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FUNDAMENTALS IN NEUROCOMPUTING 

Abstract 

Neurocomputing - inspired from neuroscience - provides the potential of an alternative 

information processing paradigm that involves large interconnected networks of relatively 

simple and typically non-linear processing elements, so-called (artificial) neural networks. 

There has been a recent resurgence in the field of neural networks, caused by new net 

topologies and algorithms, and the belief that massive parallelism is essential for high 

peiformance in several research areas, especially in pattern recognition. This contribution 

provides a brief introduction to some basic features of neural networks by defining a neural 

network, reflecting current thinking about the processing that should be peiformed at each 

processing element of a neural network, discussing the general categories of training that are 

commonly used to adjust a neural network's weight vector, and finally by characterizing the 

backpropagation neural networ:k which is one of the most important historical developments 

in neurocomputing.- The contribution concludes with pointing to some hot topics for future 

research. It is hoped that this contribution will stimulate the study of neural networks in 

quantitative geography and regional science. 

INTRODUCTION 

Neurocomputing, a new paradigm to information processing, has grown rapidly in popularity 

in the last decade. The primary information structures of interest in neurocomputing are 

neural networks, although other classes of adaptive information structures are considered such 

as genetic learning systems, simulated annealing systems and fuzzy learning systems. Several 

features distinguish this paradigm from algorithmic and rule-based information systems. 

First, informatien processing is inherently parallel. Large-scale parallelism provides a way to 

increase significantly the speed of information processing (inherent parallelism). Second, 

knowledge is encoded not in symbolic structures, but rather in patterns of numerical strengths 

of the connections between. the processing elements of the system (connectionist type of 

knowledge representation) (Smolensky, 1989). Third, neural networks are extremely fault 

tolerant. They can learn from and make decisions based on incomplete, noisy and fuzzy 

information. Fourth, neurocomputing does not require algorithm or rule development and 

often significantly reduces the quantity of software that has to be developed. 

The new paradigm to information processing shows a great potential for those types of 

problems, especially in the areas of pattern recognition and exploratory data analysis, for 

which the algorithms or rules are not known, or where they might be known, but where the 



software to implement them would be too expensive or inconvenient to develop. For those 

information processing operations suitable to neurocomputing implementation, the software 

to be developed is characteristically for relatively straightforward operations such as data 

preprocessing, data file input, data postprocessing and data file output. CASE (Computer 

Aided Software Engineering) tools might be used to build these routine software modules 

(Hecht-Nielsen, 1990). 

The promise of the neurocomputing paradigm and the excitement evident across various 

disciplines such as cognitive science, psychology, neuroscience, computer science and 

engineering is founded on demonstrated successes in solving a diversity of difficult problems 

.encompassing the areas of vision, pattern recognition, process control and non-linear 

prediction. This contribution provides a brief introduction to some basic features of neural 

networks by defining a neural network, reflecting current thinking about the processing that 

should be performed at each processing element of a neural network, discussing the general 

categories of training that are commonly used to adjust a neural network's weight vector, and 

finally by characterizing the backpropagation neural network which is one of the most 

important historical developments in neurocomputing. The contribution concludes with 

pointing to some hot topics for future research. It is hoped that this contribution will stimulate 

the study of neural networks in quantitative geography and regional science. 

WHAT IS A NEURAL NETWORK? 

A neural network may be viewed as a parallel distributed information processing structure in 

the form of a directed graph. The nodes of the network are called processing elements or 

neurons and the links connections which function as unidirectional signal conduction paths. 

Each connection has a weight associated with it that specifies the strength of the link. Each 

processing element can receive any number of incoming connections and can have any 

number of outgoing connections, but the signals in all these outgoing connections have to be 

the same. Thus, in effect, each processing element has a single output connection which can 

branch into copies to form multiple output connections, where each carrying the same signal. 

The signal carried by a connection can be anyone of the various mathematical data types (an 

integer, a real number, or a complex number). The information processing active within each 

processing element can be defined arbitrarily with the restriction that it has to be completely 

local, i.e. it has to depend only on the current values of the input signals arriving at the 

processing element and on values stored in the processing element local memory (Hecht

Nielsen, 1990). 
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Figure 1 shows a typical neural network architecture. The input to the network considered as 

a data array ~ and the output of the network as a data array S· Viewed in this manners the 

general functional form of a network is similar to that of a software procedure "input -7 

processing -7 output". 

Figure 1: A Typical Neural Network Architecture (see Hecht-Nielsen, 1990) 

Whether implemented in parallel hardware or simulated on a von Neumann computer, all 

neural networks consis,t of a collection of simple processing elements that work together to 

solve problems. 

Figure 2: A Typical Processing Element 
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Figure 2 reflects current thinking about informati<?ll pro~essing that should be performed at 
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each processing element in a neural network. Characteristically two mathematical functions 

are active (see Bezdek 1993): 

• The first mathematical function is an integrator function , say f, which integrates the 

connection weights, say w={wi}, with the input signals, say s=={sj}, arriving via the 

incoming connections which impinge upon the processing element. The first entry in each 

vector in Figure 2 is shown by a dotted line to indicate the bias weight wo connected to a 

constant input so== 1. Typically f is an inner product, usually the euclidean dot product, 

say 

11 =!Cs)=< s, w > = I, siwi + wo (1) 
i=l,. .. ,k 

where wo is an unknown parameter which has to be predefined or learned during training. 

w0 represents the offset frorri the origin of 9tk to the hyperplane normal tow defined by f. 
Without loss of generality the augmented vectors s=(1,s1, ... ,Sk)T a n d 

W=(Wo, W1, ... , Wk) T may be considered as input and weight vectors, respectively, in 9tk+1. 

A processing element with this type of integrator function is called first-order processing 

element because f is an affine function of its input vector S· When the inner product f is 

replaced by a more complicated function, higher order processing elements arise. For 

example, a second order processing element may be realized with a quadratic form, say 

s T w s , in ~· It is important to note that each processing element may be viewed as having 

(k+l) unknowns, but only k inputs. 

• Each processing element typically applies a transfer (or activation) function, say F, to the 

value of the integrator function (or activation) on its inputs. The transfer function produces 

the processing element's output signal. The most common choice for F is the logistic 

function 

s = F(l)) = 1 
(2) 

l+exp(-11) 

which scales the activation sigmoidally between 0 and 1. 

TRAINING THE NETWORK 

The challenge is to find a set of weights (or adaptive coefficients) and a set of N processing 

elements which will produce a reasonable output in response to input signals. This leads to a 

third important mathematical operator for a neural network, the update function U which 
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performs usually local updates of the current set of weights at every processing element. The 

action of the update (or learning) rule may be formally written as 

w(t+l) = U(w(t)) (3) 

with 

(4) 

denoting the network weight (connection parameter) vector, i.e. the collection of all the 

individual vectors at the N processing elements in the network at any time (iteration) t. The 

weight vector Wn (n=l, ... , N) is stored in then-th processing element's local memory. 

Updating is done during training. There are various types of training processes. At the most 

fundamental level three categories of training are distinguished: supervised training, 

unsupervised training (or self-organization), and graded (or reinforcement) training. 

Supervised training implies a situation in which the neural network is operating as input

output system. In this training scheme the network is supplied with a sequence of input and 

desired (target) output data, and the network is, thus, precisely told what should be emitted as 

output. The input-target output data set has to cover all reasonable input-output types, and 

contain enough noise to encourage generalization. An adaptation algorithm automatically 

adjusts the weights so that the output responses to the input patterns will be as close as 

possible to their respective desired (target) responses. There is a variety of supervised neural 

network training (or parameter adaptation) algorithms. The concept under.lying these 

algorithms is the minimal disturbance principle which suggests to adapt the weights to reduce 

the output error for the current training pattern, with minimal disturbance to responses already 

learned (Widrow and Lehr, 1990). Supervised trained networks may be viewed as input

output models or as non-linear regression models with a quite specific form. 

In some cases there is no teacher who can provide all the desired output values for a particular 

input. In such cases graded (reinforcement) training is a useful training scheme. Graded 

training is similar to supervised training except that the network receives only a grade or 

numeric score, i.e. a value of some network performance measurement function measured 

over a time period, which tells how well the network has done over the time period 

encompassing a sequence of input-output trials. Graded training networks are usually less 

capable and less generally applicable than supervised training networks. They were applied to 

control and process-optimization problems up to now where there is no way to know what the 

target outputs should be and where the network necessary to solve the problem at hand is 

relatively small. 
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The third category of training is unsupervised training (or self organization) It is a training 

scheme in which the network is given only input data, and is expected to modify itself in 

response to it. Unsupervised learning is about discovering structure in the input data. The 

term training no longer refers to an input-output framework. Many unsupervised training 

schemes allow the network to change as the character of the input changes. Some techniques 

are available to monitor this change and assist to prevent the neural system from totally losing 

its knowledge of earlier input examples when exposed to a new type (Padgett and Karplus, 

1993). Examples of the use of unsupervised training include competitive learning algorithms 

as used, for example, in Kohonen's self-organizing feature maps (Kohonen, 1984). 

SUPERVISED TRAINING BY THE STOCHASTIC LEARNING RULE 

The backpropagation technique by Rumelhart, Hinton and Williams (1986) has 

unquestionably been the most influential development in the field of neural networks during 

the past decade. Amari ( 1993) showed that this technique is a version of the stochastic 

descent method for parametrized networks, an idea which has been known since the 1960s 

and will be developed in the sequel. 

Let us consider a network which receives a vector input signals and emits an output signal S· 
The system includes feedforward, but not feedback connections. Let the system include a 

number of modifiable parameters w = (w1, ... ,Wj, ... ,WN) with Wj = (wj1 •... ,Wjj, ... ,Wjk) wihch 

specify the network, where Wji denotes the weight associated with the link from processing 

element i to processing elementj. Then the network defines a mapping from the set 3 = g} of 

input signals to the set Z = {Q of output signals. The network is determined as a function of 

inputs and the parameter values was 

s = G (s;w) (5) 

We assume that G is differentiable with respect tow. When an input signals is processed by 

a network specified by w, an error is caused because the network might not be optimally 

tuned. Let us assume that a desired output t} accompanies S· Then the loss (error) may be 

written as L(s, t}; w), denoting the error whens with a desired (target) signal t} is processed 

by the network specified by w. 

Let us assume thats is generated subject to a fixed, but unknown probability distribution p(s} 

each time independently. The associated desired output,'.} is usually a function of s(t}=i}ct(S)), 

sometimes disturbed by noise. Then i} is generated subject to the conditional probability 

p(~@ and the expectation oft}: 
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(6) 

where E[ tH s] is the conditional expectation of 1'.} under the condition that the input s is the 

desired signal (White, 1989). The risk R(w) of using a network specified by w is given by the 

expectation of the error 

R(w) = E [L cs,,1'.},w)J = J LCS,,1'.},w) pCs) p(t}ls) ds di'.} (7) 

By receiving an input- (desired) output pair (S,(t), 1'.}(t)) at time (iteration) t the stochastic 

descent rule updates the current parameter w(t) to 

( 1) ( ) ( ) A 
aL (S,(t),1'.}(t); w(t)) 

w t+ = w t - c t aw (8) 

where c(t) is a positive constant which may depend on t, A is a positive-definite matrix, and 

ataw is the gradient operator. Since 

E [ aL(S,,1'.}; w) ] = aR(w) 
aw aw (9) 

(8) adapts the current parameter, w(t), in the direction of decreasing R(w) on average 

depending on the randomly generated (S,,1'.}). This is the reason why this rule is called 

stochastic descent rule. It is worthwhile to mention that in the simplest case, c(t) equals a 

constant c and A is a unit matrix. 

THE BACKPROPAGATION NEURAL NETWORK 

The backpropagation neural network is by far the most popular and pervasive neural 

information system. It is a powerful mapping network that has been applied to a wide variety 

of problems ranging from image compression over credit applications to interregional 

telecommunication flow modelling in geography (see, for example, Fischer and Gopal, 1993). 

The backpropagation neural network has a particular neural network architecture 

characterized by a hierarchical design consisting of an array of input nodes, at least one layer 

of intermediate (hidden) typically non-linear nodes and an output layer. Such networks are 

called multilayer networks. In Figure 3 a two layer feedforward network is displayed. The 

information processing operation that backpropagation networks are intended to carry out is 

the approximation of a bounded mapping from a compact subset {SI> ... , si} of I-dimensional 
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euclidean space to a compact subset { s1, ... , s1} f I-dimensional euclidean space by means of 

supervised training, using the backpropagation procedure as update rule. 

Figure 3: The 2-Layer Feedforward Network 

~I ~J 

t ~E 9l' t 
Third Amy Ou1put Processing Elements 
(Second Layer) j=I, .... J 

Second Layer of 
Network Parameten; 

(2) 
wJh 

Second Array Hidden Pocessing Elements 
(First Layer) k=I ..... K 

First Layer of 
Network Parameters 

(I) 
WN 

Input Array Input Unils 
i1=l ..... 1 

t t ~ e 9l1 
~I ~I 

Consider a multilayer feedforward network: Let ~fs-l) be the i-th input to the processing 

elements of the s-th layer (s=l, ... , S, in Figure 3: S=2). The j-th processing element of the 

s-th layer integrates the connection weights from the .(s-1)-th to the s-th layer, wW , with the 

input signals as 

n~s) = ~ ~~s-1) w~~) 
' IJ ,L.J ~I JI (10) 

and emits the output 

(11) 

where F is the logistic transfer function (2). ~j5) becomes the j-th input to the next (s+ 1)-th 

layer. The overall input to the network is given by 

for i=l, ... , I (12) 

and the overall output of the network is given from the S-th layer by 

for j=l, ... , J (13) 
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These equations recurrently describe the input-output relation (5) where the parameter w 

contains all the w}f) . When the squared error is used as error function 

(14) 

the stochastic gradient rule yields the following learning rule 

aL(~,1'.},w) 
= -c-....,,......--

aw .. 
JI (15) 

where 1J5) is the error (loss) signal of the j-th processing element of the s-th layer. The error 

signals are given recurrently by 

(16) 

for the connections from the (S-1 )-th to the S-th layer, and for the other connections 

l~s) = F' (n~s)) ~ ~~) l ~s+l) 
J 'IJ .L.JWJI I for s = 1, ... , S-1 (17) 

Since the error signals 1J5) can be recurrently computed from the last layer by backpropagating 

them the procedure is termed backpropagation (see Rumelhart, Williams and Hinton 1986). 

The generally good performance found for the backpropagation algorithm is somewhat 

surprising considering that it is a gradient search procedure which may find a local minimum 

in the error function instead of the global minimum. Suggestions to improve performance and 

to increase rates of convergence include heuristic modifications of the backpropagation 

algorithm (Jacobs 1988), making many training runs starting with different sets of random 

weights, and adopting a more complex error function (W eigend, Rumelhart and Huberman 

1991). 

OUTLOOK 

During the last few years, neural network techniques have proven to be capable of solving a 

number of difficult problems better than conventional methods. While for many problems an 

adequate neural network solution may be implementable in software running on a 

conventional microprocessor, a large and increasing class of problems exists now where 

microprocessors are orders-of-magnitude too slow, or too expensive to offer an appropriate 
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solution. This is especially true for on-line learning in the context of environmental 

monitoring and management tasks using huge masses of satellite data. For these applications 

a new hardware is required. 

Several scholars are currently investigating to explore ways and means of building fuzzy 

neural networks, by incorporating the notion of fuzziness into a neural network framework, 

especially in the area of pattern recognition. There are several ways to incorporate fuzziness 

into a backpropagation network. One way is to incorporate fuzziness by arranging the 

integrator I transfer functions at each processing element to perform some sort of fuzzy 

aggregation (fuzzy union, weighted mean or intersection) on the numerical information 

arriving at each processing element. Another way to introduce fuzziness into the neural 

network framework is through the input data itself which may be "fuzzified" in one of 

several ways (Bezdek 1993). Fuzzy systems techniques may be also used to interpret the 

neural network output and to guide the training and validation procedures (Kosko 1992). 

Another hot topic refers to the integration of neural networks and genetic algorithms to 

automate the design of neural networks through genetic search. Genetic algorithms use global 

search, recombination and other optimization techniques motivated by evolutionary biology 

(Goldberg 1989). The integration of neural and fuzzy systems and genetic algorithms will be 

perhaps the most important horizon for research in the next decade. 
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