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Fertility and Rural Electrification in Bangladesh

Abstract

We use a panel dataset from Bangladesh to examine the relationship be-

tween fertility and the adoption of electricity with the latter instrumented by

infrastructure development and the quality of service delivery. We find that

the adoption of electricity reduces fertility, and this impact is more pronounced

when the household already has two or more children. This observation can

be explained by a simple household model of time use, in which adoption

of electricity affects only the optimal number of children but not necessarily

current fertility behavior if the optimal number has not yet been reached.

JEL classification codes: O20, J13

Keywords:time use, infrastructure, fertility, Bangladesh, ordered probit re-

gression, panel data

1 Introduction

Access to electricity is essential for development. Provision of welfare-enhancing

utilities such as clean water supplies, improved sanitation, and modern healthcare

services can be delivered efficiently with electricity. Electricity enables households

to enjoy reliable and efficient lighting and heating equipment, improved cooking fa-

cilities, robust mechanical power, better transport and telecommunications services,

and an overall modern lifestyle. Unfortunately, approximately 1.3 billion people in

developing countries currently lack basic access to electricity,1 particularly in rural

areas. Approximately, half of this unelectrified population lives in Asia, primarily

in South Asia.

While electrification alone may not resolve the energy access problem faced by

the developing world (Battacharyya, 2006), it may generate numerous economic

benefits beyond simply making electricity accessible to the population. A series

of studies commissioned by the World Bank as part of the Energy, Poverty, and

Gender Project and the Energy Sector Management Assistance Program conducted

1WEO-2103 Electricity Access Database (http://www.worldenergyoutlook.org/resources/
energydevelopment/energyaccessdatabase/#d.en.8609). Accessed on January 15, 2014.
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in various parts of the world reported substantial welfare-improving effects from

electrification.

Similar findings have also been obtained by various other studies. Researchers

have found evidence that electrification is associated with income generation and em-

ployment creation in Benin (Peters et al., 2011), improved income and educational

outcomes in Bangladesh (Khandker et al., 2009a) and Vietnam (Khandker et al.,

2009b), development of manufacturing sector in India (Rud, 2012) and Brazil (Lip-

scomb et al., 2013), and improved female employment in South Africa (Dinkelman,

2011) and Nicaragua (Grogan and Sadanand, 2013). Other impacts of electrification

include reduced indoor air pollution (World Bank, 2008), air-quality-related health

improvements, improved fire safety (Furukawa, 2013), improved medical services

(Bensch et al., 2011), and uptake of modern cooking fuels (Heltberg, 2003, 2004).

Rural electrification may also have a causal link to fertility in developing coun-

tries. This link is important because high fertility rates may result in a lack of

human capital investment, which in turn reduces the quality of human resources

and youth unemployment. As a result, high fertility is regarded as one of the most

important factors hindering long-term economic growth (See, for example, Ashraf

et al. (2013)).

However, such a link is not rigorously studied in the literature and in this paper

we aim at investigating the impact of rural electrification on fertility. Electricity

may affect fertility through multiple channels. The most direct channel is through

changes in consumption patterns and time use. Because access to electricity enables

households to enjoy an array of new goods, it may also induce households to shift

resources away from child-related goods to these new goods. Access to electricity

also alters the opportunity cost of time spent in reproductive activities because the

households can use that time, for example, to engage in gainful activity if they have

access to electricity.

Indirect channels of impact include income improvement and employment. As

discussed above, electrification has been found to improve incomes and womens em-

ployment, which in turn may impact fertility. Moreover, electrification increases

household demand for electricity-related goods, which may compete with expendi-

tures related to maternity and children. In addition, electricity enables households

to have better access to information and telecommunication facilities, which may

further change their fertility patterns. Despite these interesting and important pos-

sibilities, the impact of electrification on fertility has not received much attention in

economics.

In fact, earlier academic studies examining the impact of rural electrification
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on fertility in developing countries have been mostly undertaken by demographers.

The first academic study on this topic of which we are aware is by Herrin (1979).

He argues that electrification led to demographic changes in the Southern Philip-

pines. Summarizing earlier studies on rural electrification and fertility, Harbison

and Robinson (1985) also indicate that a link exists between rural electrification

and fertility.

More recently, several studies have explored this topic using aggregate data in

developing countries. For example, Potter et al. (2002) use microregion-level data

on Brazil and find a strong and consistent relationship between declines in fertility

and electrification. Similarly, Grimm et al. (2014) use a pseudo-panel data at the

district level in Indonesia to find that electrification contributed to reduced fertility.

In addition, they find that electrification affects fertility through two important

channels: exposure to TV and reduced child mortality.

However, to the best of our knowledge, only a few studies on rural electrifi-

cation and fertility have utilized a household-level dataset combined with modern

econometric methods. One such study is by Peters and Vance (2011), who use a

household-level dataset for Côte d’Ivoire. Using a Poisson regression model, they

find a negative association between fertility and availability of electricity among ru-

ral households. Another study based on household-level data is that by Akpandjar

et al. (2014), who find that electrification contributes to reduced fertility in rural

Ghana.

This study differs from the aforementioned studies in two important dimensions.

First, none of the published studies of which we are aware address the endogeneity

of electricity adoption.2 This questions the validity of the estimated impacts of

electrification. Second, unlike Peters and Vance (2011), we use a panel dataset.

Using a panel dataset offers several distinct advantages. If we use the standard fixed-

effects model, we can control for all time-invariant household-level characteristics,

which is not possible with only one observation period. When we instead use the

change in the number of children as a dependent variable, we can clearly show that

the magnitude of the fertility-reducing impact of electrification depends upon the

current number of children.

The latter point is particularly important because previous studies do not clearly

identify the sources of changes in fertility. We construct a simple theoretical model

of electrification and fertility and argue that electrification is likely to negatively af-

2In an unpublished working paper by Akpandjar et al. (2014), district-level access to electricity
is used as an instrument. However, households choosing to live in an area with many electrified
households may systematically differ from other households, and the validity of their instruments
is questionable.
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fect the optimal number of children. Because electrification only affects the optimal

number, it does not necessarily affect fertility behavior before this optimal number

is reached. Hence, our model suggests the existence of the possibility that electrifi-

cations impact on fertility may be small when no children are in the household but

becomes more pronounced when the number of children in the household pass a cer-

tain threshold. Our empirical results are indeed consistent with this possibility. We

find that the impact of electrification is relatively small for households with fewer

than two children. However, the impact tends to be larger for households with two

or more children.

Third, we consider various specifications for electrification and fertility. Peters

and Vance (2011) use a Poisson regression model because the dependent variable is

discrete. However, the Poisson model is highly restrictive in terms of the distribution

of the number of children. For example, denoting the probability that a household

has k children by pk, the Poisson model implies that pk+2/pk+1 = (k + 2)/(k + 1) ·
pk+1/pk, regardless of the households characteristics, which appears to be implausible

in practice. While it is still possible to justify the use of a Poisson regression in the

framework of the pseudo-maximum likelihood estimation, in which we are essentially

fitting the data to the Poisson model,3 this estimation is sensitive to outliers in

the right tail of the distribution. Therefore, we propose to use a bivariate probit-

ordered probit model, which is robust to outliers and allows for the simultaneous

determination of the adoption of electricity and fertility with a possible correlation

in the unobserved error term.

In addition to the studies discussed above, this study is related to two separate

strands of literature. First, this study ties in with the macroeconomic literature on

baby booms in the developed world, particularly in their relationship with modern

household technology, including electric appliances. For example, the spread of

modern household technology is found to have reduced the cost of having children,

thereby increasing fertility (Greenwood et al., 2005a). Moreover, it increased female

labor force participation (Greenwood et al., 2005b; Cavalcanti and Tavares, 2008).

On the other hand, Baily and Collins (2011) find that levels/changes in country-level

appliance ownership and electrification negatively predict levels/changes in fertility

rates in the US between 1940 and 1960, though they do not address the endogeneity

of adoption of electricity and appliances, as suggested by Greenwood et al. (2011).

Second, this study is also related to a growing body of literature on the rela-

tionship between a specific type of infrastructure and development. Studies have

3This approach is used, for example, in the gravity equation in international trade, where the
variable on the left hand side is not a count data. See, for example, Silva and Tenreyro (2006).
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explored the impact of dams (Duflo and Pande, 2007), transportation infrastructure

(Fernald, 1999; Banerjee et al., 2012), and telecommunications infrastructure (Röller

and Waverman, 2001) among others (See also Gramlich (1994) and Straub (2008)

for a review of literature). Emphasizing the impacts of electrification on fertility

that have largely been ignored, we underscore the importance of understanding the

social impact of infrastructure.

Consistent with most of the existing studies reviewed earlier, we find that elec-

tricity adoption and fertility are negatively correlated after controlling for some

other factors. Using infrastructure development and quality of electricity service

delivery as instrumental variables for electricity adoption, we find that the impact

of electrification on fertility is both economically and statistically significant. In

addition, we find that electrification largely impacts households that already have

a few children. On the other hand, we find that the impact tends to be smaller for

those households with no or only one child.

This study is organized as follows. Section 2 briefly discusses some relevant

background information on rural electrification in Bangladesh. Section 3 presents

a simple model of electrification and fertility to support our estimation models.

Section 4 describes the data used in this study and presents key summary statistics.

Section 5 discusses the econometric specifications. Section 6 presents the estimation

results. Section 7 offers some discussion.

2 Rural Electrification in Bangladesh

In Bangladesh, the Power Division of the Ministry of Power, Energy and Mineral Re-

sources is responsible for formulating the country’s electricity policy. It supervises,

controls, and monitors development activities in the electricity sector. Moreover,

it is directly responsible for two related organizations, the Office of the Electrical

Advisor and Chief Electrical Inspector (EA & CEI) and the Power Cell. EA & CEI

is mainly responsible for inspection of installations, substations, and lines, whereas

the Power Cell basically acts as a technical unit of the Power Division.4

Five government entities5 along with several other independent power producers

are currently involved in power generation in Bangladesh. This power is transmit-

ted through the national grid by the Power Grid Company of Bangladesh, then

distributed to end users by different organizations, including the Rural Electrifica-

4See, http://www.powerdivision.gov.bd/.
5Bangladesh Power Development Board (BPDB), Ashuganj Power Station Company Ltd. (AP-

SCL), Electricity Generation Company of Bangladesh Ltd. (EGCB), Rural Power Company Ltd.
(RPCL), and North West Power Generation Company Ltd. (NWPGCL).
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tion Board (REB), depending on the region and purpose of the power usage.6

REB was established in 1977 as a semi-autonomous government organization that

provides service to rural member consumers and holds responsibility for electrifica-

tion in rural areas. This remit includes planning and developing the distribution

network for each expansion phase of rural electrification.

REB’s rural electrification program has been viewed as one of the most successful

government programs in Bangladesh (Khandker et al., 2009a). REB has achieved

substantially lower system losses than other major electricity distribution bodies

(Alam et al., 2004) and has an almost perfect bill collection record. REB’s success

is attributed to its autonomy, minimal bureaucracy, strong culture of integrity, donor

support and trust, and strong and independent leadership (Nathan Associates Inc.,

2006). REB’s political appeal lies in the fact that many of the benefits of electrifica-

tion, such as more hours of light and easier access to mass media, are readily visible

to the public. In remote areas, however, the on-grid program has been supplemented

by renewable-based off-grid technologies (Rahaman et al., 2013).7 While we focus

on the impact of electricity from the national grid, we also briefly consider the effect

of access to electricity from solar power.

REB has allocated management responsibility of distribution to end users to

rural electric cooperatives or Palli Biddut Samities (PBS). REB provides technical

support and training to PBSs, negotiates the purchase of power for PBSs, approves

tariffs, and supervises other functions. Today, REB serves over 8.3 million domestic

end users in addition to commercial, industrial, irrigation, and other users through

PBSs, totaling over 9.7 million connections.8

Currently, 70 PBSs are operating, each of whom owns, operates, and manages

the rural distribution system within its jurisdiction. PBS members are the electric-

ity consumers, who participate in its policymaking through elected representatives

serving on its governing body. One PBS usually covers 5–10 subdistricts (upazi-

las/thanas) with a geographic expanse of 600–700 square miles.

An important feature of the REB’s rural electrification program is the estab-

lishment of new PBSs or the extension of existing PBSs to new areas, which are

critical for rural households to access electricity from the national grid. This pro-

6Other power distributors include Bangladesh Power Development Board (BPDB), Dhaka Elec-
tric Supply Company Ltd. (DESCO), Dhaka Power Distribution Company Ltd. (DPDC), West
Zone Power Distribution Company Ltd. (WZPDCL), North West Zone Power Distribution Com-
pany Ltd. (NWZPDCL), and South Zone Power Distribution Company Ltd. (SZPDCL).

7Rahaman et al. (2013) also reveal that REB’s performance has been declining in recent years
due to a lack of organizational autonomy, a shortage of funding, unrealistic tariffs, and power
supply shortages.

8See, http://www.reb.gov.bd/.
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cess depends on feasibility assessment which is based on a census taken on projected

beneficiary household as well as irrigation, and commercial electricity loads of the

next potential expansion areas. This census is utilized for prioritizing the approval

system for any extension phase (Murphy et al. (2002)) which are based on various

factors including (i) the results of pre-phase economic and social impact based stud-

ies, 9 (ii) the development of a PBS, 10 (iii) presence of a financially and technically

viable electrical distribution system, 11 and (iv) availability of donor funding.

Although the distribution network of electricity in the rural areas are based

on Area Coverage Rural Electrification (ACRE), which does not only target areas

of economic growth poles rather target based on equity and fair distribution of

electricity for all the households in the PBS areas, one can reasonably assume that

the variations in the timing of rural electrification may not be random. However,

these factors can be considered as exogenous to the household fertility decisions.

Therefore, we use the characteristics of PBSs, namely, infrastructure development

and efficiency of service delivery, as instrumental variables to identify the effects of

electrification upon fertility.

3 Model of electrification and fertility

This section proposes a simple model of electrification and fertility to underlie our

econometric specification in the subsequent analysis. While electricity affects fer-

tility through multiple potential channels, reallocation of time use is one of the

most obvious and direct channel. To delineate this idea, we begin with a standard

Beckerian-type model (for example, see Becker and Lewis (1973); Becker (1981);

Willis (1973)) with a single decision maker, in which each household maximizes a

static utility function over the consumption of child goods n ∈ R+ and non-child nu-

meraire goods c ∈ R+ for the given electrification status e ∈ [0, 1]. These non-child

goods potentially include the value of leisure time.

Even though electrification status in our empirical analysis is mostly a binary

variable, we treat e as a continuous variable in the remainder of this section for sim-

plicity of presentation. Therefore, a larger value of e represents households receiving

better electricity service with e = 0 and e = 1 representing no and full electricity

9This comprehensive field survey then becomes the primary source of demand data that REB
uses to analyze the proposed PBS’s ability to meet certain revenue criteria.

10This is based on existing road infrastructure, number of households, state of industrial and
commercial development, existing social and community institutions, number of pumps, rice mills
and tube wells for irrigation and percentage of the area prone to flooding

11Accessibility to the Bangladesh Power Development Boards’s 33kV line and adequate capacity
at the grid sub-station

7



access, respectively. It is possible to interpret e as the proportion of time in which

electricity is available.

In addition, we assume that the consumption of child goods is proportionate

to the number of children. Hence, we hereafter use the number of children and

consumption of child goods interchangeably. The quality of children is assumed

away in our model.

For simplicity, we also assume that the utility function U(c, n, e) is additively

separable in (c, e) and n. We further assume that the sub-utility from non-child

goods depends on e but the sub-utility from child goods does not. Given these

assumptions, we can write the household utility as follows:

U(c, n, e) = γf(c, e) + (1− γ)g(n), (1)

where f and g are the sub-utility functions from non-child and child goods, respec-

tively, and γ(∈ (0, 1)) is a preference parameter representing the weight attached to

non-child sub-utility. We assume that f and g are increasing, concave, and twice

differentiable.

In our model, each household allocates its effective lighted time (or productive

time) to either child-related activities, such as bearing and rearing children, or non-

child activities including leisure and work. We denote the fraction of the effective

lighted time required to be spent on each child by α(e), which is a function of

electrification, and the fraction of effective lighted time spent on non-child activities

by l. By definition, l, α(e), and n in our model satisfy the following:

l + α(e)n = 1. (2)

Note that the physical unit of time may vary across households. That is, some

households may have a habit of getting up early and working until dark. Compared

with these households, other households may have a shorter effective lighted time.

Eq. (2) only requires that a fixed proportion of the effective lighted time has to be

spent on each child in the household, given its electrification status.

Because households with electricity have more ways to handle child-related mat-

ters, the actual number of lighted hours that has to be spent on each child would not

increase with electrification. Therefore, even if the access to electricity does not help

households spend less time on child-related activities, the fraction of lighted hours

that must be spent on each child decreases such that the first derivative of α satisfies
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the following inequality due to the longer lighted hours generated by electricity:

α′(e)(≡ dα/de) < 0. (3)

Eq.(3) has some empirical support based on the time use data (See Appendix B

for details). We also assume that non-lighted hours are used only for sleeping or

reproductive activities and have no alternative use.

Let us now turn to the budget constraint faced by households. Suppose that

I(e) is the maximum potential household income, which the household can earn if it

spends all of its effective lighted time on work. Because longer lighted hours enable

households to (potentially) spend more time on gainful activities (See Appendix B

and Khandker et al. (2009a,b)), we assume the following inequality:

I ′(e) > 0. (4)

Assuming that the actual household income earned from work is proportionate

to l, we can write the household budget constraint as follows:

I(e)l = c+ pn(e)n, (5)

where pn(e) is the “price of having one child,” which includes direct costs of child

bearing and rearing, such as food, clothes, and education. Because the opportunity

to use electrified appliances would not increase the cost of children, we assume that

p′n(e) ≤ 0 holds. We ignore the possibility that children potentially contribute to

the household income once they grow up because this is a static model.

Households maximize the utility function in eq. (1) subject to the time constraint

eq. (2) and the budget constraint eq. (5) over c, n, and l, given their electrification

status e. We denote the maximizing arguments with an asterisk and explicitly write

the argument e to emphasize their dependence on e (i.e., c∗(e), n∗(e), and l∗(e)).

It is straightforward to show that the maximizing arguments satisfy the following

condition:

γ[pn + I(e)α(e)]f ′(c∗(e), e) = (1− γ)g′(n∗(e)), (6)

where f ′ and g′ denote the first derivatives of f and g with respect to c and n,

respectively.

Note that the term I(e)α(e) in the square brackets on the left hand side in eq. (6)

can be interpreted as the opportunity cost of having one child because it corresponds

to the amount of income that could be earned using the time spent raising one child.

Therefore, [pn + I(e)α(e)] represents the total economic cost of having one child and

9



eq. (6) allows the usual interpretation that the marginal utility per price from child

goods equals that from non-child goods.

Taking a total differentiation of eqs. (2), (5), and (6) with respect to e and solving

for n′∗(e), we obtain the following results:

n′∗(e) =
γA(e)

(1− γ)g′′(n∗(e)) + γ[pn(e) + I(e)α(e)]2f ′′(c∗(e), e)
, (7)

where f ′′ and g′′ are the second derivatives of f and g with respect to c and n,

respectively, f ′e is the cross partial derivative of f , and A(e) in the numerator has

the following definition:

A(e) ≡ [p′n(e) + I ′(e)α(e) + I(e)α′(e)]f ′(c∗(e), e) + [pn(e) + I(e)α(e)] ·

[f ′′(c∗(e), e)(I
′(e)− (p′n(e) + α′(e)I(e) + α(e)I ′(e))n∗(e)) + f ′e(c∗(e), e)]

= [f ′ − (pn + Iα)n∗f
′′]p′n + [If ′ − (pn + Iα)In∗f

′′]α′ +

[αf ′ + (pn + Iα)l∗f
′′]I ′ + [pn + Iα]f ′e, (8)

where we have used I ′−αI ′n∗ = l∗I
′(> 0) and dropped the arguments for simplicity

of presentation.

As can be seen from the last line of eq. (8), A(e) can be divided into four terms,

each involving p′n, α′, I ′, and f ′e. The first and second terms are driven by the price

effects induced by electrification through changes in the direct and opportunity costs

of children, respectively. It is straightforward to verify that the first term is non-

positive and the second term is negative. Because the denominator of eq. (7) is

unambiguously negative from the concavity assumption about f and g, we can see

that the price effects are positive.

The third term involving I ′ represents the effect due to changes in potential

household income. This effect is ambiguous because αf ′ > 0 and (pn + Iα)l∗f
′′ < 0.

The fourth term involving f ′e represents the complementarity effects between elec-

tricity and non-child goods. This negatively affects fertility when f ′e > 0. While we

do not assume f ′e > 0, it is likely to hold because access to electricity enables house-

holds to enjoy a wide range of additional goods, including electric lights, cooking

appliances, refrigerators, fans, and televisions. Therefore, given the consumption

level of non-child goods, the marginal sub-utility of non-child goods for electrified

households would be no smaller than that for non-electrified households.

The following proposition directly follows from eqs. (2), (5), and (7):

Proposition 1 The necessary and sufficient condition for the optimal number of
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children n∗(e) to be decreasing with electrification (i.e., n′∗(e) < 0) is

A(e) > 0. (9)

Further, when this condition is satisfied, we have{
c′∗(e) = l∗I

′ − (pn + αI)n′∗ − (p′n + α′I)n∗ > 0.

l′∗(e) = −(α′n∗ + αn′∗) > 0.

From this proposition and the preceding discussion, it can be seen that the

optimal number of children tends to decrease as a household becomes electrified

when at least some of the following conditions are satisfied: (i) the marginal utility

from non-child goods is relatively large and declines only slowly (i.e., f ′ is large

and f ′′ is small in absolute value), (ii) the complementarity between electricity and

non-child goods is strong (i.e., f ′e is positive and large), and (iii) the direct and

opportunity costs of children do not decline much with electrification (i.e., p′n and

α′ are small in absolute values).

Proposition 1 describes the relationship between n′∗, c
′
∗, and l′∗. When we observe

a negative relationship between electrification and fertility, both the consumption of

non-child goods and the fraction of lighted hours spent on non-child activities should

be positively related with fertility. Therefore, even though we primarily focus on the

relationship between electrification and fertility, we can also check the consistency

of the data with our theoretical model. Indeed, based on the time use data, we have

some empirical support for l′∗ > 0 as detailed in Appendix B.

Testing the sign of c′∗ is more challenging because we cannot distinguish between

child goods and non-child goods consumption. However, when we use the household

consumption expenditure per capita exclusive of food, education and health as a

proxy for non-child goods consumption, we find c′∗ > 0 holds (See Appendix B for

further details).

Since our model is static, n∗ can be interpreted as the optimal number of chil-

dren in the long run or the number of children the household plans to have. If

this interpretation is adopted, little difference between electrified and non-electrified

households is expected in the short-run fertility behavior when the current number

of children is well below their respective optimal number of children. This is be-

cause the speed at which households can increase the number of children is largely

governed by the biological limit.

Suppose now that eq. (9) is satisfied and consider electrified and non-electrified

households with n∗(1)(< n∗(0)) children, which is the optimal number for electrified
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households but less than the optimal number for non-electrified households. In this

case, the former would not wish to further increase its number of children, whereas

the latter continues to try to have additional children. Therefore, it is likely that

the fertility-reducing impact of electrification can be identified relatively easily.

Thus far, we have ignored heterogeneity across households. However, even given

the electrification status, the optimal number of children is likely to vary across

households because, for example, households have or face different values of γ, I,

and pn. Therefore, n∗(1) for some households is quite likely to be greater than n∗(0)

for other households. Even in this case, the discussion above remains applicable and

the negative relationship between electrification and fertility is likely to be most

apparent when households already have some children (greater than n∗(1) for most

households).

Similarly, when the household already has many children, the differences in the

subsequent fertility behavior between electrified and non-electrified households may

not be very clear, especially when important household characteristics are not ad-

equately controlled for. This is because the number of children is likely to have

already reached or be close to the optimal number regardless of household electrifi-

cation status.

One important limitation of the model presented in this section is that the adop-

tion of electricity is given exogenously. This is potentially problematic because the

number of children that a household plans to have in the long run changes when

it chooses to adopt electricity. Therefore, we use variations in electricity adoption

exogenous to fertility decisions to address this issue.

4 Data and Summary Statistics

The main data source for our study is based on the household survey data col-

lected under the Socioeconomic Monitoring and Impact Evaluation (SEM & IE) of

Rural Electrification and Renewable Energy Programme in Bangladesh. The SEM

& IE study was conducted to (i) document benefits and impacts of rural electrifi-

cation; (ii) develop valuable, replicable “good practices” for application in future

rural-electrification (RE) projects; and (iii) institutionalize and apply “good prac-

tices” concerning measuring benefits and impacts of RE for future RE projects in

Bangladesh.

The survey was conducted over two rounds. The first round was conducted in

2005, with data collected by a consortium comprising Bangladesh Engineering and

Technological Services Ltd. (BETS) and Bangladesh Unnayan Parishad (BUP). The
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second round was conducted in 2010 by e.Gen Consultants Ltd. Some households

in the data appear in both rounds. Therefore, these data are partial panel data.

Both rounds cover 45 of the 70 PBSs operating in Bangladesh, covering all six

of Bangladesh’s divisional regions. In Round 1, a stratified random sample was

drawn according to electrification status such that approximately one half of the

villages had electricity and the other half were without electricity. The domestic,

commercial, industrial, and irrigation samples were selected based on their actual

distributions within rural Bangladesh, but only the domestic data are used in this

study because we mainly focus on fertility, which is predominantly a household

decision.12

Round 2 of the survey followed up with a sub-sample of households. Both elec-

tronic and printed lists of identified household and non-household units were ob-

tained to match those surveyed in 2005. These lists contain household identification

information, location information (village, subdistrict, PBS, etc.), location status

(electrified village, project non-electrified village, and non-project non-electrified

village), and electrification status. This information was used as the basis for the

sampling design for the Round 2 survey (e.Gen Consultants Ltd., 2006).

Village selection was based on the attrition rate found in the retracing survey, and

villages were selected from all three types of villages in 2005, namely (i) villages that

were already electrified, (ii) villages scheduled to be electrified within the duration of

the project (i.e., electrified between the two rounds of the survey), and (iii) villages

not scheduled to be electrified during the life of the project (i.e., not electrified by

the time of Round 2). Villages having 10 or fewer households in Round 1 were

excluded from the sample in Round 2. Furthermore, no more than 25 households

were selected from any one village. The number of villages was kept to a minimum

in Round 2 while the required number of households were sampled for each PBS.

The Bangladesh Rural Electrification Board Management Information System

provided information on the age and system loss from the grid for each PBS.13

We take the former as an indicator of infrastructure development and the latter

as an indicator of the efficiency of service delivery, both of which are likely to be

related to the electricity adoption. That is, when a PBS is older, electricity is likely

to have been available to the household for a longer period of time. Because the

establishment of a PBS largely depends on the areas chosen by policymakers in the

government and donors to receive rural electrification projects, there is little concern

for the endogeneity of household choice of residential location.

12For additional information on Round 1, see Bangladesh Engineering and Technological Services
Ltd. and Bangladesh Unnayan Parishad (2006) and Khandker et al. (2009a).

13Source: Document number: FMTF 075-001 (Version 1) Date: 11-07-2013.
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The second instrument, the system loss from the grid, is also important because

a PBS’s management is likely to be poor when system losses are larger, which in turn

would negatively affect the adoption of electricity. The system loss variable also has

no obvious direct link to fertility. Therefore, the age and the system loss variables

of PBS can be interpreted, respectively, as supply- and demand-side instrumental

variables for household’s adoption of electricity. We merge these PBS-level variables

into household-level variables.

To minimize complications arising from differences in household structure, we

only use data for households whose household head is male14 and married to a woman

aged between 15 and 49, an age group for whom fertility decisions are relevant.

We also eliminate households where the head had multiple wives, which totaled

approximately one percent of households in each round. After further eliminating

a small fraction of households with a missing demographic, education, or income

variable, we were left with a dataset comprising 16,369 households in Round 1 and

4,180 households in Round 2.

14In Bangladesh, an overwhelming majority of households are headed by a male.
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Table 1: Key summary statistics for Rounds 1 and 2 by the electrification status of households.

Description Round 1 Round 2

Non-electrified Electrified All Non-electrified Electrified All
(HHELEC1=0) (HHELEC1=1) (HHELEC2=0) (HHELEC2=1)

Head’s age 40.9 42.4 41.4 43.0 44.8 43.8
Spouse’s age 32.8 34.0 33.2 34.9 35.9 35.4
# surviving children spouse has given birth to 2.68 2.66 2.67 2.78 2.75 2.77
Ratio of boys among children under 15 (%)† 52.2 52.7 52.3 51.5 51.4 51.5
Head has some primary education (%) 60.5 78.9 66.4 69.2 77.2 73.0
Head has some lower secondary education (%) 37.5 55.2 43.1 38.6 48.1 43.1
Head has some matric education (%) 18.4 31.0 22.4 20.1 25.9 22.9
Spouse has some primary education (%) 54.1 71.0 59.5 67.4 76.0 71.5
Spouse has some lower secondary education (%) 29.3 42.6 33.5 32.6 40.2 36.2
Spouse has some matric education (%) 8.4 13.5 10.0 10.3 13.2 11.6
Household expenditure per capita (Tk.) 29.1 33.6 30.5 60.6 172.0 113.6
Hours of TV watched by spouse 0.24 1.00 0.48 0.38 1.37 0.85
Landless (0.00-0.04 acres) 5.0 3.9 4.7 10.0 10.5 10.3
Marginal land owner(0.05-0.49 acres) 50.0 51.9 50.6 37.0 40.5 38.7
Small land owner (0.50-2.49 acres) 30.7 32.8 31.3 33.7 36.2 34.9
Medium land owner (2.50-7.49 acres) 11.9 10.1 11.3 16.8 11.2 14.2
Large land owner(7.50+ acres) 2.5 1.3 2.1 2.5 1.6 2.0

Number of observations 8926 7443 16369 1723 2457 4180

†: The average was taken over those households with at least one child under the age of 15. Therefore, the number of observations used for this
calculation is about 10-15 percent lower than other rows, depending on the survey round and electrification status.
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Table 1 provides some summary statistics of key household variables by elec-

trification status in Round 1, HHELEC1, where HHELEC1 = 1 [HHELEC1 = 0]

means that the household has [does not have] access to electricity from the national

grid. As shown in Table 1, electrified households tend to be slightly older than

non-electrified households. The number of surviving children born to the spouse

(wife), NCHILD, is on average similar between the electrified and non-electrified

households, but it is slightly smaller for the former. Note here that NCHILD is

used as an observable measure of fertility in this study because the complete history

of pregnancy and birth is unavailable in the data. Therefore, NCHILD is affected

not only by the number of children that the wife has given birth to but also by the

number of children who died before the time of interview.

One of the major differences between non-electrified and electrified households

in Table 1 is the educational attainment of their respective heads. At each level of

educational attainment, the proportion of educated households for electrified house-

holds is higher than that of non-electrified households. For example, approximately

80 percent of household heads in electrified households had at least some primary

education in Round 1. However, the corresponding ratio is only around 60 per-

cent for non-electrified households. Similarly, spouses also had higher educational

attainment in electrified households.

Electrified and non-electrified households also economically and statistically dif-

fer in terms of expenditure per capita. As expected, electrified households are on

average wealthier than non-electrified households. Furthermore, the increase in av-

erage consumption between the two rounds is higher than that for non-electrified

households. On the other hand, while the proportion of landless households among

electrified households is significantly smaller than that among non-electrified house-

holds, the land distributions for electrified and non-electrified households are oth-

erwise similar overall. Note that the daily average for hours spent watching TV is

small but positive for non-electrified households. This may reflect watching TV in

a neighbor’s house.

Four cautions are in order. First, because we do not have household weights for

the version of Round 2 data we received, we apply the same household weights to

the Round 2 data as those utilized in the Round 1 data in Table 1. Based on these

weights, approximately 52.8 percent of households live in an electrified village and

31.6 percent of households had electricity at home in Round 1. The corresponding

figures for Round 2 are 71.9 percent and 54.5 percent, respectively. We only report

un-weighted regression results in Section 6 but the regression results are generally

similar even when the weights are applied and could be available upon request.
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Second, educational attainment is considered as an ordered variable to enable

easier understanding of the marginal impact of education. For example, if a given

household’s head has at least some matric education, he automatically has some

primary and lower secondary education. Therefore, the proportion of households

with some primary education but no secondary education in Round 1 is 23.3(=

66.4− 43.1) percent.

Third, the sex ratio of children is likely to influence subsequent fertility decisions

as it is not uncommon in Bangladesh to prefer boys to girls. However, we observe

only the number of surviving children born to the wife (i.e., NCHILD) but not

separate numbers of boys and girls. Therefore, we use the household ratio of boys

out of all children under the age of 15, which may include children whose mother is

not the spouse of the male household head. For households with no children under

15, we assign a value of half in the regression analysis, but the average reported in

Table 1 excludes those households.

Finally, we primarily focus on electricity provided by the national grid because

our identification uses each PBS’s age and system loss from the grid. Thus, non-

electrified households may in fact be able to use electricity from non-grid sources

such as solar power. While not considered in most of our analysis, we shall briefly

discuss the impact of electricity from solar power in Section 6.

Because the raw dataset we acquired did not contain a unique individual-level

identification code, a panel dataset was constructed by manually matching the names

of the husband and wife between the two rounds for each household.15 We exclude

from our panel-data analysis those households that could be matched between the

two rounds as well as those with missing observations in some key variables, plus

the small fraction of households in which the number of surviving children changed

by more than four between the two rounds of survey. As a result, we have a bal-

anced panel data set with 5,094 observations with two observations for each of 2,547

households.16

For the panel households, we can use the change in the number of surviving

children between the two rounds, ∆NCHILD, as an observable measure of fertility.

On average, electrified households (based on Round 1 electrification status) had an

increase of 0.348 surviving children and non-electrified households had an increase

15The matching of names between the two rounds is not always exact due to variations in English
spellings of names. However, only those households that were matched with high confidence were
retained in the dataset used in this study.

16A table of summary statistics for the panel households is provided in Table 12 in Appendix C.
Because of the sample restrictions described above, the panel households are on average younger.
Otherwise, the distributions of other characteristics are generally similar between the panel and
whole samples.
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of 0.455 surviving children between the two rounds (See Table 4 discussed in Sec-

tion 6). The difference in average ∆NCHILD between non-electrified and electrified

households is statistically significant.

As with NCHILD, ∆NCHILD reflects both child births and deaths that occurred

between the survey’s two rounds. However, as most of our analysis ignores the

child deaths and drops the qualifier “surviving” to keep the presentation simple

because the probability of death, especially between the two rounds of the survey, is

limited.17 We , however, retain in our panel analysis approximately nine percent of

the households for which ∆NCHILD is negative. This is because if we only retain

the households for which ∆NCHILD is non-negative, we essentially retain only high

fertility households that tend to have additional children in the event of child death,

which leads to a sample selection bias in our estimation.

5 Econometric specifications

The discussion in Section 3 suggests that access to electricity may affect fertility

decisions. Let us now apply the model to the data. To highlight some econometric

issues, let us begin with the simplest cross-sectional specification in a linear form.

NCHILDt
i = αHHELECt

i + γX t
i + uti, (10)

where the superscript t ∈ {1, 2} represents the relevant survey round and X t
i is a

vector of covariates, which includes a constant term. When the error is condition-

ally uncorrelated with the regressors and independently and identically distributed,

model parameters such as α and γ can be consistently estimated by an ordinary

least squares (OLS) regression. However, this raises the issue of endogeneity of HH-

ELEC because those who have access to grid electricity may differ systematically

from those who do not and thus the error term uti may be conditionally correlated

with HHELECt
i and the OLS estimates may be biased as a result.

This problem can be resolved when some additional assumptions are made. Sup-

pose that εti can be decomposed into a time-specific effect ηt, a household-specific

effect δi, and an idiosyncratic effect εti such that eq. (10) reduces to

17The child mortality rate under five per 1,000 live births in Bangladesh was 68 in 2005 and 47
in 2010 according to the World Development Indicators. This number is certainly not negligible
but still relatively small. Furthermore, children are most vulnerable to death in their first five
years of life, and older children are more likely to survive between the two rounds of survey. In
our sample, less than 9 percent of panel households experienced a net decrease in the number of
surviving children between the two rounds. As shown later, we also find that controlling for the
infant mortality rate does not greatly alter our regression results.
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NCHILDt
i = αHHELECt

i + γX t
i + ηt + δi + εti, (11)

where εti is uncorrelated with X t
i , ηt and δi. In this case, even when ηt or δi is

correlated with HHELECt
i, we can obtain a consistent estimate. We are therefore

able to use a fixed-effects OLS (FE-OLS) regression using a panel data set.

However, this specification implies that the expected number of children born

between the two survey rounds is completely determined by HHELEC and X, re-

gardless of the number of surviving children in Round 1. This seems to be unrealistic

because those households that already have reached their long-run fertility decision

would not have additional children regardless of the electrification status. Further-

more, the manner in which the number of children increases may also depend on a

time-invariant characteristic, a situation that FE-OLS regression cannot cope with.

Therefore, we also consider the following change-on-level specification:

∆NCHILDi = αHHELEC1
i + βNCHILD1

i + γX1
i + εti, (12)

As discussed in Section 3, the effect of electrification could possibly depend on

the existing number of children (NCHILD1
i ) and whether this number has reached a

certain threshold. To allow for this possibility, we also consider the following variant

of equation:

∆NCHILDi = αHHELEC1
i · 1(NCHILD1

i ≥M) + β1 · 1(NCHILD1
i ≥M)

+β2NCHILD1
i + γX1

i + εti, (13)

where 1(·) is an indicator function that takes the value of one if the argument is true

and zero otherwise. The threshold value M varies from 1 to 4 in our regressions.

Eq. (13) can be estimated consistently by OLS when εti is conditionally uncorrelated

with HHELEC1
i · 1(NCHILD1

i ≥M).

In the specifications above, we cannot completely exclude the possibility that

HHELEC1
i is endogenous in each of the four specifications. Furthermore, it is not

possible to predict in advance in which direction the presence of endogeneity would

bias the OLS estimate because both positive and negative selections are plausible.

For example, it is possible to argue that households that highly value electric

appliances tend to adopt electricity earlier and tend to have a lower optimal number

of children because they have a higher value of γ. In this case, negative selection

occurs and the estimated coefficient on household electrification status is biased

downwards. On the other hand, if households that have a better prospect of future
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income adopt electricity early and subsequently tend to have more children, the

selection is positive and the coefficient tends to be biased upwards. To deal with

this issue, we instrument the adoption of electricity by the age and system loss from

the grid for the PBS that covers the household’s location i.

We also consider some non-linear specifications that address the discreteness of

NCHILD and ∆NCHILD, which linear models cannot appropriately take account

of. Instead of the highly restrictive Poisson regression model used in Peters and

Vance (2011), we propose a bivariate probit-ordered probit (BPOP) model with

HHELEC and ∆NCHILD as dependent variables because the BPOP model has

several advantages relevant to our application over the Poisson model as elaborated

in the next section.

6 Results

We now consider the impact of rural electrification on fertility based on the econo-

metric specifications considered in Section 5.

Cross-sectional Analysis

We start with the simple cross-sectional specification given in eq. (10). While this

specification suffers from the issues discussed earlier, it has a practical advantage

wherein we can use all the observations in each round instead of just the panel

households.
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Table 2: Cross-sectional regression results for Rounds 1 and 2.

Dependent Variable: NCHILD Round 1 Round 2

OLS GMM-IV OLS GMM-IV

Mean (S.E.) Mean (S.E.) Mean (S.E.) Mean (S.E.)

HHELEC -0.002 (0.022) -5.001 *** (0.883) -0.037 (0.042) -2.921 *** (0.845)
Ratio of boys among children -0.072 *** (0.027) -0.059 (0.060) -0.222 *** (0.053) -0.266 *** (0.081)
Head’s age 0.086 *** (0.014) 0.164 *** (0.031) 0.056 *** (0.019) 0.109 *** (0.031)
Head’s age squared† -0.046 *** (0.016) -0.119 *** (0.032) -0.037 * (0.021) -0.073 ** (0.031)
Spouse’s age 0.160 *** (0.016) 0.139 *** (0.034) 0.196 *** (0.027) 0.121 ** (0.048)
Spouse’s age squared† -0.148 *** (0.025) -0.089 * (0.049) -0.185 *** (0.040) -0.086 (0.066)
Head has some primary education 0.117 *** (0.033) 0.616 *** (0.109) -0.071 (0.063) 0.002 (0.093)
Head has some lower secondary education -0.029 (0.032) 0.039 (0.068) -0.015 (0.059) 0.046 (0.088)
Head has some matric education 0.015 (0.033) 0.111 (0.073) -0.053 (0.065) -0.105 (0.097)
Spouse has some primary education -0.099 *** (0.032) 0.337 *** (0.100) -0.148 ** (0.064) 0.071 (0.108)
Spouse has some lower secondary education -0.129 *** (0.029) -0.036 (0.066) -0.133 ** (0.054) 0.008 (0.093)
Spouse has some matric education -0.152 *** (0.033) -0.089 (0.082) -0.202 *** (0.065) -0.149 (0.106)
log (HH expenditure per capita) -0.582 *** (0.032) 0.012 (0.121) -0.318 *** (0.050) -0.078 (0.092)

R2 0.323 0.261
1st Stage F 21.10 *** 12.23 ***
Test of endogeneity 122.57 *** 22.51 ***
OIR Test 0.04 2.61
CLR Test 122.78 *** 25.74 ***
N 16369 16369 4180 4180

Note: † denotes that the regressor is divided by 100. A constant term is included in each model (not reported). Statistical
significance at 10, 5, and 1 percent levels are denoted by *, **, and ***, respectively. In the GMM-IV estimation, HHELEC
is instrumented by the age and system loss from the grid for each PBS.
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Cross-sectional regressions are run for each of the two rounds individually and

the results are presented in Table 2. For each round, we report both the OLS

and generalized method of moments instrumental variables (GMM-IV) regression

results. In the latter, HHELEC is instrumented by the age and system loss from

the grid for each PBS.

The main variable of interest is HHELEC. As shown in Table 2, the coefficient

is close to zero when the OLS specification is used. However, it is highly negative

when HHELEC is instrumented. Therefore, this indicates the presence of positive

selection.

For the GMM-IV regressions, we report the first stage robust F -statistic, the

difference-in-Sargan C-statistic for the test of endogeneity, and Hansen’s J-statistic

for the overidentification restriction (OIR) test. Because the first stage F -statistics

for other regressions are not always as large as those reported in Table 2, we also

report the conditional likelihood ratio (CLR) test statistic based on the Lagrange

multiplier in this and subsequent tables.18 This statistic enables us to test α = 0

even with weak instruments.

In addition to HHELEC, we have added several control variables. As demo-

graphic controls, we include the ratio of boys out of all children to allow for the

possibility that the gender of a household’s current children may affect subsequent

fertility behavior. For example, a strong preference for a boy may motivate people

to attempt to have additional children until they have a boy. The point estimate

is negative in all regressions and significant for all but the GMM-IV for Round 1,

suggesting that the ratio of boys influences fertility decisions.

We also include the age and age squared (rescaled by dividing by 100) for both the

household head and spouse. These terms are included because older households tend

to have more children, other things being equal, but this effect is likely to decline

when the number of children has reached optimum. In all cases, their estimated

coefficients have the expected signs and they are mostly statistically significant.

We also include education variables for both the head of household and spouse.

A consistent pattern of signs does not emerge for the head’s education variables.

On the other hand, all education variables for the spouse are negative in the OLS

model, suggesting that households with a better educated mother tend to have

fewer children, a finding consistent with those of many existing studies. However,

this observation does not hold for GMM-IV regressions.

In addition, we also control for the logarithmic expenditure per capita to control

18The CLR test statistic was calculated using the STATA implementation by Finlay et al. (2013),
which uses the fast and accurate algorithm by Mikusheva and Poi (2006).
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Table 3: Results for fixed-effects OLS regressions.

Dependent Variable: NCHILD (a) (b) (c) (d) (e)

HHELEC -0.001 1.165 *** 0.492 *** 0.210 *** 0.108 **
(0.048) (0.179) (0.087) (0.059) (0.049)

HHELEC× 1(NCHILD1 ≥ 1) -1.308 ***
(0.182)

HHELEC× 1(NCHILD1 ≥ 2) -0.716 ***
(0.100)

HHELEC× 1(NCHILD1 ≥ 3) -0.540 ***
(0.093)

HHELEC× 1(NCHILD1 ≥ 4) -0.683 ***
(0.143)

log (HH expenditure per capita) -0.258 *** -0.240 *** -0.243 *** -0.247 *** -0.253 ***
(0.041) (0.040) (0.040) (0.040) (0.040)

R2 0.862 0.867 0.865 0.864 0.864
N 5094 5094 5094 5094 5094

Note: Robust standard errors in the brackets. Household-specific and round-specific fixed-
effects terms are included in each model. Statistical significance at 10, 5, and 1 percent levels
are denoted by *, **, and ***, respectively.

for a household’s standard of living, which may affect both electrification and fertil-

ity. This variable has a negative and significant coefficient for the OLS regressions

in both rounds but not in the GMM-IV regressions.

Fixed-effects Specifications

Let us now consider eq. (11) using the panel households. Because the majority of

demographic and education characteristics are time invariant after controlling for

the time-specific fixed effect, we only retain logarithmic household expenditure per

capita in the set of regressors. Table 3 reports FE-OLS estimates with household-

specific and time-specific fixed effects.

As shown in column (a), the coefficient on household electrification status is

weakly negative and statistically insignificant. This is not surprising for two reasons.

First, there may be positive selection, as discussed in relation to Table 2. Second, we

are identifying the impact of electrification only via households whose electrification

status has changed without considering a household’s current number of children in

Round 1.

In columns (b)–(e), we add the interaction between electrification status and

indicator variable for the number of children exceeding a specific threshold between

one and four. Therefore, these coefficients pick up the impact of electrification on

fertility when a household already has one–four children, respectively. The results

reported in Table 3 indicate that the negative impact of electrification on fertility
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Table 4: The average of the changes in the number of surviving children between
the two rounds (∆NCHILD) by the number of surviving children in Round 1
(NCHILD1).

NCHILD1 Non-electrified (HHELEC1=0) Electrified (HHELEC1=1)

Mean (S.E.) N Mean (S.E.) N

0 1.858 *** (0.092) 148 1.778 *** (0.100) 99
1 0.684 *** (0.043) 288 0.700 *** (0.059) 203
2 0.340 *** (0.034) 453 0.234 *** (0.040) 334
3 0.202 *** (0.045) 342 0.000 (0.058) 247
4+ -0.079 (0.064) 253 -0.144 (0.089) 180

Total 0.455 *** (0.026) 1484 0.348 *** (0.032) 1063

Note: Statistical significance of a one-sided t-test of inequality for the pop-
ulation mean µ of ∆NCHILD with H0 : µ = 0 and Ha : µ > 0 at 10, 5, and
1 percent levels are denoted by *, **, and ***, respectively.

tends to increase when the household initially has a larger number of children.

Note here that we are controlling for, among other factors, all the time-invariant

household characteristics in the FE-OLS models. As a result, the estimated co-

efficients in columns (b)–(e) capture not only the effect of electrification but also

the effect of lower subsequent fertility, given the number of surviving children in

Round 1. To simultaneously address the dependence of changes in the number of

children upon the initial number of children and household heterogeneity, we con-

sider change-on-level specifications such as eqs (12) and (13).

Change-on-level Specifications

In Section 3, we have argued that in the absence of appropriate control variables at

the household level, the fertility-reducing impact of electrification is likely to be most

apparent when we examine the impact of electrification conditional on the number

of children being greater than n∗(1) but less than n∗(0) for most households.

To further underscore the importance of subsequent fertility’s dependence on

current fertility, we consider Table 4, which presents the mean of ∆NCHILD and its

standard error by electrification status and the number of children in Round 1. For

example, non-electrified households on average have 0.455 more children in Round 2

than they had in Round 1. Based on a one-sided t-test, this figure is significantly

positive. Hence, the table shows that non-electrified households tend to increase

their number of children if they have three or fewer children already.
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For electrified households, the number of children tends to increase when NCHILD1

is two or less. For electrified households with at least three children, the number

of children remains unchanged significantly over time in our data. Given these

findings, it would be reasonable to argue that the optimal number of children for

electrified and non-electrified households are on average approximately three and

two, respectively (i.e., n∗(0) ' 3 and n∗(1) ' 2).
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Table 5: Results for parsimonious specifications.

Dependent Variable: ∆NCHILD (a) (b) (c) (d) (e) (f) (g) (h)

1(NCHILD1 ≥ 1) -0.990 ***
(0.082)

HHELEC1 × 1(NCHILD1 ≥ 1) -0.100 ***
(0.037)

1(NCHILD1 ≥ 2) -0.307 *** -0.343 ***
(0.073) (0.063)

HHELEC1 × 1(NCHILD1 ≥ 2) -0.216 * -0.130 ***
(0.122) (0.042)

1(NCHILD1 ≥ 3) 0.375 ***
(0.072)

HHELEC1 × 1(NCHILD1 ≥ 3) -0.150 **
(0.065)

1(NCHILD1 ≥ 4) 0.627 ***
(0.088)

HHELEC1 × 1(NCHILD1 ≥ 4) -0.078
(0.112)

NCHILD1 -0.329 *** -0.328 *** -0.255 *** -0.213 *** -0.234 *** -0.418 *** -0.447 ***
(0.016) (0.020) (0.027) (0.017) (0.023) (0.028) (0.022)

HHELEC1 -0.107 ** -0.103 *** -0.099 -0.060
(0.042) (0.037) (0.083) (0.083)

HHELEC1 ×NCHILD1 -0.002 0.050
(0.034) (0.048)

Estimation OLS OLS OLS OLS OLS OLS OLS OLS
R2 0.010 0.204 0.204 0.219 0.267 0.218 0.211 0.224
N 2547 2547 2547 2547 2547 2547 2547 2547

Note: OLS estimation for all columns. A constant term is included in each model (not reported). Robust standard errors are in
the brackets. Statistical significance at 10, 5, and 1 percent levels are denoted by *, **, and ***, respectively.
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We will now bring the discussion above into the regression context. We start

with most parsimonious specifications that are consistent with the above discussion.

We report the regression results under various specifications based on the panel

households in Table 5.

Column (a) shows that for households electrified in Round 1, the difference in

the number of children between the two rounds is on average smaller than that

observed for non-electrified households by 0.107 children. In column (b), we control

for NCHILD as well, but the size of the coefficient on the electrification status in

Round 1 does not vary greatly. In column (c), we also include their interaction

term (HHELEC1×NCHILD1). While both household electrification status and the

interaction term are insignificant, the marginal impact of electrification significantly

differs from zero when a household has one (P-value = 0.066), two (P-value = 0.006),

or three (P-value = 0.025) children, but this is not the case when there are four or

more children.19

Given the results in Table 4 and the fact that the P-value is smallest when

NCHILD = 2, we hereafter take two as the main threshold value above which elec-

trification’s impact is most pronounced in the absence of household-level control

variables. We check the robustness of our results with respect to this choice of

threshold value.

In column (d), we include the indicator variable for two or more children (i.e.,

1(NCHILD1 ≥ 2)) as well as its interaction with household electrification status

(i.e., HHELEC×1(NCHILD1 ≥ 2)). As the table shows, both the indicator variable

and interaction term are significant. On the other hand, coefficients on HHELEC1

and its interaction with NCHILD1 are insignificant.

In columns (e)–(h), we vary the threshold value M from one to four without

HHELEC1 and HHELEC1×NCHILD1. As column (h) shows, the impact of house-

hold electrification status is insignificant when a household already has four or more

children. On the other hand, the impact of electrification tends to be higher for a

higher threshold value when M ≤ 3.

The statistical inferences so far have been based on heteroskedasticity-robust

standard errors. This is potentially problematic because the errors may be correlated

in the same location. In this case, a popular approach is to cluster the error terms,

for example, at the village level. However, in the dataset we received, the village

code information is unfortunately unreliable. For example, the village code is missing

for some households in Round 2 and appears inconsistent between the two rounds

for some panel households. Furthermore, the village data collected along with the

19The marginal impact is calculated as α+ NCHILD1 · βHHELEC1×NCHILD1 .
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household data cannot be merged for a sizable fraction of households using the

village code.

However, even if the village code is wrong, as long as the error terms are inde-

pendently (and not necessarily identically) distributed, the use of clustered standard

errors would nevertheless asymptotically lead to correct inferences because of the

nature of the sandwich estimators. However, in a finite sample, the use of clus-

tered standard errors may produce estimates that are either too conservative or too

optimistic. In particular, when the effects of clustering is weak, clustered standard

errors may not perform better than heteroskedasticity-robust standard errors. These

shortcomings, notwithstanding, we ran an OLS regression with the errors clustered

at the village level and found that the magnitudes of standard errors do not greatly

change.20

An alternative to clustering would be to include village fixed-effects terms. How-

ever, given the issues with the village code mentioned above, we instead choose to

include subdistrict fixed-effects terms in the regression. The inclusion of subdistrict

fixed-effects terms does not alter the statistical significance of HHELEC1 and both

the coefficient and standard errors remain similar.21 This indicates that local condi-

tions such as geographic location, labor market conditions, and existence of family

planning campaigns may not matter in the estimation of electrification’s impact.

There are, however, two issues with the use of this subdistrict fixed-effects model.

First, the subdistrict fixed-effects terms are highly collinear with our instrumental

variables because the boundaries of PBS and subdistricts are closely related. Second,

and more importantly, they cannot be used in the probit-ordered probit model

because of the incidental parameter problem. Therefore, we choose to report the

robust standard errors.

Controlling for Heterogeneity across Households

The specifications in Table 5 suffer from the obvious problem of not controlling for

heterogeneity across households in terms of observable characteristics. Therefore,

we report the change-on-level regression results based on eqs. (12) and (13) with the

basic set of control variables in Table 6.

20Detailed results are reported in Table 13 in Appendix C.
21Detailed results are reported in Table 14 in Appendix C.

28



Table 6: Results for regressions with household-level control variables.

Dependent Variable: ∆NCHILD (a) (b) (c) (d) (e) (f) (g) (h)
M M = 1 M = 1 M = 2 M = 2 M = 3 M = 3

HHELEC1 -0.065 * -2.024 **
(0.039) (0.812)

HHELEC1 × 1(NCHILD1 ≥M) -0.062 -1.787 ** -0.092 ** -2.622 ** -0.116 * -3.315 **
(0.038) (0.812) (0.044) (1.136) (0.066) (1.449)

1(NCHILD1 ≥M) -1.021 *** -0.311 -0.440 *** 0.683 0.356 *** 1.698 ***
(0.083) (0.347) (0.070) (0.510) (0.072) (0.613)

NCHILD1 -0.358 *** -0.358 *** -0.235 *** -0.234 *** -0.261 *** -0.272 *** -0.442 *** -0.442 ***
(0.022) (0.028) (0.022) (0.029) (0.025) (0.038) (0.032) (0.047)

Ratio of boys among children -0.142 *** -0.074 -0.114 ** -0.048 -0.155 *** -0.115 -0.137 *** -0.066
(0.049) (0.075) (0.046) (0.070) (0.049) (0.072) (0.048) (0.074)

Head’s age 0.006 0.036 -0.017 0.006 0.021 0.056 -0.001 0.029
(0.033) (0.043) (0.031) (0.039) (0.035) (0.045) (0.033) (0.040)

Head’s age squared† 0.001 -0.034 0.023 -0.005 -0.020 -0.060 0.010 -0.022
(0.043) (0.054) (0.039) (0.049) (0.044) (0.058) (0.042) (0.051)

Spouse’s age -0.007 0.005 0.107 ** 0.094 * 0.065 -0.049 0.008 -0.076
(0.043) (0.060) (0.043) (0.054) (0.045) (0.076) (0.044) (0.069)

Spouse’s age squared† 0.005 0.007 -0.181 ** -0.142 -0.107 0.102 -0.021 0.126
(0.071) (0.098) (0.071) (0.090) (0.074) (0.134) (0.072) (0.118)

Head has some primary education 0.025 0.305 ** 0.018 0.237 * 0.013 0.254 * 0.018 0.158
(0.052) (0.138) (0.049) (0.124) (0.051) (0.133) (0.051) (0.100)

Head has some secondary education -0.091 -0.079 -0.065 -0.045 -0.093 * -0.076 -0.096 * -0.117
(0.056) (0.080) (0.054) (0.073) (0.055) (0.082) (0.056) (0.080)

Head has some matric education -0.001 0.069 0.007 0.059 0.017 0.050 0.006 0.061
(0.059) (0.094) (0.057) (0.083) (0.059) (0.094) (0.059) (0.094)

Spouse has some primary education 0.085 * 0.286 *** 0.094 * 0.261 *** 0.097 * 0.324 ** 0.091 * 0.286 **
(0.051) (0.109) (0.048) (0.100) (0.050) (0.127) (0.051) (0.117)

Spouse has some lower secondary education -0.049 -0.110 -0.057 -0.115 -0.055 -0.072 -0.052 -0.081
(0.052) (0.078) (0.050) (0.072) (0.052) (0.077) (0.052) (0.076)

Spouse has some matric education -0.100 -0.037 -0.091 -0.056 -0.121 ** -0.145 -0.096 -0.098
(0.061) (0.102) (0.059) (0.088) (0.061) (0.101) (0.061) (0.091)

log (HH expenditure per capita) -0.243 *** -0.010 -0.224 *** -0.019 -0.254 *** -0.034 -0.243 *** -0.115
(0.054) (0.123) (0.052) (0.117) (0.053) (0.124) (0.053) (0.096)

Estimation OLS GMM-IV OLS GMM-IV OLS GMM-IV OLS GMM-IV
R2 0.2211 0.283 0.2396 0.2289
1st Stage Robust F 6.25 *** 5.64 *** 4.74 *** 4.63 ***
Test of endogeneity 11.70 *** 8.17 *** 11.33 *** 11.16 ***
OIR test 0.11 0.12 0.03 0.48
CLR test 12.54 *** 8.86 *** 12.18 *** 12.72 ***
N 2547 2547 2547 2547 2547 2547 2547 2547

Note: † denotes that the regressor is divided by 100. A constant term is included in each regression (not reported). Robust standard errors in brackets. Statistical significance
at 10, 5, and 1 percent levels are denoted by *, **, and ***, respectively. In GMM-IV estimation, HHELEC or HHELEC × 1(NCHILD1 ≥ M) is treated as an endogenous
variable and instrumented by the age and system loss from the grid for each PBS. The null hypothesis for the CLR test is that the coefficient on the endogenous variable is
zero.
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Column (a) reports the OLS regression of ∆NCHILD on the household electrifi-

cation status in Round 1 (HHELEC1), the number of surviving children in Round 1

(NCHILD1), and other covariates. After controlling for various demographic and

education characteristics and a household’s standards of living, the coefficient on

HHELEC1 remains negative and significant, albeit at a 10 percent level.

The GMM-IV counterpart of column (a) is reported in column (b), where HHELEC1

is instrumented by the age and system loss from the grid at the PBS level. As with

Table 2, we report some diagnostic statistics for GMM-IV, such as the first stage

robust F -statistic as well as the statistics for the test of endogeneity, OIR test, and

CLR test at the bottom of the table. We again find that HHELEC1 is endogenous

and further find no evidence of misspecification. While the F -statistic is slightly

small, the CLR test indicates that the statistical significance of the coefficient on

HHELEC1 still holds. Therefore, when we consider the endogeneity of electricity

adoption, the coefficient on HHELEC1 becomes even more statistically and econom-

ically significant.

Let us now consider the possibility that the impact of electrification is not linearly

dependent on a household’s current number of children. Similar to columns (e) to (g)

in Table 5, we replace household electrification status by its interaction with an

indicator variable that NCHILD1 exceeds a certain threshold M (i.e., 1(NCHILD1 ≥
M)) for M ∈ {1, 2, 3}. The OLS regression estimates for these cases are given in

columns (c), (e), and (g), respectively, for M = 1, M = 2, and M = 3. Their

GMM-IV counterparts are respectively reported in columns (d), (f), and (h).

As with Table 5, the negative impact of electrification tends to be larger when a

household already contains a higher number of children, and the coefficients in the

GMM-IV regressions are more highly negative and significant than the corresponding

coefficients in the OLS regressions. Furthermore, as with column (a), the interaction

variable is found to be endogenous and the OIR test has passed at conventional levels

of statistical significance for all the GMM-IV regressions.

Table 6 also shows that the coefficients on demographic and education charac-

teristics are mostly insignificant, with two notable exceptions. First, the spouse’s

primary education is positive and significant for all models in the table. This may

appear surprising given the results in Table 2 and the importance of mother’s ed-

ucation to lower fertility found in the literature. However, it should be reiterated

that the dependent variable is ∆NCHILD and the regressor NCHILD captures all

fertility behavior prior to Round 1. Therefore, the positive coefficient on spouse’s

primary education likely reflects the fact that the women who have at least some

primary school education tend to have higher child-bearing ages.
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The coefficient on the ratio of boys among children is negative and significant in

all OLS regressions reported in Table 6. This suggests the existence of preference

for boys in rural Bangladesh. However, the statistical significance diminishes once

we use the GMM-IV regression, because the standard error associated with the

coefficient increases. Nevertheless, the difference between the OLS and GMM-IV

estimates are well within two times the standard error for the latter.

The coefficient on the logarithmic expenditure per capita exhibits a similar pat-

tern. The coefficients are all negative and significant in the OLS regressions. How-

ever, their statistical significance does not hold once HHELEC1 is instrumented

because of the larger standard errors.

Additional Covariates

Thus far, we have only included a fixed set of covariates. However, a few concerns

arise concerning the possibility of omitted-variable bias in the specifications used in

Table 6. First, it could be argued that mortality is related to electrification, presum-

ably because some incidents of child deaths could be prevented by using electrically

operated medical (or other) appliances. If this is indeed the case, the coefficient

on household electrification status may be confounded with reduced mortality. To

address this issue, we add the infant mortality rate at the subdistrict level in 2005

to the specification used in column (b) of Table 6. As shown in column (a) of Ta-

ble 7, the coefficient on the infant mortality rate is insignificant and the coefficient

on HHELEC1 does not change significantly.

In column (b), we control for the average number of hours the spouse spends

watching TV per day to see if the findings of Grimm et al. (2014) are relevant in

Bangladesh. As shown in the table, the coefficient on the number of hours watching

TV is insignificant and the coefficient of the interaction term remains unaffected.

While we choose to treat this variable as an exogenous variable, the qualitative

implication does not change even when TV is treated as an endogenous variable.

That is, in a specification (not reported) in which both HHELEC1 and the

hours spent watching TV are taken as endogenous variables, the point estimate

on HHELEC1 remains significant at a 10 percent level, whereas the coefficient on

the hours of TV watched is insignificant. More importantly, the test of endogene-

ity suggests that HHELEC1 is endogenous but the hours spent watching TV is not.

Therefore, we conclude that watching TV is not an important channel through which

electrification negatively affects fertility in rural Bangladesh.

In column (c), we include several indicator variables for various land-holding

categories as proxy variables for overall wealth levels. Their inclusion allows for
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Table 7: Results for regressions with additional household-level control variables.

Dependent Variable: ∆NCHILD (a) (b) (c) (d) (e)

HHELEC1 -2.033 *** -2.124 ** -1.837 *** -1.969 ** -0.004
(0.735) (1.063) (0.696) (0.814) (0.042)

NCHILD1 -0.358 *** -0.362 *** -0.354 *** -0.357 *** -0.358 ***
(0.028) (0.028) (0.027) (0.027) (0.022)

Ratio of boys among children -0.074 -0.092 -0.074 -0.089 -0.140 ***
(0.074) (0.074) (0.072) (0.071) (0.049)

Head’s age 0.036 0.027 0.033 0.025 0.008
(0.043) (0.044) (0.041) (0.043) (0.032)

Head’s age squared† -0.035 -0.026 -0.030 -0.022 -0.001
(0.054) (0.056) (0.052) (0.054) (0.041)

Spouse’s age 0.005 0.021 0.003 0.017 -0.010
(0.061) (0.063) (0.057) (0.060) (0.043)

Spouse’s age squared† 0.007 -0.017 0.012 -0.010 0.010
(0.099) (0.101) (0.093) (0.096) (0.070)

Head has some primary education 0.306 ** 0.274 * 0.278 ** 0.256 ** 0.032
(0.129) (0.143) (0.121) (0.117) (0.051)

Head has some lower secondary education -0.079 -0.086 -0.065 -0.071 -0.089
(0.080) (0.080) (0.077) (0.077) (0.056)

Head has some matric education 0.069 0.056 0.076 0.065 0.001
(0.093) (0.094) (0.088) (0.089) (0.059)

Spouse has some primary education 0.287 *** 0.277 ** 0.278 *** 0.275 *** 0.087 *
(0.102) (0.120) (0.101) (0.104) (0.051)

Spouse has some lower secondary education -0.111 -0.133 -0.086 -0.106 -0.044
(0.077) (0.087) (0.071) (0.076) (0.052)

Spouse has some matric education -0.037 -0.082 -0.039 -0.079 -0.086
(0.102) (0.099) (0.095) (0.093) (0.062)

log (HH expenditure per capita) -0.009 -0.144 * 0.013 -0.101 -0.214 ***
(0.116) (0.086) (0.126) (0.090) (0.055)

IMR 2005 at sub-district level 0.000 0.000 -0.001
(0.002) (0.002) (0.001)

Hours of TV watched by spouse 0.338 0.302 * -0.094 ***
(0.218) (0.165) (0.024)

Marginal land owner (0.05-0.49 acres) -0.097 -0.071 -0.013
(0.124) (0.124) (0.088)

Small land owner (0.50-2.49 acres) -0.144 -0.109 -0.042
(0.131) (0.130) (0.092)

Medium land owner (2.50-7.49 acres) -0.454 * -0.434 * -0.005
(0.232) (0.237) (0.106)

Large land owner (7.50+ acres) -0.507 -0.479 0.093
(0.332) (0.344) (0.156)

Estimation GMM-IV GMM-IV GMM-IV GMM-IV OLS
R2 0.2267
1st Stage F 7.76 *** 4.04 ** 7.78 *** 6.53 ***
Test of endogeneity 14.09 *** 8.27 *** 11.67 *** 10.63 ***
OIR Test 0.11 1.36 0.24 1.58
CLR Test 15.01 *** 9.73 *** 12.63 *** 11.91 ***
N 2547 2547 2547 2547 2547

Note: GMM-IV estimation is used for all models. † regressor is rescaled by dividing by 100. A constant term
is included in each regression (not reported). Robust standard errors are in brackets. Statistical significance at
10, 5, and 1 percent levels are denoted by *, **, and ***, respectively. HHELEC1 is instrumented by the age
and system loss from the grid for each PBS.
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the possibility that changes in the number of children may depend not only on a

household’s current standard of living but also on its overall wealth level. We find

that households owning more land tend to have lower fertility but the coefficient

is statistically insignificant except for medium landowners. Furthermore, the inclu-

sion of the landholding categories does not significantly change the coefficient on

HHELEC1.

Finally, in column (d), we simultaneously include the infant mortality rate, hours

of TV watched, and landholding categories. This again does not change the coef-

ficient on HHELEC1. However, the endogeneity of the interaction term is very

important for our purpose. If we use OLS regression instead of GMM-IV regres-

sion, the coefficient on the interaction term is statistically insignificant. In addi-

tion, the coefficient on the hours of TV watched becomes negative and significant,

as shown in column (e). The results reported in this table are qualitatively the

same when we replace HHELEC1 with the indicator function of number of chil-

dren exceeding two (i.e., 1(NCHILD1 ≥ 2) and its interaction with HHELEC1 (i.e.,

HHELEC1 × 1(NCHILD1 ≥ 2)).22

Origins of the Impact of Rural Electrification

In the discussion so far, we have only considered the possibility that the household-

level adoption of electricity affects a household’s fertility. However, it is plausible

that people’s behavior is influenced by their neighbors’ actions. For example, infor-

mation that someone in an electrified household obtains from TV may be transmit-

ted to people living in non-electrified households in the same village, which in turn

change the latter’s behaviors. It is also possible that the non-electrified households

may be affected by the adoption of electricity by others in the village, because, for

example, it leads to a better environment for child bearing and rearing.

Therefore, we take the status of village electrification into account. To this end,

we create an indicator variable, VGELECt, denoting that the village is connected

to the national grid in Round t ∈ {1, 2}.23 To test the impact of this variable, we

separately analyze the following two subsamples: (S1) households that reside in a

village that was electrified in Round 1 (i.e., VGELEC1 = 1) and (S2) households

that reside in a village electrified between the two rounds (i.e., VGELEC1 = 0 and

VGELEC2 = 1). Because the households in subsample (S2) lack access to electricity

from the grid in Round 1, we use electrification status in Round 2 (HHELEC2)

22The details of the regression results in this specification are reported in Table 15 in Appendix C.
23VGELEC is included in the household-level dataset. Therefore, the analysis is unaffected even

if the village codes are incorrect.
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instead of Round 1 (HHELEC1) to compare the impact of electrification for the two

subsamples.
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Table 8: Sub-sample regressions and regressions with village-level electrification status.

(a) (b) (c) (d) (e)

HHELEC2 -1.552 *** (0.559) -2.253 * (1.228) -3.835 (4.798)
HHELEC1 -4.265 * (2.250)
VGELEC1 -2.253 ** (1.012) 2.925 * (1.579)
NCHILD -0.365 *** (0.025) -0.333 *** (0.039) -0.444 *** (0.112) -0.359 *** (0.030) -0.357 *** (0.034)
Ratio of boys among children -0.088 (0.066) -0.064 (0.093) -0.227 (0.264) -0.019 (0.095) -0.160 * (0.088)
Head’s age 0.033 (0.040) 0.104 (0.074) -0.065 (0.167) 0.047 (0.049) 0.016 (0.052)
Head’s age squared† -0.032 (0.050) -0.112 (0.092) 0.099 (0.215) -0.048 (0.060) -0.010 (0.064)
Spouse’s age -0.024 (0.055) -0.003 (0.084) -0.097 (0.203) -0.030 (0.067) 0.047 (0.083)
Spouse’s age squared† 0.053 (0.090) -0.002 (0.136) 0.192 (0.336) 0.060 (0.110) -0.060 (0.131)
Head has some primary education 0.168 * (0.086) 0.262 (0.173) -0.088 (0.397) 0.262 * (0.137) 0.305 * (0.180)
Head has some lower secondary education -0.052 (0.073) -0.036 (0.114) 0.198 (0.499) -0.128 (0.084) -0.019 (0.112)
Head has some matric education -0.028 (0.076) 0.062 (0.096) -0.383 (0.449) 0.001 (0.094) 0.144 (0.124)
Spouse has some primary education 0.271 *** (0.094) 0.176 (0.122) 0.933 (0.830) 0.249 ** (0.107) 0.294 ** (0.146)
Spouse has some lower secondary education -0.079 (0.066) 0.063 (0.094) -0.247 (0.282) -0.204 * (0.104) 0.023 (0.103)
Spouse has some matric education -0.089 (0.084) -0.119 (0.106) 0.078 (0.445) -0.063 (0.105) -0.015 (0.120)
log (HH expenditure per capita) -0.133 * (0.080) -0.042 (0.175) -0.209 (0.246) -0.112 (0.104) 0.075 (0.196)

First Stage F 9.580 *** 4.365 ** 0.354 4.312 ** 2.790 *
Test of endogeneity 10.609 *** 5.093 ** 3.182 * 10.365 *** 11.341 ***
OIR Test 0.770 0.013 0.255 0.888 0.181
CLR Test 12.000 *** 5.490 ** 4.300 11.730 *** 11.960 ***
N 2547 1475 569 2547 2547

Note: † denotes that the regressor is rescaled by dividing by 100. GMM-IV estimation is used for all models. A constant term is included in each regression (not reported).
Robust standard errors in the brackets. Statistical significance at 10, 5, and 1 percent levels are denoted by *, **, and ***, respectively. HHELEC2 in columns (a), (b),
and (c), VGELEC1 in column (d), and HHELEC1 in column (e) are instrumented by the age and system loss from the grid for each PBS.
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To determine the consequences of using HHELEC2 instead of HHELEC1, we first

run the same GMM-IV regression as reported in column (b) of Table 6, but with

HHELEC1 replaced by HHELEC2. As reported in column (a) of Table 8, the results

are generally similar except that the point estimate is smaller in absolute value, even

though the difference is not significant. This result is not surprising because impacts

stemming from electrification that occurred just prior to the Round 2 survey would

not show up in ∆NCHILD. This result also indicates that the expectation of future

electrification is unlikely to be as important as the actual provision of electrification.

In column (b), we run the same regression as reported in column (a) but only

for subsample (S1). Because households in electrified villages are likely to have

been affected by the village-level effect of electrification, the estimated coefficient

can be interpreted as the impact of electrification net of the village-level effect of

electrification.

In column (c), we report the results of the same regression, this time for sub-

sample (S2). Because these villages were electrified between the two rounds, the

village-level impact of the adoption of electricity would be, if any, much smaller

than that in subsample (S1). This specification unfortunately suffers from the weak

instrumental variable problem. This is not surprising because the instruments can-

not predict whether the adoption of electrification would occur within the relatively

short time window between the two survey rounds. Given this issue together with

the small sample size, the estimated coefficient is insignificant. Hence, even though

the point estimate of the coefficient on HHELEC2 is substantially larger in absolute

value than that reported in column (b), we cannot draw a strong conclusion about

the village-level effect of adopting electricity.

To investigate further the village-level effect, we also run regressions by taking

village electrification status in Round 1 (VGELEC1) instead of HHELEC1 as an

endogenous regressor. As reported in column (d), the impact of electrification is

found to be negative and significant. However, when we include both HHELEC1 and

VGELEC1 in the model with only HHELEC1 treated as an endogenous regressor,

the former is found to have a negative and significant impact on fertility whereas the

latter is found to have a positive and significant impact, as reported in column (e).

We also run a regression in which both HHELEC1 and VGELEC1 are treated

as endogenous regressors (not reported). The test of endogeneity indicates that

HHELEC1 is endogenous whereas VGELEC1 is not. Hence, we have no apparent

evidence of misspecification for the model results reported in column (e).

The balance of evidence from Table 8 appears to indicate a negative effect of

electrification on fertility at the household level, but the effect is possibly positive
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at the village level.

Alternative Variables for Electrification

To examine the robustness of our results, a few alternative choices of electrification

variables are considered. First, we take the outage of electricity into consideration.

This is potentially important because electrification is unlikely to have a large impact

if electricity is generally unavailable due to outages. To account for this possibility,

we use OUTAGE2, i.e., the proportion of time in which electricity was unavailable

in the village in Round 2. However, the previously mentioned problems with the

village codes required us to aggregate the outage variable to the subdistrict level for

approximately 60 percent of villages. For a very small fraction of households, we

needed to aggregate to a PBS level to merge the outage variable.
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Table 9: Alternative choices of electrification variables.

(a) (b) (c) (d)

HHELEC2×(1-OUTAGE) -2.573 ** (1.060)
HHELEC2 -2.671 ** (1.252)
OUTAGE 1.701 * (0.908)
YRELEC -0.159 *** (0.061)
HHELEC1 -1.831 ** (0.815)
SOLAR1 -1.221 ** (0.510)
NCHILD -0.351 *** (0.028) -0.333 *** (0.035) -0.353 *** (0.026) -0.357 *** (0.027)
Ratio of boys among children -0.094 (0.075) -0.079 (0.086) -0.059 (0.074) -0.109 (0.067)
Head’s age 0.038 (0.046) 0.035 (0.050) 0.000 (0.043) 0.014 (0.042)
Head’s age squared† -0.034 (0.056) -0.029 (0.061) 0.014 (0.056) -0.003 (0.053)
Spouse’s age -0.005 (0.062) 0.025 (0.071) 0.066 (0.065) 0.022 (0.058)
Spouse’s age squared† 0.019 (0.101) -0.031 (0.115) -0.099 (0.103) -0.022 (0.094)
Head has some primary education 0.225 * (0.115) 0.400 ** (0.200) 0.211 ** (0.100) 0.280 ** (0.137)
Head has some lower secondary education -0.052 (0.084) -0.089 (0.093) -0.039 (0.080) -0.067 (0.076)
Head has some matric education -0.028 (0.088) 0.101 (0.115) 0.129 (0.103) 0.137 (0.101)
Spouse has some primary education 0.369 *** (0.141) 0.388 ** (0.168) 0.206 ** (0.081) 0.265 ** (0.106)
Spouse has some lower secondary education -0.099 (0.078) -0.133 (0.095) -0.020 (0.074) -0.070 (0.070)
Spouse has some matric education -0.104 (0.099) -0.034 (0.120) -0.139 (0.102) -0.060 (0.090)
log (HH expenditure per capita) -0.071 (0.107) 0.107 (0.191) -0.014 (0.115) 0.057 (0.151)

First Stage F 5.310 *** 3.748 ** 7.510 *** 5.924 ***
Test of endogeneity 10.854 *** 11.425 *** 12.043 *** 8.547 ***
OIR Test 0.660 0.000 0.090 2.158
CLR Test 12.060 *** 11.890 *** 12.510 *** 11.270 ***
N 2547 2547 2547 2547

Note: † denotes that the regressor is rescaled by dividing by 100. GMM-IV estimation is used for all models. A constant term is included in
each regression (not reported). Robust standard errors in brackets. Statistical significance at 10, 5, and 1 percent levels are denoted by *, **, and
***, respectively. HHELEC2×(1-OUTAGE) in column (a), HHELEC2 in column (b), YRELEC in column (c), and HHELEC1 in column (d) are
instrumented by the age and system loss from the grid for each PBS.
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The specification in column (a) of Table 9 is the same as that in column (a) of

Table 8 except that HHELEC2 is replaced with HHELEC2×(1−OUTAGE2), where

the latter can be interpreted as the fraction of time during which the household can

use electricity. This variable has an advantage in that it is closer to the definition of

e in Section 3 than HHELEC. The results are similar except that the point estimate

becomes slightly larger in absolute value.

In column (b), we include HHELEC2 and OUTAGE2 separately, where only

the former is taken as the endogenous regressor, because only that was found to

be endogenous in an unreported regression where both are treated as endogenous.

While the coefficient on OUTAGE2 is only marginally significant, this result shows

that prolonged outages tend to offset the fertility-reducing effect of electrification.

In column (c), we replace HHELEC1 with YRELEC1, or the number of years for

which the household has received electricity, which is observed only in Round 1. As

the table shows, the results are consistent with the previous discussion. Households

with a longer history of access to electricity show a higher negative impact on fer-

tility. When we include both HHELEC1 with YRELEC1 as endogenous regressors,

both were individually insignificant due to high collinearity but they were jointly

significant in a weak-instrument robust Anderson–Rubin test.

Finally, in column (d), we include the access to solar electricity in Round 1

(SOLAR1) in addition to access to electricity from the grid. We treat SOLAR1 as

an exogenous variable. This specification, given in column (d), appears reasonable

because only the latter is found to be an endogenous variable in the test of endo-

geneity for an unreported GMM-IV regression of ∆NCHILD in which both SOLAR

and HHELEC are treated as endogenous variables.

As column (d) shows, both SOLAR1 and HHELEC1 are found to have a signifi-

cant and negative coefficient. Furthermore, their coefficients are close in magnitude.

This provides partial support for our theory because electricity source should not

matter in our model provided that the same number of lighted hours are made

available.

Discrete Specifications

The linear models used so far ignore the fact that both NCHILD and ∆NCHILD

are discrete variables. This is unsatisfactory, especially in the cross-sectional regres-

sions, because the implied number of expected children can be negative. In this

light, Peters and Vance (2011) propose the use of Poisson regressions. However, as

discussed in Section 1, the underlying assumptions for the Poisson model is highly

restrictive and thus it is unclear whether the Poisson model is necessarily better than
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linear models. Furthermore, the Poisson model is not applicable to ∆NCHILD, as

they can take a negative value.24

In this study, we propose a BPOP regression model to address this issue, where

household electrification status is modeled with a probit model, and NCHILD or

∆NCHILD is modeled with an ordered probit model, the details of which are given

in Appendix A. This formulation offers three advantages. First, the ordered probit

model is flexible with respect to the relationship between the linear index (X2hβ2

using the notations in Appendix A) and the outcome (NCHILD or ∆NCHILD)

because the threshold values can change in the estimation. In comparison, the

Poisson model imposes a rigid relationship between the linear index and the outcome.

Second, the BPOP model exploits the correlation in the error terms, which helps

yield more accurate estimation results. Finally, the ordered probit models are more

robust to outliers once the top (or bottom) categories are merged. On the other

hand, the linear and Poisson models considered in this study are sensitive to outliers.

Table 10 reports the BPOP regression results. In columns (a) and (b), we run

a BPOP regression of NCHILD and household electrification status for Rounds 1

and 2, respectively. As with previous models, the coefficient on household electri-

fication status is significant and negative. Furthermore, the coefficients on demo-

graphic and education covariates included in the model are qualitatively similar to

those found in Table 2.

The table also shows that households that are richer or where the spouse has

more education are more likely to adopt electricity in both rounds. As expected, the

age of PBS has a positive coefficient whereas system loss has a negative coefficient,

though the age of PBS is insignificant for Round 2.

At the bottom of the table, we also report the threshold values (κ’s) for the

ordered probit model. For example, κk for k ∈ {1, · · · , 8} is the threshold value

of the latent variable for fertility (y∗2h in Appendix A) above which the number of

children is equal to k or more. Therefore, the difference between the two contiguous

thresholds essentially tells us how difficult it is to move to the next category (in terms

of the number of children).The table also reveals that the largest difference between

two contiguous thresholds occurs at the [κ2, κ3] interval in both rounds. Beyond κ3,

the difference between two contiguous thresholds tends to shrink. Therefore, our

model implies that the fertility-reducing effect of electrification is greatest when the

household has high potential fertility as computed from the observable indicators

(i.e., a high value of X2hβ2).

24Since Peters and Vance (2011) only use cross-sectional data, they only consider the number
of children as a dependent variable. When we use Poisson models, the results are qualitatively
similar to those reported in Tables 16 and 17 in Appendix C.
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Table 10: Bivariate probit-ordered-probit regression results.

Column (a) (b) (c)

Data Round 1 only Round 2 only Panel

Dep var for probit model HHELEC HHELEC HHELEC

Ratio of boys among children 0.010 (0.028) -0.034 (0.055) 0.098 (0.070)
Head’s age 0.039 *** (0.013) 0.047 ** (0.018) 0.044 (0.044)
Head’s age squared† -0.037 ** (0.015) -0.029 (0.019) -0.051 (0.055)
Spouse’s age -0.008 (0.016) -0.069 ** (0.029) 0.029 (0.061)
Spouse’s age squared† 0.027 (0.023) 0.090 ** (0.040) -0.021 (0.100)
Head has some primary education 0.273 *** (0.030) 0.061 (0.058) 0.403 *** (0.075)
Head has some lower secondary education 0.037 (0.030) 0.050 (0.058) -0.007 (0.076)
Head has some matric education 0.048 (0.032) -0.033 (0.067) 0.095 (0.087)
Spouse has some primary education 0.243 *** (0.029) 0.217 *** (0.057) 0.313 *** (0.073)
Spouse has some lower secondary education 0.058 ** (0.029) 0.127 ** (0.056) -0.093 (0.072)
Spouse has some matric education 0.034 (0.037) 0.041 (0.076) 0.092 (0.098)
log (HH expenditure per capita) 0.309 *** (0.029) 0.243 *** (0.046) 0.321 *** (0.076)
Age of PBS 0.022 *** (0.002) 0.020 *** (0.005) 0.014 ** (0.007)
System loss of PBS -0.007 ** (0.003) -0.027 *** (0.007) -0.031 *** (0.009)

Dep var for ordered-probit model NCHILD NCHILD ∆NCHILD

HHELEC -1.050 *** (0.041) -0.951 *** (0.096) -0.947 *** (0.165)
NCHILD -0.377 *** (0.027)
Ratio of boys among children -0.042 * (0.021) -0.182 *** (0.043) -0.130 ** (0.060)
Head’s age 0.085 *** (0.010) 0.060 *** (0.015) 0.006 (0.037)
Head’s age squared† -0.060 *** (0.011) -0.044 *** (0.016) 0.000 (0.047)
Spouse’s age 0.156 *** (0.013) 0.184 *** (0.025) 0.022 (0.050)
Spouse’s age squared† -0.163 *** (0.019) -0.191 *** (0.035) -0.043 (0.082)
Head has some primary education 0.182 *** (0.025) -0.040 (0.048) 0.151 ** (0.066)
Head has some lower secondary education 0.006 (0.025) 0.004 (0.046) -0.107 (0.066)
Head has some matric education 0.036 (0.026) -0.050 (0.052) 0.047 (0.072)
Spouse has some primary education 0.027 (0.024) -0.001 (0.048) 0.187 *** (0.062)
Spouse has some lower secondary education -0.060 *** (0.023) -0.051 (0.045) -0.062 (0.061)
Spouse has some matric education -0.098 *** (0.028) -0.153 *** (0.057) -0.096 (0.079)
log (HH expenditure per capita) -0.281 *** (0.026) -0.156 *** (0.040) -0.156 ** (0.068)

κ1 2.980 (0.178) 2.676 (0.378) -4.121 (0.718)
κ2 3.649 (0.180) 3.424 (0.387) -3.616 (0.702)
κ3 4.471 (0.183) 4.417 (0.398) -3.154 (0.697)
κ4 5.152 (0.186) 5.151 (0.405) -2.600 (0.691)
κ5 5.692 (0.188) 5.704 (0.410) -0.888 (0.670)
κ6 6.138 (0.191) 6.186 (0.414) 0.088 (0.660)
κ7 6.548 (0.193) 6.647 (0.418) 0.726 (0.654)
κ8 6.913 (0.196) 6.975 (0.422) 1.277 (0.652)

ρ 0.651 (0.027) 0.574 (0.061) 0.538 (0.102)

N 16369 4180 2547

Note: † denotes that the regressor is divided by 100. Robust standard errors in the bracket. Estimation is
carried out by maximum likelihood estimation. A constant term is included in each probit model. Statistical
significance at 10, 5, and 1 percent levels are denoted by *, **, and ***, respectively. For columns (a) and
(b), the base category is NCHILD=0 and κ1 to κ8 respectively correspond to the thresholds for one child
to eight children (and over). For column (c), the base category is ∆NCHILD=-4 and κ1 to κ8 respectively
correspond the thresholds for -3 to +4.
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Figure 1: Percentage of households using electricity for lighting and total fertility
rate at the district level in rural Bangladesh in 1982. Source:Bangladesh Bureau of
Statistics (1988a,b).

The second row from the bottom reports the correlation ρ in the idiosyncratic

terms for the two underlying latent dependent variables. A high positive correlation

is found, revealing the presence of positive selection. It also indicates that we can

gain efficiency by simultaneously estimating the two models, because the error term

contained in the household electrification status model is informative of the error

term in the NCHILD model.

In column (c), we report the BPOP regression for ∆NCHILD, which can be

thought of as a discrete analogue of column (b) in Table 6. In this model, too,

household electrification status remains negative and significant. We also find that

those households where the head has primary or higher education tend to have more

children after controlling for, among others, the expenditure per capita in logarithm.

Overall, we find from Table 10 that the level-on-level (columns (a) and (b)) and

change-on-level regressions (column (c)) provide implications qualitatively similar to

those of the linear models. As with the linear case discussed earlier, the regression

results change only slightly when the error terms are clustered at the subdistrict

level for all columns, as reported in Table 10.
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As Table 10 shows, we consistently observe positive selection. This may be

because of the differences in the initial condition across villages. While we have

limited data on the initial condition, there is a modest positive correlation (0.165)

between the percentage of households using electricity for lighting and total fertility

rate at the district level in 1982 when the rural electrification was still at an early

stage as shown in Figure 6. Because it is inappropriate to include a large number

of dummies, we also ran the BPOP regression with fixed-effects terms at the level

of six divisions. When these fixed-effects terms are included, ρ tends to become

smaller but other results are quantitatively similar (See Table 18 in Appendix C for

details).

The non-linearity of the BPOP regressions means that we must be cautious

when quantitatively comparing the results in Table 10 with the GMM-IV regression

results in Table 2 and column (b) of Table 6. To make quantitative comparisons,

we therefore calculate the marginal impact of electrification by taking the difference

∆h in NCHILD or ∆NCHILD for each household h in the expected number of

children with and without the adoption of electricity, given household characteristics

including the adoption of electricity (see Appendix A for the formal definition of ∆h).

We then take an average across all households to arrive at the average marginal

impact of electrification upon the number of children, which is -1.51 for Round 1

and -1.33 for Round 2 based on columns (a) and (b), respectively. The average

marginal impact on ∆NCHILD based on column (c) is -0.89 children. As expected,

this number is smaller than the two figures mentioned above because the latter refers

only to fertility changes over a five-year period.

It is possible to disaggregate the average impact by household characteristics.

Therefore, to check the argument made in Section 3 in a cross-sectional context,

we disaggregated the average marginal impact by the number of children. For both

rounds, the impact for those households with NCHILD≥ 2 is substantially larger in

absolute value than that for households with NCHILD≤ 1.

7 Discussion

Numerous studies have examined the economic impacts of rural electrification. How-

ever, relatively few studies investigate the impact of rural electrification on fertility

in developing countries. While the idea that a relationship may exist between the

availability of electricity and fertility is not new in itself, there remains a dearth of

rigorous econometric analyses based on household surveys.

Our main finding is that rural electrification negatively affects fertility, particu-
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larly when the positive selection of adoption of electricity is considered. This finding

is robust with respect to (1) the choice of estimation method, (2) the choice of set of

regressors, (3) the choice of a measure of access to electricity, and (4) the assumed

structure of the error terms. This finding also has external validity. When we run

regressions similar to those reported in Table 2 using the Bangladesh Demographic

and Health Survey for 2004, we also obtain qualitatively similar results.

One obvious channel for electrification to affect fertility is through increased

standards of living. As shown in Table 1, the increase in the average household

expenditure per capita is higher for electrified households.25 Because the coefficient

on the logarithmic household expenditure per capita is generally negative though

not always significant, we can conclude that electrification can indeed affect fertility

negatively through this channel. However, the persistence of the negative and signif-

icant coefficient on the measures of adoption of electricity, especially after controlling

for the endogeneity issue, suggests that other channels are likely to exist.

Our empirical findings are consistent with a simple theoretical model in which

the optimal number of children changes according to the household’s electrification

status, where the optimal number is driven by, among other factors, the changes in

direct and opportunity costs of children. The model predicts that the proportion of

lighted time not spent on children increases once the household becomes electrified.

This prediction has empirical support in the analysis of time use in Appendix B.

However, unlike Grimm et al. (2014), we find no evidence that the fertility-reducing

effect of electrification comes from longer hours spent watching TV or lower infant

mortality in Bangladesh.

This study makes several contributions to the literature. First, to the best of

our knowledge, this is the first panel study based on a household-level dataset.

Using this dataset enables us to estimate a model of fertility conditional on the

household’s existing number of children. If we adopt the fixed-effects specification,

we can also control for all time-invariant household-level characteristics, though this

specification has some drawbacks.

Second, unlike previous studies, we treat the endogeneity of the adoption of elec-

tricity seriously. We exploit the infrastructure development and service delivery of

electricity as a source of exogenous variations in the electricity adoption. Our results

show that the adoption of electricity is indeed endogenous and the negative impact

of electrification is even more pronounced once the endogeneity issue is considered.

Third, we propose an alternative strategy to estimate the simultaneous determi-

25If we use only panel households, the difference between electrified and non-electrified house-
holds is not as stark, but this point still holds.
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nation of the adoption of electricity and fertility by using the BPOP model, which

has a few distinct advantages discussed in the previous section. We find a strong

correlation in the unobserved error terms even after controlling for various demo-

graphic and education characteristics. While we are unable to fully identify the

source of the revealed positive selection, our results indicate that it is partly due to

the differences in the initial condition. The BPOP model exploits the correlational

structure to efficiently estimate the model coefficients and serves as an alternative

specification to the linear or Poisson regression models.

Finally, previous studies have ignored the impact of electrification’s dependence

on the current number of children. However, our theoretical argument underscores

this possibility. In the various specifications we have considered, the negative impact

of electrification on fertility tends to be small when a household has no or only one

child but tends to become larger when a household has two or more children.

This study’s findings contain at least two policy implications. First, our study

highlights the possibility that some infrastructure investments, such as rural elec-

trification, may have significant social impacts that go well beyond those typically

considered in impact assessment studies. Second, this study shows that policymak-

ers cannot simply expect lower fertility rates to result simply by electrifying villages.

If they want to incorporate the potential impact of electrification on fertility into an

electrification project’s design, it is essential to also consider the affected households’

current demographic characteristics, especially current number of children, in the

project locations.
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Appendix A: Bivariate Probit-Ordered Probit Model

Formally, the BPOP model can be written in the following manner. Let the latent

variable for a household’s access to electricity h ∈ {1, · · · , H} be y∗1h. We assume

it is related to a vector of covariates X1h by y∗1h ≡ X1hβ1 + ε1h, where ε1h is the

idiosyncratic error term standardized to have a zero mean and a unit variance.

We assume that the latent variable is related to the indicator variable y1h for the

adoption of electricity by y1h = 1(y∗1h > 0).

As noted in Section 4, we only consider the fertility of the spouses of male-headed

households wherein the household head has one and only one spouse. Because of this

choice, we can use index h for spousal fertility. We assume that the latent fertility

by y∗2h is related to a vector X2h of covariates by y∗2h = X2hβ2 + ε2h, where ε2h is the

idiosyncratic error term for the ordered probit model with a zero mean and a unit

variance. We allow X2h to include y1h but this does not include a constant term.

The index of latent fertility is related to the number of children26 in the household

by y2h = ΣK
k=0I(κk ≤ y∗2h < κk+1) · k, where K is the maximum number of children

in the household, κk for k ∈ {1, · · · , K} is the cutoff to be estimated, κ0 ≡ −∞,

and κK+1 ≡ +∞.27

26We only consider the case where y2h is NHCILD. However, the discussion is essentially the
same even when y2h is ∆NCHILD.

27We take K = 8 in our empirical analysis, where k corresponds to the number of children except
that k = 8 corresponds to eight or more children. Given that we had very few observations with
NCHILD≥ 9, we do not distinguish between those having eight or more children.
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Because some omitted covariates may exist that affect both fertility and elec-

tricity access, it is important to allow for the possibility of correlation between

the idiosyncratic error terms for the two latent dependent variables. Therefore, we

assume that the error terms (ε1h, ε2h) jointly follow a standard bivariate normal

distribution with correlation ρ. Therefore, the set of parameters to be estimated is

Θ ≡ {β1, β2, ρ, κ1, . . . , κK}.
We denote the cumulative distribution functions for the univariate and bivariate

standard normal distributions by Φ1 and Φ2, respectively, where we use the following

for simplicity of presentation: Φ1(−∞) = Φ2(a,−∞, ρ) = 0, Φ1(∞) = 1, and

Φ2(a,∞, ρ) = Φ1(a). We estimate the BPOP model by the maximum likelihood

estimator Θ̂MLE, which solves the following problem:

Θ̂MLE = arg max
∏
h

∑
k

[AhkI(y1h = 1) +BhkI(y1h = 0)] I(y2h = k),

where Ahk and Bhk are defined as follows:{
Ahk ≡ Φ1(κk+1 −X2hβ2)− Φ1(κk −X2hβ2)−Bhk

Bhk ≡ Φ2(−X1hβ1, κk+1 −X2hβ2, ρ)− Φ2(−X1hβ1, κk −X2hβ2, ρ),

To find the marginal impact of electrification on fertility, we consider expected

fertility rates with and without electrification conditional on current electrification

status. To this end, we use X0
2h to denote all covariates for NCHILD other than

household electrification status and its coefficients by β0
2 . The coefficient on house-

hold electrification status is denoted by β1
2 .

Now, let us consider a household that is currently electrified [not electrified].

Conditional on that status, the probability that the number of children equals k is

given by Ahk/Φ1(X1hβ1) [ Bhk/Φ1(−X1hβ1)]. Therefore, by replacing β1, β
0
2 , β1

2 , κk,

and ρ with the corresponding maximum likelihood estimates β̂1, β̂
0
2 , β̂1

2 , κ̂k, and ρ̂,

we obtain the estimates of Ahk [Bhk].

We can now consider the probability that the household has k children condi-

tional on the households observable characteristics. For example, we can define B̂0
hk

and B̂1
hk for non-electrified households in the following manner:

B̂0
hk ≡ Φ2(−X1hβ̂1, κ̂k+1 −X0

2hβ̂
0
2 , ρ̂)− Φ2(−X1hβ̂1, κ̂k −X0

2hβ̂
0
2 , ρ̂)

B̂1
hk ≡ Φ2(−X1hβ̂1, κ̂k+1 −X2hβ̂

0
2 − β̂1

2 , ρ̂)− Φ2(−X1hβ̂1, κ̂k −X0
2hβ̂

0
2 − β̂1

2 , ρ̂).

We can similarly define Â0
hk and Â1

hk for electrified households. Using these, we
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define ∆h in the following manner:

∆h ≡
K∑
k=0

[
(B̂1

hk − B̂0
hk)1(y1h = 0)

Φ1(−X1hβ̂1)
+

(Â1
hk − Â0

hk)1(y1h = 1)

Φ1(X1hβ̂1)

]
· k.

By taking the average of ∆h over h, we obtain the average marginal impact.

Appendix B: Testing the signs of α′, I ′, l′, and c′

The Round 1 survey contains data on the wife’s use of time. However, the dataset

is not completely ideal because we only know how many hours a day on average

each person spends time on each of the following 18 activities: (1) listening to the

radio, (2) watching TV, (3) processing food, (4) collecting fuel, (5) working as an

agricultural worker, (6) working as a non-agricultural worker, (7) engaging in other

income-generating activities, (8) fetching water, (9) washing clothes and cleaning,

(10) cooking and serving, (11) eating, (12) bathing or caring for one’s body, (13)

shopping, (14) resting (excluding sleeping), (15) socializing, (16) performing religious

practices, (17) reading and studying, and (18) taking care of children. We denote

the number of hours spent on the j-th activity (1 ≤ j ≤ 18) by τj and the total

number of hours spent on these activities by T ≡
∑

1≤j≤18 τj.

This list presumably covers most of the important activities that are performed

during lighted hours. However, other activities may exist that are not appropriately

covered in this list. For example, if one has to commute to a workplace, time

spent travelling may not be captured in this list. Furthermore, activities such as

listening to the radio can be done without light or engaged in simultaneously with

other activities. However, data limitations lead us to ignore these possibilities and

assume that (1) the listed activities are performed only during lighted hours, (2) they

are the only activities performed during lighted hours, and (3) they are performed

separately. When we have a missing value of τj for some j, we treat the missing

value as zero. To avoid including those households for which the time-use records

are incomplete or seemingly problematic, we dropped approximately 1.8 percent of

observations for which 12 ≤ T ≤ 22 was not satisfied.

As is clear from the definition of α, this quantity can be calculated only from

those households with at least one child. Even after excluding childless households,

close to ninety percent of households report no time spent on taking care of children.

This, of course, may be because their children are old enough to care for themselves.

However, the very high rate of zero response appears to indicate that taking care

of children may be done in conjunction with other activities. Therefore, we use a
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subsample of households with non-zero α for our main analysis.

We calculate α by α = τ18/T/n because it corresponds to the proportion of the

lighted hours spent taking care of each child on average. Similarly, because l is the

proportion of the lighted hours not spent taking care of children, we calculate l by

l = 1− τ18/T .

Finding the empirical counterparts of I and c is a challenge. For I, we should only

include income from work in principle. However, the data does not allow us to clearly

distinguish between non-work and work incomes. Therefore, we use the logarithmic

household income per capita. For c, we need a measure of non-child consumption.

Because we are unable to distinguish between consumption expenditure for children

and adults, we use the logarithmic total consumption expenditure exclusive of food,

education, and health care as a proxy for the consumption of non-child goods.
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Table 11: OLS regression of α, I, l, and c for Round 1 data.

(a) (b) (c) (d) (e) (f) (g) (h)

Dep var α α I I l l c c
Covariates† N Y N Y N Y N Y

HHELEC1 -0.0034 -0.0019 0.1702 *** 0.0734 ** 0.0096 *** 0.0088 *** 0.3701 *** 0.2533 ***
(0.0022) (0.0020) (0.0314) (0.0304) (0.0027) (0.0028) (0.0450) (0.0441)

N 1047 1047 1047 1047 1047 1047 1047 1047
R2 0.0023 0.2097 0.0273 0.1692 0.0122 0.0191 0.0607 0.1787

(k) (l) (m) (n) (i) (j) (o) (p)

HHELEC1 -0.0003 -0.0001 0.1489 *** 0.0670 *** 0.0008 * 0.0006 0.3749 *** 0.2884 ***
(0.0002) (0.0003) (0.0083) (0.0079) (0.0005) (0.0005) (0.0122) (0.0119)

N 14628 14628 14627 14627 14628 14628 14628 14628
R2 0.0001 0.0067 0.0216 0.1673 0.0002 0.0008 0.0610 0.1543

†: The standard covariates are as follows: the ratio of boys among children, the head’s age and its squared term, the spouse’s age and its squared
term, the head’s education (primary/secondary/matric), and the spouse’s education (primary/secondary/matric).
Note: OLS estimation is used for all models. Regressions for l and α were run separately. Statistical significance at 10, 5, and 1 percent levels
are denoted by *, **, and ***, respectively. Columns (a)–(h) use a subsample of observations with α > 0. columns (i)–(p) use a subsample of
observations with NCHILD1 > 0.
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To test the signs of l′, α′, I ′, and c′, we run OLS regressions of l, α, I, and c

on HHELEC1. We report the regression results for a subsample of households with

non-zero α in columns (a)–(h) and subsample of households with at least one child

in columns (i)–(p) in Table 11.

Columns (a) and (b) show that the coefficient on HHELEC1 for α is negative

but insignificant whether or not a set of covariates is included. Therefore, we do not

have evidence that contradicts eq. (3). As columns (c) and (d) show, the coefficient

for I is positive and significant. Therefore, eq. (4) holds empirically.

Columns (e) and (f) show that l′ > 0 is empirically satisfied whereas columns (g)

and (h) show that c′ > 0 is empirically satisfied. Because the results presented in

Section 6 indicate that n′ < 0 holds empirically, the predictions about the signs of l′

and c′ in Proposition 1 are satisfied, whether or not we control for a set of covariates.

Columns (a)–(h) only report OLS results because the null hypothesis that HHELEC1

is exogenous cannot be rejected at the conventional levels of significance in the

GMM-IV regressions (unreported) with a set of covariates for all dependent vari-

ables except for c, where HHELEC1 is instrumented by the age and system loss

from the grid for each PBS. The OIR test shows that the instrumental variable

is not valid for c, even though the coefficient on HHELEC1 remains positive and

significant. This may be because the instrumental variables may be conditionally

correlated with electricity-related expenditures.

As the comparison between Columns (a)–(h) and columns (i)–(p) indicate, the

results generally do not change qualitatively even when we include the households

with α = 0. Therefore, the results in Table 11 provide empirical support for eqs. (3)

and (4) as well as Proposition 1

Appendix C: Additional Tables

Table 12 provides the same set of summary statistics as those reported in Table 1 but

only for panel households. Table 13 and 14 are the same as Table 5 except that the

error is clustered at the village level in Table 13 and the subdistrict-specific fixed-

effects terms are included in Table 14. Tables 16 and 17 are the Poisson analogues

of Tables 2 and 3, respectively. Table 18 is the same as Table 10 except that the

former includes the fixed-effects terms at the divisional level.
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Table 12: Key summary statistics for Rounds 1 and 2 by the electrification status of households, panel households only.

Description Round 1 Round 2

Non-electrified Electrified All Non-electrified Electrified All
(HHELEC1=0) (HHELEC1=1) (HHELEC2=0) (HHELEC2=1)

Head’s age 36.8 38.2 37.2 41.3 42.9 42.0
Spouse’s age 29.1 30.3 29.5 33.7 34.5 34.1
# surviving children spouse has given birth to 2.26 2.25 2.26 2.69 2.61 2.66
Ratio of boys among children under 15 (%)† 50.3 53.5 51.2 51.7 52.3 52.0
Head has some primary education (%) 59.7 80.0 65.6 68.6 76.8 72.3
Head has some lower secondary education (%) 17.1 27.5 20.1 37.4 45.5 41.0
Head has some matric education (%) 8.6 14.5 10.3 19.5 24.1 21.5
Spouse has some primary education (%) 60.5 76.3 65.1 68.6 77.7 72.6
Spouse has some lower secondary education (%) 34.3 45.0 37.4 32.0 41.2 36.1
Spouse has some matric education (%) 10.2 16.4 12.0 10.5 13.0 11.6
Household expenditure per capita (Tk.) 28.5 32.0 29.5 60.4 68.9 64.2
Hours of TV watched by spouse 0.22 0.87 0.41 0.38 1.40 0.83
Landless (0.00-0.04 acres) 5.0 4.6 4.9 11.6 11.9 11.7
Marginal land owner(0.05-0.49 acres) 49.9 53.5 51.0 39.0 43.6 41.1
Small land owner (0.50-2.49 acres) 29.4 33.2 30.5 32.9 34.1 33.4
Medium land owner (2.50-7.49 acres) 13.6 7.6 11.8 14.0 9.0 11.8
Large land owner(7.50+ acres) 2.1 1.2 1.8 2.6 1.4 2.1

Number of observations 1484 1063 2547 1131 1416 2547

†: The average was taken over those households with at least one child under the age of 15. Therefore, the number of observations used for this
calculation is about 10-15 percent lower than other rows, depending on the survey round and electrification status.
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Table 13: Results for parsimonious specifications with clustered errors at the village-level.

Dependent Variable: ∆NCHILD (a) (b) (c) (d) (e) (f) (g) (h)

1(NCHILD1 ≥ 1) -0.990 ***
(0.084)

HHELEC1 × 1(NCHILD1 ≥ 1) -0.100 **
(0.042)

1(NCHILD1 ≥ 2) -0.307 *** -0.343 ***
(0.072) (0.065)

HHELEC1 × 1(NCHILD1 ≥ 2) -0.216 * -0.130 ***
(0.115) (0.048)

1(NCHILD1 ≥ 3) 0.375 ***
(0.077)

HHELEC1 × 1(NCHILD1 ≥ 3) -0.150 **
(0.072)

1(NCHILD1 ≥ 4) 0.627 ***
(0.088)

HHELEC1 × 1(NCHILD1 ≥ 4) -0.078
(0.114)

NCHILD1 -0.329 *** -0.328 *** -0.255 *** -0.213 *** -0.234 *** -0.418 *** -0.447 ***
(0.018) (0.021) (0.026) (0.018) (0.023) (0.030) (0.024)

HHELEC1 -0.107 ** -0.103 ** -0.099 -0.060
(0.043) (0.043) (0.088) (0.091)

HHELEC1 ×NCHILD1 -0.002 0.050
(0.036) (0.046)

R2 0.013 0.204 0.204 0.219 0.267 0.218 0.211 0.224
N 2547 2547 2547 2547 2547 2547 2547 2547

Note: OLS estimation for all columns. A constant term is included in each model (not reported). Standard errors in brackets are
clustered at the level of 432 villages based on the village code in Round 1. Statistical significance at 10, 5, and 1 percent levels are
denoted by *, **, and ***, respectively.
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Table 14: Results for parsimonious specifications with sub-district-level fixed-effects.

Dependent Variable: ∆NCHILD (a) (b) (c) (d) (e) (f) (g) (h)

1(NCHILD1 ≥ 1) -0.790 ***
(0.084)

HHELEC1 × 1(NCHILD1 ≥ 1) -0.088 **
(0.041)

1(NCHILD1 ≥ 2) -0.196 ** -0.235 ***
(0.076) (0.065)

HHELEC1 × 1(NCHILD1 ≥ 2) -0.205 * -0.112 **
(0.123) (0.047)

1(NCHILD1 ≥ 3) 0.287 ***
(0.070)

HHELEC1 × 1(NCHILD1 ≥ 3) -0.123 *
(0.067)

1(NCHILD1 ≥ 4) 0.427 ***
(0.090)

HHELEC1 × 1(NCHILD1 ≥ 4) -0.023
(0.117)

NCHILD1 -0.384 *** -0.384 *** -0.335 *** -0.282 *** -0.315 *** -0.450 *** -0.463 ***
(0.016) (0.020) (0.029) (0.018) (0.024) (0.027) (0.022)

HHELEC1 -0.086 * -0.091 ** -0.089 -0.050
(0.047) (0.041) (0.085) (0.085)

HHELEC1 ×NCHILD1 -0.001 0.048
(0.035) (0.049)

R2 0.066 0.334 0.334 0.341 0.370 0.341 0.338 0.342
N 2547 2547 2547 2547 2547 2547 2547 2547

Note: OLS estimation for all columns. The fixed-effects terms for each of the 173 sub-districts are included in each model. Robust
standard errors in the brackets. Statistical significance at 10, 5, and 1 percent levels are denoted by *, **, and ***, respectively.
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Table 15: Results for regressions with additional household-level control variables.

Dependent Variable: ∆NCHILD (a) (b) (c) (d) (e)

HHELEC1 × 1(NCHILD1 ≥ 2) -2.874 ** -2.952 * -2.379 ** -2.809 ** -0.040
(1.216) (1.605) (0.965) (1.359) (0.046)

1(NCHILD1 ≥ 2) 0.799 0.781 0.581 0.731 -0.449 ***
(0.547) (0.683) (0.437) (0.584) (0.071)

HHELEC1 -0.273 *** -0.267 *** -0.268 *** -0.264 *** -0.264 ***
(0.040) (0.040) (0.036) (0.039) (0.025)

Ratio of boys among children -0.112 -0.131 * -0.112 -0.124 * -0.152 ***
(0.076) (0.075) (0.069) (0.073) (0.049)

Head’s age 0.058 0.051 0.053 0.048 0.023
(0.047) (0.048) (0.043) (0.046) (0.034)

Head’s age squared† -0.062 -0.056 -0.056 -0.052 -0.021
(0.060) (0.062) (0.055) (0.059) (0.043)

Spouse’s age -0.058 -0.040 -0.039 -0.035 0.062
(0.080) (0.082) (0.070) (0.076) (0.045)

Spouse’s age squared† 0.119 0.092 0.088 0.086 -0.103
(0.141) (0.147) (0.122) (0.135) (0.074)

Head has some primary education 0.277 * 0.235 0.232 ** 0.226 * 0.021
(0.142) (0.144) (0.117) (0.127) (0.051)

Head has some lower secondary education -0.074 -0.082 -0.060 -0.065 -0.092 *
(0.087) (0.086) (0.079) (0.085) (0.055)

Head has some matric education 0.053 0.040 0.060 0.055 0.020
(0.100) (0.100) (0.089) (0.096) (0.059)

Spouse has some primary education 0.349 ** 0.332 ** 0.316 *** 0.339 ** 0.099 **
(0.136) (0.153) (0.117) (0.142) (0.050)

Spouse has some lower secondary education -0.072 -0.095 -0.050 -0.068 -0.051
(0.082) (0.084) (0.073) (0.079) (0.052)

Spouse has some matric education -0.147 -0.206 * -0.137 -0.193 * -0.106 *
(0.107) (0.119) (0.093) (0.109) (0.062)

log (HH expenditure per capita) -0.010 -0.163 * -0.010 -0.110 -0.227 ***
(0.133) (0.091) (0.127) (0.100) (0.054)

IMR 2005 at sub-district level -0.001 -0.001 -0.001
(0.002) (0.002) (0.001)

Hours of TV watched by spouse 0.363 0.335 -0.081 ***
(0.247) (0.207) (0.023)

Marginal land owner (0.05-0.49 acres) -0.184 -0.182 0.002
(0.145) (0.161) (0.088)

Small land owner (0.50-2.49 acres) -0.235 -0.225 -0.025
(0.156) (0.172) (0.092)

Medium land owner (2.50-7.49 acres) -0.564 * -0.611 * 0.011
(0.288) (0.352) (0.107)

Large land owner (7.50+ acres) -0.530 -0.566 0.073
(0.351) (0.412) (0.157)

Estimation GMM-IV GMM-IV GMM-IV GMM-IV OLS
R2 0.2437
1st Stage F 4.65 *** 2.87 * 5.95 *** 3.83 **
Test of endogeneity 13.00 *** 8.43 *** 11.31 *** 9.45 ***
OIR Test 0.03 0.82 0.12 1.20
CLR Test 13.83 *** 9.85 *** 12.28 *** 11.16 ***
N 2547 2547 2547 2547 2547

Note: † denotes that the regressor is rescaled by dividing by 100. A constant term is included in each regression
(not reported). Robust standard errors in the brackets. Statistical significance at 10, 5, and 1 percent levels
are denoted by *, **, and ***, respectively. HHELEC1 and its interaction terms are instrumented by the age
and system loss from the grid for each PBS.
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Table 16: Results for Poisson regressions with household-level control variables.

Dependent Variable: NCHILD Round 1 Round 2

Poisson IV-Poisson Poisson IV-Poisson

Mean (S.E.) Mean (S.E.) Mean (S.E.) Mean (S.E.)

HHELEC 0.000 (0.008) -1.864 *** (0.329) -0.014 (0.015) -1.094 *** (0.304)
Ratio of boys among children -0.028 *** (0.011) -0.019 (0.023) -0.080 *** (0.020) -0.104 *** (0.031)
Head’s age 0.054 *** (0.005) 0.086 *** (0.012) 0.026 *** (0.008) 0.042 *** (0.012)
Head’s age squared† -0.040 *** (0.006) -0.069 *** (0.013) -0.019 ** (0.008) -0.029 ** (0.012)
Spouse’s age 0.131 *** (0.007) 0.155 *** (0.014) 0.132 *** (0.013) 0.137 *** (0.021)
Spouse’s age squared† -0.154 *** (0.010) -0.177 *** (0.020) -0.149 *** (0.017) -0.156 *** (0.029)
Head has some primary education 0.042 *** (0.012) 0.233 *** (0.041) -0.024 (0.021) -0.004 (0.033)
Head has some lower secondary education -0.012 (0.013) 0.021 (0.026) -0.008 (0.022) 0.002 (0.033)
Head has some matric education 0.010 (0.013) 0.050 * (0.028) -0.011 (0.025) -0.023 (0.038)
Spouse has some primary education -0.033 *** (0.012) 0.123 *** (0.037) -0.040 * (0.021) 0.046 (0.038)
Spouse has some lower secondary education -0.052 *** (0.012) -0.021 (0.025) -0.051 ** (0.021) 0.003 (0.035)
Spouse has some matric education -0.076 *** (0.015) -0.055 * (0.032) -0.103 *** (0.029) -0.088 * (0.046)
log (HH expenditure per capita) -0.224 *** (0.012) -0.056 (0.045) -0.123 *** (0.018) -0.020 (0.034)

N 16369 16369 4180 4180

Note: † denotes the regressor is divided by 100. A constant term is included in each model (not reported). Robust standard
errors in the brackets. Poisson regression is estimated by maximum likelihood estimation and IV-Poisson regression is estimated
by the cost-function method with HHELEC taken as an endogenous variable and the age and system loss from the grid for
each PBS as well as all the other regressors taken as exogenous variables. Statistical significance at 10, 5, and 1 percent levels
are denoted by *, **, and ***, respectively.
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Table 17: Fixed-effects Poisson regression results.

Dependent Variable: NCHILD (a) (b) (c) (d) (e)

HHELEC 0.001 2.405 *** 0.601 *** 0.190 *** 0.079 ***
(0.021) (0.490) (0.083) (0.037) (0.025)

HHELEC× 1(NCHILD1 ≥ 1) -2.470 ***
(0.489)

HHELEC× 1(NCHILD1 ≥ 2) -0.699 ***
(0.085)

HHELEC× 1(NCHILD1 ≥ 3) -0.320 ***
(0.042)

HHELEC× 1(NCHILD1 ≥ 4) -0.265 ***
(0.040)

log (HH expenditure per capita) -0.124 *** -0.118 *** -0.116 *** -0.118 *** -0.121 ***
(0.018) (0.017) (0.017) (0.017) (0.018)

Wald χ2 404.7 455.2 468.8 453.5 449.4
N 5050 5050 5050 5050 5050

Note: Robust standard errors in the brackets. Household-specific and round-specific fixed-effects
terms are included in each model. Statistical significance at 10, 5, and 1 percent levels are denoted
by *, **, and ***, respectively. There are 22 households (44 observations) for which NCHILD=0
for both rounds and these households are excluded from the analysis.
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Table 18: Bivariate probit-ordered-probit regression results with fixed effects at the divi-
sional level.

Column (a) (b) (c)

Data Round 1 only Round 2 only Panel

Dep var for probit model HHELEC HHELEC HHELEC

Ratio of boys among children 0.009 (0.028) -0.034 (0.056) 0.107 (0.071)
Head’s age 0.042 *** (0.014) 0.046 ** (0.019) 0.056 (0.046)
Head’s age squared† -0.040 *** (0.015) -0.030 (0.019) -0.064 (0.058)
Spouse’s age -0.004 (0.016) -0.057 * (0.030) 0.025 (0.063)
Spouse’s age squared† 0.020 (0.023) 0.077 * (0.041) -0.017 (0.103)
Head has some primary education 0.284 *** (0.030) 0.120 ** (0.059) 0.439 *** (0.076)
Head has some lower secondary education 0.054 * (0.030) 0.071 (0.059) 0.035 (0.077)
Head has some matric education 0.049 (0.032) -0.018 (0.068) 0.065 (0.088)
Spouse has some primary education 0.251 *** (0.029) 0.261 *** (0.058) 0.322 *** (0.074)
Spouse has some lower secondary education 0.077 *** (0.029) 0.110 * (0.057) -0.059 (0.073)
Spouse has some matric education 0.046 (0.037) 0.076 (0.078) 0.107 (0.101)
log (HH expenditure per capita) 0.311 *** (0.031) 0.233 *** (0.048) 0.304 *** (0.077)
Age of PBS 0.015 *** (0.002) 0.016 *** (0.006) 0.020 ** (0.008)
System loss of PBS 0.003 (0.004) -0.004 (0.009) 0.023 * (0.012)

Dep var for ordered-probit model NCHILD NCHILD ∆NCHILD

HHELEC -1.005 *** (0.055) -0.859 *** (0.162) -0.264 (0.249)
NCHILD -0.488 *** (0.027)
Ratio of boys among children -0.035 * (0.021) -0.193 *** (0.043) -0.161 *** (0.059)
Head’s age 0.062 *** (0.011) 0.054 *** (0.016) -0.037 (0.039)
Head’s age squared† -0.041 *** (0.012) -0.042 *** (0.016) 0.050 (0.051)
Spouse’s age 0.187 *** (0.014) 0.221 *** (0.027) 0.053 (0.051)
Spouse’s age squared† -0.194 *** (0.020) -0.229 *** (0.037) -0.086 (0.084)
Head has some primary education 0.153 *** (0.026) 0.008 (0.048) 0.004 (0.074)
Head has some lower secondary education 0.040 (0.025) 0.025 (0.047) -0.078 (0.067)
Head has some matric education 0.040 (0.026) -0.032 (0.053) 0.009 (0.072)
Spouse has some primary education 0.043 * (0.025) 0.029 (0.051) 0.128 * (0.067)
Spouse has some lower secondary education -0.030 (0.023) -0.087 * (0.046) -0.022 (0.062)
Spouse has some matric education -0.073 *** (0.028) -0.141 ** (0.058) -0.079 (0.079)
log (HH expenditure per capita) -0.423 *** (0.031) -0.205 *** (0.046) -0.407 *** (0.071)

κ1 2.341 (0.182) 2.689 (0.392) -6.272 (0.701)
κ1 3.020 (0.184) 3.460 (0.405) -5.726 (0.689)
κ1 3.877 (0.186) 4.511 (0.422) -5.218 (0.687)
κ1 4.600 (0.189) 5.305 (0.434) -4.603 (0.687)
κ1 5.177 (0.192) 5.908 (0.443) -2.673 (0.680)
κ1 5.649 (0.195) 6.429 (0.451) -1.544 (0.676)
κ1 6.078 (0.198) 6.919 (0.458) -0.798 (0.673)
κ1 6.457 (0.201) 7.267 (0.462) -0.157 (0.675)

ρ 0.624 (0.037) 0.491 (0.103) 0.104 (0.150)

N 16369 4180 2547

Note: † denotes that the regressor is divided by 100. Robust standard errors in the bracket. Estimation is
carried out by maximum likelihood estimation. A constant term is included in each probit model. Statistical
significance at 10, 5, and 1 percent levels are denoted by *, **, and ***, respectively. For columns (a) and
(b), the base category is NCHILD=0 and κ1 to κ8 respectively correspond to the thresholds for one child
to eight children (and over). For column (c), the base category is ∆NCHILD=-4 and κ1 to κ8 respectively
correspond the thresholds for -3 to +4.
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