

Abteilung fl.ir Theoretische und Angewandte Wirtschafts- und Sozialgeographie

lnstitut fl.ir Wirtschafts- und Sozialgeographie

Wirtschaftsuniversitat Wien

Vorstand: a.Univ.Prof. Dr. Manfred M. Fischer

A - 1090 Wien, Augasse 2-6, Tel. (0222) 313 36 - 4836

Redaktion: Mag. Petra Staufer

WSG 36/94

Fundamentals in Neurocomputing

Manfred M. Fischer

WSG-Discussion Paper 36

February 1994

Gedruckt mit UnterstOtzung
des Bundesministerium

fOr Wissenschaft und Forschung
in Wien

WSG Discussion Papers are interim
reports presenting work in progress

and papers which have been submitted
for publication elsewhere.

ISBN 3 85037 041 0

FUNDAMENTALS IN NEUROCOMPUTING

Abstract

Neurocomputing - inspired from neuroscience - provides the potential of an alternative

information processing paradigm that involves large interconnected networks of relatively

simple and typically non-linear processing elements, so-called (artificial) neural networks.

There has been a recent resurgence in the field of neural networks, caused by new net

topologies and algorithms, and the belief that massive parallelism is essential for high

peiformance in several research areas, especially in pattern recognition. This contribution

provides a brief introduction to some basic features of neural networks by defining a neural

network, reflecting current thinking about the processing that should be peiformed at each

processing element of a neural network, discussing the general categories of training that are

commonly used to adjust a neural network's weight vector, and finally by characterizing the

backpropagation neural networ:k which is one of the most important historical developments

in neurocomputing.- The contribution concludes with pointing to some hot topics for future

research. It is hoped that this contribution will stimulate the study of neural networks in

quantitative geography and regional science.

INTRODUCTION

Neurocomputing, a new paradigm to information processing, has grown rapidly in popularity

in the last decade. The primary information structures of interest in neurocomputing are

neural networks, although other classes of adaptive information structures are considered such

as genetic learning systems, simulated annealing systems and fuzzy learning systems. Several

features distinguish this paradigm from algorithmic and rule-based information systems.

First, informatien processing is inherently parallel. Large-scale parallelism provides a way to

increase significantly the speed of information processing (inherent parallelism). Second,

knowledge is encoded not in symbolic structures, but rather in patterns of numerical strengths

of the connections between. the processing elements of the system (connectionist type of

knowledge representation) (Smolensky, 1989). Third, neural networks are extremely fault

tolerant. They can learn from and make decisions based on incomplete, noisy and fuzzy

information. Fourth, neurocomputing does not require algorithm or rule development and

often significantly reduces the quantity of software that has to be developed.

The new paradigm to information processing shows a great potential for those types of

problems, especially in the areas of pattern recognition and exploratory data analysis, for

which the algorithms or rules are not known, or where they might be known, but where the

software to implement them would be too expensive or inconvenient to develop. For those

information processing operations suitable to neurocomputing implementation, the software

to be developed is characteristically for relatively straightforward operations such as data

preprocessing, data file input, data postprocessing and data file output. CASE (Computer

Aided Software Engineering) tools might be used to build these routine software modules

(Hecht-Nielsen, 1990).

The promise of the neurocomputing paradigm and the excitement evident across various

disciplines such as cognitive science, psychology, neuroscience, computer science and

engineering is founded on demonstrated successes in solving a diversity of difficult problems

.encompassing the areas of vision, pattern recognition, process control and non-linear

prediction. This contribution provides a brief introduction to some basic features of neural

networks by defining a neural network, reflecting current thinking about the processing that

should be performed at each processing element of a neural network, discussing the general

categories of training that are commonly used to adjust a neural network's weight vector, and

finally by characterizing the backpropagation neural network which is one of the most

important historical developments in neurocomputing. The contribution concludes with

pointing to some hot topics for future research. It is hoped that this contribution will stimulate

the study of neural networks in quantitative geography and regional science.

WHAT IS A NEURAL NETWORK?

A neural network may be viewed as a parallel distributed information processing structure in

the form of a directed graph. The nodes of the network are called processing elements or

neurons and the links connections which function as unidirectional signal conduction paths.

Each connection has a weight associated with it that specifies the strength of the link. Each

processing element can receive any number of incoming connections and can have any

number of outgoing connections, but the signals in all these outgoing connections have to be

the same. Thus, in effect, each processing element has a single output connection which can

branch into copies to form multiple output connections, where each carrying the same signal.

The signal carried by a connection can be anyone of the various mathematical data types (an

integer, a real number, or a complex number). The information processing active within each

processing element can be defined arbitrarily with the restriction that it has to be completely

local, i.e. it has to depend only on the current values of the input signals arriving at the

processing element and on values stored in the processing element local memory (Hecht

Nielsen, 1990).

2

Figure 1 shows a typical neural network architecture. The input to the network considered as

a data array ~ and the output of the network as a data array S· Viewed in this manners the

general functional form of a network is similar to that of a software procedure "input -7

processing -7 output".

Figure 1: A Typical Neural Network Architecture (see Hecht-Nielsen, 1990)

Whether implemented in parallel hardware or simulated on a von Neumann computer, all

neural networks consis,t of a collection of simple processing elements that work together to

solve problems.

Figure 2: A Typical Processing Element

Input Vector
~ E 9tk

I

y
Weight Vector ~ we 9tk I

Output Vector~

lNPlTT SIGN A LS

. I
~=F(T1)= J+exp(-11)

TRANSFER FUNCTION

•
COPIES OF OUTPUT SIGNAL

Input

Connections

Processing
Elements

Output
Elements

Figure 2 reflects current thinking about informati<?ll pro~essing that should be performed at

3

each processing element in a neural network. Characteristically two mathematical functions

are active (see Bezdek 1993):

• The first mathematical function is an integrator function , say f, which integrates the

connection weights, say w={wi}, with the input signals, say s=={sj}, arriving via the

incoming connections which impinge upon the processing element. The first entry in each

vector in Figure 2 is shown by a dotted line to indicate the bias weight wo connected to a

constant input so== 1. Typically f is an inner product, usually the euclidean dot product,

say

11 =!Cs)=< s, w > = I, siwi + wo (1)
i=l,. .. ,k

where wo is an unknown parameter which has to be predefined or learned during training.

w0 represents the offset frorri the origin of 9tk to the hyperplane normal tow defined by f.
Without loss of generality the augmented vectors s=(1,s1, ... ,Sk)T a n d

W=(Wo, W1, ... , Wk) T may be considered as input and weight vectors, respectively, in 9tk+1.

A processing element with this type of integrator function is called first-order processing

element because f is an affine function of its input vector S· When the inner product f is

replaced by a more complicated function, higher order processing elements arise. For

example, a second order processing element may be realized with a quadratic form, say

s T w s , in ~· It is important to note that each processing element may be viewed as having

(k+l) unknowns, but only k inputs.

• Each processing element typically applies a transfer (or activation) function, say F, to the

value of the integrator function (or activation) on its inputs. The transfer function produces

the processing element's output signal. The most common choice for F is the logistic

function

s = F(l)) = 1
(2)

l+exp(-11)

which scales the activation sigmoidally between 0 and 1.

TRAINING THE NETWORK

The challenge is to find a set of weights (or adaptive coefficients) and a set of N processing

elements which will produce a reasonable output in response to input signals. This leads to a

third important mathematical operator for a neural network, the update function U which

4

performs usually local updates of the current set of weights at every processing element. The

action of the update (or learning) rule may be formally written as

w(t+l) = U(w(t)) (3)

with

(4)

denoting the network weight (connection parameter) vector, i.e. the collection of all the

individual vectors at the N processing elements in the network at any time (iteration) t. The

weight vector Wn (n=l, ... , N) is stored in then-th processing element's local memory.

Updating is done during training. There are various types of training processes. At the most

fundamental level three categories of training are distinguished: supervised training,

unsupervised training (or self-organization), and graded (or reinforcement) training.

Supervised training implies a situation in which the neural network is operating as input

output system. In this training scheme the network is supplied with a sequence of input and

desired (target) output data, and the network is, thus, precisely told what should be emitted as

output. The input-target output data set has to cover all reasonable input-output types, and

contain enough noise to encourage generalization. An adaptation algorithm automatically

adjusts the weights so that the output responses to the input patterns will be as close as

possible to their respective desired (target) responses. There is a variety of supervised neural

network training (or parameter adaptation) algorithms. The concept under.lying these

algorithms is the minimal disturbance principle which suggests to adapt the weights to reduce

the output error for the current training pattern, with minimal disturbance to responses already

learned (Widrow and Lehr, 1990). Supervised trained networks may be viewed as input

output models or as non-linear regression models with a quite specific form.

In some cases there is no teacher who can provide all the desired output values for a particular

input. In such cases graded (reinforcement) training is a useful training scheme. Graded

training is similar to supervised training except that the network receives only a grade or

numeric score, i.e. a value of some network performance measurement function measured

over a time period, which tells how well the network has done over the time period

encompassing a sequence of input-output trials. Graded training networks are usually less

capable and less generally applicable than supervised training networks. They were applied to

control and process-optimization problems up to now where there is no way to know what the

target outputs should be and where the network necessary to solve the problem at hand is

relatively small.

5

The third category of training is unsupervised training (or self organization) It is a training

scheme in which the network is given only input data, and is expected to modify itself in

response to it. Unsupervised learning is about discovering structure in the input data. The

term training no longer refers to an input-output framework. Many unsupervised training

schemes allow the network to change as the character of the input changes. Some techniques

are available to monitor this change and assist to prevent the neural system from totally losing

its knowledge of earlier input examples when exposed to a new type (Padgett and Karplus,

1993). Examples of the use of unsupervised training include competitive learning algorithms

as used, for example, in Kohonen's self-organizing feature maps (Kohonen, 1984).

SUPERVISED TRAINING BY THE STOCHASTIC LEARNING RULE

The backpropagation technique by Rumelhart, Hinton and Williams (1986) has

unquestionably been the most influential development in the field of neural networks during

the past decade. Amari (1993) showed that this technique is a version of the stochastic

descent method for parametrized networks, an idea which has been known since the 1960s

and will be developed in the sequel.

Let us consider a network which receives a vector input signals and emits an output signal S·
The system includes feedforward, but not feedback connections. Let the system include a

number of modifiable parameters w = (w1, ... ,Wj, ... ,WN) with Wj = (wj1 •... ,Wjj, ... ,Wjk) wihch

specify the network, where Wji denotes the weight associated with the link from processing

element i to processing elementj. Then the network defines a mapping from the set 3 = g} of

input signals to the set Z = {Q of output signals. The network is determined as a function of

inputs and the parameter values was

s = G (s;w) (5)

We assume that G is differentiable with respect tow. When an input signals is processed by

a network specified by w, an error is caused because the network might not be optimally

tuned. Let us assume that a desired output t} accompanies S· Then the loss (error) may be

written as L(s, t}; w), denoting the error whens with a desired (target) signal t} is processed

by the network specified by w.

Let us assume thats is generated subject to a fixed, but unknown probability distribution p(s}

each time independently. The associated desired output,'.} is usually a function of s(t}=i}ct(S)),

sometimes disturbed by noise. Then i} is generated subject to the conditional probability

p(~@ and the expectation oft}:

6

(6)

where E[tH s] is the conditional expectation of 1'.} under the condition that the input s is the

desired signal (White, 1989). The risk R(w) of using a network specified by w is given by the

expectation of the error

R(w) = E [L cs,,1'.},w)J = J LCS,,1'.},w) pCs) p(t}ls) ds di'.} (7)

By receiving an input- (desired) output pair (S,(t), 1'.}(t)) at time (iteration) t the stochastic

descent rule updates the current parameter w(t) to

(1) () () A
aL (S,(t),1'.}(t); w(t))

w t+ = w t - c t aw (8)

where c(t) is a positive constant which may depend on t, A is a positive-definite matrix, and

ataw is the gradient operator. Since

E [aL(S,,1'.}; w)] = aR(w)
aw aw (9)

(8) adapts the current parameter, w(t), in the direction of decreasing R(w) on average

depending on the randomly generated (S,,1'.}). This is the reason why this rule is called

stochastic descent rule. It is worthwhile to mention that in the simplest case, c(t) equals a

constant c and A is a unit matrix.

THE BACKPROPAGATION NEURAL NETWORK

The backpropagation neural network is by far the most popular and pervasive neural

information system. It is a powerful mapping network that has been applied to a wide variety

of problems ranging from image compression over credit applications to interregional

telecommunication flow modelling in geography (see, for example, Fischer and Gopal, 1993).

The backpropagation neural network has a particular neural network architecture

characterized by a hierarchical design consisting of an array of input nodes, at least one layer

of intermediate (hidden) typically non-linear nodes and an output layer. Such networks are

called multilayer networks. In Figure 3 a two layer feedforward network is displayed. The

information processing operation that backpropagation networks are intended to carry out is

the approximation of a bounded mapping from a compact subset {SI> ... , si} of I-dimensional

7

euclidean space to a compact subset { s1, ... , s1} f I-dimensional euclidean space by means of

supervised training, using the backpropagation procedure as update rule.

Figure 3: The 2-Layer Feedforward Network

~I ~J

t ~E 9l' t
Third Amy Ou1put Processing Elements
(Second Layer) j=I, J

Second Layer of
Network Parameten;

(2)
wJh

Second Array Hidden Pocessing Elements
(First Layer) k=I K

First Layer of
Network Parameters

(I)
WN

Input Array Input Unils
i1=l 1

t t ~ e 9l1
~I ~I

Consider a multilayer feedforward network: Let ~fs-l) be the i-th input to the processing

elements of the s-th layer (s=l, ... , S, in Figure 3: S=2). The j-th processing element of the

s-th layer integrates the connection weights from the .(s-1)-th to the s-th layer, wW , with the

input signals as

n~s) = ~ ~~s-1) w~~)
' IJ ,L.J ~I JI (10)

and emits the output

(11)

where F is the logistic transfer function (2). ~j5) becomes the j-th input to the next (s+ 1)-th

layer. The overall input to the network is given by

for i=l, ... , I (12)

and the overall output of the network is given from the S-th layer by

for j=l, ... , J (13)

8

These equations recurrently describe the input-output relation (5) where the parameter w

contains all the w}f) . When the squared error is used as error function

(14)

the stochastic gradient rule yields the following learning rule

aL(~,1'.},w)
= -c-....,,......--

aw ..
JI (15)

where 1J5) is the error (loss) signal of the j-th processing element of the s-th layer. The error

signals are given recurrently by

(16)

for the connections from the (S-1)-th to the S-th layer, and for the other connections

l~s) = F' (n~s)) ~ ~~) l ~s+l)
J 'IJ .L.JWJI I for s = 1, ... , S-1 (17)

Since the error signals 1J5) can be recurrently computed from the last layer by backpropagating

them the procedure is termed backpropagation (see Rumelhart, Williams and Hinton 1986).

The generally good performance found for the backpropagation algorithm is somewhat

surprising considering that it is a gradient search procedure which may find a local minimum

in the error function instead of the global minimum. Suggestions to improve performance and

to increase rates of convergence include heuristic modifications of the backpropagation

algorithm (Jacobs 1988), making many training runs starting with different sets of random

weights, and adopting a more complex error function (W eigend, Rumelhart and Huberman

1991).

OUTLOOK

During the last few years, neural network techniques have proven to be capable of solving a

number of difficult problems better than conventional methods. While for many problems an

adequate neural network solution may be implementable in software running on a

conventional microprocessor, a large and increasing class of problems exists now where

microprocessors are orders-of-magnitude too slow, or too expensive to offer an appropriate

9

solution. This is especially true for on-line learning in the context of environmental

monitoring and management tasks using huge masses of satellite data. For these applications

a new hardware is required.

Several scholars are currently investigating to explore ways and means of building fuzzy

neural networks, by incorporating the notion of fuzziness into a neural network framework,

especially in the area of pattern recognition. There are several ways to incorporate fuzziness

into a backpropagation network. One way is to incorporate fuzziness by arranging the

integrator I transfer functions at each processing element to perform some sort of fuzzy

aggregation (fuzzy union, weighted mean or intersection) on the numerical information

arriving at each processing element. Another way to introduce fuzziness into the neural

network framework is through the input data itself which may be "fuzzified" in one of

several ways (Bezdek 1993). Fuzzy systems techniques may be also used to interpret the

neural network output and to guide the training and validation procedures (Kosko 1992).

Another hot topic refers to the integration of neural networks and genetic algorithms to

automate the design of neural networks through genetic search. Genetic algorithms use global

search, recombination and other optimization techniques motivated by evolutionary biology

(Goldberg 1989). The integration of neural and fuzzy systems and genetic algorithms will be

perhaps the most important horizon for research in the next decade.

Acknowledgement: The author is grateful for the funding provided by the Austrian Fonds zur Forderung der
wissenschaftlichen Forschung (P 09972-TEC). Moreover, he would like to thank Petra Staufer for her valuable
assistance in the preparation of the illustrations and manuscript.

REFERENCES

Amari, S.-I. (1993): Backpropagation and stochastic gradient descent method: In: Neurocomputing, vol. 5, pp.
185-196.

Bezdek, J.C. (1993): Pattern recognition with fuzzy sets and neural nets. In: Tutorial Texts, International
Joint Conference on Neural Networks IJCNN'93, pp. 169-206.

Fischer, M.M. and Gopal, S. (1993): Artificial neural networks, A new approach to modelling interregional
telecommunication flows. In: Journal of Regional Science (in press).

Goldberg, D.E. (1989): Genetic Algorithms in Search, Optimization and Machine Learning. Reading (Ma.):
Addison-Wesley.

Gopal, S. and Fischer, M.M. (1994): Learning in single hidden layer feedforward network models.
Backpropagation and a real world application. Submitted to: Geographical Analysis.

Hecht-Nielsen, R. (1990): Neurocomputing. Reading (Ma.): Addison-Wesley.

10

Jacobs, R.A. (1988): Increased rates of convergence through learning rate adaptation. In: Neural Networks, vol.
1, pp. 295-307.

Kohonen, T. (1984): Self-Organization and Associative Memory. Berlin: Springer.

Kosko, B. (1992): Neural Networks and Fuzzy Systems. Englewood Cliffs: Prentice-Hall.

Lippmann, R.P. (1987): An introduction to computing with neural networks, IEEE ASSP Magazine, April
1987, pp. 4-22.

Padgett, M.L. and Karplus, W.J. (1993): Neural network basics: Applications, examples and standards, Tutorial
Texts, UCNN'93, Nagoya, Japan, pp. 383-412.

Rumelhart, D.E., Hinton, G.E., and R.J. Williams (1986): Leaming internal representations by error propagation.
In Rumelhart, D.E., McClelland, J.L. and the PDP Research Group (eds.): Parallel Distributed
Processing. Explorations in the Microstructures of Cognition. Volume 1: Foundations, pp. 318-362.
Cambridge (Ma.) and London (England): The MIT Press.

Smolensky, P. (1988): On the proper treatment of connectionism. In: Behavioral and Brain Sciences, vol. 11,
pp. 1-74.

Weigend, A.S., Rumelhart, D.E. and Huberman, B.A. (1991): Back-propagation, weight-elimination and time
series prediction, in Touretzki,.D.S., Elman, J.L., Sejnowski, T., and Hinton, G.E. (eds.): Connectionist
Models. Proceedings of the 1990 Summer School, pp.105-116. San Mateo (CA), Morgan Kaufmann
Publishers.

White, H. (1989): Leaming in artificial networks: A statistical perspective. In: Neural Computation, vol. l, pp.
425-464.

Widrow, B. and Lehr, M.A. (1990): 30 years of adaptive neural networks: Perceptron, madaline, and
backpropagation. In: Proceedings of the IEEE, vol. 78, pp. 27-53.

11

