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Abstract. This paper concentrates on the central link between productivity and 
knowledge capital, and shifts attention from firms and industries to regions. The 
objective is to measure knowledge elasticity effects within a regional Cobb-
Douglas production function framework, with an emphasis on knowledge 
spillovers. The analysis uses a panel of 203 European regions to estimate the 
effects over the period 1997-2002. The dependent variable is total factor 
productivity (TFP). We use a region-level relative TFP index as an 
approximation to the true TFP measure. This index describes how efficiently 
each region transforms physical capital and labour into outputs. The explanatory 
variables are internal and out-of-region stocks of knowledge, the latter capturing 
the contribution of interregional knowledge spillovers. We use patents to 
measure knowledge capital. Patent stocks are constructed such that patents 
applied at the European Patent Office in one year add to the stock in the 
following and then depreciate throughout the patents effective life according to a 
rate of knowledge obsolescence. A random effects panel data spatial error model 
is advocated and implemented for analyzing the productivity effects. The 
findings provide a fairly remarkable confirmation of the role of knowledge 
capital contributing to productivity differences among regions, and adding an 
important dimension to the discussion, showing that knowledge spillover effects 
increase with geographic proximity.  
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1    Introduction 

 

Many economic studies, such as the pioneering study by Solow (1957), have demonstrated the 

central role played by technological progress in economic growth. These studies which are based 

on a growth-accounting approach do not attempt to measure technological progress directly, but 

treat it as the residual factor accounting for growth. According to the standard interpretation, this 

residual represents disembodied technological progress, usually referred to as total factor 

productivity (TFP). 

 

In an attempt to overcome the measurement difficulties inherent in an encompassing definition 

of technological progress, economists have focused attention on R&D – viewed as a relatively 

clearly defined set of activities – that contribute both directly and indirectly to changes in 

products and production processes (Mairesse and Sassenou 1991). Interest in empirical research 

into the relationship between R&D and total factor productivity was prompted by the 

productivity slowdown observed in much of the industrialized world in the 1970s (Griliches 

1986). Most of these studies rely on the Cobb-Douglas production function as their basic 

analytical framework and relate measures of output or TFP (or their rates of growth), across 

firms or industries, to measures of R&D capital or intensity of R&D investment.  

 

A smaller subset of such studies also includes measures of “external” R&D capital in an attempt 

to estimate the productivity effects of knowledge spillovers across firms1 (see Los and 

Verspagen 2000, Griliches and Mairesse 1984), across industries (see, for example, Verspagen 

1997, Goto and Suzuki 1989, Griliches and Lichtenberg 1984) or across countries2 (see, for 

example, Gong and Keller 2003, Coe and Helpman 1995, Park 1995).  Measuring knowledge 

spillovers and their productivity effects at the regional level remains a less explored area3, even 

though the regional dimension is particularly relevant at the European level.  

 

We know that knowledge is an input in regional production that bears some peculiar properties. 

It is a non-rival input in the creation of new knowledge. The use of an idea to produce goods by 

an agent does not preclude any other individual to build on it in order to generate a new one 

(Romer 1990). Secrecy is certainly a way to prevent knowledge diffusion and it is often used by 
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firms to exclude others from the use of novel ideas. But even in the case of a patent, that is made 

public, the research that leads to it and the background ideas may be kept known only to a 

restricted number of people, at least for a while as Bottazzi and Peri (1999) argue. This partial 

non-excludability of knowledge suggests that R&D may create benefits to firms and individuals 

external to the inventor by adding to their knowledge base. These benefits are usually termed 

knowledge spillovers4. 

 

The objective of our study is to estimate the impact of cross-region knowledge spillovers on total 

factor productivity in Europe. By Europe we mean the 15 pre-2004 EU member states. We use a 

panel of 203 NUTS-2 regions to estimate the impact over the period 1997-2002. NUTS-2 regions 

are interesting units of analysis in an increasingly integrated European market. They are more 

homogeneous than countries, better connected within themselves, and they are becoming 

increasingly important as policy units for research and innovation (see European Commission 

2001). The study departs from previous research not only by shifting attention from industries to 

regions, but also adds an important dimension to the discussion by showing that productivity 

effects of knowledge spillovers increase with geographic proximity. It implements a random 

effects panel data regression model with spatial autocorrelation to estimate the effects using 

patent applications as a measure of R&D output to capture the contribution of R&D (direct and 

spilled-over) to regional productivity. 

 

The remainder of the paper is organized as follows. The section that follows presents the 

empirical model which relates the region’s knowledge stock and its external stock of knowledge 

to productivity within a regional Cobb-Douglas production function framework. We use a region 

level relative TFP index as an approximation to the true TFP measure and patent stocks to proxy 

knowledge capital stocks. Section 3 provides details on the construction of both, the TFP index 

and the patent stocks. Important econometric issues raised by the estimation of productivity 

effects of interregional knowledge spillovers are addressed in Section 4, while Section 5 reports 

the estimation results. Some conclusions of the study are to be found in the last section of the 

paper.    
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2    The empirical model 

 

We follow the research tradition that finds thinking in terms of a regional production function 

congenial and useful. Less “neoclassical” oriented economists might deny the usefulness of this 

view or the simplifications on which this view is based. But we believe that the importance and 

extent of cross-region knowledge spillovers can be best discussed in the context of an expanded 

version of the standard regional Cobb-Douglas production function that treats knowledge as 

another type of capital added to conventional aggregate production function variables. Passing 

over a long list of conceptual and empirical problems associated with the concept of knowledge 

capital (for a discussion see Griliches 1979) we can write this regional production function as 

 
*1 2 exp( )it it it it it itQ L C K Kγ γα β ε=  1,..., ; 1,...,i N t T= =  (1) 

  

where Q is some measure of output for region i at time t. L stands for the labour stock of the 

region, C is a measure of the physical capital stock, K is the region-internal and K* is the region-

external (out-of-region) stock of knowledge. 1, ,α β γ  and 2γ  are the elasticities of output with 

respect to labour, physical capital, region-internal and region-external knowledge capital. ε  is 

the error term reflecting the effects of unknown factors, approximations, and other disturbances. 

 

Dividing Equation (1) by factor share weighted physical capital and labour inputs, yields the 

empirical model to be estimated 

 
*

1 2it it it itf k kγ γ ε= + +  1,..., ; 1,...,i N t T= =  (2) 

 

where all terms are expressed in logarithms. Equation (2) relates the region’s knowledge stock 

and its external stock of knowledge to productivity in a reduced-form framework. The variable fit 

is the TFP level of region i at time t, kit is region’s i knowledge stock at time t and k∗ is its 

external stock of knowledge. The 1γ  and 2γ  are parameters to be estimated, and εit is an error 

term with properties we discuss below. 1γ  measures the (elasticity) effect of the knowledge stock 

on productivity, while 2γ  captures the relative (elasticity) effect from foreign stocks of 

knowledge. A positive and significant 2γ  is interpreted as evidence of cross-region knowledge 

spillovers.   
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In this study, itk∗ , the term representing the spillover knowledge stock is defined as a spatially 

discounted sum of the internal knowledge stocks of all other regions j i≠ , i.e., 

 

exp( )
N

it ij jt
j i

k d kδ∗

≠

= −∑  1,..., ; 1,...,i N t T= =  (3) 

 

where ijd  denotes the distance from region i to j measured in terms of the great circle distance 

between the regions’ economic centres. This definition assumes that the closer regions are in 

geographic space, the more they can gain from each other’s research efforts. 0δ ≥  is the distance 

(decay) parameter that captures the degree of localization of cross-region knowledge spillovers. 

Estimating 0δ =  would mean that distance does not matter, while positive estimates of δ 

suggest that the benefits for other regions’ knowledge stocks are decreasing with distance. Note 

that the effective knowledge contribution by region j depends parametrically on an exponential 

functional form between that region and region i. 

  

 

3    Empirical setting and data description 

 

This section takes a look at the data we will employ, describes the construction of the knowledge 

capital stock variables, and the total factor productivity index that is used to register the impact 

of direct and indirect knowledge capital stocks. Our data form a combined time-series cross-

section panel. The panel database is composed of 203 regions, over the period 1990-2002. The 

data come from two major sources: Information used to construct the TFP index comes from the 

Cambridge Econometrics database, while the European Patent Office patent database is the 

source for constructing patent stocks to proxy knowledge stocks.  

 

Units of observation: The observations units are NUTS-2 regions that are adopted by the 

European Commission for their evaluation of regional growth processes. The NUTS-2 region, 

although varying considerably in size, is widely viewed as the most appropriate unit for 

modelling and analysis purposes (see, e.g., Fingleton 2001). The cross-section is composed of 

203 NUTS-2 regions located in the 15 pre-2004 EU member states. We exclude the Spanish 
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North African territories of Ceuta and Melilla, and the French Départments d´Outre-Mer 

Guadeloupe, Martinique, French Guayana and Réunion. The Appendix describes the sample of 

regions.   

 

Measurement of total factor productivity: There are many ways of measuring total factor 

productivity (see Nadiri 2001). But the measure suggested by Caves, Christensen and Diewert 

(1982) seems to be most appropriate for the purpose of our study5. The index is defined as 
 

log (log log ) (log log ) (1 )(log log )it it t it it t it it tF Q Q s L L s C C= − − − − − −  (4) 

 

for 1,...,i N=  and 1,..., ,t T=  where the variable Q is value-added, L is labour input, and C 

denotes physical capital input as above. its  is the share of labour in total production costs, while 

the terms log tQ ,  log tL  and log tC  are given by  
 

1

1 loglog
N

i
t itN

Q Q
=

= ∑  1,...,t T=  (6) 

 

1

1 loglog
N

i
t itN

L L
=

= ∑  1,...,t T=  (6) 

 

1

1 loglog
N

i
t itN

C C
=

= ∑  1,...,t T= . (7) 

 

This index assumes that production is characterized by constant returns to scale. It provides a 

measure of each region’s productivity relative to the other N-1 regions and is equivalent to an 

output index where labour and physical capital inputs are held constant across regions. Thus, it 

describes how efficiently each region transforms labour and physical capital into outputs. To 

provide a simple illustration, if a region’s TFP level is computed as 1.2, this implies that the 

region can produce 20 percent more output than the average region, with the same amount of 

conventional inputs. 

 

Gross value added data in Euro (constant prices of 1995, deflated) has been used as measure of 

output Q . Building on the work by Keller (2002) we have used cost-based rather than revenue-



 

 6

based factor shares to construct the index. Cost-based shares are more robust in the presence of 

imperfect competition. Two other important characteristics of the TFP data are: First, we 

adjusted the Cambridge Econometrics data on labour inputs to account for differences in average 

annual hours worked across countries. This is important because average annual hours worked in 

the year 1997 in Swedish manufacturing for example, were almost 14 percent lower than in 

Greek manufacturing. Without adjusting for differences in input usage, productivity in Greek 

and Portuguese regions would be overestimated throughout, while in Swedish and Dutch regions 

underestimated.  

 

Second, physical capital stock data is not available in the Cambridge Econometrics database, but 

gross fixed capital formation in current prices is. Thus, we generate the fixed capital stocks by 

using the perpetual inventory method. The annual flows of fixed investments are deflated by 

national gross fixed capital formation deflators. This computation of C implies that the stock of 

fixed capital depends on the assumed depreciation rate and on the annual rate of growth of 

investments during the period preceding the first year of evaluation of the stock. We apply a 

constant rate of ten percent depreciation across space and time. The mean annual rate of growth, 

which precedes the benchmark year 1997, covers the period 1990-1997. 

 

Measurement of knowledge capital stocks: A number of proxies can be used for knowledge 

capital, including stocks of R&D expenditure, data on actual innovations and patent counts. 

R&D expenditure is the most common choice, but suffers from the problem of double counting 

because of special fiscal rules in favour of R&D spending. As the necessary data for adjustment 

are not available double counting cannot be corrected for here. 

 

Thus, in this study we use patent counts as a proxy for the increase in (economically profitable) 

knowledge. Patents have the comparative advantage of being direct outcome of R&D processes. 

The patent data are numbers of corporate patent applications. Corporate patents cover inventions 

of new and useful processes, machines, manufactures, and compositions of matter. To the extent 

that patents document inventions, an aggregation of patents is arguably more closely related to a 

stock of knowledge than is an aggregation of R&D expenditures (Robbins 2006). However, a 

well known problem of using patent data is that technological inventions are not all patented. 

This could be because of applying for a patent, is a strategic decision and, thus, not all patentable 
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inventions are actually patented. Even if this is not an issue, as long as a large part of knowledge 

is tacit, patent statistics will necessarily miss that part, because codification is necessary for 

patenting to occur. We assume that part of the knowledge generated with the idea leading to a 

patent is embodied in persons, imperfectly codified, and linked to the experience of the 

inventor(s). This stock of knowledge increases in a region as local inventors discover new ideas. 

It diffuses mostly via face-to-face interactions. Following Bottazzi and Peri (2003) we think of it 

as a local public good as it benefits researchers within the region and its neighbourhood.    

 

Patent stocks were derived from European Patent Office (EPO) documents. Each EPO document 

provides information on the inventor(s), his or her name and address, the company or institution 

to which property rights have been assigned, citations to previous patents, and a description of 

the device or process. To create the patent stocks for 1997-2002, the EPO patents with an 

application date 1990-2004 were transformed from individual patents into stocks by first sorting 

based on the year that a patent was applied for, and second the region where the inventors 

resides. In the case of cross-region inventor teams we used the procedure of fractional counting6. 

Then for each region, the annual patents were aggregated using the perpetual inventory method, 

with a constant 12 percent depreciation rate7 applied for each year to the stock of patents created 

in earlier years. Thus, the region-internal knowledge stocks, itk  ( 1,..., ; 1,..., ),i N t T= =  are 

depreciated sums over time of patents applied by inventors in region i, while the out-of-region 

knowledge stocks, *
itk ( 1,..., ; 1,..., ),i N t T= = are depreciated sums over time of patents applied 

by inventors in other regions j excluding i.  
 

 

4   Error specification and model estimation 

 

We now turn to the estimation of the reduced-form model given by Equations (2)-(3) that can be 

rewritten in matrix notation as 

 
= +f X γ ε   (8) 
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where f is of dimension NT-by-1, X is NT-by-2, γ is 2-by-1 and ε  is NT-by-1. The observations 

are ordered with t being the slow running index and i is the fast running index8, i.e., 

11 1 1( ,..., ,..., ,..., )N T NTf f f f ′f = . 

 

The disturbance vector of Equation (8) is assumed to follow an error component model9 with 

random region effects and spatially autocorrelated residuals (see Anselin 1988, pp. 152). The 

disturbance vector for time t is given by  

 
t tε = +μ ζ   (9) 

 

with 

 

t t tλ= W +ζ ζ η   (10) 

 

where 1( ,..., )t t Ntε ε ′ε = , 1( ,..., )t t Ntζ ζ ′=ζ , and 1( ,..., )Nμ μ ′=μ  denotes the vector of random 

region effects10 which are assumed to be iid (0, 2σμ ). 1( ,..., )t t Ntη η=η  where itη  is iid over i and 

t and is assumed to be N (0, 2ση ). The { }itη process is also independent of the process { }iμ . λ is 

the scalar spatial autoregressive coefficient with | λ | < 1. W is a known N-by-N spatial weights 

matrix where diagonal elements are zero. In this study, the weights matrix is constructed so that 

a neighbouring region takes the value of one and zero otherwise. The rows of this matrix are 

normalized11 by the largest characteristic root of W. Thus, the matrix ( )N λ−I W  is non-singular, 

where NI  is an identity matrix of dimension N. We note that for T = 1 our specification reduces 

to the standard Cliff-Ord first order spatial autoregressive model.  

 

Let ( ) = ,Nλ λ−A = A I W  then the disturbances in Equation (10) can be written as follows: 
1 -1= ( ) = .t N t tλ −−I W Aζ η η  Substituting tζ  in Equation (9), we get 

 
1( ) ( )T N T
−⊗ ⊗ε = I + I Aι μ η  (11) 

 

where 1( ,..., ),Tη η′ ′ ′=η Tι  is a vector of ones of dimension T, TI  is an identity matrix of 

dimension T and  ⊗ denotes the Kronecker product. Under these assumptions, the variance-

covariance matrix12 for ε  can be written as 
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2 2 1[ ] ( ) ( )T N TE σ σ −′ ′⎡ ⎤⊗ ⊗⎣ ⎦μ η= = J I + I A AεΩ ε ε  (12) 

 

where TJ  is a matrix of ones of dimension T, and T T Τ′=J ι ι . Following Baltagi, Song and Koh 

(2003), this variance-covariance matrix can be rewritten as 

 
2 1 1 2( ( ) ) ( )T N TTσ φ σ− −′ ′⎡ ⎤⊗ + ⊗ =⎣ ⎦= J I + A A E A Aε η η εΩ Σ  (13) 

 
where 2 2= , / , ,T T T T TTφ σ σ = = −J J E I Jμ η and 1 1( ( ) ) ( )T N TT φ − −′ ′⎡ ⎤⊗ + ⊗⎣ ⎦= J I + A A E A AεΣ . 

Using results from Wansbeek and Kapteyn (1983), −1
εΣ  is given by  

 
1 1( ( ) ) ( )T N TT φ−1 − −′ ′⊗ + ⊗= J I + A A E A AεΣ  (14) 

 

which involves no matrix inversions of dimension larger than N. Also, 
11 1( ) ( )

T

NT φ
−− −′ ′= I + A A A AεΣ . Under the assumption of normality, the log-likelihood for 

this model, conditional on δ, can be derived (see Anselin 1988, pp. 154, Elhorst 2003) as 

 

 
2

2

2 2 1 1
2 2 2

2 11
2 2

11 1
2 2

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( , , , | ) log( 2 ) log ( , ) ( , )

log( 2 ) log

log ( , )

NT

NT
N

T

T

σ

σ

δ δ

δ δ

λ λ

λ λ

σ φ λ δ π σ φ λ φ λ

π σ φ

φ λ

−1

−

− −1−

′= − − − =

′⎡ ⎤= − − +⎣ ⎦

′ ′+ −

γ e e

I + A A

A A e e

η

η

η η ε ε

η

ε

Σ Σ

Σ

L

 (15) 

 

 

where ( )( ) ( ).δδ −e = f X γ  The parameters γ  and 2ση  can be solved from first-order 

maximizing conditions 

 

[ ]{ } 11
( ) ( ) ( )ˆ( , | ) ( , ) ( , )δ δ δφ λ δ φ λ φ λ

−− ′=γ X X X fε εΣ Σ  (16) 

 

[ ] 12 1 ( )ˆ ( , | ) ( ) ( , )NT δσ φ λ δ δ φ λ −′= e eη εΣ  (17) 
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which are functions that maximize the concentrated log-likelihood function, concentrating out 

the γ  and 2ση  

 

[ ]

2

11
con 2

1 1
2 2

( ) ( )

( ) ( ) ( ) ( )

( , | ) log

log ( , )

N

T

C T

σ

λ λ

λ λ δ δ

φ λ δ φ

φ λ

−

−1−

′= − +

′ ′−

I + A A

A A e e
η

εΣ

L
 (18) 

 

where C is a constant term not depending on , andφ λ δ .  

 

We follow an iterative procedure to obtain ML estimates for all parameters. This essentially 

alternates back and forth between the estimation of andφ λ  conditional upon a vector of 

residuals e (generated for a value of γ̂  conditional upon δ) and an estimation of γ  (and 2ση ) 

conditional upon a value for λ and a value for δ, until convergence is obtained. The estimator of 

,γ  given , and ,λ φ δ  is a generalized least squares (GLS) estimator. The estimates , andφ λ δ  

must be obtained by numerical methods because the equations cannot be solved analytically.  

 

The main computational task in the iterative maximization process is the repeated evaluation of 

the log-determinants of the N-by-N matrices ′A A  and [ ] 1
NT φ −′I + A A  afresh at each iteration 

step in the optimization process. Following Griffith (1988), the calculation of these determinants 

can be simplified by using 

 

1

( ) (1 )
N

i
i

λ λω
=

= −∏A  (19) 

 

[ ] 1 2

1

(1 )
N

N i
i

T T λωφ φ− −

=

′ ⎡ ⎤= + −⎣ ⎦∏I + A A  (20) 

 

where iω  denotes the ith eigenvalue of W. The only computational issue associated with this 

eigenvalue-route approach in panels with large cross-sectional dimensions involves the 

calculation of eigenvalues. Anselin (2001, pp. 325) pointed out that the computation of 

eigenvalues becomes instable when N is larger than 1,000, and much remains to be done to 

develop efficient algorithms and data structure to allow the analysis of very large panel data sets. 
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In this study we followed the eigenvalue route to computing the log-determinants and adopted 

Elhorst’s software respat in combination with Brent’s direct search procedure (see Press et al. 

1992, pp. 402) to obtain the model parameters 2, , ,σ φ λγ η  and δ. 

 

5   Estimation results 

 

The dependent variable is the relative productivity level as defined by Equation (4). The 

regressors are random region effects which are assumed to be 2(0, ),iid ση  the region-internal 

knowledge stock and the out-of-region stock of knowledge defined as a spatially discounted sum 

of the internal knowledge stocks of all other regions as described by Equation (3). 

 

The estimates are presented in Table 1 together with their standard errors, shown in parentheses. 

The first column reports the results given by the conventional random effects model (8)-(9). The 

estimation method is GLS. The productivity effect from region-internal knowledge is estimated 

as 1 0.194,γ =  with a standard error of 0.028. The parameter estimate of 2 0.138γ =  determines 

the relative potency of distance-deflated cross-region knowledge spillovers. The parameter 

estimate of δ  is equal to 0.073. This suggests that effective knowledge from external regions is 

falling exponentially with bilateral distance. The finding is consistent with the localization 

hypothesis. Productivity in regions that are far away from the spilling-out region is much lower 

than in those located closer, because knowledge diffusion and its productivity effects are 

geographically localized. 

 

The second column presents the estimates of the random effects panel data spatial error model13. 

The λ  estimate is 0.631, with a standard error of 0.040. A likelihood ratio test for the null 

hypothesis of 0λ =  yields a 2
1χ  test statistic of 5,197.3. This is statistically significant and 

confirms the importance of a spatial autoregressive disturbance in the random effects model for 

measuring the TFP impact of cross-region knowledge spillovers. The TFP effects of internal and 

out-of-region stocks of knowledge are somewhat larger when the spatial autocorrelation due to 

neighbouring regions is taken explicitly into account. The strength of interregional knowledge 

spillovers is about five percent higher than in the specification that neglects the importance of a 

spatial autoregressive disturbance in the random effects model. At the same time the knowledge 
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localization effect becomes somewhat weaker. The distance decay (or localization) parameter δ  

is estimated to be 0.056, with a standard error of 0.021. 

 

Table 1 about here 

 

These results provide a fairly remarkable confirmation of the role of interregional knowledge 

spillovers as a statistically highly significant factor contributing to productivity differences 

among the regions. The 2γ -estimate implies that a one percent increase in the pool of out-of-

region knowledge capital raises the average total factor productivity in the spill-in region by 

about 0.15 percent. The evidence based on the distance parameter, implicit in the construction of 

the pool of cross-region spillovers, indicates that the benefits from out-of-region knowledge 

capital are to a substantial degree decreasing with geographic distance. Formally integrating the 

spatial configuration of the data tends to slightly increase the TFP effects with respect to both the 

region’s internal stock of knowledge and its pool of knowledge spillovers, by about five percent, 

while decreasing the distance decay effect by about 23 percent. 

 
 

6    Concluding remarks 

 

The novelty of the new theory of economic growth essentially lies in explaining the growth of 

total factor productivity, which is the component of output growth not attributable to the 

accumulation of conventional input, such as labour and physical capital. This theory also 

underlines interregional economic relations that link a region’s productivity gains to economic 

developments in other regions. For this reason, we have chosen to focus on the central link 

between productivity and knowledge capital at the regional level. The study departs from 

previous research not only by shifting attention from firms to regions, but also by adding an 

important dimension to the discussion, showing that knowledge spillover effects increase with 

geographic proximity. 

 

Based on a regional Cobb-Douglas production function our evidence suggests that there indeed 

exist close links between productivity and knowledge capital. Not only does a region’s total 

factor productivity depend on its own knowledge capital, but – as suggested by theory – it also 

depends on cross-region knowledge spillovers. While the beneficial effects on TFP from 
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interregional spillovers have been recently established in an US-American context (see Robbins 

2006), the evidence of the importance of knowledge spillovers in Europe is new as is the 

incorporation of spatial autocorrelation due to neighbouring regions in order to avoid misleading 

inferences.  

 

Our knowledge stock elasticity estimates suggest that the productivity effects are statistically 

significant and important, both in terms of region-internal stocks of knowledge and interregional 

knowledge spillovers. The evidence based on the distance decay parameter, implicit in the 

construction of the pool of cross-region spillovers, indicates that knowledge spillovers and their 

productivity effects are to a substantial degree geographically localized and this finding is 

consistent with the localization hypothesis.  

 

The results are encouraging since they suggest that our search for interregional knowledge 

spillovers was not misplaced. Several suggestions for further research come to mind. First, 

further explorations with industry specific data and an explicit treatment of industry specific 

knowledge stocks and spillovers will undoubtly provide new valuable insights. Second, on a 

methodological level, it would be of interest to extend the results of this paper to models 

containing spatially lagged dependent variables. In doing this, it would be certainly of interest to 

consider higher order spatial lags. 
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Notes 

1  See Mairesse and Sassenou 1991 for a survey of studies. 
 
2 This literature generally relies on trade as the primary mechanism of knowledge diffusion, and hence on 

spillovers of the embodied kind. 
 
3 Robbins (2006) and Smith (1999) are notable exceptions. Both provide empirical evidence on the contributions 

of inter-state spillovers within the United States. Smith (1999) applies international trade theory to subnational 
units, while Robbins (2006) has its roots in the technology diffusion literature of international trade. 

 
4 An example is that the design of a new product may speed up the invention of a competing product, because 

the second inventor can learn from the first by carefully studying the product (Gong and Keller 2003). 
 
5  Other recent works that have used this TFP index for other purposes includes Harrigan (1997), Keller (2002), 

and Robbins (2006). 
 
6 Note that fractional counting gives the interregional cooperative inventions lower weight than full counting 

(see Fischer, Scherngell and Jansenberger 2006). 
 
7 This depreciation rate corresponds to the rate of knowledge obsolescence in the United States over the past 

century, as found in Caballero and Jaffe (1993). 
 
8  We group the data by time periods rather than cross-section units because this grouping is more convenient for 

modeling spatial autocorrelation via Equation (10). 
 
9  Panel data models have been widely studied (see Baltagi 2001). Heterogeneity across cross-sectional units is 

generally modelled with an error component model.  
 
10  The need to account for spatial heterogeneity is that regions are likely to differ in their background variables, 

that are generally region-specific time-invariant variables which affect the dependent variable, but are difficult 
to measure. Neglection of these variables leads to bias in the resulting estimates. One remedy is to introduce a 
variable intercept μi, representing the effect of omitted variables which are specific to each region considered 
(Baltagi 2001). Conditional on the specification of μi, model (8) can be estimated as a fixed or a random effects 
model. A Hausman (1978) test statistic for misspecification based on the difference between the fixed and 
random effects estimators of γ yields a 2

2χ test statistic of 0.151, which is statistically insignificant (p = 0.928). 
The null hypothesis is not rejected and we conclude that the random effects estimator is consistent.  

 
11  This normalization has the advantage that the spatial weights matrix is kept symmetric (Elhorst 2005). 
 
12  If λ = 0, so that there is no spatial autocorrelation, then A = IN  and εΩ  from Equation (12) becomes the usual 

error component variance-covariance matrix 2 2( ) ( ).T N T NΤσ σ⊗′ ⊗= I + I Iμ ηεΩ ι ι  
 
13 We rely on jackknife estimates of the standard error for 2, ηδ σ  and 2 .μσ  They seem to be more reliable and, in 

any case, they are often much larger than standard error based on first-order asymptotics. 
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Appendix 

NUTS is an acronym of the French for the “nomenclature of territorial units for 

statistics", which is a hierarchical system of regions used by the statistical office of the 

European Community for the production of regional statistics. At the top of the 

hierarchy are NUTS-0 regions (countries) below which are NUTS-1 regions and then 

NUTS-2 regions. The sample is composed of 203 NUTS-2 regions located in the pre-

2004 EU member states (NUTS revision 1999, except for Finland NUTS revision 

2003). We exclude the Spanish North African territories of Ceuta and Melilla, and the 

French Départments d'Outre-Mer Guadeloupe, Martinique, French Guayana and 

Réunion. Thus, we include the following NUTS 2 regions: 

 

Austria:  Burgenland; Niederösterreich; Wien; Kärnten; Steiermark; 
Oberösterreich; Salzburg; Tirol; Vorarlberg 

Belgium:  Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest; 
Prov. Antwerpen; Prov. Limburg (BE); Prov. Oost-Vlaanderen; 
Prov. Vlaams-Brabant; Prov. West-Vlaanderen; Prov. Brabant 
Wallon; Prov. Hainaut; Prov. Liége; Prov. Luxembourg (BE); 
Prov. Namur 

Denmark:  Danmark 
Germany:  Stuttgart; Karlsruhe; Freiburg; Tübingen; Oberbayern; 

Niederbayern; Oberpfalz; Oberfranken; Mittelfranken; 
Unterfranken; Schwaben; Berlin; Brandenburg; Bremen; 
Hamburg; Darmstadt; Gießen; Kassel; Mecklenburg-Vorpommern; 
Braunschweig; Hannover; Lüneburg; Weser-Ems; Düsseldorf; 
Köln; Münster; Detmold; Arnsberg; Koblenz; Trier; Rheinhessen-
Pfalz; Saarland; Chemnitz; Dresden; Leipzig; Dessau; Halle; 
Magdeburg; Schleswig-Holstein; Thüringen 

Greece:  Anatoliki Makedonia; Kentriki Makedonia; Dytiki Makedonia; 
Thessalia; Ipeiros; Ionia Nisia; Dytiki Ellada; Sterea Ellada; 
Peloponnisos; Attiki; Voreio Aigaio; Notio Aigaio; Kriti 

Finland:  Itä-Suomi; Etelä-Suomi; Länsi-Suomi; Pohjois-Suomi 
France:  Île de France; Champagne-Ardenne; Picardie Haute-Normandie; 

Centre; Basse-Normandie; Bourgogne; Nord-Pas-de-Calais; 
Lorraine; Alsace; Franche-Comté; Pays de la Loire; Bretagne; 
Poitou-Charentes; Aquitaine; Midi-Pyrénées; Limousin; Rhône-
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Alpes; Auvergne; Languedoc-Roussillon; Provence- Côte d'Azur; 
Corse 

Ireland:  Border, Midland and Western, Southern and Eastern 
Italy:  Piemonte; Valle d'Aosta; Liguria; Lombardia; Trentino-Alto 

Adige; Veneto; Friuli-Venezia Giulia; Emilia-Romagna; Toscana; 
Umbria; Marche; Lazio; Abruzzo; Molise; Campania; Puglia; 
Basilicata; Calabria; Sicilia; Sardegna 

Luxembourg:  Luxembourg (Grand-Duché) 
Netherlands:  Groningen; Friesland; Drenthe; Overijssel; Gelderland; Flevoland; 

Utrecht; Noord-Holland; Zuid-Holland; Zeeland; Noord-Brabant; 
Limburg (NL) 

Portugal:  Norte; Centro (P); Lisboa e Vale do Tejo; Alentejo; Algarve; 
Açores; Madeira 

Spain:  Galicia; Asturias; Cantabria; Pais Vasco; Comunidad Foral de 
Navar; La Rioja; Aragón; Comunidad de Madrid; Castilla y León; 
Castilla-la Mancha; Extremadura; Cataluña; Comunidad 
Valenciana; Islas Baleares; Andalucia; Región de Murcia 

Sweden:  Stockholm; Östra Mellansverige; Sydsverige; Norra 
Mellansverige; Mellersta Norrland; Övre Norrland; Småland med 
öarna; Västsverige 

United Kingdom:  Tees Valley & Durham; Northumberland & Wear; Cumbria; 
Cheshire; Greater Manchester; Lancashire; Merseyside; East 
Riding & .Lincolnshire; North Yorkshire; South Yorkshire; West 
Yorkshire; Derbyshire & Nottingham; Leicestershire; 
Lincolnshire; Herefordshire; Shropshire & Staffordshire; West 
Midlands; East Anglia; Bedfordshire & Hertfordshire; Essex; Inner 
London; Outer London; Berkshire; Surrey; Hampshire & Isle of 
Wight; Kent; Gloucestershire; Dorset & Somerset; Cornwall & 
Isles of Scilly; Devon; West Wales; East Wales; North Eastern 
Scotland; Eastern Scotland; South Western Scotland; Highlands 
and Islands; Northern Ireland 
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Table 1  Total factor productivity estimation results (pooled data 1997-2002; N = 203, T = 6) 

 
The conventional  

random effects model [GLS] 
The random effects model with 

spatially autocorrelated errors [ML] 

Parameters (standard errors in 
parentheses) 

  

The region-internal stock of 
knowledge [γ1] 

0.194** (0.028) 0.203**  (0.028) 

Interregional knowledge 
spillovers [γ2] 

0.138** (0.030)   0.145**  (0.029) 

The distance decay  
parameter [δ] 0.073*  (0.025) 0.056*   (0.021) 

The spatial autocorrelation 
coefficient [λ]  ––– 0.631**  (0.040) 

Variance 2ση  0.004**  (0.001) 0.004**  (0.000) 

Variance 2σμ  0.172**  (0.024) 0.155**  (0.009) 

Likelihood ratio test statistic  ––– 5,197.314     (0.000) 
AIC        -2,016.853 -2,206.147 
Number of observations 1,218 1,218 

Notes: The dependent variable is the multilateral TFP index, as defined in the text. Standard errors are in 
parentheses. 1γ measures the effect of region-internal stocks of knowledge; and 2γ  determines the strength of 
the cross-region knowledge spillover effects on productivity; δ, implicit in the construction of out-of-region 
knowledge capital k*, determines the distance effects; AIC is Akaike’s Information Criterion (a lower AIC value 
is preferred), ** denotes significance at the 0.001 significance level, *significance at the 0.05 significance level. 
 
 


