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Abstract. This paper explores the contribution of knowledge capital to total factor productivity 

differences among regions within a regression framework. We provide an econometric 

derivation of the relationship and show that the presence of latent/unobservable regional 

knowledge capital leads to a model relationship that includes both spatial and technological 

dependence. This model specification accounts for both spatial and technological dependence 

between regions, which allows us to quantify spillover impacts arising from both types of 

interaction. Sample data on 198 NUTS-2 regions spanning the period from 1997 to 2002 was 

used to empirically test the model, to measure both direct and indirect effects of knowledge 

capital on regional total factor productivity, and to assess the relative importance of knowledge 

spillovers from spatial versus technological proximity. 
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1 Introduction 

 

Recent empirical literature on economic growth has shown that differences in income levels, 

both at country and regional levels, are mainly due to disparities in total factor productivity 

(TFP). Easterly and Levin (2001), for example, report that more than 90 percent of the 

differences in growth rates among countries are explained by total factor productivity rather than 

traditional factor accumulation. Moreover, a strong stylized fact that emerges from the empirical 

literature is that regional disparities are longer and more persistent when compared to cross-

country differences, at least within the industrialized countries (see Magrini 2004 for a review). 

 

Since the differences in productivity turn out to depend on the efficiency levels, the attention of 

economists has been increasingly devoted to search for additional factors that may contribute to 

account for such disparities. Several explanations for the total factor productivity gap have been 

put forward, but knowledge capital appears to play a key role (see, Grossman and Helpman 

1994). 

 

The focus of this paper is to show how the latent unobservable nature of regional knowledge 

capital in the context of a standard total factor productivity regression relationship can lead to an 

econometric model specification that contains both spatial and technological dependence. Total 

factor productivity is defined as output (in terms of gross value added) per unit of labour and 

physical capital combined. The paper constructs patent stock measures of regional knowledge 

endowments using data on patent applications. These regional stocks represent a proxy for 

predetermined knowledge (outputs) generated from past R&D investments (inputs)
 1

. 

 

It seems plausible to assume that there exist some unobservable regional stocks of knowledge 

capital since many authors note the limitations of patents as a measure of useful/effective 

knowledge/innovation especially at the regional level (Autant-Bernard and LeSage 2010, Parent 

and LeSage 2008). This assumption in conjunction with positive spatial dependence in 

unobserved regional knowledge leads to an interesting econometric result. Positive spatial 

                                                 
1
 In using patent stocks to proxy regional knowledge stocks, this paper builds on previous work by Robbins (2006) 

and Fischer et al. (2009), but departs from this prior work. These studies – using fixed or random effects panel 

data models – provide evidence that knowledge spillovers and their productivity effects are to a substantial degree 

geographically localized.. 
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dependence means that large unobserved knowledge capital for a region such as Ile de France 

implies high levels of unobservable knowledge in neighbouring regions as well. Similarly, lower 

levels of unobservable knowledge for a French region such as the Corse imply low levels of 

unobservable knowledge in neighbouring regions. Since many studies have found evidence of 

positive spatial dependence in measured regional knowledge/innovation, it seems plausible that 

unmeasured regional knowledge also exhibits positive spatial dependence. The conjunction of 

these two phenomena leads to an extension of the standard spatial Durbin model (SDM) 

specification that includes both spatial as well as technological dependence structures.  

 

We show how this extended model can be estimated and how to quantify the knowledge 

spillover impacts arising from spatial and technological proximity between regions. The 

empirical application illustrates how to correctly assess the relative importance of spatial versus 

technological connectivity between regions in determining direct and indirect effects of 

knowledge capital on regional factor productivity, using a simple extension of the LeSage and 

Pace (2009) approach.  

 

It seems plausible that the econometric issues we raise here also apply to a wider range of 

models that have been used to explore how innovation/knowledge explains variation in regional 

growth and income levels. However, we focus our attention on the regional total factor 

productivity relationship. There are a number of motivations for this focus. First, the TFP 

relationship can be viewed as using residuals from a regional production function as the 

dependent variable in a (log) linear regression, where the dependent and candidate explanatory 

variables are less controversial than in the regional growth literature. In fact, we develop our 

reasoning using a single measured explanatory variable reflecting regional knowledge stocks and 

posit the existence of a single latent unobservable variable reflecting unmeasured regional 

knowledge stocks. A second motivation for the TFP relationship is that it has received less 

attention in the regional science literature (see Smith, 1999 and Fischer et al. 2006 for 

exceptions). 

 

The remainder of the paper is organized as follows. Section 2 outlines the framework for 

assessing the contribution of knowledge capital to regional total factor productivity when faced 

with unmeasured regional knowledge that exhibits spatial dependence. Section 2.1 starts with an 

expanded version of the standard regional Cobb-Douglas production function as an accounting 
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format – and not as an estimation framework – in order to isolate the contribution of knowledge 

capital to total factor productivity, and leads to a simple log-linear non-spatial relationship. 

Section 2.2 shows how unobserved or unobservable forms of knowledge capital (such as tacit 

knowledge) in conjunction with observed proxies measured by patent stocks in this study, will 

lead to a spatial regression model when both types of regional knowledge capital exhibit spatial 

dependence and non-zero covariance. 

 

The resulting spatial Durbin model form is extended in Section 2.3 to the case where the latent 

unobservable knowledge exhibits positive technological dependence in addition to spatial 

dependence. This extension is in accordance with the increasing evidence that interregional 

knowledge flows tend to follow particular technological trajectories (see, for example, Fischer et 

al. 2006, and LeSage et al. 2007, Parent and LeSage 2008). The extended model produces a type 

of SDM specification that includes both spatial as well as technological connectivity among 

regions, and we discuss empirical tests that can be used to determine the significance as well as 

the relative magnitudes of both types of knowledge spillover effects, arising from regional 

knowledge stocks on regional total factor productivity. Another important methodological 

contribution of this paper is correct assessment of spillover effects, based on the approach 

suggested by LeSage and Pace (2009). 

 

Section 3 uses a six-year sample of 198 NUTS-2 regions over the period 1997 to 2002 to 

empirically implement the models. Section 3.1 provides details on the construction of the total 

factor productivity and the patent stock measures. Bayesian Markov Chain Monte Carlo 

estimates and log-marginal likelihood model comparison tests are presented in Section 3.2 to 

identify the extent of the knowledge diffusion process among regions, in terms of both 

geographical and technological proximity. Section 3.3 discusses scalar summary measures of 

direct and spillover impacts associated with changes in knowledge stocks that allows a 

comparison of the magnitude of spatial versus technological spillovers. 

 

2    The analytical framework for assessing the contribution of knowledge capital 

 

2.1 The production function and total factor productivity 
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The analytical framework for the study considered here is the regional Cobb-Douglas production 

function augmented by including knowledge capital as an extra input that yields the following 

basic relationship between output and knowledge capital 

 

im im im
y x kα β= +   (1) 

 

where 
im

y  is the log of output Y of region 1,...,i N=  at time 1,..., ,m M=  x  the log of an index X 

of conventional inputs such as physical capital and labour, and k  a measure of cumulated 

knowledge or knowledge capital K in log form. β  is the elasticity of output with respect to 

knowledge capital, and α  the elasticity with respect to the index of conventional inputs. We 

follow the convention that lower case letters denote logs and upper case letters levels, and focus 

on a value-added specification to simplify the exposition. The functional form of this equation, 

linear in the logarithms of the variables (that is, Cobb-Douglas) is to be taken as a first 

approximation to a potentially much more complex relationship. 

 

 

For the purpose of this paper we define the total input index as 1s s

im im im
X L C

−=  where L denotes 

labour, C physical capital, and s is the observed factor share of labour. Assume that s is observed 

correctly and proportional to the true coefficient of labour [that is, 1 1 2/ ( )s α α α= +  and 

1 2 1α α+ = ], and that there is no error in computing the true relative shares of labour and 

physical capital. Then the log of region’s i total factor productivity at time m can be defined in 

the usual way as 1 1(1 )
im im im im

tfp y l cα α= − − − . Measured total factor productivity then depends 

on the contribution of knowledge capital, but not on the level of other inputs: 

  

im im
tfp kβ=   (2) 

 

where tfp  denotes the log of total factor productivity. Of course, Eq. (2) represents a rather 

simplistic relationship based upon a whole string of untenable assumptions, the major ones being 

a Cobb-Douglas production technology with constant returns to scale with respect to physical 

capital and labour. Nevertheless, this simple relationship is a convenient departure point to show 

how the presence of latent unobserved regional knowledge will lead to a spatial regression model 

when both types of knowledge capital, observed and unobserved, exhibit spatial dependence and 



 

6 

 

non-zero covariance. Omitting spatial lags of the dependent and explanatory variables from this 

relationship will then result in biased and inconsistent estimates for the parameters relating the 

impact of knowledge stocks to regional total factor productivity.  

 

The stocks of knowledge capital are proxies for the state of knowledge. The knowledge created 

by an agent is added to the stock of existing knowledge, to which other agents potentially have 

access. Even if the benefits of research are fully appropriated by an agent, in the sense that an 

agent acquires a monopoly right to use the results of research efforts, the knowledge created may 

diffuse across regions through various transmission channels such as publications, seminars, 

personal contacts, reverse engineering, joint ventures, and other means (Park 1995). Hence 

knowledge is viewed as non-rival, but partially excludable (Romer 1990). 

 

In a world of regions with exchange of information and dissemination of knowledge a region’s 

productivity depends not only on its own knowledge capital, but also on its capacity to attract 

and assimilate knowledge produced elsewhere. There are different approaches to account for 

cross-region knowledge spillovers. In this study we follow Fischer et al. (2009), by assuming 

that regions have greater access to the knowledge resources of neighbouring than non-

neighbouring regions. Thus, we can express the relationship between knowledge capital and total 

factor productivity in matrix form as follows: 

 

tfp kβ=  (3) 

 

where tfp and k are the N-by-1 vectors reflecting (logged) cross-sectional observations on total 

factor productivity and knowledge capital, respectively, in a world of N regions, and the 

knowledge capital vector k follows a spatial autoregressive process so that 

 

k W k uφ= +  (4) 

 
2(0, )
u N

u Iσ∼ N . (5) 

 

W is the N-by-N spatial weight matrix with 0
ij

W >  when observation j is a spatial neighbour to 

observation i, and  0
ij

W =  otherwise. We also set 0
ii

W = , and assume that W  has row-sums of 

unity. Note that each element of  Wk  represents a linear combination of elements from the 
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vector k associated with neighbouring locations. The ith row of Wk  captures region’s i external 

stock of knowledge capital, for 1,...,i N= . The scalar parameter φ  reflects the strength of spatial 

dependence in k, and u is an N-by-1 vector of disturbances distributed 2(0, )
u N

IσN . Of course, 

there is a great deal of empirical support in the literature for this type of specification where 

measured regional knowledge depends positively on that from neighbouring regions (see, for 

example, Anselin, Varga and Acs 1997, Autant-Bernard 2001, Fischer and Varga 2003). 

 

2.2 From the basic relationship to a spatial model relationship 

 

Patent stock measures have several advantages over alternative measures of knowledge capital
2
 

but miss those parts of the knowledge stock that are not codified in the form of patent 

documents. Let K ∗  represent knowledge not captured by the patent stock measure K . For 

convenience, we call K  the observed and K ∗  the unobserved or unobservable (regional) stocks 

of knowledge capital. We show how K ∗  in conjunction with K  will lead to a spatial regression 

relationship if both exhibit spatial dependence, and are correlated by virtue of common 

(correlated) shocks to the spatial autoregressive processes governing these variables. 

 

Consistent with our assumption that regions have greater access to the knowledge resources of 

neighbouring regions captured by ,K  we assume that the unobserved components of knowledge 

capital exhibit spatial dependence of the type assigned to K . Specifically, we assume that  

 

k W k vθ∗ ∗= +  (6) 

 
2(0, )
v N

v Iσ∼ N  (7) 

 

where logk K∗ ∗= is an N-by-1 vector representing the unobserved elements of knowledge 

endowment, for each of the N regions. The scalar parameter θ  reflects the strength of spatial 

dependence in k
∗ , W is defined as above and v is a zero mean, constant variance disturbance 

                                                 
2
 One problem with the R&D input measure widely used in the literature is that some double counting occurs 

because R&D labour and capital are counted twice, once in the available measures of physical capital and labour, 

and again in the measure of R&D capital stocks (see Griliches and Mairesse 1984). By using patents we avoid this 

problem. But patents have their own well-known weaknesses. To the extent that patents document inventions, an 

aggregation of patents is arguably more closely related to a stock of knowledge than is an aggregation of R&D 

expenditures (see Robbins 2006). 
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term. Moreover, we assume that k  and k
∗  are correlated by virtue of common (correlated) 

shocks to the spatial autoregressive processes governing these variables: 

 

v uγ ε= +  (8) 

 
2(0, )

N
Iεε σ∼ N . (9) 

 

The relationship in Eq. (8) reflects simple (Pearson) correlation between shocks u and v to 

knowledge capital stocks k  and k
∗  when the scalar parameter 0γ ≠ . ε  is a zero mean, constant 

variance disturbance term. We note that correlation in the shocks implies non-zero covariance 

between k  and .k
∗  

 

If we begin with the relationship between knowledge capital and total factor productivity that 

captures the influence of unobserved knowledge elements, 

 

tfp k kβ ∗= +  (10) 

 

and apply the definitions given in Eqs. (4), (6) and (8) we arrive at
3
  

 

1 2tfp W tfp k W kθ δ δ ε= + + +  (11) 

 

where 

 

1δ β γ= +  (12) 

 

2 ( )δ θ β φ γ= − + . (13) 

 

The model relation given by Eqs. (11)-(13) represents what has been labelled a spatial Durbin 

model (SDM) by Anselin (1988). This model subsumes the spatial error model (SEM): 

                                                 
3
 See LeSage and Pace (2009) for a more general and detailed exposition of this type of result. 
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1( ) ( )
N N

I W tfp I W kθ θ δ ε− = − +  as a special case when, first, k  and k
∗  are not correlated, 

and, second, the parameter restriction 2 1δ θ δ= −  holds
4
. 

 

Three implications are worth noting. First, a spatially dependent omitted variable that is 

correlated with the stock of knowledge measure included in the model will invalidate the 

parameter restriction and lead to a spatial regression model that must contain a spatial lag of the 

tfp variable. This is true whenever γ  is not equal to zero, which rules out the parameter 

restriction 2 1δ θ δ= − . 

 

Second, if the spatial Durbin model relation between knowledge capital and total factor 

productivity is consistent with the sample data, but not the SEM model relation, omitting spatial 

lags of the tfp and knowledge capital variables from the empirical model will result in biased and 

inconsistent estimates for the parameters (see Pace and LeSage 2010) relating the impact of 

knowledge capital to total factor productivity, the focus of this study. 

 

A third implication is that calculation of the response of total factor productivity to knowledge 

capital, /tfp k∂ ∂ , will differ depending on which model is appropriate. For the case of the SEM 

model, the coefficient estimates have the usual least-squares regression interpretation, where the 

log-form of the relationship leads directly to elasticity estimates for the response of tfp to 

variation in the levels of knowledge capital across the regions. For this case, there are no spatial 

spillover impacts that arise from changes in knowledge stocks. 

 

In the case of the SDM model, /tfp k∂ ∂  takes a much more complicated form and allows for 

spatial knowledge spillover impacts. These measure the effect arising from a change in 

knowledge capital in region i on total factor productivity in other regions j i≠ . Specifically, Eq. 

(14) shows the partial derivatives which take the form of an N-by-N matrix 

 

                                                 
4
 Note that 0γ =  is a necessary, but not sufficient condition. That is, we might have no correlation between k and 

k
∗
, and still find the restriction 

2 1
δ θδ= −  inconsistent with our sample data. This would point to the need for the 

SDM model specification for reasons other than the omitted variable motivation set forth in this paper. A simple 
likelihood-ratio test of the SEM versus SDM model can be carried out using the log-likelihoods from the two 
model specifications. 
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1

1 2( ) ( ).
N N

tfp
I W I W

k
θ δ δ−∂

= − +
∂

 (14) 

 

LeSage and Pace (2009) have proposed scalar summary measures for the N-by-N matrix of direct 

and cumulative spatial spillover impacts arising from changes in the explanatory variable k  on 

the dependent variable vector representing regional total factor productivity. By cumulative we 

mean that spillovers falling on all neighbours are summed. They point out that the main diagonal 

of the matrix 1

1 2( ) ( )
N N

I W I Wθ δ δ−− +  represents own partial derivatives, which they label 

direct effects, and summarize using an average of these elements of the matrix. The off-diagonal 

elements correspond to cross-partial derivatives, which can be summarized into scalar measures 

of the cumulative spillovers using the average of the row-sums of the matrix elements. LeSage 

and Pace (2009) provide an approach to calculating measures of dispersion that can be used to 

draw inferences regarding the statistical significance of direct or indirect effects. These are based 

on simulating parameters from the normally distributed parameters 1 2, ,δ δ θ  and 2

εσ , using the 

estimated means and variance-covariance matrix. The simulated draws are then used in 

computationally efficient formulas to calculate the implied distribution of the scalar summary 

measures. 

 

2.3 Extension of the model relationship 

 

It has become increasingly common to recognize that geographical proximity represents only 

part of the story of the (disembodied) knowledge diffusion mechanism (see Jaffe 1986, 

Schartinger et al. 2002, Parent and LeSage 2008). Geographical proximity matters, but proximity 

– reflecting technological networks of connectivity between regions – appears to be prevalent 

(see Fischer et al. 2006). To account for the technological dimension to the spillover mechanism, 

we assume that a region’s ability to make productive use of another region’s knowledge depends 

on the degree of technological similarity between regions. Technological similarity between 

regions is defined in terms of closeness in a technological space spanned by a number of distinct 

technological fields, where each field has a somewhat unique set of applications. We continue to 

assume that those parts of knowledge capital not captured by the measure k exhibit spatial 

dependence. 
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Thus, the dependence process governing measurable knowledge stocks k now indicates that these 

depend on ‘neighbouring’ regions in technological space rather than conventional ‘neighbours’ 

in a geographical sense reflected by the spatial weight (connectivity) matrix W. The motivation 

for this specification is that codified knowledge is accessible across greater distances to regions 

that work in similar production or scientific fields. That is, field-specific knowledge codified in 

patents ‘travels well’. 

 

Unobserved knowledge stocks k
∗  are specified to exhibit conventional spatial dependence. A 

motivation for this specification is that person-to-person communication becomes relatively 

more important for the diffusion of non-codified forms of knowledge. Patent statistics will 

necessarily miss that part, because codification is necessary for patenting to occur. We assume 

that part of the knowledge generated with the idea leading to a patent is embodied in persons, 

imperfectly codified, and linked to the experience of the inventor(s). This stock of knowledge 

increases in a region as local inventors discover new ideas. It diffuses mostly via face-to-face 

interactions. Following Bottazzi and Peri (2003) we think of it as a local public good as it 

benefits researchers within the region and its neighbourhood, motivating our spatial specification 

for unmeasured knowledge. 

 

Formally, we assume that  

 

k T k uφ= +  (15) 

 

k W k vθ∗ ∗= +  (16) 

 

v uγ ε= +  (17) 

 
2(0, )
u N

u Iσ∼ N  (18) 

 
2(0, )
v N

v Iσ∼ N  (19) 

 
2(0, )

N
Iεε σ∼ N  (20) 

 

where T is an N-by-N technological weight matrix with 0
ij

T >  when region j is a neighbour to 

region i in technological rather than geographical space, and 0
ij

T =  otherwise. We also set 
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0
ii

T = , and assume that T has row-sums of unity. Note that each element of Tk  represents a 

linear combination of elements from the vector k associated with technologically similar regions. 

The ith row of Tk  captures region’s i external stock of knowledge capital, for 1, ..., .i N=  The 

scalar parameter φ  now reflects the strength of technological dependence in k. All other vectors, 

matrices and parameters are defined as in Section 2.2. 

 

Following the same substitutions as in the previous section, applied to Eq. (10), we arrive at the 

following relationship between knowledge capital and total factor productivity 

 

1 2 3tfp W tfp k W k T kθ δ δ δ ε= + + + +  (21) 

 

with 

 

1δ β γ= +  (22) 

 

2δ θ β= −  (23) 

 

3 .δ φ γ= −  (24) 

 

There are a number of points to note here. First, if the parameter 0,φ =  so that no technological 

dependence exists, then 3 0δ =  and this model has the same reduced form as the simpler model 

from Eq. (11). But this is not true of the structural forms for the two model specifications. The 

strength of spatial dependence indicated by the parameter θ  is determined by that of the spatial 

process assigned to govern unobserved forms of knowledge, as in the simpler model with no 

technological dependence. This results from the specification choice made in Eq. (16). The 

specification leads to a reduced form expression for the extended model that nests the simpler 

model when no technological dependence exists. Second, in this extended version of the model 

impacts on tfp from changes in k take the form 

 

1

1 2 3( ) ( ).
N N

tfp
I W I W T

k
θ δ δ δ−∂

= − + +
∂

 (25)  
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Since the parameter 3δ  is significantly different from zero in our empirical application, we can 

use the nested reduced form interpretation to compare the effects of knowledge capital on total 

factor productivity that arise from spatial versus technological proximity. This is done by 

comparing the scalar summary measures proposed by LeSage and Pace (2009) for the model 

specification where we restrict 3 0δ =  to those from the unrestricted model. Effects associated 

with the restricted model are purely spatial whereas those for the unrestricted model represent 

both spatial and technological dimensions of the spillover mechanism. 

 

 

3    An empirical implementation 

 

3.1 The sample data 

 

Our sample is a cross-section of 198 regions representing the 15 pre-2004 EU member states 

over the 1997-2002 period. The units of observation are the NUTS-2 regions
5
 (NUTS revision, 

1999, except for Finland revision 2003). These regions, though varying in size, are generally 

considered to be appropriate spatial units for modelling and analysis purposes. In most cases, 

they are sufficiently small to capture subnational variations. But we are aware that NUTS-2 

regions are formal rather than functional regions, and their delineation does not represent the 

boundaries of regional growth processes very well. 

 

The sample regions include regions located in Western Europe covering Austria (nine regions), 

Belgium (11 regions), Denmark (one region), Finland (four regions), France (20 regions), 

Germany (40 regions), Greece (11 regions), Ireland (three regions) Italy (20 regions), 

Luxembourg (one region), the Netherlands (12 regions), Portugal (five regions), Spain (16 

regions), Sweden (eight regions) and United Kingdom (37 regions). 

 

                                                 
5 We exclude the Spanish North African territories of Ceuta and Melilla, the Portuguese non-continental territories 

Azores and Madeira, Corse, the French Départements d’Outre-Mer Guadaloupe, Martinique, French Guayana and 

Réunion. Two Greek NUTS-2 regions (Ionia Nisia and Voreio Aigaio) that had zero patent stocks were combined 

with neighbouring NUTS-2 regions to avoid outliers in the spatial and technological lag variables. Since matrix 

product Wk, for example, reflects an average of knowledge stocks from geographical neighbours, the introduction 

of zero values in the vector k will produce aberrant observations in the spatial lag vector Wk. 
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Empirical implementation of the two models described in the previous section uses data on total 

factor productivity and knowledge stocks for each of the N regional economies at six points in 

time. Total factor productivity calculations at the regional level require interregionally 

comparable data on regional outputs and inputs. In this study we define tfp in the usual way as 

ln ln (1 ) lnY s L s C− − −⊙ ⊙  and use gross value added data in euro (constant prices of 1995, 

deflated) as measure of output Y. s denotes the N-by-1 vector of regional shares in production 

costs. Following the approach suggested by Hall (1990), s is not calculated as the ratio of total 

labour compensation to value added (the revenue-based regional factor shares), but as cost-based 

factor shares that are robust in the presence of imperfect factor shares. The symbol ⊙  denotes 

the Haddamard (element-by-element) product of the N-by-1 vector of shares, and L regional 

labour and C physical capital. 

 

The data for regional labour come from Cambridge Econometrics. They include only employees, 

not the self-employed for each region. We adjusted these data on labour inputs to account for 

differences in average annual hours worked across countries. This is important because average 

annual hours worked in Swedish manufacturing in the year 1997, for example, were almost 14 

percent lower than in Greek manufacturing. Without adjusting for differences in input usage, 

productivity in Greek and Portuguese regions would be overestimated throughout, while in 

Swedish and Dutch regions underestimated (Fischer et al. 2009). 

 

Physical capital stock data is not available in the Cambridge Econometrics database, but gross 

fixed capital formation in current prices is. Thus, the stocks of physical capital were derived for 

each region i from investment flows, using the perpetual inventory method: 

( 1) ( )(1 ) ( 1)
C

C t C t r I t+ = − + + , where ( )C t  is the stock of physical capital at the end of period t, 

( 1)I t +  gross investment during ( , 1)t t + . We applied a constant rate 
C

r  of ten percent 

depreciation (obsolence) across space and time. The annual flows of fixed investments were 

deflated by national gross-fixed capital formation deflators. The mean annual rate of growth, 

which precedes the benchmark year 1997, covers the period 1990-1997 to estimate initial 

regional physical capital stocks. 

 

Besides the TFP measure, the models also contain a measure of the knowledge capital stock for 

each of the N regions and the six time periods. We use corporate patent applications to proxy 
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knowledge capital. Corporate patents cover inventions of new and useful processes, machines, 

manufactures, and compositions of matter. To the extent that patents document inventions, an 

aggregation of patents is arguably more closely related to a stock of knowledge than is an 

aggregation of R&D expenditures (Robbins 2006). However, a well known problem of using 

patent data is that technological inventions are not all patented. This could be because applying 

for a patent is a strategic decision, so not all patentable inventions are actually patented. Even if 

this is not an issue, as long as a large part of knowledge is tacit, patent statistics will necessarily 

miss that part, because codification is necessary for patenting to occur. All of these issues 

provide a motivation for our approach that posits latent unobservable knowledge stocks. 

 

Patent stocks were derived from European Patent Office (EPO) documents. Each EPO document 

provides information on the inventor(s), his or her name and address, the company or institution 

to which property rights have been assigned, citations to previous patents, and a description of 

the device or process. To create the patent stocks for 1997-2002, the EPO patents with an 

application date 1990-2002 were transformed from individual patents into stocks by first sorting 

based on the year that a patent was applied for, and second the region where the inventor resides. 

In the case of cross-region inventor teams we used the procedure of fractional rather than full 

counting. Then for each region i, patent stocks were derived from patent data, using the perpetual 

inventory method: ( 1) ( )(1 ) ( 1)
K

K t K t r S t+ = − + + , where ( )K t  is the patent stock at the end of 

period t, ( 1)S t +  are knowledge production activities during ( , 1)t t + , measured in terms of 

corporate patent applications, and 
K

r  is a constant depreciation rate. Because of evident 

complications in tracking obsolescence over time, we used a constant depreciation rate 12
K

r =  

that corresponds to the rate of knowledge obsolescence in the US over the past century, as found 

in Caballero and Jaffe (1993). Patent stocks were initialized the same way as physical capital. 

 

 

 

3.2 Estimates and tests of the model assumptions 
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For presentation purposes we will consider the two models shown in Eqs. (26) and (27), where 

we have added an intercept term 0α  and associated N-by-1 vector of ones, Nι , to the models 

introduced in Section 2, to reflect the non-zero mean of the dependent variable tfp : 

 

0 1 2Model1
N

tfp W tfp k W kα ι θ δ δ ε: = + + + +  (26) 

 

0 1 2 3Model 2 .
N

tfp W tfp k W k T kα ι θ δ δ δ ε: = + + + + +  (27) 

 

A pooled model was used because estimates based on a cross-sectional sample for each of the six 

years produced estimates that were within one standard deviation of each other. These estimates 

along with an average standard deviation are reported in Table 1. Pooling over the M  time 

periods involves forming a vector � 1( , ..., )
M

tfp vec tfp tfp= , where vec  represents the “vec” 

operator that stacks the N-by-1 column vectors 
m

tfp , ( 1m … M= , , ), to create an MN -by-1 vector 

for the dependent variable. Similarly, we can form: 1( )
M

k vec k … k= , ,ɶ . The spatial weight matrix 

W  does not change over time, so we can form MW I W= ⊗ɶ  to implement the pooled model.  

 

 

Table 1 about here 

 

 

The -by-N N  technological weight matrix T in Model 2 measures the closeness of regional 

economies in a technological space spanned by 120 distinct technology fields, described by 120 

patent classes of the International Patent Code (IPC) classification
6
. We utilized corporate 

patents applied at EPO with an application date in the years 1990 to 1995 to define the 

technological position of a region, in terms of a 120-by-1 vector with the share of patents filed in 

each of the six years in the IPC categories. This definition reflects the region’s diversity of 

inventive activities of its firms. Following Jaffe (1986), a Pearson correlation coefficient was 

used to measure the technological proximity between any two regions of the sample. A high 

correlation indicates similarity and a low correlation dissimilarity. The matrices ( 1, ..., )
m

T m M=  

                                                 
6
 These patent classes refer to the second level of the IPC classification system that is used to classify inventions 

claimed in the EPO patent documents. 
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were formed for each year by finding the m regions that exhibited the highest correlation 

coefficients with each region. A single value of m was used, but separate matrices form the 

pooled weight matrix 1( , ..., )
M

T diag T T=ɶ  based on the IPC category patenting activities in each 

of the six years. This allows us to express the pooled models in an identical format as in Model 2 

by replacing the -by-1N  vectors, , , ,tfp k Wk Tk  with � , , ,  and  tfp k Wk Tkɶ ɶ ɶɶ ɶ . 

 

 

Table 2 about here 

 

 

Bayesian model comparison methods were used to calculate posterior model probabilities based 

on the log-marginal likelihood for pooled models with varying numbers s  of technological 

neighbours and spatial neighbours r , based on nearest neighboring regions in technological and 

geographical space respectively. The log-marginal likelihoods and posterior model probabilities 

reported in Table 2 are based on LeSage and Parent (2007). Since these models all contain the 

same number of parameters, non-informative priors were used
7
. The log-marginal likelihoods 

and posterior model probabilities in Table 2 used models based on spatial weight matrices 

containing 5r =  to 9r =  nearest neighbours, and technological weight matrices constructed 

using 2s =  to 10s =  nearest technological neighbours. Estimates of spillover impacts arising 

from changes in regional knowledge stocks are dependent on the specification of the spatial and 

technological weight matrices W  and T , as can be seen from the partial derivative in Eq. (25). 

This motivated Bayesian model comparison of alternative matrices W  and T . The posterior 

model probabilities point to eight nearest technological neighbours and indicate seven spatial 

neighbours. Empirical results reported in the remainder of the paper were based on 7r =  and 

8s = .  

 

 

Table 3 about here 

 

 

                                                 
7
 See LeSage (1997) regarding Bayesian MCMC estimation of these models. 
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Pooled estimates for Model 1 and Model 2 are presented in Table 3. These are Bayesian MCMC 

estimates based on non-informative priors, which were nearly identical to maximum likelihood 

estimates. We relied on MCMC estimation to produce a sequence of 5,000 retained draws that 

could be used to construct the measures of dispersion for the effects estimates discussed in the 

next section. It is important to keep in mind that the parameter estimates for 2 3and δ δ  do not 

represent the impact of spatial spillovers arising from regional knowledge stocks. To accurately 

assess the magnitude of spatial spillovers we will rely on the scalar summary measures that 

represent tfp k∂ / ∂  discussed in Section 2. This topic will be taken up in Section 3.3.  

 

One point of interest is whether excluded variables reflecting unobserved or unobservable 

knowledge capital are correlated with the included knowledge stock measure k . This can be 

formally tested by examining the restriction 1 2θ δ δ− =  for Model 1. If this restriction holds, then 

the SEM model is appropriate and the shocks to observed and unobserved knowledge stocks are 

uncorrelated. From the posterior mean estimates for Model 1 in Table 3, we see that 

1 0 0689θ δ− = − .  with a lower 99% interval of –0.0460 and 2 0 0137δ = − . , so we can conclude 

this restriction is not consistent with the estimates.  

 

A likelihood ratio test statistic can be constructed using twice the difference in log-likelihood 

function values from the SDM and SEM models, which is chi-squared distributed with one 

degree of freedom reflecting the single restriction. These two log-likelihood values were -159.4, 

and -181.0, respectively, producing a chi-squared statistic equal to 43.2. Since the 99% critical 

value for a chi-squared deviate with one degree of freedom is 6.315, we can reject the restriction 

as being inconsistent with the sample data. Of note, the log-likelihood function value for Model 2 

equalled -143.3, which is significantly different from that for Model 1, when subjected to a 

likelihood ratio test based on the restriction implied by these nested models.  

 

A second issue is whether the (pooled) knowledge stock variable kɶ  exhibits spatial dependence, 

an assumption we made in deriving Model 1. Using the spatial regression model: 

0 ( )
M

k I W kα θ ε= + ⊗ +ɶ ɶ , we find a maximum likelihood estimate ˆ 0 7249θ = .  and an 

asymptotic t-statistic equal to 33.4, allowing us to conclude that (log) knowledge stocks exhibit 

strong spatial dependence. 
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For the extended Model 2, we tested whether (pooled) knowledge stocks kɶ  exhibit technological 

dependence, using 0k T kα φ ε= + +ɶ ɶɶ . The parameter estimate for φ  is 0 6869.  with a t − statistic 

of 17.9, so we conclude that the assumptions made in constructing Model 2 appear consistent 

with the sample data used here.  

 

3.3 Spillover impacts from knowledge capital on total factor productivity 

 

As indicated in Section 2.2, it is necessary to properly calculate the direct, indirect and total 

effects associated with changes in knowledge stocks on total factor productivity in our spatial 

regression framework. For Model 1 the direct and spillover effects reflect an average of diagonal 

and off-diagonal elements of: 1

1 2
ˆ ˆ ˆ/ [ ( )] [( ) ( ) ]

M N M M N M
tfp k I I I W I I I Wθ δ δ−∂ ∂ = ⊗ − ⊗ ⊗ + ⊗  

which correspond to scalar summary measures of the own and cross-partial derivatives. The set 

of 5,000 retained MCMC draws from estimation were used to construct upper and lower 99% 

credible intervals for these effects estimates, allowing us to test for their statistical significance. 

 

 

Table 4 about here 

 

 

Table 4 shows the posterior mean effects estimates along with 99% credible intervals, which 

indicate that the direct, indirect and total effects for the two models are positive and different 

from zero based on the credible intervals. The indirect effects reported in the table are what 

economists usually refer to as spatial spillovers. We emphasize that it would be a mistake to 

interpret the coefficient estimate 2δ̂  as representing spatial spillover magnitudes in spatial 

regression models that involve spatial lags of the dependent variable. To see how inaccurate this 

is, consider the difference between the coefficient estimates for 2δ  in Table 3 and the true 

indirect effects correctly calculated from the partial derivatives of the spatial regression model. 

Using Model 1 as an example we see that 2δ̂  is not statistically significantly different from zero, 

whereas the true indirect effect estimate is 0.1631 in Table 4, with a lower 0.01 bound of 0.0729 

making it clearly a positive and significant effect.  
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Model 2 allows for both spatial as well as technological spillover effects, and produces the 

largest indirect effects, based on 1

1 2
ˆ ˆ ˆ[ ( )] [( ) ( )

M N M M N M
tfp k I I I W I I I Wθ δ δ−∂ / ∂ = ⊗ − ⊗ ⊗ + ⊗  

1 3
ˆdiag( ) ]

M
T … T δ+ , , . 

 

The interpretation of these partial derivative effects estimates is that changes in knowledge 

stocks would lead to a move from one steady-state equilibrium to a new steady-state (see LeSage 

and Pace 2009). The effects estimates in Table 4 reflect the cumulative impact of knowledge 

stock changes that would arise in the movement between equilibrium steady-states. Since we 

have a cross-sectional model, there is no information regarding the time required for the move 

between steady-states. Given the log-transformation of both the dependent and independent 

variables in our models, the effects estimates have an elasticity interpretation. For Model 1, a 

10% increase in regional patent stocks is associated with a 2.7% increase in factor productivity, 

composed of a 1.1% direct effect and 1.6% indirect effect. For Model 2, a 10% increase in 

regional patent stocks would lead to a 3.7% increase in factor productivity in the new steady-

state equilibrium. Of this, 2.7% represents indirect effects and less than one percent a direct 

effect. 

 

 

Table 5 about here 

 

 

To better understand the scalar summary measures of cumulative direct, indirect and total effects 

over space reported in Table 4, we can carry out a spatial decomposition of the effects estimates 

following LeSage and Pace (2009). This is based on the profile of marginal indirect effects 

associated with each order of the matrix W . Note that we can rely on the asymptotic expansion: 

1 2 2 3 3ˆ ˆ ˆ ˆ[ ( )]
M N M M N

I I I W I I W W Wθ θ θ θ−⊗ − ⊗ = ⊗ + + +ɶ ɶ ɶ … to produce effects estimates for 

first-order neighbours (Wɶ ), second-order neighbours, ( 2
Wɶ ), third-order neighbours ( 3

Wɶ ), etc., 

which is how the marginal indirect effects associated with each order of the matrix 

( 1 10)rW r …= , ,ɶ  were produced. Table 5 shows the marginal indirect effects, which were 

cumulated (to order r=100) to produce the numbers reported in Table 4. The table also reports 
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lower and upper 99% credible intervals constructed from the 5,000 retained MCMC draws, 

allowing us to pass judgement on the statistical significance of the marginal effects estimates. 

 

From the table, we see that the Model 1 indirect (spillover) effects are significantly different 

from zero beginning with the first-order neighbours where .r
W W=ɶ ɶ  They decay to less than one-

half of the 2r =  magnitude by 4r = . There are seven first-order neighbours, and the average 

number of second-order neighbours in 2
Wɶ  equals 18, whereas the average number of third-order 

neighbours in 3
Wɶ  is 30. The spillover impacts decline rapidly as we move to regions that are 

‘neighbours to the first-order neighbours’ ( 2
Wɶ ), and ‘neighbours to the neighbours of the first-

order neighbours’ ( 3
Wɶ ), etc., which seems to indicate geographic localization of the productivity 

effects. From the table we see that Model 1 indirect effects are still positive and significantly 

different from zero for 10
Wɶ , which encompasses around 130 regions on average for our sample. 

However, given our elasticity interpretation of the impacts, the effects for tenth-order neighbours 

equal to 0.0029 are not likely to be economically significant in terms of their impact on total 

factor productivity.  

 

The indirect effects for Model 2 show a large and significant impact when 2r = , and as in the 

case of Model 1, there is a rapid decay as we move to higher-order neighbours. For 4r = , the 

effects are less than one-half of those for 2r = . 

 

The direct effect magnitudes are not presented in Table 5 because they die down very quickly to 

zero. Since these reflect the main diagonal elements of the matrix measuring tfp k∂ / ∂ , we note 

that although the spatial weight matrix W  contains zeros on the main diagonal, the matrices 

2 3W W …, , ,  do not have zero diagonals. This is because a region is a second-order neighbour to 

itself, which has the implication that even the ‘direct effect’ estimates reflect some spatial 

feedback in any model that contains spatial lags of the dependent variable. Despite this, the 

amount of feedback is small for our sample data, as can be seen by the closeness of the direct 

effect estimates for the two models reported in Table 4 and the parameter estimates for 1δ  in 

Table 3. For example, in Model 1, the coefficient estimate for 1δ  is equal to 0 1029.  and the 

direct effect estimate in Table 4 equals 0 1106,.  with the small difference between these two 

magnitudes reflecting feedback effects from neighbours. Similarly, we see small magnitudes 
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separating the estimates for 1δ  from Model 2 in Table 3 and the direct effects estimates reported 

in Table 4, suggesting very little feedback effect.  

 

Having explained issues related to interpreting the direct, indirect and total effects estimates, we 

can consider the magnitudes of these estimates from the two models shown in Table 4. The 

indirect effects or cross-region spillovers from knowledge stocks arising from spatial 

connectivity of the regions are captured by Model 1 as magnitudes around 1.5 times the direct 

effects. In contrast, Model 2 that includes technological connectivity between regions increases 

the knowledge spillover (indirect effects) estimates to nearly triple that of the direct effects. 

Comparing spatial spillovers from Model 1 with spatial and technological spillovers (indirect 

effects) arising from Model 2, we see almost a doubling in spillovers (0.16 versus 0.27). These 

Model 2 indirect effects appear significantly larger than those from Model 1, since the mean for 

the indirect effects from Model 2 fall outside the 95% interval for the Model 1 indirect effects. 

From this, we conclude that both spatial as well as technological proximity of regions is 

important when attempting to measure the impact of knowledge spillovers on regional total 

factor productivity. Our empirical results suggest that both types of interaction play a role, with a 

larger role for technological than spatial connectivity. Specifically, we find spatial spillovers 

 (on average, cumulated over all regions) having a magnitude of 1.5 times the direct/own-region 

impact for a total impact of 2.5, whereas spatial plus technological spillovers (on average, 

cumulated over all regions) have  3 times the spillover impact leading to a total impact of 4. 

 

A policy implication is that setting spatial spillovers to zero (as is done in ordinary regression 

models) would lead to a four-fold underestimate (25 percent of the true value) of positive spatial 

spillover benefits that accrue when cumulating over all other regions. This would of course 

severely bias any cost/benefit study of programs that target or promote regional knowledge 

capital accumulation. Further, ignoring/excluding technological dependence (through the use of 

a spatial regression model alone) would also lead to a less severe (62.5 percent of the true value)  

underestimate of positive spillover benefits accruing to other regions.  

 

Programs that target specific regions will benefit neighbouring regions and the (cumulative) 

magnitude of these benefits can be estimated. In addition, we show how a profile of decay in 

spillovers across neighbouring regions (what we refer to as ‘marginal effects’) can be estimated. 
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We note that if interest is on benefits for a specific region, the methods described here can be 

used to produce measurements/estimates for specific regions rather than the scalar summary 

average over the entire sample. This would involve use of a single row from the matrix of partial 

derivatives shown in Eq. (25). The main diagonal (row) element from this row measures the 

direct effect whereas the sum of off-diagonal (row) elements reflects spillovers to other regions 

(see LeSage and Pace 2009 for additional details). Here again, the spatial profile of benefits 

falling on individual neighbouring regions could be calculated using the same approach as 

illustrated in Table 5. 

 

 

4 Closing remarks 

 

Despite the possible measurement difficulties and reservations with our simple reduced-form 

regression model framework for assessing the contribution of knowledge capital to total factor 

productivity, our study has produced a number of interesting empirical results. First, evidence 

suggests that total factor productivity of a region not only depends on its own knowledge capital 

(direct impact), but also on other regions’ knowledge capital (indirect effects). Second, direct 

impacts are important, but knowledge spillover effects are more important. In fact, indirect 

effects are three times the magnitude of the direct effects. Third, while the beneficial 

productivity effects from geographically neighbouring knowledge stocks have been established 

in earlier empirical literature (see Smith 1999, Robbins 2006, Fischer et al. 2009), evidence for 

the importance of the technological dimension in the spillover-productivity nexus is new. 

Finally, it is worth noting that indirect productivity effects from knowledge capital arising due to 

spatial connectivity of the regions are to a substantial degree geographically localized, and this 

result is consistent with the findings in Fischer et al. (2009).  

 

Diffusion of knowledge takes time, sometimes a considerable period of time. The price paid for 

the simplicity of our framework is abstraction from any explicit time lag structure for the effects 

of knowledge capital on regional total factor productivity. Further explorations with 

disaggregated data and an explicit treatment of the dynamics involved using a space-time panel 

data methodology to explore the knowledge-productivity nexus would undoubtedly provide 

additional insights. 
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Table 1 Annual model estimates

*
 

 
Variable 1997 1998 1999 2000 2001 2002 Pooled Standard 

deviation 

k 0.0658 0.0745   0.0799   0.0925   0.1010   0.0981   0.0853 0.0252   

Wk -0.0200 -0.0161 -0.0152 -0.0105 -0.0157 -0.0114 -0.0148 0.0306 

Wt 0.1087 0.0860   0.0721   0.0580   0.0539   0.0455   0.0707 0.0376 

θ  0.7229 0.7022   0.6783   0.0642   0.6395   0.6293   0.6691 0.0712 

Note: *The Model 2 estimates reported are based on seven nearest spatial neighbours and eight technological neighbours. 

Determination of the number of neighbours is described in the running text. 
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Table 2 Posterior model probabilities for numbers of spatial and technological neighbours 

 
Number of  

technological 

neighbours 

Number of spatial neighbours 

r=5 r=6 r=7 r=8 r=9 

s=2 0.0000 0.0000 0.0000 0.0000 0.0000 

s=3 0.0000 0.0000 0.0001 0.0000 0.0000 

s=4 0.0000 0.0000 0.0006 0.0000 0.0000 

s=5 0.0000 0.0000 0.0162 0.0000 0.0000 

s=6 0.0000 0.0000 0.0128 0.0000 0.0000 

s=7 0.0000 0.0000 0.2102 0.0000 0.0000 

s=8 0.0000 0.0000 0.4775 0.0001 0.0000 

s=9 0.0000 0.0000 0.1808 0.0001 0.0000 

s=10 0.0000 0.0000 0.1013 0.0001 0.0000 
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Table 3 Estimates for models pooled over 1997 to 2002: (a) Model 1 and (b) Model 2 

 

(a) Model 1: � �
0 1 2tfp W tfp k Wkα θ δ δ ε= + + + +ɶ ɶɶ ɶ  

Posterior estimates Lower 0.01 Mean Upper 0.01 

0α   0.3328  0.5086 0.6799 

θ   0.6020  0.6698 0.7340 

1δ   0.0818  0.1029 0.1241 

2δ  -0.0460 -0.0137 0.0183 

2

εσ   0.1266  0.1411 0.1572 

 

(b) Model 2: � �
0 1 2 3tfp W tfp k Wk Tkα θ δ δ δ ε= + + + + +ɶ ɶ ɶɶ ɶ ɶ  

Posterior estimates Lower 0.01 Mean Upper 0.01 

0α  -0.0419        0.1886      0.4025 

θ   0.5990        0.6627      0.7230 

1δ   0.0621        0.0843      0.1070 

2δ  -0.0461      -0.0131      0.0180 

3δ   0.0377        0.0704      0.1029 

2

εσ   0.1234        0.1376      0.1536 
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Table 4 Cumulative direct, indirect and total impact estimates 

 

 0.01 level Mean 0.99 level 

Model 1    

Direct effect knowledge capital 0.0898          0.1106          0.1318 

Indirect effect knowledge capital 0.0730          0.1631          0.2681 

Total effect knowledge capital 0.1787          0.2738          0.3803 

Model 2    

Direct effect knowledge capital 0.0643          0.0930                0.1204          

Indirect effect knowledge capital 0.1856         0.2777                0.3928 

Total effect knowledge capital 0.2540         0.3708                0.5107 
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Table 5 Marginal knowledge spillover and total impact estimates: (a) Model 1 and (b) Model 2 

 

(a) Model 1 
r

W  
Spillover effects  Total effects 

Lower 0.01 Mean Upper 0.99  Lower 0.01 Mean Upper 0.99 

r=1 0.0000              0.0000              0.0000               0.0806         0.1024           0.1240 

r=2 0.0434              0.0598            0.0769  0.0434         0.0598           0.0769 

r=3 0.0231              0.0354            0.0493  0.0269         0.0402           0.0551 

r=4 0.0166              0.0259            0.0375  0.0177         0.0276           0.0399 

r=5 0.0106              0.0179            0.0279  0.0113         0.0190           0.0296 

r=6 0.0068              0.0125            0.0207  0.0072         0.0131           0.0219 

r=7 0.0044              0.0087            0.0157  0.0046         0.0091           0.0164 

r=8 0.0027              0.0060            0.0116  0.0029         0.0063           0.0121 

r=9 0.0017              0.0042            0.0087  0.0018         0.0043           0.0091 

r=10 0.0011              0.0029            0.0065  0.0011         0.0030           0.0067 

 

(a) Model 2 
r

W  
Spillover effects  Total effects 

Lower 0.01 Mean Upper 0.99  Lower 0.01 Mean Upper 0.99 

r=1 0.0000            0.0000           0.0000  0.0621           0.0847        0.1067 

r=2 0.0714            0.0944           0.1183  0.0714           0.0944        0.1183 

r=3 0.0421            0.0597           0.0796  0.0458           0.0638        0.0846 

r=4 0.0281            0.0419           0.0591  0.0292           0.0435        0.0612 

r=5 0.0177            0.0286           0.0429  0.0184           0.0297        0.0444 

r=6 0.0110            0.0197           0.0313  0.0113           0.0203        0.0323 

r=7 0.0069            0.0135           0.0230  0.0071           0.0139        0.0236 

r=8 0.0042            0.0092           0.0169  0.0043           0.0095        0.0174 

r=9 0.0026            0.0063           0.0125  0.0027           0.0065        0.0128 

r=10 0.0016            0.0044           0.0092  0.0017           0.0045        0.0094 

  


