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Abstract. By following the paper trail left by patent citations between high-technology 
patents in Europe we use a Bayesian hierarchical Poisson spatial interaction modelling 
approach to identify and measure spatial separation effects to interregional knowledge flows, 
as captured by patent citations. The model introduced here is novel in that it allows for 
spatially structured origin and destination effects for the regions. Estimation of the model is 
carried out within a Bayesian framework using data augmentation and Markov Chain Monte 
Carlo (MCMC) methods, related to recent work in Frühwirth-Schnatter and Wagner (2004). 
This allows MCMC sampling from well-known distribution families and, thus, provides a 
substantial improvement over MCMC estimation based on Metropolis-Hastings sampling 
from non-standard conditional distributions. 
 
Estimation results from our model provides evidence that geography matters. First, 
geographical distance between origin and destination regions has a significant impact on 
knowledge spillovers, and this effect is substantial. Second, national border effects are 
important and dominate geographical distance effects. Third, the latent spatial effects exhibit 
weak spatial dependence. Not only geography, but also technological proximity matters. 
Interregional knowledge flows are industry specific and occur most often between regions 
located close to each other in technological space. 
 
 
JEL Classification:  C11, C13, C31, R15  
 
Keywords: Origin-destination flows, spatially structured random effects, Bayesian Markov 
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1 Introduction 
 

The recent past has seen the development of a significant body of empirical research on 

knowledge spillovers. Generally speaking, this research has shown that new knowledge spills 

over (see Griliches 1992) and complements R&D in some industry, especially in high-

technology industries (see Bernstein and Nadiri 1998). But we know very little about where 

spillovers go. The objective of this paper is to identify and measure those types of spatial 

separation that tend to impede the likelihood of knowledge spillovers between regions in 

Europe. In particular, we are interested in the question whether or not knowledge – as 

captured by patent citations – flows more easily within countries than between, and to what 

extent geographic distance between inventors has an influence on these knowledge flows. As 

we consider spatial separation effects to interregional spillovers in a multiregional setting it is 

important to control for technological proximity between regions as geographical distance 

could be just proxying for technological proximity.  

 

We adopt the view that finds thinking in terms of a spatial interaction modelling perspective 

congenial and useful to investigate origin-destination knowledge flows as captured by high-

technology patent citations in Europe. High-technology is defined to include the ISIC-sectors 

aerospace (ISIC 3845), electronics-telecommunication (ISIC 3825), computers and office 

equipment (ISIC 3842), and pharmaceuticals (ISIC 3522). The European coverage is given by 

patent applications at the European Patent Office (EPO) that are assigned to high-technology 

firms located in the EU-25 member states (except Cyprus and Malta), the two accession 

countries, Bulgaria and Romania, and Norway and Switzerland.   

 

By following the paper trail left by patent citations between high-technology patents in 

Europe we use a Bayesian hierarchical Poisson spatial interaction model. The model is novel 

in that it allows for spatially structured origin and destination latent effects. A spatial 

autoregressive structure serves as a prior for these effects vectors, one for regions reflecting 

origins of the cited patents and another for the regions that cite patents. Posterior estimates of 

the origin and destination latent effects may be used to identify regions that exhibit positive 

and negative effects magnitudes since the effects parameters have a prior mean of zero. 

Positive and negative posterior effects estimates can be interpreted as measuring the 

magnitude and influence of latent unobservable factors on the knowledge flow process. 
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It is this model that distinguishes the current study from prior work by Fischer, Scherngell and 

Jansenberger (2006) which produces more conventional maximum likelihood estimates based 

on a heterogeneous Poisson spatial interaction model. Their model specification arises from 

introducing multiplicative heterogeneity in the mean of the Poisson model as a proxy for fixed 

effects parameters. The heterogeneity term is strategically assumed to follow a conjugate 

gamma distribution. This choice of a Poisson-gamma mixture is strategic in the sense that the 

conjugate gamma distribution leads to a tractable negative binomial distribution maximum 

likelihood procedure (see Cameron and Trivedi 1998). The negative binomial distribution can 

be derived by assuming true contagion, allowing us to interpret the model in two quite 

different ways that are opposed to each other. This represents a serious drawback of the model 

that arises from relying on the conjugate gamma distribution for the Poisson.  

 

The model introduced in this paper does not rely on the conjugate gamma prior, but rather on 

a normal prior for the random individual effects. Typically, there is no analytical expression 

for the unconditional density when using normally distributed random effects. Because of 

this, development of estimation methods for such cases is an active area of research (see, for 

example, Chib, Greenberg and Winkleman 1998). Drawing upon the contribution of 

Frühwirth-Schnatter and Wagner (2004), this paper contributes to this area of research by 

developing Gaussian random effects governed by a spatial autoregressive process that results 

in a Gibbs sampling scheme. By Gibbs sampler, we refer to the process where sequential 

sampling of all parameters in the model involves only draws from distributions having known 

forms. 

 

The rest of the paper is organised as follows. Section 2 begins to set forth the context and 

framework for the discussion, and introduces the model proposed here. This model allows for 

latent regional effects parameters that take the form of a spatial autoregression. The spatial 

autoregressive (SAR) structure assumed to govern the origin and destination effects 

introduces additional sample data information in the form of an n by n spatial contiguity 

matrix that describes the spatial connectivity structure of the sample regions. This additional 

spatial structure in conjunction with the spatial autoregressive process assumption provides a 

parsimonious parameterisation of the regional effects parameters. This is in contrast to the 

typical assumption of a normal distribution with zero mean and constant scalar variance 

assigned as a prior for non-spatial latent effects parameters. Our approach of estimating two 
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sets of n latent effects based on a sample of size N = n2 also differs from the conventional 

approaches that estimate a latent effect parameter for all sample observations, which would be 

N in our case. 

 

This model extends the class of Poisson spatial interaction models presented in Fischer, 

Scherngell and Jansenberger (2006) and relies on a hierarchical construct. We estimate the 

model using Markov Chain Monte Carlo (MCMC) methods and data augmentation schemes 

based on recent work by Frühwirth-Schnatter and Wagner (2004) to derive estimates by 

simulating draws from the complete set of conditional distributions for the parameters in the 

model. Section 3 briefly describes the data augmentation approach used and sets forth the 

conditional distributions for our model. Section 4 applies the methodology to the sample of 

high-technology patent citations from 188 European regions. Section 5 concludes the paper.  

 

2 The Poisson Spatial Interaction Model with Spatial Effects 
 

This section lays out the notation and conventions used in describing origin-destination flows 

and the modelling of these by the standard spatial interaction model (see 2.1) and then sets 

forth the Bayesian hierarchical structure that we suggest (see 2.2).  

 

2.1   The Context 

The spatial interaction modelling perspective shifts attention from the individual patent 

citations to interregional patent citations, or in other words from the dyad “cited patent – 

citing patent” to the dyad “cited region – citing region” within a spatial interaction system. 

Suppose that we have a spatial interaction system with n regions. Let Y  represent the n-by-n 

square matrix of patent citation flows where the element Yij reflects patent citations 

originating in region i and cited by column region j. We therefore treat the columns as 

destinations of the patent citation flows and the rows as their origins. The n-by-n patent 

citation matrix can be vectorised into an N = n2 vector that we label y which contains variation 

in patent citations flows across all origin-destination (OD) pairs.  

A typical spatial interaction model directs attention to three types of functions to explaining 

the variation in the vector of OD-flows: an origin function, a destination function and a spatial 

separation function. There is a basic formal distinction implicit in the definitions of origins 
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and destination functions on the one hand, and spatial separation functions on the other. 

Spatial separation functions are postulated to be explicit functions of numerical separation 

variables, while origin and destinations functions are formally only weights with origin and 

destination variables.  

 

Observations on the origin and destination variables are typically organised in n-by-k variable 

matrices that we label X, containing k characteristics for each of the n regions. Given the 

origin-destination format of the vector y, where observations 1 to n reflect flows from origin 1 

to all n destination regions, the matrix X would be repeated n times to produce an N-by-k 

matrix representing destination characteristics that we label Xd (see LeSage and Pace 2005). A 

second matrix can be formed to represent origin characteristics that we label Xo. This would 

repeat the characteristics of the first region n times to form the first n rows of Xo, the 

characteristics of the second region n times to for the next n rows of Xo and so on, resulting in 

an N-by-k matrix.  

 

The spatial separation function constitutes the very core of spatial interaction models. Thus, a 

number of alternative specifications have been proposed. But the multivariate exponential 

function is most general (see Fischer and Reggiani 2004) and will be used in the context of 

this paper. Focus is laid on four distinct measures of separation: geographical distance 

measured in terms of the great circle distance between the regions’ economic centres, a 

dummy variable that represents border effects measured in terms of the existence of country 

borders, a dummy variable that represents language barriers, and technological proximity 

between the regions. The corresponding data are typically summarised in form of n-by-n 

matrices that we label D1, D2, D3 and D4, respectively. Thus, d1 = vec(D1), d2 = vec(D2), d3 = 

vec(D3) and d4 = vec(D4) are N-by-1 vectors of these measures of separation from each origin 

region to each destination region formed by stacking the columns of the origin-destination 

matrices into a variable vector. 

 

This results in the exponential spatial interaction model 1  which may be written in its 

equivalent log-additive version as   

 

                                                 
1 A spatial interaction is termed exponential if the spatial separation function is specified as an exponential function.   
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1 1 2 2 3 3 4 4N d d o oy X X d d d dα ι β β γ γ γ γ ε= + + + + + + +  (1)
  

where Nι  is an N-by-1 vector of ones, Xd and  Xo represent N-by-k matrices containing k = k1 

destination and k = k2 origin characteristics, respectively. dβ  and oβ  are the associated  

k-by-1 parameters. d1, d2, d3 and d4 are N-by-1 vectors of spatial separation. The scalar 

parameters 1γ , 2γ , 3γ  and 4γ  reflect the effects of geographical distance, country borders, 

language barriers and technological proximity. α  denotes the constant term parameter. The 

N-by-1 vector ε  represents disturbances. 
 

For notational convenience Equation (1) can be formally simplified by stacking the intercept 

term and the sample data into the vector y and matrix X as   

 

1 1 1 11 21 31 41

2 2 2 12 22 32 42

1 2 3 4

1
1

and

1

o d

o d

N oN dN N N N N

y

y x x d d d d
y x x d d d d

X

y x x d d d d

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (2) 

 

This allows us to set forth the model given by Equation (1) as follows 

 

y X εβ= +  (3) 

 

where 1 2 3 4( , , , , , , )o dβ α β β γ γ γ γ=  and X is the N-by-7 matrix including the origin, 

destination and spatial separation variables and the intercept term. Assuming that ( ) 0E ε =  

and that the variables are measured without error, then model (3) may be estimated by means 

of ordinary least squares.  

 

2.2   A Bayesian Poisson Extension of the Conventional Spatial Interaction Model 

While the log-additive spatial interaction model given by Equation (3) can easily be 

estimated using standard least squares, it shows two major shortcomings. First, least squares 

and normality assumptions ignore the true integer nature of flows and approximate a 

discrete-valued by an almost certainly misrepresentative continuous distribution (Fischer and 

Reismann 2002). Second, models of type (3) neglect potential spatial dependencies of the 

origin-destination flows contained in the dependent variable vector y (LeSage and Pace 2005, 
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Fischer, Reismann and Scherngell 2006). For example, neighbouring origins and destinations 

may exhibit estimation errors of similar magnitude if underlying latent or unobserved forces 

are at work or missing origin and destination variables exert a similar impact on 

neighbouring observations.  

 

The following Bayesian hierarchical Poisson extension will overcome these deficiencies by 

assuming that the patent citation flows are independently distributed Poisson variates with 

finite means and by introducing two n-by-1 vectors of regional effects parameters, one for 

each region treated as an origin and another for destination regions. This model can be 

expressed as  

 

| ( )i i iy Pλ λ∼                                       (4) 

 

where iλ  is the conditional mean 
 

( | , , ) exp( )i i i i iyE x v wλ β θ φ β θ φ= = + +    (5) 
 

which depends not only on the covariates with the associated parameter vector β , but also 

on n-by-1 vectors of latent regional effects parameters  θ  and φ , one for the regions treated 

as origin (i.e. θ ) and another for destination regions (i.e. φ ). The inclusion of these regional 

effects vectors allows for geographical differences or heterogeneity in the n origin and n 

destination regions.  vi = ( 1iv ,…,  vin) represents a vector that identifies region i as an origin 

and wi = (wi1,…, win) identifies destination regions. Given our configuration for the flow 

matrix of patent citations with columns as origins and rows as destinations, we could form a 

matrix n nV Iι ⊗=  and  n nW I ι⊗=  such that vi and wi represent the ith row of these mutually 

exclusive N-by-n matrices. nI  denotes the n-square identity matrix.  

 

As with all Bayesian models, we begin by postulating suitable prior distributions for all 

parameters ( β ,θ ,φ ), and then derive the corresponding conditional posterior distributions 

given the observed data in the next section. We use a normal prior distribution for 

1 2 3 4( , , , , , , )o dβ α β β γ γ γ γ=  associated with the covariates in the explanatory variables matrix 

X centered on zero with a large standard deviation: 
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( | ) [0, ]hN Tπ β ψ ∼ .  (6) 

 

The normal prior distribution is allowed to be indexed by an unknown hyperparameter that we 

have labelled ψ , and h denotes the number of explanatory (i.e. origin, destination and spatial 

separation) variables in the matrix X which includes a constant term. 2
qT w I= , for some 

sufficiently large w, such as w  = 100. We use [ , ]hN µ Σ  to represent an h-variate normal 

distribution with mean µ  and variance-covarianceΣ . 

 

For the spatial effects parameters we rely on spatial autoregressive (SAR) priors:  

 
2[0, ]o o o n o nC u u N Iθ ρ θ σ= + ∼    (7) 

2[0, ]d d d n d nC u u N Iφ ρ φ σ= + ∼    (8) 

 

where C is an n-by-n row standardised first order spatial contiguity matrix. This matrix 

reflects the spatial configuration of the regions in terms of common borders, with row sums of 

unity by virtue of row standardisation. We assign an inverse gamma (IG) prior for the 

parameters 2
oσ , 2

dσ , taking the form:  

 

2 2
1 2( ), ( ) ( , ) (0.01, 0.01)o d G g g Gπ σ π σ− − =∼ . (9) 

 

It is frequently noted that flat or improper priors on variance parameters in hierarchical 

modeling can lead to (almost) improper posterior distributions (see Gelman et al. 1995, 

chapter 5). This prior implies a mean of unity, and a variance of 100. In the absence of prior 

information, it seems reasonable to rely on the same prior for both  
2
oσ  and 2

dσ . The spatial dependence parameters are known to lie in the stationary interval: 

1 1
max min[ , ]κ κ− −  with min max0, 0κ κ< >  denoting the minimum and maximum eigenvalues of the 

matrix C (see, for example, Lemma 2 in Sun et al. 1999). We rely on a uniform distribution 

over this interval as our prior for oρ , dρ , that is 
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1 1
max min( ), ( ) [ , ] 1o d Uπ ρ π ρ κ κ− − ∝∼   (10) 

 

Solving for θ  and φ  in terms of uo and ud suggests a normal prior for the origin and 

destination spatial effects vectors taking the form:  

 
2 2 1| , , [0, ( ) ]o o n o o o

TN B Bθ ρ σ ψ σ −∼ , (11) 

2 2 1| , , [0, ( ) ]d d n d d d
TN B Bφ ρ σ ψ σ −∼ , (12) 

 ( )o n oB I Cρ= − , (13) 

 ( )d n dB I Cρ= − . (14) 

 

We note that Bo, Bd are non-singular for a conventional row-normalised first-order spatial 

contiguity matrix C and the spatial dependence parameters oρ , dρ  in the interval 

1 1
max min[ , ]κ κ− − . This leads to a proper prior distribution in contrast to the well-known intrinsic 

conditional autoregressive (CAR) prior introduced by Besag and Kooperberg (1995).  

 

When oρ  = dρ  = 0, our model collapses to the special case of a normal prior for the random 

effects vectors with means of zero for both effects and constant scalar variances  2
oσ  and 2

dσ , 

so our SAR prior specification subsumes this as a special case. It should be noted that 

estimates for these two sets of random effects parameters are identified, since a set of n 

mutually exclusive sample data observations are aggregated through the vectors vi and wi to 

produce each estimate iθ , iφ  in the vector of parameters θ  and φ .  

 

3 Estimating the Model 

 

Estimation will be achieved via Markov Chain Monte Carlo (MCMC) methods that sample 

sequentially from the complete set of conditional distributions for the parameters. To 

implement the MCMC sampling approach we need to derive the complete conditional 

posterior distributions for all model parameters. The model assumptions made are sufficient 

to derive these distributions, but the resulting posterior density does not belong to a density 
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from a well-known distribution family. Following recent work by Frühwirth-Schnatter and 

Wagner (2004) Section 3.1 shows that the introduction of two sequences of artificially 

missing data with a data augmentation scheme eliminates both non-normality and non-

linearity of the mean iλ  in the parameters and allows MCMC sampling from conditional 

distributions for the parameters that belong to standard distribution families. Section 3.2 

introduces the conditional posterior distributions that form the basis of a Gibbs sampler for 

our Poisson spatial interaction model with regionally structured random effects parameters 

θ , φ .  

 
3.1   The Data Augmentation Approach 

For notational convenience in the following discussion we collect the parameters β , θ , φ  in 

a vector δ , and the spatial hyperparameters oρ , 2
oσ , dρ , 2

dσ  in the vector ς , so that all 

parameters can be placed in a vector  2 2( , ) ( , , , , , , ).o o o dυ δ ς β θ φ ρ ρ σ σ= =  Furthermore we 

restate Equation (5) as  

 

exp( )i izλ δ=  (15) 

 

with 

 

( 1 )i i i iz x v w= , (16) 

( , , )Tδ β θ φ= . (17) 

 

Then the posterior density takes the form:  

 

( | , ) ( | ) ( | )p y p y pυ ψ υ υ ψ∝  (16) 

1
))

exp( )( | ) exp( exp(
!

iyN
i

i
i i

zp y z
y
δυ δ

=

= −∏ . (17) 

 

The use of a normal distribution for the random effects in place of the conjugate gamma 

distribution results in a posterior density that does not belong to a density from a known 

distribution family. Conventional MCMC methods to sample from the posterior have 
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involved Metropolis-Hastings algorithms (see, for example, Chib et al. 1998). The 

contribution of Frühwirth-Schnatter and Wagner (2004) was to note that through the 

introduction of two sequences of artificially missing data treated using data augmentation can 

lead to a sequence of conditional posteriors for the parameters υ  that take the same form as 

those that would arise if our model was a normal linear model. One of the two sequences of 

artificially missing data eliminates the non-linearity of the Poisson spatial interaction model 

and the second eliminates the non-normality of the error term.  

 

Eliminating the non-linearity of the Poisson spatial interaction model arises from the insight 

that the distribution of |i iy λ  may be regarded for each observation i as the distribution of the 

number of jumps of an unobserved Poisson process with intensity iλ  occurring in the time 

interval [0,1]. This leads Frühwirth-Schnatter and Wagner (2004) to suggest a data 

augmentation step where for each i = 1, …, N inter-arrival times of the unobserved Poisson 

process are introduced as missing data. We label these ijτ , j = 1, …, (yi + 1), and note that 

these are known to follow an exponential, ( )iξ λ , distribution: 

 
| (1) /ij iτ υ ξ λ∼ .  (19) 

 

Using )exp(i izλ δ= , Equation (19) may be reformulated as a linear model given by  

 

log | , log( (1))ij i ij ijzτ υ δ ε ε ξ= − + ∼  (20) 

 

thereby eliminating the non-linearity, but leaving us with the non-normal error term. An 

important point is that the full conditional posterior for the parameters after the introduction 

of the inter-arrival times { }, 1,..., ( 1), 1, ...,ij ij y i Nτ τ= = + =  is independent of y, that is, 

( | , , ) ( | , )p y pυ ψ τ υ ψ τ= .  

 

Given the linear model in (20) after conditioning on τ , Frühwirth-Schnatter and Wagner 

(2004) propose eliminating the non-linearity in the disturbance term ijε  through the use of a 

normal mixture of five components with parameters mr and sr for the r = 1, …, 5 components. 

This results in a conditionally Gaussian model, and is similar to approaches taken by Kim et 
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al. (1998) and Chib et al. (2002) for the case of stochastic volatility models, where the normal 

mixture approximation was applied to a log 2χ -distribution. Formally we get: 
 

5
2

1
( ) exp( exp( )) ( ; , )ij ij ij r N ij r r

r
p t f m sε ε ε ε

=

= − ≈ ∑       (21) 

 

where values for the parameters (tr, mr, sr) are provided in Table 1 of Frühwirth-Schnatter and 

Wagner (2004) for r = 1, …, 5. This results in a second data augmentation step where latent 

component indicator variables rij taking values 1, …, 5 are introduced for each observation i 

and arrival times 1,..., 1ij y= + . 

 

At this point, the original Poisson model from (4) reduces to a normal linear model with 

heteroscedastic errors having known variances: 

 
2

1log | , , (0, )
ij ijij ij i r ij ij rr z m N sτ υ δ ε ε= − + + ∼ . (22) 

 

Frühwirth-Schnatter and Wagner (2004) provide details on how to sample the missing data ijτ  

and ijr  component indicators for the normal mixture. For the parameters ijτ  this involves 

sampling at set of j order statistics for each observation i, where j = 1, …, yi from a uniform 

(0,1) distribution, and a final arrival time component from an exponential ( )iλ  density. The 

parameters ijr  require sampling from a five-component discrete density for each i = 1, …, N, 

j = 1, …, yi+1. 
 

3.2   The Conditional Posterior Distributions 

MCMC estimation of the model requires sampling from the complete sequence of conditional 

distributions for the parameters. We use the normal linear model from (22) as the starting 

point to introduce the conditional posterior distributions that form the basis of a Gibbs 

sampler for our Poisson spatial interaction model with spatially structured random effects 

parameters θ , φ . 
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For notational convenience, we collect the component indicators into a single set:  

R = {rij,  i = 1,  …, N, j = 1, …, yi+1}. The basic scheme of the algorithm for Gibbs sampling 

can be viewed in terms of the following steps:  

 

(i)  Sample the parameters ( , , )δ β θ φ=  given ijτ , R, ς  

(ii) Sample the spatial hyperparameters  ς  given δ  

(iii) Sample the inter-arrival times  ijτ  given δ , y 

(iv) Sample the component indicators rij given τ , δ .  

 

Step (i) can be expressed as a sample from a multivariate normal distribution for δ , but for 

computational efficiency we adopt a component-wise multi-move approach to sampling the  

β  parameters from a multivariate normal distribution and the spatial parameters θ  from 

univariate conditional posteriors for each element iθ  conditional on all other elements which 

we denote iθ− , and similarly for the elements of the vector φ . We provide details in Appendix 

A for the derivation of these univariate conditional distributions. Step (ii) involves one caveat 

to the strict notion of a Gibbs sampler, namely that we rely on a griddy gibbs step to sample 

the spatial dependence parameters oρ  and dρ  which involves univariate numerical 

integration of the conditional posteriors for these two parameters, and a draw carried out 

through inversion. However, unlike the case of Metropolis-Hastings steps, there is no 

requirement of a proposal density or tuning, and this procedure results in a draw for these 

parameters on every pass through the sampler. The random effects variance parameters from 

step (ii) take conventional inverted gamma distribution forms allowing straightforward Gibbs 

sampling. Steps (iii) and (iv) are elaborated in Appendix B of this paper (see also Frühwirth-

Schnatter and Wagner 2004).  

 

For notational convenience, we let ni = yi+1 and define iy  as the  ni-by-1 vectors in Equation 

(23):  
 

,1

,

,1

,

log( )

.
log( )

i

i i ni

i r

i

i n r

y

m

m

τ

τ

−⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟−⎝ ⎠

  (23) 
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We define the ni-by-k matrix ix  as 
in ixι , the 1-by-k vector xi repeated ni times for each  

observation i, and we stack these into the vector y and matrix X as: 
 

1 1

2 2and .

N N

y x
y x

y X

y x

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  (24) 

 

Similarly, we define the ni-by-n matrix iv  as 
in ivι , the 1-by-n vector vi repeated ni times for 

each observation i, and the ni-by-n matrix  iw  as 
in iwι , the 1-by-n vector wi repeated ni times 

for each observation i. Stacking these produces the matrices:  

 

1 1

2 2and .

N N

V W

v w
v w

v w

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (25) 

 

Finally we let iΩ  represent a diagonal matrix containing 2
, , 1, ...,

iji r is j n=  on the diagonal, and 

define 
1

N
ii

m n
=

= ∑  the patent citation counts cumulated over all observations. We place the 

diagonal matrices iΩ  on the diagonal of an m-by-m matrix 1 2diag( , , ..., ).NΩ = Ω Ω Ω  This 

allows us to set forth our model in matrix notation, where using (22) we have:  
 

 | , ( , )my R N X V Wυ β θ φ− − − Ω∼ .                                      (26) 

   o oC uθ ρ θ= +    (27) 

   d dC uφ ρ φ= +    (28) 

2
2 2 / 2 1

2
( | , ) ( ) | | exp( )

o

n
o o o o o o

T TB B B
σ

π θ ρ σ σ θ θ−∼  (29) 

2
2 2 / 2 1

2
( | , ) ( ) | | exp( )

d

n
d d d d d d

T TB B B
σ

π φ ρ σ σ φ φ−∼  (30) 

 

where | . | denotes the determinant. Equations (29) and (30) reflect the implied priors for the 

spatial effects vector θ  conditional on 2,o oρ σ  and that for φ  conditional on 2,d dρ σ . 
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Given the assumed prior independence of 2 2, , , , ,o d o dβ ρ ρ σ σ  we have the following joint 

posterior density for β : 

 
11

2
11

2
11

2

( | , , , , , ) ( ) exp{ ( ) ( )}

exp{ ( ) ( )}

exp{ }.

T
o d

T

T

p R y X V W y X V W

y X V W y X V W

T

β θ φ ρ ρ τ π β β θ φ β θ φ

β θ φ β θ φ

β β

−

−

−

∝ − + + + Ω + + +

∝ − + + + Ω + + +

−

 (31) 

 

In Appendix A we show that this results in a multivariate normal conditional posterior 

distribution for β  taking the form:  

 
2 2 1 1| , , , , , , , [ , ]o d o d hy N β β ββ θ φ ρ ρ σ σ µ− −Ω Σ Σ∼  (32) 

 1( )TX y V Wβµ θ φ−= Ω + +  (33) 

 1 1( )TX X Tβ
− −Σ = Ω + . (34) 

 

Taking a similar approach to that for β , we have a joint posterior density for θ  of the form:   

 

2

2

11
2

11
2

1
2

( | , , , , , ) ( | , )

exp{ [ ( )] [ ( )]}

exp{ [ ( )] [ ( )] }

exp{ }
o

o d o o

T

T T

T T
o o

p R

V y X W V y X W

V y X W V y X W

B B
σ

θ β φ ρ ρ τ π θ ρ σ

θ β φ θ β φ

θ β φ θ β φ

θ θ

−

−

∝

− − + + Ω − + +

∝ − − + + Ω − + +

−

 (35) 

 

which we show in Appendix A leads to a multivariate normal as the conditional posterior 

distribution for θ : 

 
2 2 1 1| , , , , , , , [ , ]o d o d ny N θ θ θθ β φ ρ ρ σ σ µ− −Ω Σ Σ∼  (36) 

 1( )TV y X Wθµ β φ−= Ω + +  (37) 

 2
11( )

o

T T
o oB B V Vθ σ

−Σ = + Ω , (38) 

 

and similarly for the spatial effects vector φ  we have: 
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2 2 1 1| , , , , , , , [ , ]o d o d ny N φ φ φφ β θ ρ ρ σ σ µ− −Ω Σ Σ∼  (39) 

 1( )TW y X Vφµ β θ−= Ω + +  (40) 

 2
11( )

d

T T
d dB B W Wφ σ

−Σ = + Ω . (41) 

 

However, evaluation of these expressions involves inversion of matrices of size n-by-n on 

each pass of the MCMC sampler, which is problematical for cases where the number of 

regions n is large. A computationally efficient alternative is to sample from univariate normal 

conditional distribution for each parameter iθ  conditional on all other iθ−  where 

1 1 1( , ..., , , ..., )i i i nθ θ θ θ θ− − += . 
 

The joint posterior distributions for ,o dρ ρ  take the forms: 

 

2

2 2 2

1
2

( | , , , , , , , ) ( | , ) ( )

| | exp( )
o

o o d d o o o

o o o
T T

p y

B B B
σ

ρ β θ φ σ σ ρ π θ ρ σ π ρ

θ θ

Ω ∝

∝ −
 (42) 

2

2 2 2

1
2

( | , , , , , , , ) ( | , ) ( )

| | exp( )
d

d o d o d d d

d d d
T T

p y

B B B
σ

ρ β θ φ σ σ ρ π θ ρ σ π ρ

θ θ

Ω ∝

∝ −
 (43) 

 

which as noted in Smith and LeSage (2004) is not reducible to a standard distribution. We 

rely on the univariate numerical integration approach described in Smith and LeSage (2004) 

to sample from these two conditional posterior distributions. Specifically, we rely on a 

vectorised expression: 22 ;T
o o o o

T T T T TB B C C Cθ θ θ θ ρ θ θ ρ θ θ= − +  for the conditional 

posterior computed over a grid of h values for oρ  in the interval 1 1
min max[ , ]κ κ− − . For the 

determinant term | | | |o n oB I Cρ= − , we use the sparse matrix methods of Barry and Pace 

(1997) to compute and store tabled values for the determinant over this same grid of h values 

for oρ . This is done prior to beginning the MCMC sampling loop. Having expressed the 

conditional distribution over a grid of dρ  values, we use univariate numerical integration to 

find the normalising constant, and then draw from this numerical approximation to the 

conditional posterior using inversion. 
 

We note that Metropolis-Hastings sampling from these conditional posterior distributions 

would also benefit from this approach to vectorising the distribution over a grid of values for 
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oρ , allowing rapid evaluation of candidate values during sampling. However, there is the 

need to rely on a proposal distribution along with tuning, and the Smith and LeSage (2004) 

procedure produces a draw on every pass through the MCMC sampler. 

 

The joint posterior densities for 2 2,o dσ σ  take the form: 

 

12 2
2

2 2 2

12 21
2

( | , , , , , , ) ( | , ) ( )

( ) exp( ) ( )
n n

o

o o d o o o

g
o o o o

T T

p y

B B
σ

σ β θ φ ρ ρ π θ ρ σ π σ

σ θ θ σ− − + −

Ω ∝

∝ −
 (44) 

 

which results in an inverse gamma distribution for the conditional posterior. A similar result 

applies to 2
dσ , with details again provided in Appendix A: 

 
2 2| , , , , , , ( , )o o d d IG a bσ β θ φ ρ ρ σ Ω ∼  (45) 

 12
na g= +  (46) 

 22o o
T Tb B B gθ θ= +  (47) 

2 2| , , , , , , ( , )d o d o IG c dσ β θ φ ρ ρ σ Ω ∼  (48) 

 1( / 2)c n g= +  (49) 

 22o o
T Td B B gφ φ= +  (50) 

 

4 The Application 
 

In this section we briefly describe the data used (see 3.1) and present the main empirical 

findings in 3.2. These estimates are based on the model and estimation methodology 

described in the previous sections. 

 

4.1   The Patent Citation Data 

Our main data source is the European Patent Office (EPO) database. This is a natural choice 

for the purpose of our study because patents from different national patent offices are not 

comparable with each other. There are different patenting costs, approval requirements, 

citations practices, and enforcement rules across Europe. The focus is on corporate patents in 
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the high-technology sector. High-technology is defined as the ISIC-sectors aerospace (ISIC 

3845), electronics-telecommunication (ISIC 3832), computers and office equipment (ISIC 

3825), and pharmaceuticals (ISIC 3522). We used MERIT’s concordance table (Verspagen, 

Moergastel and Slabbers 1994) between these ISIC-sectors and the 628 patent subclasses of 

the International Patent Classification (IPC) to identify such patents from the universe of 

European patents.  

 

Our patent data set includes all the high-technology patents with an application date in the 

years 1985-2002, totalling 177,424 patents. Data on the inventor his/her location, the assignee 

(i.e. the legal entity that owns the patent), the time of application, the technology of the 

invention as captured by IPC codes, and EPO patent citations are the main pieces of 

information from this file. We selected patents assigned to non-government organisations 

located in Europe, as our interest is on interfirm knowledge spillovers.  

 

Patent citations is a phenomenon that derives from the relationship between two inventions or 

inventors as evidenced by a citing patent and cited patent. The data on this relationship come 

in the form of citations made (i.e., each patent lists references to previous patents). To identify 

the citation flows we need a list of cited and citing patent applications. This requires in fact 

access to all citation data in a way that permits efficient search and extraction of citations not 

by the patent number of the citing patent but by the patent number of the cited patent.  

 

The observation of citations is subject to a truncation bias because we observe citations for 

only a portion of the life of an invention, with the duration of that portion varying across 

patent cohorts. This means that patents of different ages are subject to different degrees of 

truncation. To overcome this problem we have identified all the pairs of cited and citing 

patents where citations to a patent are counted for a window of five years following its 

issuance. The analysis is, thus, confined to 1985-1997 in the case of cited patents while citing 

patents appearing in 1990-2002 are taken into account. Although the five-year horizon 

appears to be short, it does capture a significant amount of a typical patent's citation life. Note 

that the mean citation lag of all high-technology patent citations in 1985-2002 is 4.62 years.  

 

Given our interest on pure externalities (i.e., on interfirm knowledge spillovers), citations to 

patents that belong to the same assignee (so-called self-citations) were eliminated, resulting 

into 98,191 interfirm patent citations. The elimination of self-citations remains far from 
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satisfactory. Although we have checked the sample for cases where company names are 

sufficiently similar to identify self-citations between parents and their subsidiaries, and joint 

ventures, this in effect can only get us so far.  

 

The spatial interaction modelling perspective shifts attention from individual patent citations 

to interregional patent citations or from the dyad "cited patent – citing patent" to the dyad 

"cited region – citing region". We have chosen n = 188 regions, generally NUTS-2 regions for 

the EU-15 countries and NUTS-0 regions for the other countries. NUTS is an acronym of the 

French for “nomenclature of the territorial units for statistic”, which is a hierarchical system 

of regions used by the statistical office of the European community for the production of 

regional statistics. At the top of the hierarchy are the NUTS-0 regions (countries), below 

which are NUTS-1 regions (regions within countries) and then NUTS-2 regions (subdivisions 

of NUTS-1 regions). In the case of cross-regional inventor teams we have used the procedure 

of multiple full counting which rather than fractional counting does justice to the true integer 

nature of patent citations, but gives the interregional cooperative inventions greater weight. 

 
Table 1: Descriptive Statistics on the (188, 188)-Patent Citation Matrix 
 

  Patent Citations 

 Number of Matrix 
Elements* Number Mean Standard 

Deviation Min. Max. 

All Elements 35,344 98,191 2.77 16.23 0 1,408 

Intraregional Links 188 11,371 60.48 152.05 0 1,408 

Interregional Links 35,156 86,820 2.46 11.14 0 351 

Positive Interregional 
Links 

11,468 86,820 7.57 18.49 1 351 

National Interregional 
Links 

3,952 25,341 6.41 20.02 0 351 

International 
Interregional Links 

31,204 61,479 1.97 9.31 0 290 

* Elements of the n-by-n citation matrix 

 

Table 1 provides some basic information about the n-by-n citation matrix (n = 188). The 

matrix contains N = n2 = 35,344 elements with a total of 98,191 citations between high-

technology firms. The mean number of citations between any two regions (including 
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intraregional flows) is 2.77, but the standard deviation is rather high. Interregional citations 

show a highly skewed distribution. About two thirds of all pairs of regions (23,688 pairs) 

never cite each other's patents. The frequency of patent citations gradually declines for more 

intensive citation links. There are only 90 pairs of regions for which the number of citations is 

100 or more. The average number of citations for all interregional pairs is 2.46 and the 

average for those that cite each other 7.57. Table 1 indicates, moreover, that national patent 

citations are more frequent than international ones.  

 

4.2   Empirical Results 

The explanatory variables matrix contained the origin variable measured in terms of the log 

number of patents in the knowledge producing region in the time period 1985-1997, the 

destination variable measured in terms of the log number of patents in the knowledge 

absorbing region in the time period 1990-2002, and four separation variables: geographical 

distance measured in terms of the great circle distance (in km) between the regions’ economic 

centres, technological proximity between the origin and destination regions in terms of an 

index developed by Maurseth and Verspagen (2002), a border dummy variable measured in 

terms of the existence of country borders between the origin and destination regions and a 

language dummy variable to reflect whether origin and destination regions have different 

languages.  

 

The Bayesian coefficient estimates for these explanatory variables’ highest posterior density 

intervals are reported in Table 2, alongside the Maximum Likelihood (ML) Poisson estimates 

and associated p-values and t-statistics from the study by Fischer, Scherngell and 

Jansenberger (2006). Examining the estimates associated with the covariates in the model we 

see that all estimates are significantly different from the Maximum Likelihood Poisson spatial 

interaction estimates using the 0.05 and 0.95 Bayesian posterior density intervals. 

 

We observe a lower elasticity of response of the flows to the origin and destination variables 

in the Bayesian model, with estimates around 0.76 and 0.83 versus 0.92 and 0.89 in the 

conventional Poisson spatial interaction model. Intuitively, the introduction of individual 

effects for the origins and destinations results in a model that places less reliance on the origin 

and destination variables. This seems plausible as the Bayesian effects model allows for 

spatial heterogeneity.  
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Table 2: Results from Bayesian and Maximum Likelihood Estimates  

Bayesian MCMC Maximum Likelihood 

Variables Lower  0.05 
credible 
interval 

Posterior 
mean 

Upper 0.95 
credible 
interval 

Estimate 
(p-value) t-statistic 

Origin  

Destination  

Distance  

Country border   

Language barrier 

Technological proximity  

Intercept 

0.7471 

0.8134 

-0.1993 

-0.5320 

-0.0056 

1.9129 

-9.2127 

0.7618 

0.8338 

-0.1952 

-0.5125 

0.0138 

1.9483 

-8.9346 

0.7870 

0.8516 

-0.1912 

-0.4925 

0.0337 

1.9851 

-8.7817 

0.915 (0.000)  

0.885 (0.000)  

-0.321 (0.000)  

-0.533 (0.000)  

-0.031 (0.000) 

1.219 (0.000) 

-10.881 (0.000) 

138.24 

140.95 

-22.88 

-11.50 

-0.72 

9.32 

-87.61 

oρ  

dρ  
2
oσ  
2
dσ  

-0.0080 

-0.0560 

0.4502 

0.3918 

0.1786 

0.1337 

0.5489 

0.4774 

0.3530 

0.3210 

0.6643 

0.5863 

 

 

Notes: The origin variable is measured in terms of the log number of patents (1985-1997) in the knowledge 
producing region i, the destination variable in terms of the log number of patents (1990-2002) in the knowledge 
absorbing region j. Geographic distance is measured in terms of the great circle distance [in km] between the 
economic centres of the regions i and j, country border effects in terms of the existence of country borders 
between regions i and j, language barriers in terms of the existence of different languages in the regions i and j, 
and technological distance in terms of the technological proximity index developed by Maurseth and Verspagen 
(2002). The Maximum Likelihood estimate of dispersion is 0.725 and highly significant (see Fischer, Scherngell 
and Jansenberger 2006) which points to the presence of overdispersion that is modelled by the Bayesian Poisson 
spatial interaction model with spatial effects.  

Distance exerts a negative impact on knowledge flows as we would expect, but this is less 

important in the Bayesian effects model than in the conventional Poisson model. Here too, 

this seems a plausible result as the introduction of spatially structured origin and destination 

effects should reduce the importance played by geographical distance in the non-spatial 

Poisson model. Borders also exert a negative impact on knowledge flows and we see a 

Bayesian estimate that is close to the non-Bayesian parameter magnitude. The border effect is 

2.5 times as large as the distance effect. High-technology related knowledge tends to flow 

much more easily within countries than between countries.  

 

The introduction of the spatial effects for origins and destinations makes language barriers not 

significantly different from zero. Technological similarity between the regions enhances 

knowledge flows as we would expect and the Bayesian estimate is about 1.5 times that from 
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the conventional Poisson model, and about ten times larger then the distance effect. This 

indicates that knowledge flows are industry specific and occur most often between regions 

that are located close to each other in technological space. Technological proximity matters 

more than geographical proximity. By way of summary, the findings correspond well to the 

findings of the previous study, but the sensitivity of knowledge flows to the covariates is more 

pronounced in the Bayesian random effects model than in the standard Poisson model.  

 

Turning attention to the parameters associated with the spatially structured origin and 

destination effects, we note that the origin ρ  estimate (the spatial dependence parameter oρ ) 

is (very nearly) different from zero using a 0.05 level, but the destination ρ  is not 

significantly different from zero. It is important to keep in mind, that, when ρ  is zero, we still 

have normally distributed random effects that account for heterogeneity in the sample. dρ  

equal to zero simply indicates that latent unobservable effects creating heterogeneity 

surrounding the destinations do not exhibit a spatial dependence character. That is, they do 

not necessarily look like those of the neighbours to the destinations. With regard to the origin, 

the patterns of heterogeneity captured by the spatially structured effects do exhibit weak 

spatial dependence. This means that the magnitudes of the effects tend to be similar to those 

from neighbouring regions. We might interpret this to mean that similar latent unobservable 

forces are at work, or that our model does not have covariates to explain these forces at work. 

The estimate for the variance of the origin effects is around 20 percent larger than that for the 

variance of the destination effects, suggesting more volatility in the origin effects than those 

assigned to the destinations. 

 

5  Summary and Conclusions  

 
A Bayesian hierarchical Poisson spatial interaction model that includes latent spatial effects 

structured to follow a spatial autoregressive process was introduced here to investigate 

knowledge spillovers across Europe, as captured by patent citations. The model deals with 

overdispersion arising from omitted origin and destination variables using structured regional 

or spatial effects.  
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Individual effects estimates are notoriously difficult to estimate with precision in conventional 

hierarchical linear models (see, for example, Gelfand, Sahu and Carlin 1995, Christensen, 

Roberts and Sköld 2005). Our approach to structuring two sets of regional/spatial effects 

parameters overcomes these problems in two ways. First, the spatial autoregressive structure 

placed on the latent effects parameters for the origin depend on one hyperparameter 

measuring the strength of spatial dependence and another representing a scalar variance 

parameter. These two parameters are introduced in the context of a sample of n2 = N 

observations, where n = 188 regions and N represents the sample of origin-destination pairs 

that arise from vectorising the origin-destination flow matrix. The N = n2 sample size arises 

from vectorising an n-by-n origin-destination flow matrix Y, where the rows of the matrix Y 

reflect counts of cited patents (origins) and the columns reflect counts from regions citing the 

patents (destinations). We estimate only n latent regional origin effects parameters, one for 

each region treated as an origin, allowing us to rely on n sample data observations for each of 

the i = 1, …, n origin effect parameter estimates. In fact, since the n origin effects parameters 

are derived from the two hyperparameters that completely determine the spatial 

autoregressive process assigned to govern these processes, we could view this as relying on a 

sample of N observations to estimate the two parameters. A similar situation holds for the 

case of the n destination effects estimates for the patent citing regions.  

 

Second, the spatial autoregressive structure assumed to govern the origin and destination 

effects introduces additional sample data information in the form of an n-by-n spatial 

contiguity matrix that describes the spatial connectivity structure of the sample regions. This 

additional spatial structure in conjunction with the spatial autoregressive process assumption 

provides a parsimonious parameterisation of the regional effects parameters. This is in 

contrast to the typical assumption of a normal distribution with zero mean and constant scalar 

variance assigned as a prior for non-spatial latent effects parameters. Our approach of 

estimating two sets of n latent effects based on a sample of size N = n2 also differs from the 

conventional approaches that estimate a latent effect parameter for all sample observations, 

which would be N in our case. 

 

Estimation of the model is via MCMC sampling based on data augmentation schemes. The 

results provide evidence that knowledge spillovers are geographically localised. National 

borders have a negative impact on knowledge flows, and this effect is very substantial. 

Knowledge flows are larger within countries than between regions located in different 
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countries. The results also indicate that geographical proximity matters, while also suggesting 

that these effects are much smaller than the border effects. Knowledge spillovers occur most 

often between origin-destination regions that belong to the same country and are in 

geographical proximity. With regard to the origins, the patterns of heterogeneity captured by 

spatially structured effects do exhibit weak spatial dependence. This means that effects tend to 

be similar in size to those from neighbouring regions. This indicates that similar latent 

unobservable forces are at work or that our model does not include origin variables to explain 

these forces at work. Geography matters, but technological proximity tends to overcome 

geographical proximity. Interregional knowledge flows seem to follow particular 

technological trajectories, and occur most often between regions that are located in 

technological space not too far from each other.   

 

Acknowledgement Two authors gratefully acknowledge the grant no. 19282 provided by the  
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Appendix A: Details regarding the MCMC sampler 

 

First we show that the conditional posterior for β  takes the multivariate from (see Equation 

(31) in the running text): 
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 (A1) 

 

where (see Equations (33) and (34) in the running text) 

 
1( )TX y V Wβµ θ φ−= Ω + +   (A2) 

1 1( )TX X Tβ
− −Σ = Ω + .  (A3) 
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In this appendix we follow Smith and LeSage (2004), and derive a sequence of univariate 

conditional posterior distributions for each component of θ  and φ  that allows the MCMC 

sampling scheme to be applied to models involving large numbers of regions n while avoiding 

matrix inversion of the n-by-n matrices required for the multivariate normals set forth in the 

text of the paper. For small problems involving n < 100 regions, it is probably faster to simply 

carry out the matrix inversions, but no experiments have been carried out to assess the relative 

computational trade-offs here. 

 

We begin with the observation of Smith and LeSage (2004) in a similar context as in (A4), the 

expression for the multivariate variance-covariance θΣ  does not involve inversion. Since the 

univariate conditionals for each component iθ  of θ  must be proportional to this density, it 

follows that the mean and variance for a sequence of univariate normals for each component 

of  θ  can be calculated. 

 

If  we let 1 1 1( , ..., , , ..., )i i i nθ θ θ θ θ− − += , for each i = 1, …, n, then 
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 (A4) 

 

This expression can be reduced to terms involving only iθ  as follows. First, let 

1( ) ,T TV y X Wϕ β φ−= Ω + +  with iϕ  representing the ith element of the vector ϕ . Rewriting 

the expression in the brackets in (A4) as 

 

2
2 11 [ 2 ] 2

o

T T T T T T T
o oV V V V V

σ
θ θ ρ θ θ ρ θ θ θ θ ϕ θ−− + + Ω − , (A5) 

 

we permute indices using ( , )T
i iθ θ θ−= , and then derive expressions for TVθ θ  and T TV Vθ θ :  

 



 25

( ) ( )
j ij

T T T j i
j ij i i i j ji ij

j i j i

v
V v v v Q

Q

θ
θ θ θ θ θ θ θ θ≠

−
≠ ≠

⎛ ⎞⎛ ⎞ ⎜ ⎟= + = + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑
∑ ∑  (A6) 

 

where Q denotes a constant not involving parameters of interest. A similar expression arises 

for: 
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where ivi  represents the ith column of V, and iV−  the n-by-(n-1) matrix containing all columns 

of V except column i, where 1 1 1( ,..., , ,..., ) .T
i i i nV v v v v− − +=  

 

In addition to the above expressions, we note that: 
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2 2 .T
i i Qϕ θ ϕ θ− = − +  (A10) 

 

We can use these expressions to rewrite the conditional posterior for iθ as 
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2
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o o

T
i i i ia v vρ

σ σ
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which indicates that: 
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2
1

1| , , , , , , , .i
i i o o

i i

bR y N
a a

θ θ β ρ σ τ−

⎛ ⎞
⎜ ⎟
⎝ ⎠

∼  (A14) 

 

A similar derivation leads to ( | )iφ i . The conditional posteriors for 2
θσ : 
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2 2

1 22
2

2 2 2

12 21
2

( 1) 22
2

( | , ) ( | , ) ( )

( ) exp( ) ( ) exp( )
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n

o o
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o

o o o

ggT T
o o o o

g gT T
o o o

p y

B B

B B

θ

σ σ

σ

σ υ π θ ρ σ π σ

σ θ θ σ

σ θ θ

− +

− + +

∝

∝ −

∝ − +

 (A15) 

 

which is proportional to the inverse gamma distribution reported in the text. A similar 

approach leads to 2( | , )p yφσ υ . 

 

 

Appendix B: Sampling schemes for τ  and R 

 

The material in this appendix is reproduced from Frühwirth-Schnatter and Wagner (2004) for 

the convenience of the reader. We present a two-block sampler for the inter-arrival times 

parameters , 1,..., 1, 1, ...,ij ij y i Nτ = + =  and the component indicators , 1,..., 1,ij ir j y= +  

1, ...,i N= . We assume starting values for the inter-arrival times and component indicators, 

which Frühwirth-Schnatter and Wagner (2004) suggest might be set in the following fashion. 

For the inter-arrival times, rely on the observed counts yi and set iλ  = yi in the procedure 

described below to sample inter-arrival times. For cases where yi = 0, we set iλ  = 0.1, a small 

value in the procedure described below. 

 

Starting values for the component indicators can be set to random draws from 1 to 5. The 

sampling steps for R and τ  also presume starting values for the parameters , , .β θ φ  

Maximum Likelihood estimates from a Poisson regression are used for the parameters .β  

Starting values for the vectors ,θ φ  are generated from: 2 1[0, ( ) ]n o o o
TN B Bθ σ −∼  with the 
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value for oρ  in o n oB I Wρ= −  set to 0.5 and 2
oσ  = 0.5. Similarly, initial values for 

2 1[0, ( ) ]n d d d
TN B Bφ σ −∼ , with identical values for dρ , 2

dσ  as in the case of θ . 

 

Given these initial values, the sampler for τ  and R conditional on knowing υ  involves 

sampling inter-arrival times for 1, ...,i N=  setting exp( )i izλ δ=  and m = yi: 

 

(a) if yi > 0, sample order statistics ,(1) ,( ), ...,t t mε ε  using m uniform random deviates and 

define the inter-arrival times ijτ  based on the increments: ,( ) ,( 1) , 1, ..., ,ij i j i j j mτ ε ε −= − =  

where we set ,(0) 0,iε =  

(b)  the final arrival time ,( 1)i mτ +  we set: ,( 1) 1
1 ,m

i m ij ij
τ τ ς+ =

= − +∑  where ( ).i iς ξ λ∼  

 

The samples for each 1,..., 1ij y= + , component indicator rij conditional on τ , υ  come from 

the following discrete density: 

 

Pr( | , ) ( | , )ij ij ij ij kr k p r k wτ υ τ υ= ∝ =  (B1) 

2ln1ln ( | , , ) ln
2

ij i k
ij ij k

k

z m
p r k s

s
τ δ

τ ψ υ
+ −⎛ ⎞

= ∝ − − ⎜ ⎟
⎝ ⎠

, (B2) 

 

where the quantities 2( , , ), 1,...,5k k kw m s k =  are those of the finite mixture approximation 

given in Table 1 of Frühwirth-Schnatter and Wagner (2004). 
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