## **WSG** Diskussionspapiere



WSG 8/90

Innovation and Technological Change: An Austrian-British Comparison

Manfred M. Fischer and Neil Alderman

## **WSG** Discussion Papers

Institut für Wirtschaftsund Sozialgeographie

Wirtschaftsuniversität Wien

Department of Economic and Social Geography

Vienna University of Economics and Business Administration

### Institut für Wirtschafts- und Sozialgeographie Wirtschaftsuniversität Wien

Vorstand: o.Univ.Prof. Dr. Manfred M. Fischer A - 1090 Wien, Augasse 2-6, Tel. (0222) 313 36 - 4808

#### WSG 8/90

## Innovation and Technological Change: An Austrian-British Comparison

Manfred M. Fischer and Neil Alderman

### WSG-Discussion Paper 8

December 1990

ISBN 3 85037 008 9

#### 1. Introduction

One of the key features of the current wave of technological change taking place within manufacturing is the adoption of micro-electronics based technologies to traditional manufacturing processes. Micro-electronics based technologies may be roughly defined as comprising all those new technologies which use microprocessors or their electronic equivalents (such as custom or semi-custom integrated circuits) either in the form of single integrated circuit devices or in small groups of linked devices. The microelectronic revolution is not only creating new goods and services, but also altering how they are produced. In manufacturing microprocessors gradually penetrated into all aspects of the production process. Applications cover the use of micro-electronics based equipment in the design, fabrication, assembly, handling, guality control and testing or other operations on site necessary to make a product ready for sale. Typical process and production applications include the use of computer-aided design (CAD) equipment, computer-aided manufacturing (CAM) systems, including inter alia computerized numerically controlled (CNC) machine tools, robots and flexible manufacturing systems (FMS). In contrast to special-purpose automated machines these programmable automation technologies tend to increase flexibility and efficiency (in terms of both the range of products and volume of a specific product) as well as increase productivity and control over the manufacturing process (see Fischer 1990).

Over the past ten years a considerable amount of empirical evidence of one sort or another has been amassed that demonstrates that these processes of innovation and technological change are spatially differentiated, both regionally within nations and internationally between nations (e.g. Nabseth and Ray, 1974; Kleine, 1982; Thwaites et. al, 1982; Rees et al, 1984; Jacobsson 1985; Brugger and Stuckey, 1987; Tödtling, 1988). Few studies, however, have been conducted in such a way as to enable direct comparisons between countries to be undertaken, either to establish international differences in the innovative performance of particular industries, or to identify differences in regional patterns within different national contexts.

Reliable cross-national comparisons will become an increasingly pressing need as the issue of European integration rises higher on the political and

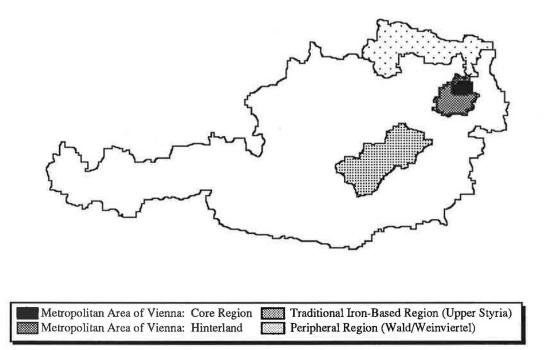
1

economic agenda. The implementation of the Single European Act in 1993 and the changing climate of East-West relations will add urgency to this issue.

Inconsistencies between national studies in terms of survey design - sectoral composition, choice of innovations, categorisations of variables and so forth - mean that it is frequently impossible to conclude whether differences (or conversely similarities) between national experiences can be attributed to fundamentally different levels of industrial performance, or different economic, political cultural regimes, or whether they are simply the product of different sample designs.

In this paper evidence from recent surveys of comparable industries in Austria and Britain is used to investigate the comparative innovative performance of the two countries in terms of the adoption of some of the key computer-based technologies referred to above. By controlling for variables such as industrial sector, the comparative performance of manufacturing in similar types of region (the core metropolitan region and its immediate hinterland, a traditional iron-based industrial region and a peripheral region) is identified.

Using appropriate multivariate analyses, the importance of the commonly identified indicators of innovation propensity is tested and the difference between Austrian and British manufacturing establishments identified. The prospects for the different types of regions in the two national settings in terms of the adoption of the components of computerised manufacturing systems are discussed.


#### 2. Methodology

The research in Austria was undertaken at the Department of Economic Geography of the Vienna University of Economics and Business Administration, funded by the Jubilaumsfonds provided by the Austrian National Bank. Data on the spatial pattern of the adoption of specific techniques within a limited number of manufacturing industries were obtained through interview surveys of senior executives of manufacturing establishments and enterprises. The survey was designed to explore in greater depth the characteristics of adopting and non- adopting establishments, including their approach to technology and investment

2

generally, as well as their reasons for adoption or non- adoption of the specified techniques. The interviews also investigated the sources of information used to evaluate technological change, changes in labour requirements related to technology and the use of government aid in the adoption process. The questionnaire also obtained information concerning the ownership of the establishment, its employment size and extent of R & D activity etc.

The data were obtained from establishments in the Austrian metalworking and machinery, electrotechnical and electronic products, textiles and clothing industries. Due to time and resource constraints, the interviews were limited to four Austrian regions only: the core metropolitan area of Vienna, its immediate hinterland, a traditional iron- based industrial region (Upper Styria) and a peripheral region (Wald/Weinviertel) (see Figure 1) which represent a variety of historic and current economic trends and conditions within the Austrian economy. 185 interviews, each lasting about two hours, were conducted between November 1987 and February 1988 with senior industrialists who were manufacturing in the selected regions (see Fischer and Menschik, 1990).



#### Figure 1: Study Areas in Austria

The research in Britain was undertaken by the Centre for Urban and Regional Development Studies at the University of Newcastle upon Tyne and forms part of a long- running research programme into the spatial dimension to technological change. The data presented here were collected in two surveys of establishments in a range of metalworking industries within Great Britain (see Table 1).

The first survey was undertaken in 1981 and formed part of a project funded by the UK Department of Trade and Industry and the Regional Directorate of the EEC (Thwaites et al., 1982). Data collection was primarily by means of a postal questionnaire, but this was supplemented by interviews with executives in 130 establishments in four regions (the South East, West Midlands, the North and Scotland). The second survey was a follow-up to the first (i.e. no new establishments were surveyed) and took place by means of a postal questionnaire in 1986-87, which was followed up by telephone during 1987 and 1988. This latter survey concentrated on identifying adopters of new technologies for the purposes of testing forecasts of technology diffusion at the regional level (see Alderman et al. 1988). As such, this survey was not very detailed, but a final response rate of over 95 per cent of surviving establishments was achieved. In the analysis that follows only those establishments surviving through to 1986 are included.

In recent years manufacturing industry has experienced rapid technological changes which have focused upon process innovations utilizing the advances in microelectronics. The two studies examined the spatial diffusion of selected process innovations which are of particular relevance to the metalworking and machinery as well as to the electrotechnical and electronic products industries. The selection of the industries and production techniques for the comparison was an interactive process. The techniques were selected on the basis that they introduced fundamental rather than minor incremental change, were economically significant and had a comparatively recent diffusion pattern. The selected techniques providing the foci of the comparison are:

- \* numerically controlled (NC) and computerised numerically controlled (CNC) machine tools;
- \* computers for design (CAD, CAE);
- \* computers for manufacturing operations (CAM, CAD-CAM) and microprocessors;

4

\* computers for commercial use.

There are some minor differences in technology definition that should be noted. The British follow-up survey was concerned specifically with computeraided design and drafting systems, rather than computers in the design sphere more generally. Nevertheless, these types of CAD system are the most prevalent and rapidly diffusing applications at the present time.

In the manufacturing sphere the British follow-up survey dropped the broad definition of computers for manufacturing operations on the grounds that this was too vague a definition, concentrating instead on the adoption of microprocessors in the manufacturing process. In other respects the Austrian and British surveys are identical as far as technology definition goes.

### **Regional Comparison**

The British survey was a national one, in contrast to the Austrian study which had limited itself to the regions outlined above. It was therefore necessary to identify suitable areas within Great Britain that would provide a reasonable match for comparative purposes. In the event, the choices rested largely on the pragmatic considerations of which areal units were available and the numbers of observations involved.

The core metropolitan region of Vienna was matched against the London functional region as defined by Coombes et al, (1982), while the hinterland was matched against the rest of the London metropolitan region on the basis of the same regionalisation. As such, the London regions are rather larger than those for Vienna, but this would be unavoidable as the equivalent administrative and built- up areas are also considerably larger. These size differences in population terms are illustrated in Table 2.

For the remaining two areas, the West Midlands standard region was matched against Upper Styria as it is the home of the iron- based industries industries in Britain, and the Northern standard region was chosen as a representative peripheral region. The major difference in the latter case is that most industrial activity is centred on the major conurbations of Tyneside and Teesside, which have no equivalent in Wald/Weinviertel. Table 2 demonstrates that the British standard regions are rather larger than the Austrian regions. Nevertheless, there are some similarities in that the traditional iron- based regions both have high levels of manufacturing employment (although the same is true of the Vienna hinterland in contrast to that for London), whilst unemployment rates in 1981 were not dissimilar. Unemployment in Austria's rural periphery was higher than the North of England, but the latter region had pockets of unemployment that were much higher than the regional figure would suggest. It is, however, likely that the nature of the economic problems of the two regions have different origins, as the different shares of manufacturing employment suggest, the former being predominantly rural, the latter reflecting a predominantly urban problem.

#### Comparison of the Samples

As a result of the different spatial sampling schemes used it is not surprising to find the composition of the two samples to be different. Table 3 shows that in the Austrian case the sample is dominated by the metropolitan area, whereas in the British case the iron-based and peripheral regions take the lion's share. The other major distinction, of course, is that the Austrian survey was not large, but extremely detailed, whilst the British survey was large, but limited in terms of the information collected and this inevitably affects subsequent analysis.

Whilst the two studies have attempted to control for sectoral differences (differences in national industrial classifications inevitably cause problems e.g. see Gibbs and Thwaites, 1985) by focusing on industries engaged in similar activities (metalworking, electrical equipment, machinery) which may therefore be expected to have broadly similar opportunities and requirements for new technology adoption, other factors relating to the structure of these industries in the two countries could be influential. One of these factors is the presence in Austria of a strong nationalised sector (the so- called ÖIAG-group), which in the industries surveyed accounts for over ten per cent of employment. Table 4 indicates, however, that in the Austrian case there are rather more independent establishments. Comparing 1981 and 1986 information, the British sample shows a decline in the proportion of independent establishments during the 1980s (and this despite an increasing

6

number of management 'buy- outs'). The proportion of branch plants in the British sample was rather higher on the basis of 1981 information.

The age structure of the two samples also shows differences, primarily because no establishments starting up after 1981 were identified in the British survey. Table 5 shows how in Austria the age distribution is skewed towards very young establishments, while in Britain the skew is towards older establishments.

The most important distinctions are likely to be in terms of the size distributions, not only because of the theoretical importance of size in technology adoption (e.g. Freeman, 1974; Davies, 1979), but also because of its observed empirical importance (Thwaites et al, 1982; Alderman et al, 1988; Rees et al, 1984; Northcott and Rogers 1984). Surprisingly, perhaps, the sample size distributions appear to be similar, but there are more very small establishments in Austria, and more in the 100- 499 category within the British sample (Table 6). On this basis alone we should anticipate higher adoption levels in the British context. It is to the national and regional differences in levels of new technology adoption that the paper now turns.

#### 3. The Adoption of New Technology

Variations in technological change between countries and regions can be anticipated simply as a result of the differing nature of the enterprises and establishments operating therein (Thwaites, 1978). In this section evidence is provided of the extent of adoption of the selected technologies and these are related to the characteristics of the establishments in each country.

In crude terms, Table 7 demonstrates that there are substantial differences in adoption levels between the two countries and between regions within them. In general, with the exception of computers for commercial uses, adoption levels are higher in the British case, although to some extent this is expected, because of the differences in size distribution. However, even in 1981, levels of NC adoption amongst surviving British establishments were considerably higher than they were in Austria in 1987. CAD adoption similarly appears to be further advanced in Britain than in Austria.

Regional discrepancies appear more pronounced in the Austrian case. Whilst the British data are notable in that the peripheral Northern region has similar adoption levels to the metropolitan core, the Austrian periphery would appear to be lagging, particularly in terms of CNC adoption. In Britain it is the industrial heartland of the old iron- based areas and the metropolitan hinterland where technology adoption appears furthest advanced. In both countries the data suggest that for industries such as these the traditional industrial heartland is often a leading area with respect to technology adoption.

The applicability of particular technologies varies between sectors. Alderman et al. (1988) have demonstrated in the British context that, for technologies such as NC and CNC, inter- industry diffusion rates vary more than interregional ones. Table 8 shows that, despite the crude level of sectoral disaggregation employed, differences between the metalworking and machinery sector and the electrotechnical sector are similar in both countries. However, levels of NC and CNC adoption in the Austrian metalworking and machinery sector appears to be relatively lower than in Britain, which may in part reflect the age and size structure of the Austrian sample, but is nevertheless somewhat surprising, given that these are now considered mature technologies (Ray, 1984) and it has been argued that CNC in particular is increasingly suited to the operations of the small engineering firm (Dodgson, 1985).

The most striking sectoral differences, particularly in the British case, occur with respect to CAD adoption. The electrotechnical sector has found CAD to be particularly relevant in relation to printed circuit board design, where computerised methods were first developed in the 1960s (Kaplinsky, 1984). Note that in the British case these sectoral differences are only statistically significant in the case of CAD and microprocessor adoption.

It was noted above that the corporate structure of Austrian industry is rather different to that of Britain. Table 9 reveals that technology adoption by corporate status also differs. Headquarters (strictly speaking, establishments with control functions) in the British case appear to have a higher propensity to adopt than their Austrian counterparts. In Britain it is the independent (usually small) establishments that are least likely to adopt new technologies, whereas in Austria the branch plant sector performs comparatively poorly. Another factor commonly regarded as important in relation to technology adoption is research and development (R & D) activity. The precise relationship between R & D and technology adoption has yet to be satisfactorily identified. In relation to product innovation its importance is clear (Thwaites et al., 1981), but in relation to process innovations the effect of R & D is frequently confounded with the effect of establishment size, since larger establishments are more likely to support R & D activities. Of the technologies under consideration here, the one that has the closest **a priori** link with R & D is CAD, since design activities are an intrinsic part of the R & D process.

By concentrating on the **proportion** of employment within the establishment that is engaged in R & D, it is at least partially possible to control for the size effect. Careful inspection of Table 10 reveals the inconclusiveness of any evidence for a clear-cut relationship between R & D and technology adoption, particularly in the case of NC or CNC. Care should be taken in interpreting these figures, however, because there are comparatively few establishments with more than ten per cent of employment in R & D. Moreover, the largest establishments are unlikely to have the largest proportional levels of R & D, because the absolute numbers involved would be unrealistic. In relation to CAD adoption the relationship appears to be more consistent; establishments with no R & D staff seem to be considerably less likely to have adopted computers for design. Further analysis is required here, because in Table 9 only formal R & D activities are being considered, and a lot depends upon how executives classify R & D staff. CAD systems may be ideal for establishments where there is a lot of routine design modification and this activity may or may not be classed as R & D.

#### 4. Logit Analysis

The foregoing analysis has revealed some consistent patterns of technology adoption between Austria and Great Britain, together with some intriguing contrasts. As noted, however, the differences in the structure of the two samples in terms of size, status, age distribution etc. limit the extent to which firm conclusions can be drawn. As a first step in overcoming these difficulties, the data were also analysed by means of logit models, in order to control for such effects and identify real differences between the two countries, and to establish the extent to which regional variations can be attributed to other factors. Logit modelling attempts to overcome the difficulties inherent in bivariate analysis with the rigour of multiple regression modelling for categorical data with a dichotomous response variable (see Fischer and Nijkamp, 1985; Wrigley, 1985, for more details).

In the simple bivariate analyses reported above no account has been taken of differences in timing and structure of the samples. Before attempting to put the two data sets together it was necessary to remove some of the obvious sources of inconsistency that might otherwise have biased comparative results.

The most serious of these concerns the fact that the British survey was a follow- up survey and that, consequently, no establishments founded after the middle of 1981, the time of the original survey, were included. All British plants are therefore at least six years old, whereas their Austrian counterparts in some cases are much younger. To overcome this limitation the analysis excludes establishments that started up after 1980. This reduces the size of the Austrian sample to 110 cases.

Definitional differences also meant that some of the technologies referred to above could not be compared analytically. NC was not included in the British 1986 survey on the grounds that it had been largely superseded by CNC and therefore the time periods that are being compared are different. Bearing in mind the afore mentioned provisos, three innovations were suitable candidates for analysis: CNC, CAD and computers for commercial applications. These technologies allow us to examine the three main spheress of manufacturing activity, that is, production, design and co- ordination respectively (Kaplinsky, 1984).

These make up the three dichotomous dependent variables of the form adopted/not adopted. The restricted nature of the British postal survey again limits the number of independent variables available, however, the following were incorporated into the analysis:

- \* location (peripheral region, metropolitan core, metropolitan hinterland, traditional iron- based region);
- \* establishment employment size (natural logarithm);
- \* corporate status (independent, headquarters, branch);

- \* sector (metalworking and machinery, electrotechnical amd electronic products);
- \* age (up to 15 years old, more than 15 years old);
- \* degree of product diversification (low, high more than four major product groups);

### Single Nation Models

The first step in the analysis was to compute separate models for each innovation and each country. Tables 11 - 13 indicate the degree to which establishment characteristics increase or decrease the probability (strictly the log- odds) of adoption of CNC, CAD and computers in commercial applications. There is no intention that the results presented in these tables should in any sense represent 'optimal' models. Rather, the intention is to demonstrate which variables are important and to identify whether the magnitudes and directions of the relationships are similar or otherwise. Although 't' values are given as well as the parameter estimates, it should be noted that the most reliable way to evaluate the significance of the estimates is through the change in log- likelihood associated with each parameter. For variables with more than two categories the significance of any one parameter will depend on its relationship to categories other than the reference category which is what the 't' value reflects.

In the case of CNC adoption, it should be clear from Table 11 that in Britain the dominant factor is the size variable and locational effects are not significant. The model simplifies to the size effect and a possible age effect whereby younger establishments have a lower probability of adoption. In Austria, by way of contrast, there is a strongly negative branch plant effect, the electrotechnical sector exhibits a higher level of adoption and there are strong regional effects reflecting the poor performance of the periphery and high levels of adoption in the traditional iron- working region.

Table 12, on the other hand, indicates that there is very little variability in CAD adoption in Austria. A very low rho-squared bar is accompanied by a predictive success of 90%! This is probably due to low levels of adoption of CAD and may have been exacerbated by the removal of younger plants. Only product diversification is a significant factor here; as one might anticipate,

greater diversity increases the probability of CAD adoption. In Britain, size is again an important factor and a significant location effect reveals higher levels of CAD adoption than expected in the metropolitan hinterland.

Table 13 indicates that size is more important with respect to computer adoption in Austria and here the metropolitan regions have significantly higher levels of adoption than the others. (There is also a significant interaction between size and age of establishment, but this is rather difficult to interpret and may be attributable to a few influential observations). For the British case size is again the only significant variable and the removal of all others has negligible impact on the goodness of fit.

It is clear then that, for the most part, regional variations in technology adoption are not significant once other factors have been taken into account, with the notable exception of CNC and computers for comercial use in the Austrian case, where the metropolitan and traditional iron- based areas have a higher probability of adoption than the periphery and in the case of higher levels of CAD adoption in the metropolitan hinterland in the British case. These observations accord with the suggestion that regional variations are likely to be most pronounced when technologies are in their infancy, but that as diffusion proceeds and approaches saturation level regional convergence is likely to be observed (Alderman and Davies, 1990).

#### **Dual Nation Models**

The single country models provide a test of within country variations in technology adoption. The dual nation models allow us to formally test whether or not there are significant differences between Austria and Great Britain in this respect. This involves the addition of a new independent variable taking the value 1 if the establishment is Austrian and the value 2 if it is British. This variable appears first in Tables 14- 16, which give the results of the logit analyses for CNC, CAD and computer adoption respectively. In these models we are interested primarily in interaction effects that will indicate whether or not there are significant differences between the two countries in terms of the factors associated with the adoption of these technologies.

Table 14 shows that for CNC adoption there is a strong and significant difference in adoption between the two countries with a much higher probability of an establishment having adopted CNC in Britain than in Austria. The regional effects are similar, although the single nation models indicated these to be stronger in the Austrian case, and the effect of establishment size is consistent between countries. The major difference is in terms of the corporate status effect, indicated by a significant interaction term for independent establishments in Great Britain.

The results in Table 11 provide the clue as to how this should be interpreted. The independent plants in Austria are much more innovative than their corporate counterparts it would appear, whereas in Britain there would appear to be little difference, once the effects of factors such as size have been taken into account.

In Table 15 the results for CAD adoption reveal that the difference between the two countries is again significant, but not as pronounced. However, the analysis confirms that the effect of establishment size is significant in the British case, but not in the Austrian case as the main effect term for the size effect becomes negligible, while the interation term is significant. In both countries the metropolitan hinterland has the highest levels of adoption, but the effect is not significant, because the nature of these locational contrasts is not consistent: in Britain the peripheral area has the lowest probability of adoption, while in Austria it is the traditional iron-based region. Product diversification does appear to be positively associated with CAD adoption, possibly because greater diversity demands, **ceteris paribus**, higher levels of design and draughting activity.

Table 16 reveals that the model for computer adoption is by far the most complex, with three significant interaction terms. Overall levels of adoption are similar between the two countries, but independent plants in Great Britain are less likely to have adopted than their counterparts in Austria. Regionally, establishments located in either the metropolitan hinterland or the core in Austria are proportionately more likely to have adopted computers for commercial applications than in the equivalent areas in Britain. Young establishments also appear more innovative, but the interaction term between size and age indicates that this is less true the larger the plant is. By and large, sectoral differences are not significant, although the electrotechnical sector is more innovative in terms of CNC adoption in Austria than the metalworking and machinery sector. The sectoral breakdown used here is very crude however, and the problems associated with matching sectoral classifications was referred to earlier.

#### 5. Constraints on Adoption

The evidence presented here would seem to provide some fairly conclusive evidence that the adoption of new technology in Austrian firms is some way behind that in Britain, notwithstanding the differences in the characteristics of manufacturing industry between the two countries. Identification of the constraints on adoption is obviously an important objective, both from the perspective of individual companies and from a policy point of view.

Some further evidence from the two surveys sheds some light on the major constraints to adoption as expressed by industry executives. In the Austrian case the problems of lack of finance and a lack of suitably qualified staff topped the list (about 36 per cent of establishments). In over 95 per cent of cases, manufacturers called upon internal funds. Bank finance and Government assistance was only used by a third of respondents. Comparable figures for the British case are not easily extracted, but corporate establishments relied very heavily on internal or company group funds to support technology adoption, while bank finance was more important for independent establishments (Thwaites et al. 1982).

In Britain the dominant constraint appears to be less the lack of finance **per se**, than the inability to justify the investment. A major constraint on investment in new technology for branch plants in particular is the requirement to demonstrate a very rapid pay- back (Alderman and Thwaites, 1987) and this becomes increasingly difficult the more sophisticated the technology. This is one obvious reason for the slow rate of up- take of new forms of manufacturing technology, such as flexible manufacturing systems (FMS), which remain the preserve of the larger establishments and enterprises (see Bessant and Hayward, 1986).

In 1981 the British survey found the lack of suitably qualified staff to be a comparatively minor problem, although this may well be changing, particularly with serious shortfalls foreseen in the information technology field. Other evidence suggests that it is less likely to be the adoption of technology that is constrained than the successful implementation and operation of the technology once it has been adopted (Alderman and Thwaites, 1987).

In the Austrian case the most important sources of information concerning innovation activities were trade journals, sales literature and exhibitions. Whilst these were also revealed to be important sources in the British survey, manufacturers' demonstrations and visits by suppliers were considerably more so. It is possible that this is a reflection of the different sizes of domestic market. Britain is likely to have more equipment manufacturers and suppliers than Austria and a greater reliance by the latter on imports may account for a higher use of exhibitions as important information sources. It is interesting in this context that ÖIAG is currently undergoing a major restructuring, which aims to secure jobs partly through increasing R&D efforts and gaining access to foreign technologies and products and this will entail closer links between Austria and the European Community.

#### 6. Conclusions

In this paper we have reported results of an attempt to compare regional and national innovation activity in the Austrian and British contexts, using survey data obtained from a broadly similar group of manufacturing industries. The research has demonstrated that significant differences in the structure of industry in the two countries makes comparison an extremely difficult exercise. Some initial attempts at controlling for differences in establishment characteristics between the two countries were made through the use of logit analysis.

The results achieved thus far seem to suggest that the Austrian metalworking and machinery and electrotechnical sectors are lagging behind their counterparts in Great Britain in the adoption of manufacturing process technologies, although the use of computers in the commercial sphere is as advanced as in Britain, if not more so. To a large degree these findings arise as a consequence of a younger age and smaller size structure of establishments within the Austrian sample and it is not surprising to discover that the major constraints on adoption in the Austrian sample were lack of finance and lack of suitably qualified staff, which are both typical problems for young, small establishments.

The results of the logit analysis reveal that variations between the four regional types in Britain, to the extent that they exist at all, are largely attributable to different structural characteristics, such as size, ownership, sectoral composition etc. Indeed, in the British case establishment size is the dominant factor associated with technology adoption and the only consistently significant one. In Austria regional differences still remain after controlling for these factors, suggesting more deep- seated problems with respect to technology adoption for the peripheral areas. Adoption in Britain has probably proceeded sufficiently far that we are now observing regional convergence in adoption levels.

An intriguing question arises from the finding that the independent establishments in Austria appear to be relatively more innovative than those which are part of larger enterprises, which contrasts with the experience in Britain. To the extent that Austria experiences problems of a lack of innovativeness in terms of new manufacturing process technology it appears to have more to do with larger enterprises and the poor performance of branch plants than it does with the difficulties usually experienced by small independent firms.

**Acknowledgements:** The authors would like to acknowledge the assistance of Gottfried Menschik, who carried out the original computer analysis of the Austrian data, and Kieran McInerney and Trisha Gillespie for help with the British survey in 1986/87. All views expressed are those of the authors alone and should not be taken to represent those of any of the funding bodies mentioned.

#### References

- Alderman, N. and Thwaites, A.T. (1987): New technology and its implications for training in the engineering industry, Final report to the Engineering Industry Training Board **CURDS**, University of Newcastle upon Tyne.
- Alderman, N., Davies, S. and Thwaites, A.T. (1988): Patterns of Innovation Diffusion: Technical Report, **CURDS**, University of Newcastle upon Tyne.
- Alderman, N. and Davies, S. (1990): Modelling regional patterns of innovation diffusion in the UK metalworking industries, **Regional Studies** 24, 513-528.
- Bessant, J. and Hayward, B. (1986): Flexibility in manufacturing systems, OMEGA 14, 465- 73.
- Brugger, E.A. and Stuckey, B. (1987): Regional economic structure and innovative behaviour in Switzerland, **Regional Studies** 21, 241-54.
- Coombes, M.G., Dixon, J.S., Openshaw, S. and Taylor, P.J. (1982): Functional regions for the population census of Britain, in D.T. Herbert and R.J. Johnston (eds.) Geography and the Urban Environment: Progress in Research and Applications 5, 63- 112.
- Davies, S. (1979): **The Diffusion of Process Innovations**, Cambridge University Press, Cambridge.
- Dodgson, M. (1985): New technology, employment and small engineering firms, International Small Business Journal 3, 8- 29.
- Fischer, M.M. and Nijkamp, P. (1985): Developments in explanatory discrete spatial data and choice analysis, **Progress in Human Geography** 9, 515- 51.
- Fischer, M.M. (1990): The micro-electronics revolution and its impact on labour and employment, in R. Cappellin and P. Nijkamp (eds.) The Spatial Context of Technological Development, 43-74, Aldershot, Avebury.
- Fischer, M.M. and Menschik, G. (1990): Innovationsaktivitäten in der östereichischen Industrie. Eine empirische Untersuchung des betrieblichen Innovationsverhaltens in ausgewählten Branchen und Raumtypen, Hirt Verlag, Vienna.
- Fischer, M.M. (1991): Technological change and innovative behaviour in industry: A conceptual and methodological framework, WSG-Discussion Paper 10, Department of Economic and Social Geography, Vienna University of Economics and Business Administration.

Freeman, C. (1974): **The Economics of Industrial Innovation**, Penguin, Harmondsworth.

- Gibbs, D.C. and Thwaites, A.T. (1985): The international diffusion of new technology in manufacturing industry: A comparative study of Great Britain, the USA and West Germany, paper presented to the IBG/CAG Symposium on 'Technical Change in Industry Spatial Policy and Research Implications', Swansea.
- Kleine, J. (1982): Location, firm size and innovativeness, in D. Maillat (ed.) Technology: A Key Factor for Regional Development, Georgi, Saint-Saphorin.
- Jacobsson, S. (1985): Technical change and industrial policy, the case of computer numerically controlled lathes in Argentina, Korea amd Taiwan, World Development 13, 353-70.
- Kaplinsky, R. (1984): Automation: The Technology and Society, Longman, Harlow.
- Nabseth, L. and Ray, G.F. (1974): **The Diffusion of New Industrial Processes**, Cambridge University Press, Cambridge.
- Northcott, J. and Rogers, P. (1984): Microelectronics in British Industry: The Pattern of Change, Policy Studies Institute, London.
- Ray, G. (1984): The diffusion of mature technologies, N.I.E.S.R. Occasional Paper 36, Cambridge University Press, Cambridge.
- Rees, J., Briggs, R. and Oakey, R.P. (1984): The adoption of new technology in the American machinery industry, **Regional Studies** 18, 489- 504.

Thwaites, A.T. (1978): Technological change, mobile plants and regional development, **Regional Studies** 12, 445- 61.

- Thwaites, A.T., Oakey, R.P. and Nash, P.A. (1981): Industrial innovation and regional development. Final report to the Department of the Environment, **CURDS**, University of Newcastle upon Tyne.
- Thwaites, A.T., Edwards, A. and Gibbs, D.C. (1982): Interregional diffusion of production innovations in Great Britain. Final report to the Department of Trade and Industry and the Commission of the European Communities, **CURDS**, University of Newcastle upon Tyne.
- Tödtling, F. (1988): Regional differences and determinants of entrepreneurial innovation: Empirical results from an Austrian case study, paper presented at the Regional Science Association Summer Institute, Arco, Italy.
- Wrigley, N. (1985): Categorical Data Analysis for Geographers and Environmental Scientists, Longman, London.

## APPENDIX

| Industry Sector                             |             | Austria                                                                                                              |                   | Great Britain (1968 SIC)                                                                            |
|---------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------|
| Metalworking and<br>Machinery               | 51<br>52    | Manufacturing of Iron and<br>Non-Ferrous Metals<br>Machining of Metals, Steel-Girder<br>and Light-Metal Construction | 331<br>332<br>333 | Agricultural Machinery<br>Metalworking Machine Tools<br>Pumps, Valves and Compressors               |
|                                             | 53<br>54/55 | Manufacturing of Hardware<br>Manufacturing of Machines<br>(excluding Electric Machines)                              | 336<br>337<br>339 | Contractors' Plant and Machinery<br>Mechanical Handling Equipment<br>General Mechanical Engineering |
|                                             | 58          | Manufacturing of Means of<br>Transportation                                                                          | 341<br>390        | Industrial Plant and Structural Steelwork<br>Engineers' Small Tools and Guages                      |
| Electrotechnical and<br>Electronic Products | 56/57       | Manufacturing of Electrical Installations                                                                            | 361               | Electrical Machinery                                                                                |

## Table 1: SIC Industrial Classifications for the Austria/British Comparison

|                            | Population | Manufacturing<br>Employment 1981 | Unemployment |
|----------------------------|------------|----------------------------------|--------------|
|                            | 1981       | (in %)                           | Rate 1981    |
| London Core                | 7,665,455  | 19.6                             | 8.25         |
| Vienna Core                | 1,532,344  | 27.1                             | 6.50         |
| London Hinterland          | 4,494,072  | 28.6                             | 5.75         |
| Vienna Hinterland          | 285,936    | 35.3                             | 6.90         |
| G.B. Iron- Based Region    | 5,112,349  | 39.2                             | 11.68        |
| Austrian Iron-Based Region | 280,067    | 34.5                             | 13.60        |
| G.B. Peripheral Region     | 3,090,404  | 30.5                             | 13.25        |
| Austrian Peripheral Region | 278,067    | 18.4                             | 18.40        |

### Table 2: Regional Comparisons

# Table 3: Composition of Austrian and British Samples by Regional Type

| Percent of Establishments                | Austria      | Great Britain |
|------------------------------------------|--------------|---------------|
| Metropolitan Area                        | 63.2         | 37.4          |
| * Core Region<br>* Hinterland            | 36.8<br>26.4 | 18.7<br>18.7  |
| Traditional Iron-Based Industrial Region | 19.9         | 34.4          |
| Peripheral Region                        | 16.9         | 28.2          |

| Percent of Establishments                                                                           | Austria             | Great Bri | Great Britain |  |  |
|-----------------------------------------------------------------------------------------------------|---------------------|-----------|---------------|--|--|
|                                                                                                     |                     | 1986      | 1981          |  |  |
| Single Plant Enterprise                                                                             | 50.7                | 40.1      | 45.2          |  |  |
| Multi-Plant Organisation                                                                            | 49.3                | 59.9      | 54.6          |  |  |
| <ul> <li>* Head Office</li> <li>* Divisional Headquarter</li> <li>* Regional Headquarter</li> </ul> | 15.4<br>9.6<br>10.3 | -         | 24.0          |  |  |
| * Branch                                                                                            | 14.0                | 5         | 30.6          |  |  |

## Table 4: Corporate Status Composition of Austrian and British Samples

Sources: National Surveys (Austria: November 1987; N = 136; Great Britain: 1986; N = 262)

## Table 5: Variation in Establishment Age by Country

| Percent of Establishments | Austria | Great Britain |
|---------------------------|---------|---------------|
| Pre 1950                  | 21.5    | 41.3          |
| 1950 - 1959               | 23.0    | 16.2          |
| 1960 - 1969               | 14.8    | 25.1          |
| 1970 - 1979               | 8.1     | 47.4          |
| 1980 and later            | 32.6    | 17.4          |

Sources: National Surveys (Austria: November 1987; N = 136; Great Britain: 1986; N = 262)

### Table 6. Differential Employment Size Structures

| Percent of Establishments | Establishment Employment Size Structure |         |           |              |  |  |  |
|---------------------------|-----------------------------------------|---------|-----------|--------------|--|--|--|
|                           | 1 - 49                                  | 50 - 99 | 100 - 499 | 500 and over |  |  |  |
| Austria                   | 44.9                                    | 18.4    | 25.0      | 11.8         |  |  |  |
| Great Britain             | 38.0                                    | 20.2    | 31.4      | 10.5         |  |  |  |

| Percent of<br>Establishments               | Co   | Metropolita<br>re |      | erland | Tradit. Iron<br>Industrial |      | Periph | eral Region |
|--------------------------------------------|------|-------------------|------|--------|----------------------------|------|--------|-------------|
| Having Adopted                             | Α    | GB                | Α    | GB     | Α                          | GB   | A      | ĞB          |
|                                            |      |                   |      |        |                            |      |        |             |
| NC Machines (GB = 1981)                    | 14.0 | 32.7              | 16.7 | 38.8   | 3.7                        | 34.4 | 17.4   | 27.0        |
| CNC Machines                               | 20.0 | 49.0              | 22.2 | 59.2   | 40.7                       | 60.0 | 4.3    | 44.6        |
| Computers for Design<br>(CAD, CAE)         | 14.0 | 20.4              | 8.3  | 38.8   | 11.1                       | 28.9 | 8.7    | 18.1        |
| Computers for Manufacturing (CAM, CAD-CAM) | 12.0 |                   | 5.6  | ****** | 18.5                       |      | 8.7    | (#1400-140. |
| Microprocessors                            |      | 24.5              |      | 40.8   |                            | 41.4 |        | 24.3        |
| Computers for<br>Commercial Use            | 88.0 | 77.6              | 75.0 | 81.6   | 74.0                       | 81.1 | 60.9   | 75.7        |

## Table 7: Adoption Rates of New Technology by Regional Type

| Percent of<br>Establishments               | Metalw<br>and Ma |      | Electrotechnical and<br>Electronic Products |      |  |
|--------------------------------------------|------------------|------|---------------------------------------------|------|--|
| Having Adopted                             | A                | ĞB   | А                                           | GB   |  |
| NC Machines (GB = 1981)                    | 11.7             | 33.7 | 18.2                                        | 27.0 |  |
| CNC Machines                               | 16.5             | 52.4 | 39.4                                        | 59.5 |  |
| Computers for Design<br>(CAD, CAE)         | 9.7              | 23.3 | 15.2                                        | 43.2 |  |
| Computers for Manufacturing (CAM, CAD-CAM) | 8.7              |      | 18.2                                        |      |  |
| Microprocessors                            |                  | 30.7 |                                             | 48.6 |  |
| Computers for Commercial Use               | 73.8             | 77.3 | 87.9                                        | 89.2 |  |

## Table 8: Adoption Rates of New Technology by Industry Sector

| Percent of Corporate Status<br>Establishments<br>Having Adopted | Single Plan | t Enterprise | Corporate Status<br>Headqu |      | ant Establishment<br>Brand | <b>b</b>          |
|-----------------------------------------------------------------|-------------|--------------|----------------------------|------|----------------------------|-------------------|
| having Adopted                                                  | А           | GB           | A                          | GB   | A                          | GB                |
|                                                                 |             |              |                            |      |                            |                   |
| NC Machines (GB = 1981)                                         | 10.1        | 22.9         | 16.7                       | 48.1 | 15.8                       | 35.0              |
| CNC Machines                                                    | 23.2        | 40.0         | 25.0                       | 75.9 | 10.5                       | 55.3              |
| Computers for Design<br>(CAD, CAE)                              | 7.2         | 15.2         | 16.7                       | 50.0 | 10.5                       | 24.8              |
| Computers for Manufacturing (CAM, CAD-CAM)                      | 8.7         | 15.2         | 18.8                       |      | 0.0                        | A <u>training</u> |
| Microprocessors                                                 |             | 19.0         |                            | 59.3 |                            | 34.0              |
| Computers for Commercial Use                                    | 72.5        | 63.8         | 87.5                       | 94.4 | 68.4                       | 86.4              |

## Table 9: Adoption Rates of New Technology by Corporate Status

| Percent of<br>Establishments<br>Having Adopted | 0 Pe<br>A | ercent<br>GB | Proportion of<br>1-4F<br>A | FR&DSta<br>ercent<br>GB | ff in Total<br>5-9Pe<br>A |               | 10 and mo<br>A | ore Percent<br>GB |
|------------------------------------------------|-----------|--------------|----------------------------|-------------------------|---------------------------|---------------|----------------|-------------------|
| NC Machines                                    | 11.4      | 19.0         | 16.4                       | 48.8                    | 16.7                      | 44.8          | 4.5            | 20.0              |
| CNC Machines                                   | 14.3      | 38.1         | 20.0                       | 75.0                    | 33.3                      | 55.2          | 27.3           | 46.7              |
| Computers for Design<br>(CAD, CAE)             | 5.7       | 12.7         | 7.3                        | 44.6                    | 20.8                      | 27.6          | 18,2           | 33.3              |
| Computers for Manufacturing (CAM, CAD-CAM)     | 5.7       |              | 16.4                       |                         | 4.2                       | , <del></del> | 13.6           |                   |
| Microprocessors                                |           | 15.9         | 1011-100 P                 | 54.8                    |                           | 31.0          | 3 <b></b> 7    | 40.0              |
| Computers for Commercial Use                   | 65.7      | 69.0         | 90.9                       | 92.9                    | 75.0                      | 75.9          | 63.6           | 80.0              |

## Table 10: Adoption of New Technology Related to the Proportion of R & D Staff in Total Employment

| Variables                              |                  | er Estimates<br>parentheses) |
|----------------------------------------|------------------|------------------------------|
|                                        | А                | GB                           |
| Headquarter                            | -1.26<br>(-1.88) | 0.40<br>(0.84)               |
| Branch Plant                           | -2.54<br>(-1.99) | -0.07<br>(-0.21)             |
| Size (log employment)                  | 0.41<br>(1.85)   | 0.82<br>(5.07)               |
| Electrotechnical Sector                | 1.46<br>(2.35)   | -0.05<br>(-0.12)             |
| Metropolitan Area: Core                | 2.00<br>(1.66)   | 0.32<br>(0.75)               |
| Metropolitan Area: Hinterland          | 2.80<br>(2.28)   | 0.53<br>(1.19)               |
| Traditional Iron-Based Region          | 3.04<br>(2.40)   | 0.35<br>(0.92)               |
| High Degree of Product Diversification | -1.01<br>(-1.17) | -0.24<br>(-0.70)             |
| Age Less than 15 Years                 | -0.19<br>(-0.30) | -0.69<br>(-1.49)             |
| Constant                               | -4.85<br>(-3.26) | -3.45<br>(-4.61)             |
| Rho Squared Bar                        | 0.14             | 0.14                         |

## Table 11: CNC Adoption: Single Nation Models

| Variables                              |                  | er Estimates<br>parentheses) |
|----------------------------------------|------------------|------------------------------|
|                                        | А                | GB                           |
| Headquarter                            | 0.90<br>(1.07)   | 0.41<br>(0.83)               |
| Branch Plant                           | 0.09<br>(0.07)   | -0.10<br>(-0.23)             |
| Size (log employment)                  | 0.02<br>(0.06)   | 0.85<br>(4.72)               |
| Electrotechnical Sector                | -0.03<br>(-0.00) | 0.69<br>(1.50)               |
| Metropolitan Area: Core                | -0.26<br>(-0.26) | 0.33<br>(0.63)               |
| Metropolitan Area: Hinterland          | 0.24<br>(0.23)   | 0.99<br>(1.94)               |
| Traditional Iron-Based Region          | -0.52<br>(-0.45) | 0.38<br>(0.83)               |
| High Degree of Product Diversification | 1.47<br>(1.76)   | 0.61<br>(1.43)               |
| Age Less than 15 Years                 | 0.46<br>(0.60)   | -1.10<br>(-1.62)             |
| Constant                               | -3.03<br>(-2.19) | -5.98<br>(-6.00)             |
| Rho Squared Bar                        | 0.005            | 0.19                         |

## Table 12: CAD Adoption: Single Nation Models

| Variables                              | Parameter Estimates<br>(t-values in parentheses) |                  |
|----------------------------------------|--------------------------------------------------|------------------|
|                                        | А                                                | GB               |
| Headquarter                            | -1.59<br>(-1.70)                                 | 0.45<br>(0.63)   |
| Branch Plant                           | -2.19<br>(-2.16)                                 | 0.58<br>(1.40)   |
| Size (log employment)                  | 1.47<br>(3.86)                                   | 1.39<br>(5.30)   |
| Electrotechnical Sector                | 0.43<br>(0.41)                                   | 0.82<br>(1.19)   |
| Metropolitan Area: Core                | 1.68<br>(1.71)                                   | 0.21<br>(0.37)   |
| Metropolitan Area: Hinterland          | 2.45<br>(2.20)                                   | 0.20<br>(0.35)   |
| Traditional Iron-Based Region          | -0.29<br>(-0.34)                                 | 0.15<br>(0.30)   |
| High Degree of Product Diversification | 1.17<br>(0.91)                                   | -0.09<br>(-0.20) |
| Age Less than 15 Years                 | -0.17<br>(-0.22)                                 | 1.14<br>(1.65)   |
| Constant                               | -4.41<br>(-2.91)                                 | -4.68<br>(-4.47) |
| Rho Squared Bar                        | 0.35                                             | 0.26             |

## Table 13: Computer Adoption: Single Nation Models

| Variables                              | Parameter Estimates (t-values in parantheses) |                            |
|----------------------------------------|-----------------------------------------------|----------------------------|
|                                        | Main Effects<br>Model                         | Model with<br>Interactions |
| Great Britain                          | 1.98<br>(5.24)                                | 3.06<br>(5.73)             |
| Headquarter                            | -0.10<br>(-0.27)                              | -1.36<br>(-2.52)           |
| Branch Plant                           | -2.29<br>(-0.98)                              | -1.96<br>(-2.20)           |
| Size (log employment)                  | 0.64<br>(5.36)                                | 0.64<br>(5.34)             |
| Electrotechnical Sector                | 0.30<br>(0.88)                                | 0.42<br>(1.20)             |
| Metropolitan Area: Core                | 0.41<br>(1.12)                                | 0.43<br>(1.19)             |
| Metropolitan Area: Hinterland          | 0.82<br>(2.18)                                | 0.83<br>(2.14)             |
| Traditional Iron-Based Region          | 0.69<br>(2.08)                                | 0.68<br>(2.04)             |
| High Degree of Product Diversification | -0.46<br>(-1.52)                              | -0.46<br>(-1.51)           |
| Age Less than 15 Years                 | -0.24<br>(-0.68)                              | -0.32<br>(-0.88)           |
| Independent Plant in Great Britain     |                                               | -1.99<br>(-3.21)           |
| Constant                               | -4.59<br>(-6.94)                              | -3.95<br>(-5.90)           |
| Rho Squared Bar                        | 0.16                                          | 0.18                       |

## Table 14: Dual Nation Logit Analysis for the Adoption of CNC

| Variables                              | Parameter Estimates (t-values in parentheses) |                            |
|----------------------------------------|-----------------------------------------------|----------------------------|
|                                        | Main Effects<br>Model                         | Model with<br>Interactions |
| Great Britain                          | 1.27<br>(2.70)                                | -2.94<br>(-2.17)           |
| Headquarter                            | 0.53<br>(1.27)                                | 0.50<br>(1.19)             |
| Branch Plant                           | -0.04<br>(-0.10)                              | -0.13<br>(-0.33)           |
| Size (log employment)                  | 0.58<br>(4.22)                                | 0.03<br>(0.14)             |
| Electrotechnical Sector                | 0.46<br>(1.24)                                | 0.51<br>(1.32)             |
| Metropolitan Area: Core                | 0.12<br>(0.27)                                | 0.26<br>(0.85)             |
| Metropolitan Area: Hinterland          | 0.85<br>(1.92)                                | 0.87<br>(1.89)             |
| Traditional Iron-Based Region          | 0.25<br>(0.62)                                | 0.33<br>(0.79)             |
| High Degree of Product Diversification | 0.62<br>(1.70)                                | 0.84<br>(2.15)             |
| Age Less than 15 Years                 | -0.37<br>(-0.79)                              | -0.45<br>(-0.95)           |
| Size by Plant in Great Britain         |                                               | 0.80<br>(3.12)             |
| Constant                               | -5.95<br>(-6.87)                              | -3.13<br>(-2.87)           |
| Rho Squared Bar                        | 0.16                                          | 0.18                       |

## Table 15: Dual Nation Logit Analysis for CAD Adoption

| Variables                                |                       | Parameter Estimates (t-values in parentheses) |  |
|------------------------------------------|-----------------------|-----------------------------------------------|--|
|                                          | Main Effects<br>Model | Model with<br>Interactions                    |  |
| Great Britain                            | -0.23<br>(-0.50)      | 2.06<br>(2.63)                                |  |
| Headquarter                              | -0.18<br>(-0.36)      | -1.47<br>(-2.03)                              |  |
| Branch Plant                             | 0.24<br>(0.66)        | -1.43<br>(1.92)                               |  |
| Size (log employment)                    | 1.24<br>(6.17)        | 1.64<br>(6.71)                                |  |
| Electrotechnical Sector                  | 0.44<br>(0.54)        | 0.60<br>(1.09)                                |  |
| Metropolitan Area: Core                  | 0.74<br>(1.60)        | 2.35<br>(3.11)                                |  |
| Metropolitan Area: Hinterland            | 0.56<br>(1.17)        | 2.45<br>(3.10)                                |  |
| Traditional Iron-Based Region            | -0.07<br>(-0.17)      | -0.06<br>(-0.15)                              |  |
| High Degree of Product Diversification   | -0.02<br>(-0.04)      | 0.08<br>(0.18)                                |  |
| Age Less than 15 Years                   | -0.09<br>(-0.22)      | 3.73<br>(2.49)                                |  |
| Independent Plant in Great Britain       |                       | -1.94<br>(-2.49)                              |  |
| Metropolitan Area Plant in Great Britain |                       | -2.35<br>(-2.98)                              |  |
| Size by Plant Less than 15 Years Old     |                       | -0.93<br>(-2.34)                              |  |
| Constant                                 | -3.72<br>(-5.09)      | -5.60<br>(-5.30)                              |  |
| Rho Squared Bar                          | 0.24                  | 0.30                                          |  |

## Table 16: Dual Nation Logit Analysis for Computer Adoption