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ABSTRACT 

Satellite images increasingly become a major data source for monitoring changes in the 
natural environment. A main task in the analysis of satellite images is concerned with the 
modelling of land use classes by reducing uncertainty during a classification process. In the 
approach presented in this paper uncertainty is perceived to be due to the vagueness of 
geographical categories caused by either the complexity of the category (like 'urban area') or 
by the use of the category in several application contexts. Two circumstances of use of an 
extended set theoretical concept (fuzzy sets) are discussed. First, two algorithms from the 
ISODATA class are used to determine the grades of membership to three a priori defined 
classes (woodland, suburban area, urban area) of a LANDSAT TM satellite image of Vienna, 
Austria. The results are visualized by a RGB image of the grades of membership to each 
category. Second, a measure of fuzziness is employed on the results. The measure relies on 
the concept of distance between a seUcategory and its complement. The so determined 
vagueness provide more information on the uncertainty of the different categories and may 
improve further information processing tasks. 

Keywords: Fuzzy Sets, Remote Sensing, Pattern Recognition, Measure of Fuzziness 



1. Introduction 

Satellite remote sensing has become a valuable tool for gathering information about planet earth. 
Images received by satellite are useful not only for observing and monitoring changes in the 
natural environment. High-spatial-resolution images acquired by earth-orbiting sensors may also 
be used to monitor both the extent of urban areas and their composition in terms of land use. 
Unfortunately, many of the commonly used image processing techniques, such as the 
conventional parametric pixel by pixel classification algorithms, tend to perform poorly in this 
context. This is because urban areas comprise a complex spatial assemblage of disparate land 
cover types - including built structures, numerous vegetation types, bare soil and water bodies -
each of which has different spectral reflectance characteristics. Thus, although a simple, direct 
relationship between land cover and the spectral response detected by a satelllite sensor often 
exists in the natural environment, this is seldom the case for land cover in urban areas. 

As a result, pattern recognition in urban areas is one of the most demanding issues in classifying 
satellite remote sensing data. This has generated interest in both neural networks and fuzzy 
systems. Neural networks deal with uncertainty as humans do, not by deliberate design, but as 
a byproduct of their parallel-distributed structure [see Gopal and Fischer 1994, Fischer et al. 
1995]. In contrast, fuzzy systems directly build the basic insight that categories [classes] are not 
absolutely clear cut into an artificial system. There are significant differences between neural 
networks and fuzzy systems to pattern recognition. There are formal similarities as pointed out 
by Kosko [1992], but they vary greatly in detail. The noise and generalization abilities of neural 
networks grow out of the structure of networks, their dynamics, and their data presentations. 
Fuzzy systems start from highly formalized insights about the structure of categories found in 
the real world. The theory of fuzziness may be sometimes easier to use and simpler to apply to 
a particular remote sensing problem than neural networks may be. Whether to use one or 
another technology depends on the particular application and an e~gineering judgement. 

Fuzzy set theory can be incorporated in the handling of uncertainties arising from deficiencies 
in the available information caused by incomplete, imprecise vague data and information in 
various stages of pattern recognition. In this paper we consider two circumstances where the 
concepts and techniques of fuzzy set theory may be helpful in the practice of remote sensing 
pattern recognition [Pao 1989]: 

D The first circumstance of use is at the class-membership level. In the crisp case, 
classification consists of relegating a pixel to a membership in one of the a priori given 
land cover classes. In the fuzzy set approach, the class membership of a pixel itself is a 
fuzzy set, and the different class indices constitute the support for that fuzzy set. A pixel 
does not necessarily belong to just one of the classes. There is a certain degree of 
possibility that the pixel might belong to more than one class. The membership 
functions supply values for these various possibilities. Fuzzy clustering or the fuzzy 
ISODAT A procedure is an instructive example of this first circumstance of use [see 
section 3]. 

D The second circumstance of use is where measures of fuzziness are used to make us 
aware of the vagueness of the land cover classification obtained. Vagueness in general 
is associated with the difficulty to delimit the land cover classes by sharp boundaries 
[see section 4]. 



In this paper we describe the two above mentioned roles that fuzzy set theory might play in 
satellite remote sensing pattern recognition. First, we will introduce the basic concepts in section 
2. Section 3 is concerned with the fuzzy extension of the clustering procedure ISODAT A, while 
section 4 deals with the question of how to measure vagueness or fuzziness. The two 
circumstances of use of fuzzy set theory are discussed in view of a multispectral pixel-by-pixel 
classification task using a satellite image selected from a Landsat-TM scene from the city of 
Vienna and its northern surroundings. The spectral resolution of the five bands [TM2 to TM5, 
TM?] which were used was eight bits or 256 possible digital numbers. The geometric resolution 
of a pixel is 30 x 30 m2• The purpose of the classsification task was to distinguish between three 
broad land cover categories [classes]: woodland/public gardens; low density residential and 
industrial areas [suburban], and densely built up areas [urban]. The data base consisted of 256 
x 256 pixels that are described by 5-dimensional feature vectors. 

2. The Notion of Fuzzy Sets and Some Basic Concepts 

According to the usual terminology, the term conventional [har<J or crisp] set is used in this 
contribution for sets whose boundaries are sharp. A crip set of all pertinent entities in any 
particular context is called a universal set. In the context of this paper, X may denote the set of 
pixels of the image of concern [i.e. the univeral set]. 

Crisp sets contain objects [pixels] that satisfy precise properties required for membership.That 
is, each pixel is grouped unequivocally to a given set [land cover category in the application 
domain of this study]. In other words, the characteristic function of a crisp set assigns a value of 
either 1 or 0 to each object in the universal set, thereby discriminating between members and 
non-members of the crisp set under consideration. This requirement is a particularily harsh one 
for urban areas that contain mixtures of built structures. Most conventional classification 
[clustering] procedures have no natural mechanism for absorbing the effects of undistinctive or 
aberrant feature data. Accordingly, the notion of fuzzy set was introduced as a means for 
modifying the basic axioms underlying classification [clustering] models with the purpose of 
tack.ling the above mentioned issue. 

In a way similar to conventional sets, fuzzy sets, are defined in each particular context within 
the relevant [conventional] universal set X. In contrast to hard sets, however, fuzzy sets involve 
uncertainty in determining whether an individual of X belongs to a given set or not. This 
uncertainty may be expressed in the following way [see Zadeh 1965]: 

Given a universal set X, a fuzzy set A in Xis defined as a set of ordered pairs 

A:= { (x,µA(x)) Ix EX}, (1) 

where µA(x) is called the membership function defined by 

µA(X): X - (0,1]. (2) 

The membership function µA(x) maps X to the membership space M = [0,1], the interval of 
real numbers from 0 to 1, inclusive. µA(x) expresses the grade of membership of x in A, i.e. 
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degree of compatibility of x with the concept represented by the fuzzy set A. If M contains only 
two points, 0 and l, then A is not fuzzy. Thus, hard sets are a special type of fuzzy ones. This 
definition of a fuzzy set in terms of an ordered set of pairs allows to define subsets of X that do 
not have sharp boundaries. Fuzzy sets in '.P(X), the power set of all fuzzy subsets of X, can be 
operated upon a variety of operators of fuzzy complementation, intersection, union, etc. [see 
Yager 1979]. The original theory of fuzzy sets was formulated in terms of the following specific 
operators of set complement, union and intersection: 

for all x EX 

µAu 8 (x) = max[µA(x),µ 8(x)] for all x EX 

µAne(X) = min[µA(x),µ 8(x)] for all x EX 

(3) 

(4) 

(5) 

where A and B denote fuzzy sets of X, A' the complement of fuzzy set A; µA(x) and µ8 (x) 
membership functions. When the membership space is restricted to the set { 0, 1 } , these 
functions perform precisely as the corresponding operators for conventional sets, thus 
establishing them as clear generalizations of the latter. But it is important to note, that these 
above functions are not the only possible generalizations of conventional set operators. They 
may be called standard operations of fuzzy set theory. 

In the context of this paper it is appropriate to follow Klir and Folger [ 1988] and to define the 
general class of fuzzy complements c, which possess appropriate axiomatic properties, in the 
following way: A general complement of a fuzzy set A is specified by a function [termed 
fuzzy complement function] 

c: [0,1] - [0,1] (6) 

which assigns a value c(µA(x)) to each membership grade µA(x). This assigned value is 
viewed as the membership grade of x in the fuzzy set representing the negation of the concept 
represented by A. Any function c to be considered as a fuzzy complement has to satisfy the 
following four axiomatic requirements: 

(i) Boundary conditions [i.e. c collapses into the ordinary complement for hard sets] 

c(O) = 1 and c(l) = 0 

(ii) c is a monotonic non-increasing function 

if a< b, then c(a) ?<: c(b), for all a,b E [0,1] 

(iii) c is a continuous function 

(iv) c is involutive, i.e. c(c(a)) =a, for all a E [0,1] 
where a and b represent degrees of some arbitrary elements of the universal set in a given 
fuzzy set [example: a= µA(xi) and b = µA(xi) for some xi,xi EX and some fuzzy set A]. 
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If there exists a such that c(a) = a, then a is termed an equilibrium of c [termed ec]. It is known 
that every continuous fuzzy complement has a unique equilibrium [Higashi and Klir, 1982]. 

The general fuzzy complement produced by function (6) with the four axiomatic requirements 
(i) - (iv) is denoted by C(A) (or Ac), where 

C: j>(X) - P(X) (7) 

is a function such that c(µA(x)) = µC<A> (x) for all x E X. P(X) denotes the set of all fuzzy 
subsets of X. We use the general class of fuzzy complements C in section 4 to define 
measures of fuzziness. 

3. The First Circumstance of Use 

The problem of the multispectral pixel-by-pixel classification task at hand is to assign pixels 
to three a priori given land cover types [classes, clusters] or in other words to partition the set 
X of pixels into k=3 subsets, where the elements of each set are as similar as possible to each 
other and at the same time, as different as possible from the other sets. Clustering algorithms 
attempt to partition X based on certain assumptions and/or criteria. Thus, the output partition 
[classification] is dependent on the criteria which are used to control the clustering algorithm 
[see Fischer 1982]. 

Many algorithms have been developed to obtain hard [crisp] classes from a given data set 
during the last two decades. Among these, the k-means algorithms and their generalizations, 
the ISO DAT A clustering procedures, are the most widely used. The performance of both 
cluster models is influenced by the choice of k, the initial cluste~ centres, the choice of the 
distance [similarity] measure and the order in which the samples are taken as input [in the 
case of the sequential versions]. In practice, the performance of any cluster activities depends 
more or less on extensive trial and error experiments and the experience of the user [see 
Bezdek and Pal, 1992]. 

Classical [crisp] clustering algorithms generate partitions such that each pixel is assigned to 
exactly one of the a priori given clusters. But, in practice, the separation of clusters is a fuzzy 
notion [especially in the case of images covering urban areas] and thus the concept of fuzzy 
sets offers special advantages over classical clustering by allowing algorithms to assign each 
pixel a partial or distributed membership to each of the k clusters. In this way fuzzy clustering 
procedures may yield more accurate representations of real data structures [see Pao 1989]. 
The following discussion of the fuzzy generalizations of the crisp ISO DAT A algorithm is 
based on Bezdek (1976,1980], Bezdek et al. [1984] and Pao [1989]. In the sequel we compare 
the partitioning of the set X = { x1, ... , xn} of n pixels into crisp versus fuzzy subsets [i.e. 
classes, clusters]. Each partition into crisp or fuzzy subsets can be described by a membership 
function u and .1.1. , respectively. These functions may be viewed to be mappings 

~·P ll.P 
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for the hard case, (8) 

.u. : X - [O 1] 
Q.P ' 

for the fuzzy case . (9) 

Allocation of the pixels to the different classes can be represented in terms of a k-partition 
(k,n) matrix which is crisp in the case of (8) and fuzzy in the case of (9). In the crisp case the 
element, u , of the matrix U denotes the degree of membership of pixel xP in cluster q and 
can take o~·Peither the value 0 or 1. In the fuzzy case the elements of the matrix .ll are 1.l , 

which denote the degree of membership of pixel xP to class .Q. Formally, the elements of lf'lre 
subject to the following constraints: 

u E { 0,1} q,p 
for 1 s q s k; l s p s n 

L:.1 uqp = 1 for 1 s p s n 

0 < L;.1 uqp < n for 1 s q s k 

while the elements of .ll satisfy the following three conditions: 

1.l E [0, 1] 
Q.P 

for 1 :s: Q s k; 1 :s: p :s: n 

L:-1 1.lllP = 1 for 1 s p s n 

O < L;.1 1.lllP < n for 1 s .Q s k 

where q and .Q denote the cluster and p the pixel [pattern]. 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

We shall sketch the way of getting the u and .u. , respectively, in following Bezdek [1976, 
1980]. In the crisp ISODATA algorith'i:i, the pKrtition of the cluster centre vq in the t­
dimensional feature space is found to be the average of the positions of all the pixels in that 
class, i.e. 

v =-1-E x 
q IC I :i,ec, P 

q 

(16) 

where I cq I denotes the cardinality of the set of pixels in class Cq. This result is based on 
minimizing the sum of variances of all features j for each pixel in each cluster q. That is, the 
position of v q is varied so to minimize 

(17) 

We can use the membership function values u to remoye the constraint xP E cq in ( 17) to 
arrive at a formulation of the problem as d~fermining the minimum of the sum of the 
weighted variances, i.e. 

(18) 
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One way to extend this problem to the fuzzy case is to draw an analogy between u and .u. , 
and to define the problem of finding fuzzy k-partitions as q,p q.p 

min Jm(ll..v) = I'.!.1 L:.1 (.u.llP)m lxp - v .al2 (19) 

where the squared distance between xP und v 
11 

shown in ( 19) is computed in the A - Norm 

d 2 = Ix - v 12 = (x - v 'T A (x - v '\ llP p Q A p Q" p Q" 
20) 

where A is a positive definite (n,n) weight matrix which controls the shape that optimal 
classes assume. In practice, there are only three A-norms which enjoy widespread use: the 
euclidean norm, the diagonal norm and the Mahalanobis norm. The weight attached to each 
squared error is (ll r. them-th power of xP's membership in class q [1 :!:: m < 00]. As m ..... 1, 
partitions that mi~~mize Jm become increasingly hard. Increasing m tends to degrade 
membership towards the fuzziest state. 

Differentiating the variance function ( 19) with respect to v q [for fixed J.l] and the .u. [for fixed 
v ] and applying the condition ( 14 ), we obtain q.p 

Q 

v = 
Q 

and 

ll 
q.p 

L:-1 (.U.QP)m J:P 

L:-1 (.U.QP)m 

for all .q_= l, ... , k 

for 1 :!:: p :!:: n; 1 :!:: q :!:: k 

(21) 

(22) 

(21) und (22) provide necessary, but not sufficient conditions for optimizing J m via iteration, 
by looping back and forth from (21) to (22) until the iterate sequence shows sufficiently small 
changes in successive entries of .u or v. 

4. The Second Circumstance of Use 

The fuzzy clustering procedure provides a richer and more flexible solution structure, one that 
classifies with a finer degree of detail at the class-membership level than the harshness that 
crisp procedures impose on the pixel-by-pixel classification problem [see the RGB­
visualization displayed in Figure 1]. 
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Figure 1: RGB - Visualization of the Three 
Land Cover Classes: 
Landsat TM Image of Vienna, Austria 

(a) produced by ISODATA (b) produced by fuzzy ISODATA 

Woodland Suburb Urban 
1111 Woodland 1111 Suburb 1111 Urban 



It is easy to see that the concept of a fuzzy set provides a basic mathematical framework for 
identifying and dealing with vagueness. Vagueness is associated with the difficulty of making 
sharp or precise distinctions between classes of pixels. Many measures of fuzziness have been 
proposed over the last two decades. Following Klir and Folger [ 1988] we consider a class of 
measures of fuzziness [or vagueness] which might be used to characterize classification results, 
received by using ISO DAT A and its fuzzy version, in terms of their degree of fuzziness and 
then apply these measures on the satellite image-based pattern classification problem [see 
section 3]. 

A measure of fuzziness is defined by a function 

f: '.P(X) - JR. (23) 

which satisfies certain requirements. '.P(X) denotes the power set of X [i.e. the set of all fuzzy 
subsets of X] and f assigns a value /(A) to each fuzzy subset A of X which characterizes the 
degree of fuzziness of A. A meaningful measure of fuzziness has to fulfill the following three 
requirements [Klir 1987]: 

0 First, the degree of fuzziness must be zero for all hard subsets of '.P(X) and only for 
them, formally: 

(i) f (A)= 0 if and only if A is a hard set. 

0 Second, if - according to a particular meaning given to the concept of the degree of 
fuzziness or sharpness - set [class] A is considered as sharper [less fuzzy] than set [class] 
B, it is required that/ (A) ~ f (B), formally: 

(ii) if A-< B then /(A)~ /(B) 

where A-<B denotes that A is sharper than B. 

0 Third, the degree of fuzziness must be equal to the maximum value only for a fuzzy 
subset of '.P(X) that is perceived as maximally fuzzy, formally: 

(iii) f (A) assumes the maximum value if and only if A is maximally fuzzy . 

Several measures of fuzziness have been suggested in the literature. But it was Yager [ 1979] 
who proposed the important idea to express the degree of fuzziness of a fuzzy set in terms of the 
lack of distinction between the set and its complement. The formulation of measures of 
fuzziness based upon this idea depends on the fuzzy complement employed. The measure of 
fuzziness utilized in this paper is employing Yager's approach within the general class of fuzzy 
complements as introduced in section 2, and is based on defining the sharpness relation A-<B. 
in (ii) by 

(24) 

for all x E X, and defining the term maximally fuzzy in (iii) by 
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(25) 

provided that the complement employed has an equilibrium ec. 

Higashi and K.lir [1982] showed that a general class of measures of fuzziness based upon 
Yager's approach [ 1979] is exactly the same as the class of measures of fuzziness in which the 
lack of distinction between the considered set and its complement is expressed in terms of a 
metric distance which is based on some form of aggregating the individual differences [Klir and 
Folger 1988]: 

(26) 

For example, using any metric distance from the class of Minkowski metrics 

(27) 

where Ac denotes the complement of A produced by function c and r E [l,00], the measure of 
fuzziness has the following form 

(28) 

with Z denoting any arbitrary hard subset of X so that Dc,r (Z,Zc) is the largest possible 
distance in '.P(X) for a given c and r. The normalized version of this measure is given by 

(29) 

so that 

(30) 

When the family of Minkowski metrices expressed by (25) is used, letfc.r denote the measure 
of fuzziness for the distance dc,r· Thus 

(31) 

Equation (28) becomes 

(32) 

and (29) becomes 

(33) 

It is important to note that measures· of fuzziness defined in terms of different distance 
functions [i.e. r parameters] are based upon different measurement units. Although the choice 
of a unit is not a critical issue, it is often desirable to use a unit that is intuitively appealing in 
the sense that it has a simple interpretation in terms of some significant canonical situation 
[K.lir and Folger 1988]. 
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Table 1: The Effect of the Complement and Distance (value of r) Employed on the Measure of Fuzziness defined by (28) and (29) 

(a) Fuzzy Complement c(a) = 1 • a 

Category Clustering Dc.i(A,Ac) /c.i(A,Ac) fc.i(A,Ac) Dc,J(A,Ac) /o;(A,Ac) fc,J(A,Ac) Dc.s(A,Ac) h.5(A,Ac) fc,s(A,Ac) 
Procedure 

Woodland ISODATA 192.8 63.2 0.25 32.4 7.9 0.19 7.8 1.3 0.14 

fuzz~ I SODA TA 209.5 46.5 0.18 34.3 6.1 0.15 8.1 1.1 0.12 

Suburban ISODATA 142.6 113.4 0.44 25.6 14.7 0.36 6.7 2.5 0.27 

fuzz~ ISO DAT A 205.2 50.8 0.19 33.7 6.6 0.16 8.0 1.2 0.13 

0 Urban ISODATA 150.9 105.I 0.41 19.2 21.1 0.52 6.8 2.3 0.26 

fuzzy I SODA TA 165.6 90.4 0.35 28.l 12.2 0.30 6.9 2.2 0.24 

(b) Fuzzy Complement c(a) = (1 - a2
)

112 

Category Clustering DdA,Ac) .fc.i(A,A c) fc.i(A,Ac) Dc,J(A,Ac) .fc,J(A,Ac) fc,J(A,Ac) Dc.s(A,Ac) .fc.s(A,A c) fc.s(A,Ac) 
Procedure 

Woodlan~ ISODATA 200.9 55.0 0.21 33.4 6.8 0.17 8.1 1.1 0.12 

fuzzy I SODA TA 200.5 55.5 0.21 33.2 7.1 0.18 7.9 1.2 0.13 

Suburban ISODATA 158.6 97.4 0.38 27.6 12.6 0.31 7.0 2.2 0.24 

fuzz~ ISODATA 210.4 45.6 0.18 34.5 5.8 0.14 8.2 0.9 0.11 

Urban ISODATA 160.9 95.0 0.37 27.9 12.4 0.30 7.1 2.1 0.23 

fuzzy ISODATA 199.0 56.9 0.22 32.8 7.5 0.18 7.8 1.3 0.15 



Figure 2a: The Three Land Cover Classes 
and Two Complements of the Yager-Class 
at the Class Membership Level: 
Produced by the ISODATA Algorithm 
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Figure 2b: The Three Land Cover Classes 
And Two Complements of the Yager-Class 
at the Class Membership Level: 
Produced by the Fuzzy ISODATA Algorithm 
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Table 1 presents the results of the calculations of the measure of fuzziness for each of the three 
land cover classes produced by ISODATA and its fuzzy version. Note that the results are 
obtained by using the image that is obatined next to the last iteration so we are able to compare 
the uncertainty or vagueness of the two algorithms used. To illustrate the effect of the 
complementand distance metric employed, the table shows calculations of the measure of 
fuzziness [regular and normalized] for two complements of the Yager class and for three 
distances of the family of the Minkowski metrics [r = 2,3,5]. For each case, we first calculate the 
local differences oc.A(x) for all pixels belonging to the corresponding land cover category. Then, 
using equation (28), we calculate for each case the distance Dc.r (A,A c) between the given land 
cover category A and its complement Ac, as well as the distance Dc.r(z,zc) between an arbitrary 
crisp set on X and its complement. By equation (31), we have Dc.r (Z,Zc) = IXl 11

r, which is 
independent of the complement employed. Finally using (32) and (33) we compute the measure 
of fuzziness fc.r (A) and its normalized version fc.r (A), respectively. It is important to note that 
measure of fuzziness [both regular and normalized] decreases with increasing r. This is true for 
both complements used in this paper. Moreover, Table 1 clearly shows that the classification 
result produced by the fuzzy version of ISO DAT A is generally less vague than that generated by 
the conventional ISODAT A. This result is visualized in Figure 2a and 2b. 

5. Outlook 

Fuzzy sets are a generalization of conventional set theory that were introduced by Zadeh [ 1965] 
as a mathematical framework to represent and deal with vagueness. Over the last 10 years fuzzy 
models have supplanted more conventional scientific application's and engineering systems, 
especially in control systems and pattern recognition. Fuzzy set theory might be incorporated in 
various stages of pattern recognition. In this paper attention focused on two circumstances, in 
which the concepts and techniques of fuzzy set theory are uniquely helpful in the practice of 
pattern recognition: the class-membership level and the output level. 

A satellite image-based pattern classification problem has been chosen to illustrate the use of 
fuzzy set theory. The satellite image consists of 256 x 256 pixels selected from a LANDSAT-5 
TM scene from the city of Vienna and its northern surroundings. The purpose of the 
multispectral classification was to distinguish three broad land cover classes on a pixel-by-pixel 
basis. We were able to illustrate that a crisp classification provides no hint of the details of the 
situation that pixels often represent a complex spatial assemblage of disparate land cover types 
especially in urban areas. In contrast, fuzzy clustering procedures like the fuzzy version of 
IS OD AT A used in this study can yield more accurate representations of real data structures. 
Moreover, we discussed general measures of fuzziness which are powerful tools to express the 
degree of fuzziness of the resulting classes of the pattern recognition process. 

Finally, it is our expectation and contention that the synthesis between fuzzy and neural 
approaches to pattern recognition is one of the top issues in the current research agendas for the 
near future. 

13 



References 

Bezdek, J.C. ( 1976): A physical interpretation of fuu.y ISO DATA, IEEE Transactions on 
Systems, Man and Cybernetics 6, pp.387-389. 

Bezdek, J.C. (1980): A convergence theorem for the fuu.y ISO DATA clustering algorithms, 
IEEE Transactions on Pattern Analysis and Machine Intelligence 2, pp.1-8. 

Bezdek, J.C. and Pal, S.K. (1992) (eds.): Fuzzy Models For Pattern Recognition. Methods 
that Search for Structures in Data. IEEE Press, New York. 

Bezdek, J.C., Ehrlich, R. and Full, W. (1984): FCM: Thefuu.y c-means clustering algorithm, 
Computers and Geosciences, vol. 10, no.2-3, pp.191-203. 

Dubois, D. and Prade, H. ( 1980): Fuzzy Sets and Systems: Theory and Applications. 
Academic Press, New York. 

Fischer, M.M. (1982): Eine Methodologie der Regionaltaxonomie. University of Bremen 
Press, Bremen[= Bremer Beitrage zur Geographie und Raumplanung, vol.3]. 

Fischer, M.M., Gopal, S., Staufer, P. and Steinnocher, K. (1995): Evaluation of neural pattern 
classifiers for a remote sensing application, submitted to Geographic_al Systems. 

Gopal, S. and Fischer, M.M. (1994): The application of artificial neural networks in remote 
sensing: Theoretical and methodological issues. In: Emste, H. (ed.): Pathways to Human 
Ecology, pp.17-36. Steiner, Wiesbaden. 

Higashi, M. and Klir, G.J. (1982): On measures of fuu.iness and complements. International 
Journal of General Systems 8, pp.169-180. 

Klir, G.J. ( 1987): Where do we stand on measures of uncertainty, ambiguity, fuu.iness, and the 
like? Fuzzy Sets and Systems 24, pp.141-160. 

Klir, G.J. and Folger, T.A. (1988): Fuzzy Sets, Uncertainty and Information. Prentice Hall, 
Englewood Cliffs. 

Koska. B. (1992): Neural Networks and Fuzzy Systems. Prentice Hall, Englewood Cliffs. 

Pao, Y.-H. (1989): Adaptive Pattern Recognition and Neural Networks. Addison Wesley, 
Reading (Ma). 

Yager, R.R. (1979): On the measures offuu.iness and negation. Part/: Membership in the unit 
interval, International Journal of General Systems 5, pp.221-229. 

Zadeh, L.A. (1965): Fuzzy Sets. Information and Control 8, pp. 338-353. 

14 



Acknowledgement 

The authors gratefully acknowledge Professor Karl Kraus (Department of Photogrammetric Engineering and 
Remote Sensing, Vienna Technical University) for his assistance in supplying the image data used In this study. 
This work is supported by a grant from the Austrian Fonds zur FiJrderung der wissenschaftlichen Forschung (P-
09972-TEC) · 

15 

. .. ... ...,..,.... r~• .. 


