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Abstract. This paper suggests an empirical framework for analysing income distribution 

dynamics and cross-region convergence in the European Union of 27 member states, 1995-

2003. The framework lies in the research tradition that allows the state income space to be 

continuous, puts emphasis on both shape and intra-distribution dynamics and uses stochastic 

kernels for studying transition dynamics and implied long-run behaviour. In this paper 

stochastic kernels are described by conditional density functions, estimated by a product 

kernel estimator of conditional density and represented by means of novel visualisation tools. 

The technique of spatial filtering is used to account for spatial effects, in order to avoid 

misguided inferences and interpretations caused by the presence of spatial autocorrelation in 

the income distributions. The results reveal a slow catching-up of the poorest regions and a 

process of polarisation, with a small group of very rich regions shifting away from the rest of 

the cross-section. This is well evidenced by both, the unfiltered and the filtered ergodic 

density view. Differences exist in detail, and these emphasise the importance to properly deal 

with the spatial autocorrelation problem.  
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1 Introduction 

 

Whether income levels of poorer regions are converging to those of richer is a question of 

paramount importance for human welfare (Islam 2003). In Europe interest in this question has 

been enhanced in recent years, with the entry of new countries to the European Union. This 

paper looks at evidence for regional income convergence in Europe. By Europe we mean the 

European Union of 27 member states. The notion of convergence is a fuzzy term that can 

mean different things (see Quah 1999). In this paper we understand this notion in the sense of 

poorer regions catching-up with the richer. The observation units are NUTS-2 regions1 which 

the European Commission has chosen as targets for the convergence process and defined as 

the geographical level at which the persistence or disappearance of inequalities should be 

measured. 

 

Measuring regional income and the extent to which convergence across regions – or what the 

European Commission calls regional cohesion – exists is a difficult issue. But per capita gross 

regional product [GRP] measured in purchasing power units seems like a natural definition if 

one is interested in an important determinant of average welfare. By focusing upon per capita 

GRP we are interested in the economic performance of regions and the claims that people 

living in those regions have over that wealth. Cohesion depends on the degree of equality in 

the distribution of per capita income and the extent to which there are processes of catch-up, 

in which less wealthy regions enjoy faster rates of income growth than more developed ones. 

The data were calculated on the basis of the 1995 European System of Accounts (ESA 95) 

and refer to the time period from 1995 to 2003, the latest year for which income data are 

available2. This shorter time span makes apparent the need for a model, before we can speak 

of the underlying dynamic regularities in these data. 

 

Empirical research on regional income convergence has proceeded in many directions, using 

different definitions and methodologies3. Most research has, however, concentrated on the 
                                                 
1 NUTS-2 regions vary considerably in size, but are nevertheless considered to be the most appropriate spatial 

units for modelling and analysis (Fingleton 2001). In most cases, the NUTS-2 regions are sufficiently small to 
capture subnational variations. But we are aware that NUTS-2 regions are formal rather than functional 
regions, and their delineation does not represent the boundaries of growth and convergence processes very 
well (Fischer and Stirböck 2006). This may cause nuisance spatial dependence in the data. 

 
2 This short observation period was enforced on us by the lack of reliable data in Central and Eastern Europe. 
 
3 Recent surveys of the new growth literature in general and the convergence literature in particular can be 
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cross-section regression approach to investigate -convergence β  where β  is the generic 

notion for the coefficient on the initial income variable in the growth-initial level regressions. 

A negative β  is interpreted as evidence of convergence in terms of both income level and 

growth rate. But Quah (1993a), Friedman (1994) and others have emphasised that a negative 

β  can just be an example of the more general phenomenon of reversion to the mean, and, by 

interpreting it as convergence, growth analysts falling into Galton’s fallacy. 

 

In this study, we follow the distribution dynamics approach, carried forward almost single 

handedly by Quah (1993a, 1996a, b, 1997a, b, c). This approach views the catching-up 

question as a question about the evolution of the cross-section distribution of income, and 

diverts attention from the individual or representative region to the entire distribution as 

object of interest. Purpose of the analysis is to find the law of motion that describes transition 

dynamics and implied long-run behaviour of regional income. In the spirit of Quah (1996a, b) 

we assume that each region’s income follows a first-order Markov process with time-invariant 

transition probabilities. That is, a region’s (uncertain) income tomorrow depends only on its 

income today. 

 

Most of the applications of this approach have worked in a discrete state space set up4 (see 

Quah 1996a, b, Fingleton 1997, 1999, López-Bazo et al. 1999, Magrini 1999, Rey 2001, 

LeGallo 2004 to mention some). This set up has several advantages, but the process of 

discretising the state space of a continuous variable is necessarily arbitrary. Experience from 

the study of income distributions shows that this arbitrariness can matter in the sense that 

statements on inferred dynamic behaviour of the distribution in question and the apparent 

long-run implications of that behaviour are sensitive to the choice of the discretisation (Jones 

1997, Reichlin 1999). Indeed, it is well known that the Markov property itself can be distorted 

from inappropriate discretisation5 (Bulli 2001). 

 

This paper avoids arbitrary discretisation of the state income space and its possible effects on 

                                                                                                                                                         
found in Durlauf and Quah (1999), Temple (1999) and Islam (2003), while Fingleton (2003), Abreu et al. 
(2004), and Magrini (2004) survey the regional convergence literature, with region denoting a subnational 
unit. 

 
4 There are some few exceptions, most notably Quah (1997a, b), Magrini (2004), and Pittau and Zelli (2006). 
 
5 Bulli (2001) shows how to obtain a discrete state space Markov chain from a continuous state space Markov 

process and finds that this method is an accurate approximation to the distribution computed using a 
continuous state space procedure as performed in this paper. 
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the results by using stochastic kernels, the continuous equivalent of the transition probability 

matrix, to estimate the underlying regional income distribution and to analyse its evolution 

over time. Assuming that the income distribution at any point in time can be described by a 

density function, the stochastic kernel can be described by a conditional density function that 

can be estimated by a product kernel estimator of conditional density. Under the assumption 

of stationarity of the underlying process, the long-run (ergodic) out-of-sample limit of the 

distribution of regional incomes is estimated. The results are presented in terms of three-

dimensional stacked conditional density plots and boxplots based on highest density regions, 

novel visualisation tools6 introduced by Hyndman (1996). 

 

The remainder of the paper is divided into two parts. The first, Section 2, provides an 

empirical framework to the study of distribution dynamics that avoids not only arbitrary 

discretisation of the state income space but also accounts for spatial dependence (i.e., 

autocorrelation). Spatial dependence can invalidate the inferential basis of the models, since 

the assumption of observational independence no longer holds7. This is achieved by 

combining stochastic kernel estimation with Getis’ (1990) spatial filtering data view. We will 

refer to this as a spatial filter view of the continuous state income space. 

 

The second part of the paper, Section 3, applies this framework to analyse income distribution 

dynamics and cross-region convergence in Europe, looking at evolving distributions of gross 

regional product per capita across 257 NUTS-2 regions in 27 countries from 1995 to 2003. A 

number of technical devices such as kernel smoothed densities, Tukey boxplots, cross-profile 

plots, continuous stochastic kernels and ergodic distributions are utilised – with and without 

taking a spatial filtering perspective – to identify empirical regularities in the data. The results 

highlight the importance to properly account for spatial autocorrelation in the data. 

 

 

 

                                                 
6 These graphical devices highlight the conditioning and are more informative than three-dimensional 

perspective plots and contour plots that are generally very difficult to interpret in this context because their 
relationship to the conditional densities is not clear (Hyndman et al. 1996). 

 
7  Note that Fingleton (1997, 1999) discusses some of the problems that spatial dependence may induce for 

inferences when working in a discrete state space set up. 
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2 The empirical framework 

 

A distribution perspective to the study of income dynamics and cross-region convergence 

directs attention to the evolution of the entire cross-region income distribution, emphasising 

shape and intra-distribution dynamics and long-run (ergodic) behaviour. Section 2.1 

introduces a continuous version of the standard model of explicit distribution dynamics, 

pioneered by Quah (1993a), and argues that the stochastic kernel can be described as a 

conditional density function. In Section 2.2 we present a product kernel estimator for 

estimating this transition function, and briefly describe a three-step-strategy for solving the 

bandwidth selection problem, that appears to be crucial for estimation. Section 2.3 combines 

Getis’ spatial filtering view with stochastic kernel estimation to account for the issue of 

spatial autocorrelation that may misguide inferences and interpretations if not properly 

handled. 

 

 
2.1 A continuous version of the model of distribution dynamics 
 

Let  tF  denote the distribution of regional incomes at time t , then the simplest scheme for 

modelling the dynamics of { }| integertF t  is a first-order dependence specification of the 

following type 
 

1t tF M F+ =  (1) 

 

where M  is a mathematical operator that transforms one distribution at time t  into another at 

time 1t + , and tracks where points in tF  end up in 1tF + . Hence M  encodes information on 

changes in the external shape of the distribution and intra-distribution mobility. 
 

Evidently, Equation (1) is like a first-order autoregression from standard time series analysis, 

except its values are distributions rather than scalars or finite-dimensioned vectors, and it 

contains no explicit disturbance. By way of analogy with autoregression, there is no reason 

why the law of motion of tF  needs to be first-order, or why the underlying transition 

mechanism needs to be time-invariant. Nevertheless, Equation (1) is generally viewed as a 

useful step for analysing dynamics in { }.tF  Iteration yields a predictor for future cross-region 

distributions 



 

5 

 

t tF M Fτ
τ+ =  for 0 ( 1,2,...).τ τ> =  (2) 

 

Taking this to the limit as ,τ →∞  one can characterise the likely long-run distribution of 

regional income. Convergence then might manifest in { }tF τ+  tending towards a point mass. A 

bimodal limit distribution can be interpreted as a tendency towards stratification into two 

different “convergence clubs”. 

 

In the discrete version of the model, the operator M  is approximated by partitioning the set 

of possible income values into a finite number of intervals8. These intervals then constitute 

the states of a finite Markov process, and all the relevant properties of M  are described by a 

Markov chain transition matrix whose ( , )i j  entry is the probability that a region in state i  

transits to state j  in income space, in one time step. The inferred dynamic behaviour and the 

long-run implications of that behaviour are conditional on the discretisation chosen. 

 

Regional income, however, is by nature a continuous variable. In a continuous case one may 

think of the number of distinct cells to tend to infinity and then to continuum. The 

corresponding transition probability matrix then tends to a matrix with a continuum of rows 

and columns. In this case, the operator M  in Equation (1) may be viewed as a stochastic 

kernel or transition function, and convergence can then be studied by visualising and 

interpreting the shape of the income distribution at time t τ+  over the range of incomes 

observed at time .t  

 

For notational convenience let Y  and Z  denote the variable (per capita) regional income at 

times t  and ( 0),t τ τ+ >  respectively. The sample may be denoted then by 

{ }1 1( , ),..., ( , ) ,n nY Z Y Z  and the observations by { }1 1( , ),..., ( , )n ny z y z  where n  indicates the 

number of regions. We assume that the cross-region distribution of Y  can be described by the 

density function ( ).tf y  This distribution will evolve over time so that the density prevailing at 

t τ+  is ( ).tf zτ+  If we continue to maintain the assumptions of time-invariance and first-order 

of the transition process, the relationship between the cross-region income distributions, at 

time t  and -periodsτ  later, can be written as 
 

                                                 
8  Note that the arbitrary discretising grid used to construct the Markov chain transition matrix may be seen as a 

crude non-parametric estimator. 



 

6 

0

( ) ( | ) ( )dt tf z g z y f y yτ τ

∞

+ = ∫  (3) 

 

where ( | )g z yτ  is the conditional density function giving the -periodτ  ahead density of 

income ,z  conditional on income y  at time t . Evidently, the (first-order) stochastic kernel 

can be described by a conditional density function assuming that the marginal and conditional 

income distributions have density functions. 

 

So long as ( | )g z yτ  exists, the long-run (ergodic) density, ( ),f z∞  implied by the estimated 

( | )g z yτ  function can then be found as solution to 
 

0

( ) ( | ) ( )d .f z g z y f y yτ

∞

∞ ∞= ∫  (4) 

 

We will use the solution procedure outlined in Johnson (2004) to estimate this long-run 

distribution of regional income per capita. 

 

 
2.2 Stochastic kernel estimation  

 

If , ( , )t tf y zτ+  denotes the joint density of ( , )Y Z  and ( )tf y  the marginal density of ,Y  then 

the conditional density of | ( )Z Y y=  is given by 

 
, ( , )

( | ) .
( )

t t

t

f y z
g z y

f y
τ

τ
+=  (5) 

 

The natural estimator9 of this conditional density function (see Hyndman et al. 1996) is 

 

,
ˆ ( , )

ˆ ( | ) ˆ ( )
t t

t

f y z
g z y

f y
τ

τ
+=  (6) 

 

where 

                                                 
9 Hyndman et al. (1996) derive properties of this density estimator such as the mean square error, bias and 

variance, and show that this estimator yields a conditional mean function which is equivalent to the Nadaraya-
Watson kernel smoother (see Hall et al. 1999). 
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( ) ( )1 1
,

1

1ˆ ( , )
y z

n

t t i ih hy z
iy z

f y z K y Y K z Z
n h hτ+

=

= − −∑  (7) 

 

is the product kernel estimator of , ( , ),t tf y zτ+  and  

 

( )1

1

1ˆ ( )
y

n

t ih y
iy

f y K y Y
n h =

= −∑  (8) 

 

the kernel estimator of ( )tf y  (see Hyndman et al. 1996). This estimator, though obvious, has 

not yet found much attention for analysing income distribution dynamics10. yh  and zh  are 

bandwidth parameters that control the degree of smoothing applied to the density estimate. yh  

controls the smoothness between conditional densities in the -direction,y  and zh  the 

smoothness of each conditional density in the -direction.z  .
y
 and .

z
 are distance metrics 

on the spaces Y  and ,Z  respectively. In this paper we use the standard euclidean distances, 

. . and  . . .
y y z z
= =  The kernel conditional density estimator ˆ ( | )g z yτ  has two 

desirable characteristics which match those of the density being estimated: first, it is always 

non-negative, and, second, integrals with respect to z  equal one. 

 

A multivariate kernel other than the product kernel might be used to define ˆ ( | ).g z yτ  But the 

product kernel is simpler to work with, leads to conditional density estimators with several 

nice properties and is only slightly less efficient than other multivariate kernels (Wand and 

Jones 1995). The kernel ( ),K x  where x  is variously y  or ,z  is a real, integrable, non-

negative, even function on  concentrated at the origin so that (Silverman 1986) 

 
2 2( )d 1, ( )d 0 and ( )d .KK x x x K x x x K x xσ= = = < ∞∫ ∫ ∫  (9) 

 

Popular choices for ( )K x  are defined in terms of univariate and unimodal probability density 

functions. In this paper we use the Gaussian kernel11 given by 

 

                                                 
10 Exceptions include Pittau and Zelli (2006), and Basile (2006). 
 
11 On the basis of the mean integrated square error criterion, Silverman (1986) has shown that there is very little 

to choose between alternatives. In contrast, the choice of the bandwidths plays a crucial role. 
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( ) ( )1
21

2( ) 2 exp .K x xπ
−

= −  (10) 

 

Whatever kernel is being used, bandwidth parameters chosen to minimise the asymptotic 

mean square error give a trade-off between bias and variance. Small bandwidths yield small 

bias but large variance, while large bandwidths lead to large bias and small variance. The 

problem of choosing how much to smooth is of crucial importance in conditional density 

estimation, and the results of the continuous state space approach to distribution dynamics 

strongly depend on the bandwidth parameters chosen. 

 

In this study we follow Bashtannyk and Hyndman (2001) to solve this bandwidth selection 

problem12 by a three-step-strategy that combines three different procedures: a Silverman 

(1986) inspired normal reference rule that has proven useful in univariate kernel density 

estimation13, a bootstrap bandwidth selection approach following the approach of Hall et al. 

(1999) for estimating conditional distribution functions, and a regression-based bandwidth 

selector14 (see Fan et al. 1996). Step 1 involves finding an initial value for the smoothing 

parameter zh  using the rule with normal marginal density. Given this value of zh , Step 2 

makes use of the regression-based bandwidth selector to find a value for .yh  In Step 3 the 

bootstrap method is used to revise the estimate of zh  by minimising the bootstrap estimator of 

a weighted mean square error function. Step 2 and Step 3 may be repeated one or more times. 

 

 
2.3 Spatial autocorrelation and stochastic kernel estimation 

 

Stochastic kernel estimation rests on the implicit assumption that each region represents an 

independent observation providing unique information that can be used to estimate the 

transition dynamics of income. In essence, the cross-section observations at one point in time 

are viewed as a random sample from a univariate distribution, or in other words, X  (where 

X  stands variously for Y  and Z ) is assumed to be univariate and random. If the 
                                                 
12 It is well known that the selection of the bandwidth parameters rather than the choice between various kernels 

is of crucial importance in density estimation. 
 
13 The rule is to assume that the underlying density is normal and to find the bandwidth which could minimise 

the integrated mean square error function. 
 
14 For a given zh  and a given value ,z  finding ˆ ( | )g z y  is viewed here as a standard non-parametric problem of 

regressing 1 1( | |) on  .z z i ih K h z Z Y− − −  
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( 1,..., )iX i n=  are independent, we say that there is no spatial structure. Independence implies 

the absence of spatial autocorrelation15. A violation of the independence assumption16 may 

result in misguided inferences and interpretations (Rey and Janikas 2005). 

 

This problem has been largely neglected in distribution analysis so far. One way to dealing 

with this problem involves the filtering of the variable X  in order to separate spatial effects 

from the variable’s total effects. While insuring spatial independence, this allows us to use the 

stochastic kernel to properly estimate the underlying regional income distribution and to 

analyse its evolution over time. The motivation for a spatial filter is simply that a spatially 

autocorrelated variable can be transformed into an independent variable by removing the 

spatial dependence embedded in it. The original variable is X  hence partitioned into two 

parts, a filtered non-spatial variable, say ,X  and a residual spatial variable XL . The 

transformation procedure depends on identifying an appropriate distance δ  within which 

nearby regions are spatially dependent, and examining each individual observation for its 

contribution to the spatial dependence embedded in the original variable (Getis and Griffith 

2002). 

 

There have been several suggestions for identifying δ , but in this paper we adopt the Getis 

filtering approach (see Getis 1990, 1995) which is based on the local spatial autocorrelation 

statistic iG  (Getis and Ord 1992) to be evaluated at a series of increasing distances until no 

further spatial autocorrelation is evident. As distance increases from an observation 

(region ),i  the -valueiG  also increases if spatial autocorrelation is present. Once the -valueiG  

begins to decrease, the limit on spatial autocorrelation is assumed to have been reached, and 

the associated critical δ  identified. The filtered observation ix  is given as 

 
[ ]1

1

( )
i in

i
i

x W
x

G δ
−=  (11) 

                                                 
15 The controverse is not necessarily true (Ord and Getis 1995). Nevertheless, tests for spatial autocorrelation are 

typically viewed as appropriate assessments of dependence. Moran’s I and Geary’s c statistics are typical 
testing tools. 

 
16 There is a broad agreement in regional science that the process of income dynamics and convergence is 

inherently endowed with a spatial dimension, and interactions or externalities across regions are likely to be 
the major sources of the violation of the assumption (see Abreu et al. 2004 for a survey of the existing 
evidence). It is moreover worth noting that the choice of the NUTS-2 level might give rise to a form of the 
modifiable areal unit problem (MAUP), well known in geography (see, for example, Getis 2005), that may 
induce (nuisance) spatial dependence. 
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where ix  is the original income observation for region ,i  n is the number of observations and  

 

1

( ) for .
n

i ij
j

W w j iδ
=

= ≠∑  (12) 

 

 

( )ijw δ  denotes the ( , )thi j  element of a row-standardised binary spatial weight matrix with 

( ) 1ijw δ =  if the distance17 from region i  to region ,j  say ijd , is smaller than the critical 

distance band ,δ  and ( ) 0ijw δ =  otherwise. ( )iG δ  is the spatial autocorrelation statistic18 of 

Getis and Ord (1992) defined as 

 

1

1

( )
( ) for .

n

ij j
j

i n

j
j

w x
G i j

x

δ
δ =

=

= ≠
∑

∑
 (13) 

 

The numerator of (13) is the sum of all jx  within δ  of i  but not including .ix  The 

denominator is the sum of  all jx  not including .ix  

 

Equation (11) compares the observed value of ( )iG δ  with its expected value, 1( 1) .in W−−  

[ ( )]iE G δ  represents the realisation, ,X  of the variable X  at region i  when no 

autocorrelation occurs. If there is no autocorrelation at i  to distance ,δ  then the observed and 

expected values,  and ,i ix x  will be the same. When ( )iG δ  is high relative to its expectation, 

the difference i ix x−  will be positive, indicating spatial autocorrelation among high 

observations of .X  When ( )iG d  is low relative to its expectation, the difference will be 

negative, indicating spatial autocorrelation among low observations of .X  Thus, the 

difference between and i ix x  represents the spatial component of the variable X  at .i  Taken 

together for all ,i  XL represents a spatial variable associated, but not correlated, with the 

variable .X  Thus, XL X X+ =  (Getis and Griffith 2002). 

                                                 
17 In this study distances are measured in terms of geodesic distances between regional centres. 
 
18 Getis and Ord (1992) and Ord and Getis (1995) show that the statistic ( )iG δ  is asymptotically normally 

distributed as δ  increases. When the underlying distribution of the variable in question is skewed, appropriate 
normality of the statistic can be guaranteed when the number of j  neighbours is large. 
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Combining this spatial filtering approach with stochastic kernel estimation as described in the 

previous section yields the long-run (ergodic) density, ( ),f z∞  implied by the estimated 

( | )g z yτ  function: 

 

0

( ) ( | ) ( ) d ,f z g z y f y yτ

∞

∞ ∞= ∫  (14) 

 

where y  and z  denote the spatially filtered observations of y  and ,z  respectively. To assess 

the role played by space on income growth and convergence dynamics across the regions, we 

consider a specific stochastic kernel19 that maps the distribution Y  to the spatially filtered 

distribution |Y Y  so that 

 
( , )( | )
( )

f y yg y y
f y

=  (15) 

 

where the stochastic kernel does not describe transitions over time, but transitions from 

unfiltered to spatially filtered regional income distributions, and, thus, quantifies the effects of 

spatial dependence. If spatial effects caused by spatial interaction among regions and 

measurement problems would not matter, then the stochastic kernel would be the identity 

map. 

 

 

3 Revealing empirics 

 

This section applies the above framework to study regional income dynamics and 

convergence in Europe. In Section 3.1 we describe the data and the observation units. Kernel 

smoothed densities and Tukey boxplots are used in Section 3.2 to study the shape dynamics of 

the distribution20. Cross-profile plots, continuous stochastic kernels and implied ergodic 
                                                 
19 Combining stochastic kernel estimation with the conditioning scheme suggested by Quah (1996b, 1997 a) is 

an alternative way to evaluate the role of spatial interactions among neighbouring regions. Conditioning means 
here normalising each region’s observations by the (population weighted) average income of its neighbours. 
This approach removes substantive, but not nuisance spatial dependence effects.  

 
20 The distributions are weighted by the relative number of people in each region. One convenient interpretation 

is that it shows the distributions of individual incomes across people in Europe, assuming that within each 
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distributions are taken in Section 3.3 to investigate intra-distribution dynamics and long-run 

tendencies in the data. Section 3.4 proceeds to the spatial filtering view of the data to gain 

insights not affected by the spatial autocorrelation problem. 

 
 

3.1 Data and observation units 

 

We use per capita GRP over the period 1995-2003 expressed in ECUs, the former European 

currency unit, replaced by the Euro in 1999. The GRP figures were calculated on the basis of 

the 1995 European System of Integrated Economic Accounts (ESA 95)21 and extracted from 

the Eurostat Regio database. We use Eurostat’s purchasing power standardised per capita 

GRP to control for national differences in price levels22. 

 

By Europe we mean the European Union of 27 member states. The data used in this study 

refer to the time period from 1995 to 2003, the latest year for which GRP figures are 

available. The time period is relatively short due to a lack of reliable figures for the regions in 

the new member states of the EU. This comes partly from the substantial change in 

measurement methods of national accounts in Central and East Europe (CEE) between 1991 

and 1995. But more important, even if estimates of the change in the volume of output did 

exist, these would be impossible to interpret meaningfully because of the fundamental change 

of production from a centrally planned to a market system. As a consequence, figures for 

GRP are difficult to compare until the mid-1990s (Fischer and Stirböck 2006). 

 

The observation units of the analysis are NUTS-2 regions23. Although varying considerably in 

size, NUTS-2 regions are those regions that are adopted by the European Commission for the 

evaluation of regional growth and convergence processes. NUTS is an acronym of the French 

for “the nomenclature of territorial units for statistic”, which is a hierarchical system of 
                                                                                                                                                         

region individual personal incomes are equally distributed, and thus equal to the level of (per capita) income. 
 
21 In order to deal with the widely known problem measuring Groningen’s GRP figure we replaced its energy 

specific gross value added component by the average of the neighbouring regions (Drenthe and Friesland). 
 
22 Eurostat does not estimate comparable regional price levels which would enable us to take into account 

regional differences in price levels within the same country. 
 
23 Note that nuisance spatial dependence will arise because NUTS-2 regions are formal rather than functional 

regions. In the case of some city NUTS-2 regions such as Hamburg and Île-de-France regional income tends to 
be overestimated, while in their surrounding regions underestimated. 
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regions used by the statistical office of the European Community for the production of 

regional statistics. Our sample includes 257 NUTS-2 regions24 covering the 27 member states 

of the EU: 
 

• the EU-15 member states: Austria (nine regions), Belgium (eleven regions), Denmark (one 

region), Finland (five regions), France (22 regions), Germany (40 regions), Greece (thirteen 

regions), Ireland (two regions), Italy (20 regions), Luxembourg (one region), Netherlands 

(twelve regions), Portugal (five regions), Spain (16 regions), Sweden (eight regions), UK 

(37 regions); 

 

• the twelve new member states: Bulgaria (six regions), Cyprus (one region), Czech Republic 

(eight regions), Estonia (one region), Hungary (seven regions), Latvia (one region), 

Lithuania (one region), Malta (one region), Poland (16 regions), Romania (eight regions), 

Slovakia (four regions), Slovenia (one region). 
 

 

3.2 Shape dynamics of the distribution 

 

When studying income distribution dynamics across regions in Europe, one can consider 

incomes per region in absolute terms. Alternatively, one can study regional incomes 

normalised by the European average. Although there are merits to using the absolute income 

distribution, it is more natural to take relative incomes when considering changes in income 

distributions over time. Relative incomes allow us to abstract from overall changes in income 

levels. A natural approach to assess the shape dynamics of the distribution change over the 

observation period 1995-2003 is to estimate the cross-sectional distributions by using non-

parametric kernel smoothing procedures, which avoid the strong restrictions imposed by 

parametric estimation. In this framework, if there is a bimodal density at a given point in time, 

indicating the presence of two groups in the population of regions, convergence implies a 

tendency of the distribution to move progressively towards unimodality. 

 

 

 

                                                 
24 We exclude the Spanish North African territories of Ceuta y Melilla, the Portuguese non-continental territories 

Azores and Madeira, and the French Départments d’Outre-Mer Guadeloupe, Martinique, French Guayana and 
Réunion. 
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Figure 1 to be positioned about here 

 

 

Figure 1 plots the distribution of (per capita) GRP relative to the average of all 257 regions – 

what we call the Europe relative (per capita) income or simply the relative income. The plots 

are densities and can be interpreted as the continuous equivalent of a histogram, where the 

number of intervals has been let tend to infinity and then to the continuum. All densities were 

calculated non-parametrically using a Gaussian kernel with bandwidths chosen as suggested 

in Silverman (1986), restricting the range to the positive interval. The solid line shows the 

distribution in 1995, and the dashed line that in 2003. To read this type of figure, note that 1.0 

on the horizontal axis indicates the European average of regional income, 2.0 indicates twice 

the average, and so on. The height of the curve over any point gives the probability that any 

particular region will have that relative income. Since the height of the curve at any particular 

point gives the probability, the area under the curve between, say 0.0 and 1.0, gives the total 

likelihood that a region will have a relative income that is between 0.0 and 1.0. 

 

The figure shows a distribution with twin-peaks – to use the appellation coined by Quah 

(1993a) – in 1995, one corresponding to low income regions and the other to middle-income 

ranges, and a long tail with two smaller bumps at the upper end of the distribution. 

Technically, the income distribution is said to show a bimodal shape. The main mode25 is 

located at about 110 percent of the European average, and the second mode at about 38 

percent. The estimated densities reveal several changes over the observation period. The 

kernel estimated median value decreases by two percent, while the level of dispersion exhibits 

a small reduction. The kernel estimated standard deviation decreases by 3.3 percent from 

0.393 in 1995 to 0.380 in 200326. 

 

Perhaps most remarkable is the change in the shape of the distributions. By 2003, the peaks 

have become closer together, and the richer peak has risen moderately at the expense of the 

poorer. We see this by noting that the area under the 2003 curve, that is between 0.5 and 1.1, 

is greater than the corresponding area under the 1995 curve, while the area that is to the left of 

0.5 is smaller. This finding may suggest an improvement in economic conditions of the 

                                                 
25 A mode is defined as a point at which the gradient changes from positive to negative. 
 
26 Conventionally, this would be interpreted as evidence for σ-convergence. But note that this interpretation rests 

on implicit assumptions about the underlying data generating process and these are not satisfied in the 
presence of spatial effects. 
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poorest – generally Central and Eastern European – regions and a slow, gradual process of 

catching-up. 

 

 
Figure 2 to be positioned about here 

 

 

Figure 2 gives a sequence of Tukey boxplots for the 257 NUTS-2 regions. Recall that the 

units of income are PPS units scaled to the EU-27 average. Time appears on the horizontal 

axis, while the vertical axis maps relative per capita income values. To understand these 

pictures, recall the construction of a Tukey boxplot. Each boxplot includes a box bounded by 

1Q  and 3Q  denoting sample quartiles. Thus, the box contains the middle 50 percent of the 

distribution. The thick line in the box locates the median. The upwards and downwards 

distances from the median to the top and bottom of the box provide information on the shape 

of the distribution. If these distances differ, then the distribution is asymmetric. Thin dashed 

vertical lines emanating from the box both upwards and downwards, reach upper and lower 

adjacent values, respectively. The upper adjacent value is the largest value observed that is 

not greater than the top quartile plus 1.5 times 3 1( ).Q Q−  The lower quartile is similarly 

defined, extending downwards from the 25th percentile. Dots indicate upper and lower 

outside values, that is, observations that lie outside the upper and lower adjacent values, 

respectively. These denote regions which have performed extraordinarily well or 

extraordinarily poorly relative to the set of other regions. Of course, upper and lower outside 

values might not exist. The adjacent values might already be the extreme points in a specific 

realisation. 

 

There are no extraordinarily poorly performing regions, more accurately when regions 

performed especially badly, they were not alone. On the upside, by contrast, the figure shows 

several outstanding performers. At the beginning of the sample, five regions showed upper 

outside values, and by the end of the sample six outside values. The spreading apart in the 

regional income distribution has one distinct source, the pulling away of the upper outside 

values27 from the rest of the regions. The figure, moreover, makes clear that the interquartile 

range is decreasing by more than 15 percent, and this falling is due to a decrease of 3Q  rather 

than 1.Q  
 
                                                 
27 These represent Inner London, Brussels, Luxembourg, Hamburg, Île-de-France and Vienna. 
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The matching counterparts in Figure 1 and Figure 2 use exactly the same data. But they 

emphasise different empirical regularities. The bimodal shape is striking in Figure 1, but is far 

from obvious in Figure 2. The spreading out of the upper tail of the distribution is apparent in 

Figure 2. It appears in form of two smaller bumps in Figure 1. 
 

 

3.3 Intra-distribution dynamics and long-run tendencies 

 

Thus far, we have considered only point-in-time snapshots of the income distribution across 

the regions. This section takes the next step in the analysis, and looks at the intra-distribution 

dynamics and then at the long-run (ergodic) tendencies. We start with Figure 3 showing 

cross-profile dynamics28. The vertical axis is the log of relative (per capita) incomes. Each 

curve in the figure refers to the situation at a given point in time. The lowest curve gives the 

cross-section of regions at time 1995 in increasing order. This ordering is then maintained 

throughout the time periods considered. Proceeding upwards, we see curves for 1999 and 

2003. The character of the upper plots, thus, depends on 1995 when the ordering is taken. 

 

 

 
Figure 3 to be positioned about here 

 

 

 

In the plots, increasing jaggedness indicates intra-distribution mobility. In contrast, if each 

cross-profile would always monotonically increase over time, then income rankings were 

invariant. The most striking feature of Figure 3 is not this comparative stability through time. 

It is the change in choppiness through time in the cross-profile plots indicated by local peaks. 

By 2003, we observe local peaks, for example, at the lower end of the distribution around 

regions ranked 9th, 19th, 42nd and 66th poorest in 1995, and at the upper end around regions 

ranked second and fourth richest. These turn out to be Latvia, Estonia, Mazowieckie 

(Warszawa) and Közép-Magyarország (Budapest), and Inner London and Luxembourg, 

respectively. By contrast, Moravskoslezko (57th poorest in 1995) in the Czech Republic, 

Lüneburg (129th poorest) and Berlin (the 41st richest region) experienced economically 

                                                 
28 The idea for this picture comes from Quah (1997), and López-Bazo et al. (1999). 
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significant relative declines by 2003. The cross-profile dynamics are informative. They 

illustrate when regions overtake one another, fall behind, or pull ahead. But they do not 

identify underlying dynamic regularities in the data. We thus turn to the stochastic kernel 

representation of intra-distribution dynamics. 

 

 

 
Figure 4 to be positioned about here 

 

 

Figure 4 shows the conditional kernel density estimate ˆ ( | )g z yτ  with fixed bandwidths 

( 0.036, 0.023)y zh h= = 29 that describes the stochastic kernel across the 257 regions, 

averaging over 1995 through 2003. The stochastic kernel has been estimated for a five-year 

transition period, setting 5.τ =  The figure displays the estimate, using Hyndman’s (1996) 

visualisation tools. Figure 4(i) presents the stochastic kernel in terms of a three-dimensional 

stacked conditional density plot in which a number of conditional densities are plotted side by 

side in a perspective plot. For any point y  on the period t  axis, looking in the direction 

parallel to the 5t +  time axis traces out a conditional probability density. The graph shows 

how the cross-section income distribution at time t  evolves into that at time 5.t +  Just as with 

a transition probability matrix in a discrete set up, the 45-degree diagonal in the graph 

indicates persistence properties. When most of the graph is concentrated along this diagonal, 

then the elements in the cross-section distribution remain where they started. As evident from 

Figure 4(i), a large portion of the probability mass remains clustered along the main diagonal 

over the five-year horizon, and most of the peaks lie along this line indicating a low degree 

mobility and modest change in the regional income distribution. 

 

The highest density region boxplot, given in Figure 4(ii), makes this clearer. A highest density 

region (HDR) is the smallest region of the sample space containing a given probability. 

Figure 4(ii) shows a plot of the 50 percent and 99 percent high density regions30, computed 

from the density estimates shown in Figure 4(i). Each vertical strip represents the conditional 

                                                 
29 The bandwidths for the estimator were chosen according to Bashtannyk and Hyndman’s three-step-strategy. 

See Section 2.2 for more details. 
 
30 An HDR boxplot replaces the box bounded by the interquartile range with the 50 percent HDR, the region 

bounded by the upper and lower adjacent values is replaced by the 99 percent HDR that roughly reflects the 
probability coverage of the adjacent values on a standard boxplot for a normal distribution. In keeping with the 
emphasis on highest density, the mode rather than the median is marked. 
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density for one y  value. The darker shaded region in each strip is a 50 percent HDR, and the 

lighter shaded region is a 99 percent HDR. The mode for each conditional density is shown as 

a bullet ●. The vertical dashed line at 1.0 marks regions with income equal to the European 

average at time t , and the horizontal dashed line at 1.0 those with income equal to the average 

at 5.t +  The 45-degree diagonal indicates intra-distribution persistence over the five-year 

transition horizon. 

 

To read this type of boxplot note that strong persistence is evidenced when the main diagonal 

crosses the 50 percent HDRs. It means that most of the elements in the distribution remain 

where they started. There is a low persistence and more intra-distribution mobility if that 

diagonal crosses only the 99 percent HDRs. Strong (weak) global convergence towards 

equality would manifest in 50 percent (99 percent) HDRs crossed by the horizontal line at 1.0. 

50 percent HDRs consisting of two disjoint intervals would indicate a two-peaks property of 

the distribution. 

 

The plot reveals persistence, mobility and polarisation features. Regions with an income range 

of 0.8 to 1.2 times the European average show strong persistence. Some mobility occurs at the 

extremes of the distribution, more at the upper extreme than at the lower. Some portions of 

the cross-section in the income range below 0.8 times the average tend to slightly increase 

their relative position over the five-year transition horizon, indicating a very slow process of 

catching-up. Portions in the income range above 1.2 to 1.8 times the average lose out their 

relative position, becoming relatively poorer. The boxplot also shows signs of polarisation, 

the opposite of catching-up. This is indicated by the disjoint intervals of the 50 and 99 percent 

HDRs at the upper extreme of the income range. We see that regions starting with an income 

of 2.0 to 2.3 times the European average at time t  are unlikely to remain there. Most see their 

Europe relative income fall and others rise, with the result that this income class appears to 

vanish. The position of a small very rich group around 2.3 to 2.6 times the average remains 

either unchanged or shifting away. 

 

 

 

Figure 5 to be positioned about here 
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The evidence of Figure 4 is corroborated by the ergodic density function that is obtained by 

solving Equation (4). Figure 5 plots the estimated long-run (ergodic) density31, ˆ ( ),f z∞  

implied by the estimated ( | )g z yτ  function for 5,τ =  along with the initial income 

distribution. The solid line shows the point estimate of the ergodic distribution and the dashed 

line the initial income distribution. Comparing these two distributions we see that the ergodic 

distribution is wider, both at the top and at the bottom. This reflects a shift in the mass of the 

distribution away from the lower end to the middle, and from the middle to the upper end. In 

particular, the peak in the initial distribution between 20 and 50 percent of the European 

relative per capita income has shifted upward into the 60 to 100 percentage range and shows a 

tendency to disappear. 

 

Figure 5 shows that the estimate of the long-run distribution has twin peaks although the rich 

peak32 is much smaller than the other. This peak accounts for about 97 percent of the regions 

clustered around the European average income while the rich peak represents a small cluster 

of relatively rich regions located at about three times of the average European (per capita) 

income. The bimodal nature of the ergodic distribution in comparison with the initial income 

distribution provides indication for two types of processes at work over time: a gradual and 

slow catching-up of the poorest regions33 which turn out to be – with very few exceptions – 

regions in Central and Eastern Europe, and simultaneously a tendency towards polarisation – 

a clustering of the richer regions separating from the rest of the cross-section. 

 

The bimodal shape of the ergodic distribution contradicts with Quah’s (1996a) unimodal 

ergodic solution found in a discrete state space set up with a largely reduced set of 78 

European regions over 1980-1989. The observation, however, is in line with Pittau and Zelli’s 

(2006) findings34, obtained for a set of 110 regions covering twelve EU member countries 

over the time period from 1977 to 1996. 

                                                 
31 It is well known that the shape of the estimated ergodic density is sensitive to the bandwidths chosen in 

computing the underlying estimated joint density functions. Wider bandwidths tend to obscure detail in the 
shapes while narrower bandwidths tend to increase it but possibly spuriously so. It is important to note that 
smaller equiproportionate decreases and increases in bandwidths do not remove the tendency to bimodality in 
the ergodic density. 

 
32 The upper peak, however, is imprecisely estimated. Only few observations were actually made there, and the 

precision of the estimate is low. 
 
33 This suggests that in the long-run there is no development trap into which the poorest Central and Eastern 

European regions will be permanently condemned. 
 
34 It is worth mentioning that in our case the mode of the very rich regions is much smaller and more distant 

from the other mode. 
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To sum up this first pass through the data, we conclude that the data show a wide spectrum of 

intra-distribution dynamics. Overtaking and catching-up occur simultaneously with 

persistence and polarisation. Polarisation manifests itself in the emergence of a twin-peak 

structure in the long-run regional income distribution. 
 

 

3.4 The spatial filtering perspective 

 

Large significant and positive values of Moran’s I reveal the presence of spatial association of 

similar values of neighbouring European regions in relative (per capita) income35. This 

motivates a spatial filtering pass through the data to avoid inferences and interpretations, 

misguided by the violation of the independence assumption in the previous analysis. 

 

 

 

Figure 6 and Figure 7 to be positioned about here 

 

 

 

Figure 6 presents the spatially filtered counterpart of Figure 1, and shows that the lower 

income peak in Figure 1 is well explained by spatial effects. The filtered distributions in this 

figure are tighter and more concentrated than those in Figure 1. The boxplots in Figure 7 

make this particularly clear. Upper and lower outliers exist here, but the 25th and 75th 

percentiles are located close to the average income. Lower and upper adjacent values are 

compactly situated within about 0.5 and 1.5 times average income levels. The filtered 

distribution has a kernel estimated standard deviation of 0.262 in 1995, which increases to 

0.283 in 1999, and then to 0.310 in 2003. The increase over the time 1995-2003 is 15 percent. 

The estimated standard deviations of the unfiltered data were found to be 0.393 in 1995 and 

0.380 in 2003, indicating a slight decline by 3.3 percent. From this, it is clear that the decline 

in standard deviation observed in Section 3.1 is caused by spatial dependence embedded in 

                                                 
35 Using Moran’s I, the spatial autocorrelation latent in each of the income variables ranges from z(MI)=8.86 for 

the 1995 income variable to z(MI)=8.06 for the 2003 income variable where z(MI) denotes the z-score value of 
Moran’s I. From this, it is clear that there is a strong spatial autocorrelation, and hence the assumption of 
spatial independence does not hold. 
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the income data. 

 

 

 

Figure 8 to be positioned about here 

 

 

 

 

More information on the role of spatial effects becomes evident when looking at the 

stochastic kernel in Figure 8 that shows how the original (unfiltered) relative (per capita) 

income distribution is transformed into the spatially filtered one. Figure 8(i) displays the 

conditional kernel density estimate ˆ ( | )g y y  with fixed bandwidths ( 0.103, 0.052)y yh h= =  in 

terms of a three-dimensional stacked conditional plot as given in Figure 8(i), and an HDR 

boxplot in Figure 8(ii). 

 

If spatial effects account for a substantial part of the distribution, then the stochastic kernel 

mapping from the original (unfiltered) to the spatially filtered distribution would depart from 

the identity map. Indeed, Figure 8(i) precisely conveys this message. The graph shows the 

kernel mapping the original to the filtered distribution in the same year. The evident 

clockwise reversal on the lower, but also on the higher part of the distribution indicates that 

spatial effects do account for a large part of income dynamics in Europe. Figure 8(ii) 

reinforces this interpretation. The dominant feature in this figure appears to be intra-

distribution mobility rather than persistence. Regions with an income less than 1.7 times the 

European average show a clear tendency towards cohesion. There are strong indications that 

the probability of the poorest regions to move up is negatively affected by the presence of 

spatial dependence effects. This is evidenced by the 99 percent HDRs crossing the horizontal 

line at 1.0 and by the 50 percent HDRs coming much closer to this line. However, while this 

is happening, the very highest parts of the income distribution show tendencies away from 

cohesion, and provide evidence for emerging twin peaks. 
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Figure 9 to be positioned about here 

 

 

 

 

Figure 9 provides stochastic kernel representations of five-year transition dynamics in the 

spatially filtered income space, using again a stochastic kernel estimator with fixed 

bandwidths ( 0.061, 0.047).y zh h= =  This figure is the counterpart to Figure 4 for spatially 

filtered relative (per capita) regional incomes. Comparing the unfiltered and filtered kernels, 

one sees that fine details differ, but the global dynamics of the distribution remain roughly 

unchanged. There are the same polarisation, persistence and mobility features in both, but 

much more pronounced in the spatially filtered case. This indicates the importance of 

accounting for spatial dependence effects properly. 

 

 

 

 

Figure 10 to be positioned about here 

 

 

 

 

 
Additional insights can be gained by the long-run (ergodic) density function, ( ),f z∞  implied 

by the estimated ( | )g z yτ  function that can be found as solution to Equation (14). Figure 10 

plots the estimate along with the counterpart, ˆ ( ),f z∞  for the original (unfiltered) state income 

space. The solid line shows the estimated ( ),f z∞  while the dashed line the estimated ( ).f z∞  

The figure highlights peak dynamics already observed in Figure 5 for the original income data 

and does this now without spatial effects as well. Comparing the estimated density functions, 

( )f z∞  and ( ),f z∞  one sees some differences in detail that are worth noting. In particular, the 

peaks have not only become more pronounced, but also closer to each other. Such dynamics 

suggest economic mechanisms for growth different from more standard ones. The pattern 

suggests that regions above a certain threshold cluster around a higher income growth path, 

those below around a lower income growth path. 
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4 Concluding remarks 

 

In this study, we followed a way to convergence analysis that views the catching-up question 

as a question about the evolution of the cross-section distribution of income, and diverts 

attention from the individual region to the entire distribution as object of interest. The lack of 

an appropriate inferential theory restricts the work to a descriptive stage. We used product 

kernel estimators of conditional density to estimate the stochastic kernels. The properties of 

these estimators are unknown in the presence of spatial autocorrelation of the income series. 

To avoid misguided inferences and interpretations the paper suggests Getis’ spatial filtering 

approach that is based on the autocorrelation observed with the use of the iG  local statistic 

and removes the spatial dependence embedded in the income variables. 

 

The paper reveals that spatial effects matter, and the results highlight the importance of these 

effects in understanding regional income distribution dynamics. A substantial part of the 

features of the shape and intra-distribution dynamics can actually be attributed to spatial 

effects embedded in the income variable. The picture reveals emerges seems to give little 

support to the convergence predictions of the neoclassical model of growth. The results 

obtained strongly reject the hypothesis of absolute convergence, and suggest instead 

polarisation and divergence across the entire section, the opposite of catching-up, even though 

this appears to happen in the lower end of the tail of the distribution. Overtaking and 

catching-up occur simultaneously with persistence and polarisation. Polarisation manifests 

itself in the emergence of a twin peak structure in the filtered and unfiltered long-run regional 

income distributions. Differences exist in detail, and these emphasise the importance to 

properly deal with the spatial dependence (autocorrelation) problem. 
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Appendix: List of regions used in the study 
ctd. 

Country  ID Code Region 

Austria AT11 Burgenland 
 AT12 Niederösterreich 
 AT13 Wien 
 AT21 Kärnten 
 AT22 Steiermark 
 AT31 Oberösterreich 
 AT32 Salzburg 
 AT33 Tirol 
 AT34 Vorarlberg 
Belgium BE10 Région de Bruxelles-Capitale 
 BE21 Prov. Antwerpen 
 BE22 Prov. Limburg (B) 
 BE23 Prov. Oost-Vlaanderen 
 BE24 Prov. Vlaams Brabant 
 BE25 Prov. West-Vlaanderen 
 BE31 Prov. Brabant Wallon 
 BE32 Prov. Hainaut 
 BE33 Prov. Liège 
 BE34 Prov. Luxembourg (B) 
 BE35 Prov. Namur 
Bulgaria BG11 Severozapaden 
 BG12 Severen tsentralen 
 BG13 Severoiztochen 
 BG21 Yugozapaden 
 BG22 Yuzhen tsentralen 
 BG23 Yugoiztochen 
Switzerland CH01 Région lémanique 
 CH02 Espace Mittelland 
 CH03 Nordwestschweiz 
 CH04 Zürich 
 CH05 Ostschweiz 
 CH06 Zentralschweiz 
 CH07 Ticino 
Cyprus CY00 Kypros / Kibris 
Czech Republic CZ01 Praha 
 CZ02 Strední Cechy 
 CZ03 Jihozápad 
 CZ04 Severozápad 
 CZ05 Severovýchod 
 CZ06 Jihovýchod 
 CZ07 Strední Morava 
 CZ08 Moravskoslezko 
Germany DE11 Stuttgart 
 DE12 Karlsruhe 
 DE13 Freiburg 
 DE14 Tübingen 
 DE21 Oberbayern 
 DE22 Niederbayern 
 DE23 Oberpfalz 
 DE24 Oberfranken 
 DE25 Mittelfranken 
 DE26 Unterfranken 
 DE27 Schwaben 
 DE30 Berlin 
 DE40 Brandenburg (Südwest and 

Nordost) 
 DE50 Bremen 
 DE60 Hamburg 
 DE71 Darmstadt 
 DE72 Gießen 
 DE73 Kassel 
 DE80 Mecklenburg-Vorpommern 
 DE91 Braunschweig 
 DE92 Hannover 
 DE93 Lüneburg 
 DE94 Weser-Ems 
 DEA1 Düsseldorf 
 DEA2 Köln 
 DEA3 Münster 
 DEA4 Detmold 
 DEA5 Arnsberg 
 DEB1 Koblenz 
 DEB2 Trier 
 DEB3 Rheinhessen-Pfalz 
 DEC0 Saarland 

Country  ID Code Region 

 DED1 Chemnitz 
 DED2 Dresden 
 DED3 Leipzig 
 DEE1 Dessau 
 DEE2 Halle 
 DEE3 Magdeburg 
 DEF0 Schleswig-Holstein 
 DEG0 Thüringen 
Denmark DK00 Danmark 
Estonia EE00 Eesti 
Spain ES11 Galicia 
 ES12 Principado de Asturias 
 ES13 Cantabria 
 ES21 País Vasco 
 ES22 Comunidad Foral de Navarra 
 ES23 La Rioja 
 ES24 Aragón 
 ES30 Comunidad de Madrid 
 ES41 Castilla y León 
 ES42 Castilla-La Mancha 
 ES43 Extremadura 
 ES51 Cataluña 
 ES52 Comunidad Valenciana 
 ES53 Illes Balears 
 ES61 Andalucía 
 ES62 Región de Murcia 
Finland FI13 Itä-Suomi 
 FI18 Etelä-Suomi 
 FI19 Länsi-Suomi 
 FI1A Pohjois-Suomi 
 FI20 Åland 
France FR10 Île de France 
 FR21 Champagne-Ardenne 
 FR22 Picardie 
 FR23 Haute-Normandie 
 FR24 Centre 
 FR25 Basse-Normandie 
 FR26 Bourgogne 
 FR30 Nord-Pas-de-Calais 
 FR41 Lorraine 
 FR42 Alsace 
 FR43 Franche-Comté 
 FR51 Pays de la Loire 
 FR52 Bretagne 
 FR53 Poitou-Charentes 
 FR61 Aquitaine 
 FR62 Midi-Pyrénées 
 FR63 Limousin 
 FR71 Rhône-Alpes 
 FR72 Auvergne 
 FR81 Languedoc-Roussillon 
 FR82 Provence-Alpes-Côte d'Azur 
 FR83 Corse 
Greece GR11 Anatoliki Makedonia, Thraki 
 GR12 Kentriki Makedonia 
 GR13 Dytiki Makedonia 
 GR14 Thessalia 
 GR21 Ipeiros 
 GR22 Ionia Nisia 
 GR23 Dytiki Ellada 
 GR24 Sterea Ellada 
 GR25 Peloponnisos 
 GR30 Attiki 
 GR41 Voreio Aigaio 
 GR42 Notio Aigaio 
 GR43 Kriti 
Hungary HU10 Közép-Magyarország 
 HU21 Közép-Dunántúl 
 HU22 Nyugat-Dunántúl 
 HU23 Dél-Dunántúl 
 HU31 Észak-Magyarország 
 HU32 Észak-Alföld 
 HU33 Dél-Alföld 
Ireland IE01 Border, Midlands and Western 
 IE02 Southern and Eastern 
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  ctd. 

Country  ID Code Region 

Iceland IS00 Iceland 
Italy IT31 Bolzano-Bozen e Trento 
 ITC1 Piemonte 
 ITC2 Valle d'Aosta/Vallée d'Aoste 
 ITC3 Liguria 
 ITC4 Lombardia 
 ITD3 Veneto 
 ITD4 Friuli-Venezia Giulia 
 ITD5 Emilia-Romagna 
 ITE1 Toscana 
 ITE2 Umbria 
 ITE3 Marche 
 ITE4 Lazio 
 ITF1 Abruzzo 
 ITF2 Molise 
 ITF3 Campania 
 ITF4 Puglia 
 ITF5 Basilicata 
 ITF6 Calabria 
 ITG1 Sicilia 
 ITG2 Sardegna 
Lithuania LT00 Lietuva 
Luxembourg LU00 Luxembourg (Grand-Duché) 
Latvia LV00 Latvija 
Malta MT00 Malta 
Netherlands NL11 Groningen 
 NL12 Friesland 
 NL13 Drenthe 
 NL21 Overijssel 
 NL22 Gelderland 
 NL23 Flevoland 
 NL31 Utrecht 
 NL32 Noord-Holland 
 NL33 Zuid-Holland 
 NL34 Zeeland 
 NL41 Noord-Brabant 
 NL42 Limburg (NL) 
Norway NO01 Oslo og Akershus 
 NO02 Hedmark og Oppland 
 NO03 Sør-Østlandet 
 NO04 Agder og Rogaland 
 NO05 Vestlandet 
 NO06 Trøndelag 
 NO07 Nord-Norge 
Poland PL11 Lódzkie 
 PL12 Mazowieckie 
 PL21 Malopolskie 
 PL22 Slaskie 
 PL31 Lubelskie 
 PL32 Podkarpackie 
 PL33 Swietokrzyskie 
 PL34 Podlaskie 
 PL41 Wielkopolskie 
 PL42 Zachodniopomorskie 
 PL43 Lubuskie 
 PL51 Dolnoslaskie 
 PL52 Opolskie 
 PL61 Kujawsko-Pomorskie 
 PL62 Warminsko-Mazurskie 
 PL63 Pomorskie 
Portugal PT11 Norte 
 PT15 Algarve 
 PT16 Centro (P) 
 PT17 Lisboa 
 PT18 Alentejo 
Romania RO01 Nord-Est 
 RO02 Sud-Est 
 RO03 Sud 
 RO04 Sud-Vest 
 RO05 Vest 
 RO06 Nord-Vest 
 RO07 Centru 
 RO08 Bucuresti 
Sweden SE01 Stockholm 
 SE02 Östra Mellansverige 
 SE04 Sydsverige 
 SE06 Norra Mellansverige 
 SE07 Mellersta Norrland 

  ctd. 

Country  ID Code Region 

 SE08 Övre Norrland 
 SE09 Småland med öarna 
 SE0A Västsverige 
Slovenia SI00 Slovenija 
Slovakia SK01 Bratislavský kraj 
 SK02 Západné Slovensko 
 SK03 Stredné Slovensko 
 SK04 Východné Slovensko 
United Kingdom UKC1 Tees Valley and Durham 
 UKC2 Northumberland, Tyne and Wear 
 UKD1 Cumbria 
 UKD2 Cheshire 
 UKD3 Greater Manchester 
 UKD4 Lancashire 
 UKD5 Merseyside 

 UKE1 East Riding and North 
Lincolnshire 

 UKE2 North Yorkshire 
 UKE3 South Yorkshire 
 UKE4 West Yorkshire 
 UKF1 Derbyshire and Nottinghamshire 
 UKF2 Leicestershire, Rutland and 

Northants 
 UKF3 Lincolnshire 
 UKG1 Herefordshire, Worcestershire 

and Warks 
 UKG2 Shropshire and Staffordshire 
 UKG3 West Midlands 
 UKH1 East Anglia 
 UKH2 Bedfordshire, Hertfordshire 
 UKH3 Essex 
 UKI1 Inner London 
 UKI2 Outer London 
 UKJ1 Berkshire, Bucks and 

Oxfordshire 
 UKJ2 Surrey, East and West Sussex 
 UKJ3 Hampshire and Isle of Wight 
 UKJ4 Kent 
 UKK1 Gloucestershire, Wiltshire and 

North Somerset 
 UKK2 Dorset and Somerset 
 UKK3 Cornwall and Isles of Scilly 
 UKK4 Devon 
 UKL1 West Wales and The Valleys 
 UKL2 East Wales 
 UKM1 North Eastern Scotland 
 UKM2 Eastern Scotland 
 UKM3 South Western Scotland 
 UKM4 Highlands and Islands 
 UKN0 Northern Ireland 
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Figure 1: Distributions of relative (per capita) regional income, 1995 versus 2003  
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Notes: The plots are densities calculated non-parametrically using a Gaussian kernel with bandwidth 
chosen as suggested in Silverman (1986), restricting the domain to be non-negative. The solid line 
shows the density for 2003 and the dashed line that for 1995.  
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Figure 2: Tukey boxplots of relative (per capita) regional income across 257 European regions 
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Figure 3: Cross-profile dynamics across 257 European regions, retaining the ranking 
fixed at the initial year, relative (per capita) income, advancing upwards: 
1995, 1999 and 2003 (a guide to region codes can be found in the Appendix) 
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Figure 4: Relative income dynamics across 257 European regions, the estimated g5(z|y), see Equation (6): 
(i) the stacked density plot, and (ii) the highest density region boxplot  

 

 

 

 

 

 

 

(i) Stacked density plot 
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 (ii) Highest density region boxplot 
 
Notes: The lighter shaded region in 
each strip  
is a 99 percent HDR, and the darker 
shaded region a 50 percent HDR. The 
mode for each conditional density is 
shown as a bullet •.  
 
Technical notes: The conditional 
density gτ (z|y) is estimated over a 
five-year transition horizon 5τ =  
between 1995-2003. Estimates are 
based on a Gaussian product kernel 
density estimator with bandwidth 
selection (hy = 0.036, hz = 0.023) based 
on the three-step-strategy suggested by 
Bashtannyk and Hyndman (2001). The 
stacked conditional density plot and 
the high density region boxplot were 
estimated at 70 and 150 points 
respectively. Calculations of the plots 
were performed using the R package 
HRDCDE, provided by Rob 
Hyndman. 
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Figure 5: The ergodic density f∞(z) implied by the estimated g5(z|y) and the marginal density function f1995(y)  
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Notes: The solid line shows the point estimate for f∞(z) and the dashed line the estimate for the marginal density f1995(y). The 
ergodic function f∞(z) has been found as solution to Equation (4).  
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Figure 6: Densities of relative (per capita) income, 1995 versus 2003: The spatial filtering view 
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Notes: The plots are densities calculated non-parametrically using a Gaussian kernel with bandwidth 
chosen as suggested in Silverman (1986), restricting the domain to be non-negative. The solid line 
shows the density for 2003 and the dashed line that for 1995.  
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Figure 7: Tukey boxplots of relative (per capita) income, across 257 European regions:  
The spatial filtering view 
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Figure 8: Stochastic kernel mapping from the original to the spatially filtered distribution, the estimated  
g (ỹ|y): (i) the stacked conditional density plot, and (ii) the highest density region plot  

 

 

 

 

 

 

 

(i) Stacked conditional density plot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(ii) Highest density region boxplot 
 
Notes: The lighter shaded region in each 
strip is a 99 percent HDR, and the darker 
shaded region a 50 percent HDR. The 
mode for each conditional density is 
shown as a bullet •.  
 
Technical notes: The conditional density 
g(ỹ|y) is estimated over 1995-2003, 
Estimates are based on a Gaussian product 
kernel density estimation with bandwidth 
selection (hy = 0.103, yh = 0.052) based on 
the three-step-strategy suggested by 
Bashtannyk and Hyndman (2001). The 
stacked conditional density plot and the 
high density region boxplot were 
estimated at 70 and 150 points 
respectively. Calculations of the plots 
were performed using the R package 
HRDCDE, provided by Rob Hyndman, 
and spatial filtering, using the PPA 
package, provided by  
Arthur Getis.    
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Figure 9: The spatial filter view of relative income dynamics: The estimated g5 ( | )z y  
(i) stacked density plot, and (ii) the highest density region boxplot  

 

 

 

 

 

 

 

 

(i) Stacked conditional density plot 

 

 

 

 

 

 

 

 

 

 

 
(ii) Highest density region boxplot 

Notes: The lighter shaded region in each 
strip is a 99 percent HDR, and the darker 
shaded region a 50 percent HDR. The 
mode for each conditional density is 
shown as a bullet •.  
 
Technical notes: The conditional density  
gτ ( )z|y is estimated over a five-year 
transition horizon τ = 5 between 1995-
2003, Estimates are based on a Gaussian 
product kernel density estimatior with 
bandwidth selection ( yh = 0.034, zh = 
0.021) based on the three-step-strategy 
suggested by Bashtannyk and Hyndman 
(2001). The stacked conditional density 
plot and the high density region boxplot 
were estimated at 70 and 150 points 
respectively. Calculations of the plots 
were performed using the R package 
HRDCDE, provided by Rob Hyndman, 
and spatial filtering using the PPA 
package, provided by Arthur Getis.    
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Figure 10: Ergodic income distributions, associated with a five-year transition horizon: The point estimates for 
the spatially filtered version ( )f z∞ and the unfiltered version ( )f z∞  
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Notes: The solid line shows the point estimate for ( )f z∞ and the dashed line shows that for ( )f z∞ . The 
plots are densities calculated as solutions to Equation (4) and Equation (14), respectively. 
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