects facilitating or impeding a transition from
alternative a to alternative b. The construction of the Individual transition rates has the
purpose to attribute the information contained in the choice behaviour of certain individuals to
a few parameters embedded in the corresponding utility functions.

11



The crucial element of a dynamic decision process is the configurational conditional
probability P(n+kt+T|n, t),i.e. the probability to find a certain decision configuration n+k at
time t+1, given that the decision configuration n was realized at time t, because it describes
how the probability spreads out in the time interval T . The conditional probability may also
depend upon the previous history of the system under consideration. But in this general case
the probability evolution process becomes very complex. Thus, in general the markov
assumption is made, which implies that only the very recent past is considered to be
relevant, and not the whole past history.

Under the assumption that the individuals make their choices statistically independent of each
other, the configurational transition rate is given by the product of the individual conditional
transition rates. This analytically convenient assumption appears to be rather rigid in many
decision contexts where individuals interact in their decisions. This is especially the case in a
migration context.

With the help of the individual transition rates p,, , definedin (10), it is easy to construct the
transition rates between decision configurations. Each of the n, individuals making a
transition from alternative a to alternative b with a transition rate pp,(n,, Np) induces a
configuration transition of the following type

(n1. n2.....na.....nb....,nA-) — (n1.... .(na-1)..... (nb+1).....nA-). (11)

Consequently, the n, members contribute the following term

Na Ppa(f) = Wp,(m)  for k= (0,..,-15,..+1 p,...,0)
Wpa(+k n) = ‘[ (12)
0 otherwise
to the corresponding configurational transition rate (per unit ime) w(n+kn). Since the
transitions between all alternatives take place simuitaneously and independently, the total
transition rate w(n+k n) is the sum of all contributions (12) so that

w(n+kn) = X wp,(n+k n). (13)
a,beA

It is worthwile to note that for very short time intervals the configurational conditional
probability can be traced back to configurational transition rates and individual transition
probabilities to individual transition rates (see Haag and Weidlich 1884).

The explicit form of the master equation corresponding to the static multinomial logit model is

immediately obtained if the total transition rates (13) with (12) are included in equation (9).
Since only transitions between decision configurations n= (ny, ..., Ry, .., N, .., Ny) and

12



adjacent configurations n(ba) = (ny, ..., ny-1, ..., Np*1, ..., ny) forall pairs (b,a) ¢ (AxA) are
involved, the master equation describing the full dynamics in probabilistic terms may be
formulated in the following more convenient form

d P(n,t)/dt = T wy,(n2)) Pmba)y) - £ w, (M) P(n,Y. (14)
a,beA a,beA

where w,,, and w,, are configurational transition rates,P(n,t) is the probability that the
decision configuration n is realized at time tand P(n(b2) t) is defined analogously. The master
equation (14) can be interpreted as a probability rate equation. It evidently provides the link
between the micro-level of individual decisions and the macro-level of the system under
consideration ( see also figure 2.2) and, thus, gives insight into how decisions on the micro-
level of choice makers induce probabilistic fluctuations on the macro-level of mean values of
the decision configurations.

The master equation (14) establishes a set of (i’) coupled linear differential equations for
the probabilities P(n, t) of the (I:) possible configurations n. The exact stationary solution

PSt (n) of (14) is reached for t—<° (for more details on this issue see, for example, Haag
1988).

Usually, the full information contained in the probability distribution (configurational
probability) P(n,t) is not exploited in an empirical analysis due to lack of sufficiently
comprehensive empirical data. Thus, generally a transition to a less exhaustive description in
terms of equations of motion for the mean values of the decision configurations is made and
consequently corresponding equations for the quasi-deterministic level of mean values ny(t)
with beA rather than the master equation for the probabilistic level are soived. These
equations of motion can be derived from the master equation (14) in a straightforward
manner as

dnpt)/dt = v X np(t) exp (up(n)- ua(m) - v X ny(t) exp (uy(n) - up(n)) beA. (15)
acA arA

The mean value equations (15) belonging to (14) may have one or several stationary
states, It can be shown (see Haag 1988) that they coincide with the maximum (the maxima)
of the stationary distribution PSt(n) in the considered case (not in general). Al time-

dependent solutions approach fort— <> one of these stationary states. But it is depending
on the initial conditions which of the equilbrium states of (15) is approached.

The conditions for the stationary solution fSt= (Fﬁt. ﬁ;t. o ﬁ,it-), for which the right hand side

of (15) has to be equal to zero, can be read off immediately

g = C exp[2 up@®h) beA (1)
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with the normalization factor

C-r/1X exp[2 uy@ct)] (17
acA

where n;, is the most probable number of individuals who have decided for alternative b.
Thus, the quantity

P = Ag/I = exp[2 up@Y] / X exp[2 u,@SY] beA (18)
aeA

is equivalent to the probability that any one individual selects alternative b.

Comparing the stationary solution (18) of this dynamic theory of choice processes with the
outcome of the static multinomial logit mode! approach

Ppb = exp(n vp)/ Z exp (| Vp) beA (19)
acA

with vi, denoting the systematic component of utility attached to altemative b and p a

positive scale parameter of the Gumbel distribution, then one has to identify

up@st) = (uvp)/2 beA . (20)

Thus, both 'utilities’ coincide up to an ordinary rescaling, if the same utility function can be
assigned to all individuals of the decision configuration. The coincidence of the stationary
formula (18) with the multinomial logit model (19) under appropriate rescaling (20) of the
utility concepts has the meaning that the static multinomial logit model describes the limiting

case for t™ < in the special case of non-interacting individuals where u, does not depend
on n.

InHaag and Weidlich (1988) it is described how the master equation approach can be used
for analysing the dynamics of inter-regional migration systems using data for the Canadian
system. Similar in spirit is the analysis of migration systems undertaken by Kanaroglou, Liaw
and Papageorgiou (1986a,b). These authors adopt the master equation approach for dealing
with the evolution of the migratory system and provide an operational framework in which a
somewhat more explicit link between the macro-properties of the population system and
human behaviour is given. Quite recently, Haag and Weidlich initiated an international project
in which the master equation approach has been applied to compare and evaluate the
dynamics of migration processes in six countries (Canada, France, the FRG, Israel, ltaly and
Sweden) ( see Weidlich and Haag 1988).
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4. From Homo Economicus % Homo Socialis : The Ecological Approach o Dynamic
Choice Processes

The ecological (deterministic) view in dynamic choice processes suggested and put forward
in a series of papers by Sonis (1983, 1984, 1986, 1987) is based on the consideration of
the individual choice behaviour as a choice behaviour of homo socialis instead of behaviour
of homo economicus.

Homo economicus is a totally egoistic rational omniscient creature who is supposed to
accomplish a rational free choice between different competitive alternatives on the basis of
the individual's utility maximization principle. Homo socialis is an individual whose {collective)
behaviour is based on the interaction among choice-makers and on the imitation and learning
within an active uncertain environment. The choice behaviour of homo socialis is directed by
the subjective mental evaluation of the marginal temporal utilities (individual's expectations of
gains in the future). This mental evaluation is heavily influenced by the enormous information
flows through mass media presenting 'ready’ opinions and solutions and making difficult the
rational evaluation of alternatives and their utilities for an individual.

The choice behaviour of homo socialis in space-time continuum generates the spatio-
temporal spread of alternatives (alternative innovations). Therefore, a 'duality’ exists between
the individual choice behaviour and the behaviour of the system generating, supporting and
introducing the alternative choice options. This duality leads to the interpretation of the
relative distribution of choice-makers between alternatives as individuals’ choice frequencies
of alternatives. Moreover, the choice and spread of alternatives occur within an active social
and physical environment which changes the behaviour of systems supporting and
individuals adopting an alternative by filtering the information flows about alternatives and by
social, physical, cultural, administrative, economic, political etc. restrictions and stimulations.
Thus, three major actors are participating in the dynamic choice process: alternatives,
choice-makers and active environment (see Figure 3).

The behaviour of choice alternatives includes the behaviour of the systems generating,
supporting and introducing alternatives and organizing their spread. The spread of
alternatives incorporates features of the ecological competition between alternatives in the
form of antagonistic or cooperative zero-sum games between different subsets of
alternatives. The result of the ecological competition is the competitive exclusion of non-
efficient alternatives.

The understanding of the choice-makers' behaviour is based on the consideration of an
individual as homo socialis and the rejection of the concept of homo economicus. The
external intervention of an active environment restricts the choice behaviour of individuals
and changes the competitive abilities of supporting systems by generating the redistribution
of choice-makers between alternatives. An active environment is weakening essentially the
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action of the individual's utility considerations, smoothing out the extreme action of
competitive exclusion of alternatives and generating socio-economic niches preserving and
supporting the existing tendencies of choice.

B A N R R

Choice Options ||
(Innovations)
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Yo/ - : < SN
eg%\‘[ Active Environment ] ,{“@Q"
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External Interventions

Behaviour of Behaviour of
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dynamic extensions
and generalizations
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MICRO-LEVEL
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Fig. 3. The Relationship between Innovation Diffusion and Individual Choice:
The Duality Point of View

Pursuing the ecological deterministic view in dynamic choice processes it can be shown that
the system of partial differential equations of the Volterra-Lotka type arising from the relative
dynamics of portions of adopters of competitive (i.e. mutually exchangeable and mutually
exclusive) alternatives can be reformulated in an analytical form resembling the static
multinomial logit and dogit choice models. Conceptually, however, the derived dynamic
extensions are different from their static counterparts. The static model versions are based on
the micro-level principle of individual utility maximization, while the dynamic versions are
based on the macro-level variational principle determining the balance between the
cumulative social spatio-temporal interactions among choice-makers and the cumulative
equalization of the choice alternatives. This balance condition is governing the dynamic
choice process and constitutes the dynamic macro-level counterpart of the individual utility
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maximization principle. On the micro-level a somewhat different behavioural principle can be
derived, namely the principle that an individual chooses an alternative not on the basis of a
comparison of utilities, but on the basis of a comparison of the temporal marginal utilities
(interpreted as the expectations of a gain in the future) which may be influenced by social
interaction, imitation and learning processes between choice makers.

Moreover, an active environment may alter the choice behaviour of individuals, implicitly by
filtering and/or intensifying the information flows between individuals (social interaction) and
between individuals and choice options (such as, for example, informational constraints) , and
explicitly by different forms of physical, socio~economic, cultural and legal restrictions or by
different forms of stimulation and support.

The dynamic continuous-time cholce models which are dynamic deterministic counterparts
and generalizations of the well-known static muitinomial logit and dogit models will be derived
in the sequel. Their discrete-time equivalents as well as issues of statistical estimation and
testing may be found in Sonis (1987). Itis important to mention that the discrete-time choice
processes present analytically the particular cases of the universal discrete-time
multistock/multilocation relative socio-temporal dynamics (see Dendrinos and Sonis 1989).

Let us formalize now the macro-level choice hypothesis, postulated by this ecological
deterministic view. For this purpose consider an exhaustive set A={1,...A’} of A’ different
mutually exchangeable and mutually exclusive choice alternatives and, moreover, a
multidimensional space R of space-time parameters and all decision-relevant attributes
characterizing both the choice maker and the choice options. The frequency vector pfr), reR,
may represent the relative distribution of choice frequencies in each point reR:

P() = [P1(n.p2(n), ... ,PA(N] reR (21)
with
0= pa(r) = 1 aeA, reR (22)
and
Zoptn = 1 reR. (23)
keA

The relative change in frequency p,(r) in some direction s is

0 palr) /p o0 = O Inpy(n) aeA; reR (24)
Os Os
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where 0/0s is the directional derivative in the arbitrary direction s in the space of ali
explanatory choice-relevantvariables and space-time parameters.

The main hypothesis which constitutes the conceptual framework of the ecological approach
is as follows: The choice behaviour of the homo socialis is the collective macro-level choice
behaviour such that the relative changes in choice frequencies depend on the distribution of
alternatives between choice-makers, i.e, depend on all components of frequency distribution
vectors. This hypothesis means analytically that the dynamic continuous-time choice model
can be presented in the form of the following system of partial differential equations for each
direction s:

OInp,y(r)/0s = fu(rpi(D, ... .PA(N) aeA; r,;seR (25)
where f., is a non-linear function in rand p(r), depending on the direction s.

The integrability conditions for (25) are the usual ones for each pair of directions q,s:

02 Inp,(n/0qds = 02 Inpy(r)/0s dq azA; reR (26)
or equivalently
0 fqalP) / 98 = 3 1s,(P) / Oq asA; reR. (27)

These conditions mean that for each asA there is a function V,(r) - the so-called scalar
interaction potential - such that (see Sonis 1986 for more details)

OVa()/0s = 15a(P) azA, reR (28)

and

O paN/0s = X @ggap( Pal) Poln acA, reR (29)
beA

with

9sablr) i= G (Valr) - Vp(n) / Os abeA; reR (30)

where g.,p represents the marginal infiuence (in the direction s) of the a-th choice
alternative on the adoption of the b-th alternative and thus measures the actual portion of
contacts stimulating the transition from a to b. The marginal interaction coefficient ggap,
between the alternatives a and b depends on changeable (in space and time) attributes of
the aiternatives a and b and socio-economic characteristics of the choice-makers. Due to
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(23) the interaction matrix Gg:=(gsap) has to be antisymmetric (i.e. ggap+9spa=0 for abeA).
This antisymmetry may be interpreted in such a way that each pair of choice alternatives a
and b participates in an antagonistic zero-sum game with the interaction coefficient gg,p
being the payoff (expectation of gain) for the a-th choice alternative. Moreover, the
antisymmetryof G implies the existence of the competitive exclusion equilibrium states, i.e.
the transfer of all individuals to one alternative (see Sonis 1984).

A solution of the system of differential equations (29)-(30) together with (23) is given by

Pal) = Ca exp Vyu(r)/ T Cp exp Vp(r) asA, reR (31)
beA

with

Ca = Pal0) exp(-V4(0)) azA. (32)

Evidently (31) resembles analytically the static muitinomial logit model. Consequently, one
may interpret p,(r) aschoice frequencies of a dynamic extension of the logit model and V,
as the systematic component of an individual's utility. From this point of view the
interpersonal interactions V,,:=V -V, are the utilities of transition from alternatives a to b
and OV,(nNds the dynamic (dynamic-space) marginal utilites which represent the
expectation of future gains. It is important to stress that the dynamic extension (31)-(32) of
the logit model corresponds to the specific state of totally antagonistic competition between
alternative choice options within an indifferent (i.e. passive) environment, the simplest case
of competition which generates the equilibrium states according to the principle of
competitive exclusion. This implies that each subset of the choice set participates in an
antagonistic non-cooperative zero-sum game, and an individual cannot gain anything by
exchanging alternatives and returning to the initial one.

Expression (29) means that the frequency p, increases, i.e. Op,(r)/0s>0, it

2 ggap(n Pp(r) > 0 asA; reR. (33)
beA

The behavioural interpretation of this factis as follows. The choice-maker compares alternative
a with all other choice options b (b*&) not by comparing the utilities V, and V|, only, but also
by comparing the dynamic marginal utilities OV,(r)0s and OVp(r)Os. Moreover, the
consideration of only expected transitional utilites is not sufficient The individual observes
the choice of other individuals and takes into account how many individuals are choosing the

other alternatives. Thus, the term pp(r) [(OV 4(r) /0s) - (OVp(r) /0s)] represents a measure of
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the transitional expected growth in utility and the degree of imitation or influence of adopters
of altemative b on the decision to change from alternative a to b.

The transition from a passive to an active environment in which the decision process takes
place generates inter alia the dynamic extension of the multinomial dogit model. This
transition may be accomplished technically with the help of a (invertible) stochastic
redistributional matrix S=(s,n(r)) where the coefficient s,,(r) may be interpreted as the
frequency of individuals rejecting alternative a and, instsad, shifting to alternative b under
the influence of external influences.

Introducing external forces into the dynamic individual choice modeis (31)-(32) yields the
following generalizations :

Pa() = [ Z8palr) Cp expVp(r)/ Z C, exp Vp(r)] aA, reR (34)
beA beA

with Cy, defined by (32) and where

Pa(n) =X spa(r) Ppr) azA, reR (35)
beA

denotes the relative distribution of choice frequencies in reR transformed by the markov

matrix S'=(sp,(r).

Different specifications of the stochastic matrix S resuit into different rather general dynamic
model specifications, i.e. different generalizations of the above mentioned dynamic
multinomial logit model. |f the elements of S are chosen in the following form of

8,/8 for a+b

Sab = (38)
[ (1+8,)/s fora=b

where s:= s1+85+.. +sp , then the dynamic version of the logit model (31)-(32) will be
transfomed into a dynamic version of the random utility based dogit model. The above
mentioned specification of S may be interpreted as to stimulate the conservative choice
behaviour in the form of the ‘captivity’ of the alternative.

Itisimportant to stress that the transition from one original choice model to another with the
help of (non-stable) stochastic matrices is very helpful operationally because it opens up the
possibility to generate a wide range of rather general dynamic choice models which enable
to take into account various external interventions of the active environment.
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This section will be concluded with the presentation of the variational principle which is the
dynamic counterpart of the utility maximization principle for static models of utility choice.
Consider the simplest case of the system of differential equations (29) where the space R
includes only the time dimension t, and the influence functions g, are constant in t

dinp,(t)/dt = £ gap Palt) atA, 0<KKT (37)
beA

with

I palt) = 1 0<1<T. (38)

aeA

The derivation of this system of log-linear differential equations can be done with the help of
the following Hamilton type variational principle (Dendrinos and Sonis 1988). Consider the
cumulative portions of reiative populations of choice-makers prefering aitemative azA:

t

Pat = [ paltat (39)
0

and the integral

]

[ <22 patt) Inpa@® + £ gapPal® Pplt) dt (40)

0 agA a,beA

This integral plays the role of a welfare function arising from the cumulative social
interaction between choice-makers
T

J (£ 9apPa(® Pp)dt (41)
0 abeA

and from the process of the equalization of alternatives measured by the cumulative
temporal entropy

:
[ (- paft) Inpy (t)at (42)
0 abeA

If the first variation of the integral (40) vanishes then the system of Euler differential
equations coincides with the system (37) -(38) representing the dynamic choice process.

The most important fact is that the stationary value of the integral (40) tums out to be the
cumulative entropy (42). This fact implies that in the actual dynamic choice process the
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cumulative social interaction and the cumulative entropy balance each other:

T T
J (-2 patt) Inpa®)dt = [ (X gapPa () Pyt ct (43)
0 aeA 0 a,bsA

It is worthwile to elaborate the probabilistic version to the above mentioned ecological
deterministic view.

5. Conciuding Remarks

Itis evident that the modelling of dynamics in choice processes is getting increasingly more
attention in geography and regional science. The primary objective of this paper has been to
discuss the three modelling approaches which appear to predominate the discussion in
geography and regional science in the recent past.

We think that each of the approaches described above has appealing features in studying
the dynamics in choice processes, but suffers also from some shortcomings and limitations.
Thereis no doubt that from an analytical point of view the two continuous-time approaches
are much more general and flexibie than the discrete-time approach. This attractive feature
partly comes from the fact that time is dealt with in a continuous way. Consequently, the
potentially arbitrary nature of the definition of discrete time is avoided and a more accurate
representation of the duration of events is guaranteed. The parameters derived are invariant
to the time unit selected. The differential equations do not only describe the development
towards stationary states, but also a variety of phase transitions of transient states and
provide a deeper understanding of the dynamics in choice processes and of the relationship
between the micro-and macro-behaviour of spatial systems.

Both continuous-time approaches contain the two major ingredients of a truly integrated
dynamic discrete choice model, the accounting framework in form of differential equations
and behavioural assumptions. Moreover, the master equation approach takes into account
the interaction between individual choice behaviour and collective state variables, while the
ecological deterministic one the interaction between the environment and the decision
maker. Although these approaches have considerable appeal due to their generality and
flexibility the price paid for this attractiveness seems to be a the rather high degree of
abstractness implying a lack in operational terms. The approaches are fundamentally analytic
and do notyet explicitly provide a fully developed operational framework. This is especially
true for the ecological deterministic approach. But there is hope that serious applications in
the near future might pave the way in translating the approaches into satisfactory operational
frameworks. In this respect the panel data-based discrete time approach appears to be
superior. Evidently it is computationally more tractable (at least the logit-type formulations)
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and especially operationally more flexible and provides a richness of information on the
dynamics of choice processes.

Finally, some remarks conceming the underlying behavioural assumptions should be made.
The panel data-based discrete-time approach is explicitly based upon the random utility
maximization principle. Although there is no explicit choice-behavioural assumption inherent
in the master equation approach, the general form suggested for the transition rates of the
dynamic equations is consistent with utility maximization. In contrastto these two approaches
the ecological deterministic one is based on a different macro-level behavioural principle of
balance between the cumulative social interaction and the cumulative entropy of choice
makers’ distributions, which is a measure of the equalization of competing choice alternatives.
On the micro-level this principle means that an individual chooses an alternative not on the
basis of a comparison of utilities, but on the basis of a comparison of the temporal marginal
utilities. Unfortunately, there is no empirical evidence available up to now either for or
against the validity of these behavioural principles .
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