
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Economics School of Economics

10-2014

Bound estimator of HIV prevalence: Application to
Malawi
Tomoki FUJII
Singapore Management University, tfujii@smu.edu.sg

Denis H. Y. LEUNG
Singapore Management University, denisleung@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research
Part of the Econometrics Commons, and the Health Economics Commons

This Working Paper is brought to you for free and open access by the School of Economics at Institutional Knowledge at Singapore Management
University. It has been accepted for inclusion in Research Collection School Of Economics by an authorized administrator of Institutional Knowledge
at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
FUJII, Tomoki and LEUNG, Denis H. Y.. Bound estimator of HIV prevalence: Application to Malawi. (2014). 1-14. Research
Collection School Of Economics.
Available at: https://ink.library.smu.edu.sg/soe_research/1601

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/35453764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/soe?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1601&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/342?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1601&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1085?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1601&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


 
 

ANY OPINIONS EXPRESSED ARE THOSE OF THE AUTHOR(S) AND NOT NECESSARILY THOSE OF 
THE SCHOOL OF ECONOMICS, SMU 

 

 

 

 

 

 

 

 
 

Bound estimator of HIV prevalence:  

Application to Malawi 
 

Tomoki Fujii and Denis H.Y.  Leung  
 
 
 

October 2014 

 
 
 
 
 
 
 
 

 
 
 
 

Paper No. 17-2014 
 
 

 

   



1 

 

Bound estimator of HIV prevalence: Application to Malawi 
 

 

 Tomoki Fujii and Denis H.Y. Leung 

 

School of Economics, Singapore Management University, Singapore 

 

September 29, 2014 

 

 

Abstract 

 

Objective 

To find lower and upper bounds of HIV prevalence in Malawi under mild and intuitive assumptions to 

assess the importance of the refusal issue in the estimation of HIV prevalence. 

Methods 

We derive bounds based on the following two key assumptions: (i) Among those who have never taken 

an HIV test before, those who refuse to take an HIV test (hereafter “refusers”) have at least as much risk  

to be HIV positive as those who participate in the HIV test, and (ii) among the refusers, those who have a 

prior testing experience are at least as  likely to be HIV positive as those who have no prior experience. 

We compute the bounds using the Malawi Demographic and Health Survey and a longitudinal data set 

with a HIV testing component collected in the Malawi Diffusion and Ideational Change Project 

disaggregated by the sex, urban/rural areas, and three regions of Malawi. 

Findings 

The bounds of HIV prevalence vary substantially across geographic and demographic groups. In 

particular, the bounds for males are tighter than those for females and the bounds for the Northern region 

are also tighter than those for other regions. There is no substantial difference in the width of bounds 

between the rural and urban populations. 

Conclusion 

Bounds are useful for assessing the influence of refusal bias without the need for strong assumptions. 

Refusal issue is less of a concern if bounds are tight. However, when bounds are wide, refusal issue may 

be important.  

 

Keywords: Bias; Demographic and Health Surveys; Malawi; Missing data; Non-response; Refusals; 

Surveys 
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Introduction 

In sub-Saharan Africa, home to around 23 million people living with HIV,
1
 accurate measurement of HIV 

prevalence is essential for policy planning and resource allocation. Demographic and Health Surveys 

(DHS) and other national population-based surveys have served as important data sources for such 

measurement in the past three decades.
2,3

 These surveys are useful because they contain detailed 

demographic and risk characteristics and possibly outcome variables of interest (e.g., HIV status) at the 

individual and household level. However, significant refusal rates in these surveys are often reported
4
 and 

failure to address the refusal issue may severely undermine the reliability of estimates, because those who 

refuse may be systematically different from the survey participants.
5,6

 

In this paper, we propose two methods to estimate lower and upper bounds of HIV prevalence in 

the presence of refusals (the “refusers”) in a DHS survey under  two mild and intuitive assumptions: (A1) 

For those who have never taken an HIV test before, the refusers are at least as  likely to be HIV positive 

as the test participants; (A2) Among the refusers, those who have taken an HIV test before are at least as 

likely to be HIV positive as those without a previous testing experience. 

The first method requires the existence of a set of supplementary longitudinal data, which permits 

estimation of the relative risk of HIV between participants who have never taken an HIV test before and 

the refusers who have taken a test before. In the second method, the researcher specifies this relative risk 

to study the sensitivity of the bounds to the relative risk. Thus, this method offers a practical alternative to 

evaluatethe significance of  the refusal issue when a suitable longitudinal data set is unavailable. 

 

Data sources 

The primary data source for this study is the 2004 Malawi Demographic Health Survey (MDHS), which 

is a nationally-representative survey. In addition, we use a longitudinal data set collected under the 

Malawi Diffusion and Ideational Change Project (MDICP). To focus on refusals, we exclude all missing 

observations due to non-contact.
a
 

 

MDHS 

The 2004 MDHS is a two stage survey using households from 28 districts in Malawi. All women aged 

15-49 in a selected household were eligible for interview. In about one in three selected households, male 

members of the household aged 15-54 were also surveyed and an HIV test was offered to both male and 

female members.
8
 However, HIV test was successfully carried out only for 67 percent of the eligible 

                                                      
a A major reason for non-contact is migration, which is potentially an important issue as migrants appear to have higher HIV prevalence than 

non-migrants in Malawi.7 While migration is beyond the scope of this study, the bound estimators presented below can be extended to include 

migrants by re-interpreting refusal as migration. 
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individuals with refusal accounting for the majority of missing HIV status for the non-participants.
8
 The 

proportion of refusals was higher in the Central region (26 percent) than in the Southern or the Northern 

regions (21 percent and 14 percent, respectively). The refusal rate was slightly higher in urban (25 percent) 

than in rural areas (22 percent). 

We confine the 2004 MDHS sample to those aged under 49 to make the male and female 

populations comparable. Following a Malawi National Statistical Office report, we omit Lilongwe district, 

which has an unusually high refusal rate and low observed prevalence.
 8

  We also exclude those who 

refused to answer the individual questionnaire, those whose HIV testing results are not available for 

reasons other than refusal (e.g., non-contact and technical problem), and those whose previous HIV 

testing status is unknown. As a result, we have a total of 6,343 eligible individuals (3,511 women and 

2,832 men) in our sample. 

 

MDICP 

The MDICP is an ongoing longitudinal study, which includes married women and their husbands 

randomly drawn from 120 villages in a total of three rural districts with one district from each of the 

Southern, Central, and Northern regions. While the initial sample is not designed to be representative of 

rural Malawi, its sample characteristics closely matched those of the rural sample in the 1996 MDHS.
9
 

We restrict our sample to those aged 15-49 who appear in both the third and fourth phases 

(MDICP-3 and -4) conducted in 2004 and 2006 with known previous HIV testing status and non-missing 

HIV test results at the time of MDICP-3. As a result, we have a total of 2,287 individuals (1,240 women 

and 1,047 men) in the sample. 

 

Methods 

Let iD  be an indicator variable that takes one if individual i  is HIV positive and zero otherwise. The 

goal is to estimate 1)=( iDP , where individual i  is drawn randomly from the population of 

interest. When we are interested in the HIV prevalence of a certain sub-population, we simply need to use 

a suitable sub-sample. 

We typically estimate   from surveys such as DHS. However, in the presence of refusal, the 

data are sufficient to estimate ]0|[ ii RDE  where 1]=0[= ii RR  indicates that individual i  accepts 

[refuses] an HIV test. However, ]0|[ ii RDE  in general is not the same as ρ because some 

respondents, particularly those who already know they are (likely to be) HIV positive, may refuse to take 

an HIV test out of fear that their HIV status be known to others. 
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Since we generally know little about the reasons for refusals, we only wish to make weak and 

plausible assumptions. To motivate assumptions (A1) and (A2), we note the following two points: First, 

individuals may know the risk of HIV infection even without HIV tests because they know their behavior. 

Hence, those who are at a higher risk of HIV may be more likely to refuse HIV tests. Second, previous 

testing experience may be informative of current HIV status because, for example, those who have 

engaged in risky sexual behaviour may be more likely to take HIV tests out of necessity. Based on these 

considerations, we propose to estimate lower and upper bounds of   under the following assumptions: 

 1),=1,=|1=(1)=0,=|1=(0)=0,=|1=( iiiiiiiii RTDPRTDPRTDP   (1) 

where 1=iT  ]0[ iT  means that the subject has [never] taken an HIV test before. The first and second 

inequalities in eq. (1) are respectively the mathematical restatement of assumptions (A1) and (A2).  

To derive the bound estimators, we first decompose   as follows:  

 1)=1,=(1)=1,=|1=(0)=1,=(= iiiiiii RTPRTDPRDP   

 1).=0,=(1)=0,=|1=( iiiii RTPRTDP  (2) 

By applying eq. (1) to eq. (2), we obtain the following lower bound   and upper bound   satisfying 

   :  

 1)=1,=(1)=1,=|1=(0)=1,=(= iiiiiii RTPRTDPRDP   

 1)=0,=(0)=0,=|1=( iiiii RTPRTDP  (3) 

 1)=1,=(1)=1,=|1=(0)=1,=(= iiiiiii RTPRTDPRDP   

 1).=0,=(1)=1,=|1=( iiiii RTPRTDP  (4) 

These bounds cannot be directly calculated from DHS, because 1)=1,=|1=( iii RTDP  is 

unknown in general. However, with a suitable longitudinal data set, it may be possible to estimate this 

quantity under some additional assumptions. Below, we first develop a method when such a longitudinal 

data set is available. We then consider a practical solution in the absence of a longitudinal data set. 

 

Method 1: When auxiliary longitudinal data is available 

In our empirical example, we know the HIV status of the refusers in MDICP-4 from the MDICP-3 test 

results. However, since MDICP is not nationally representative, it would be inappropriate to estimate 

1)=1,=|1=( iii RTDP  directly from the MDICP data. Therefore, we explicitly account for the 

non-representativeness of the MDICP data. Let 1=iM  be an indicator variable for individual i  

belonging to the MDICP population. Further, we assume that the relative risk of HIV between the 
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MDICP population and non-MDICP population is independent of refusal among those who have 

previously taken an HIV test. This assumption implies: 

 
1)=1,=|1=(

0)=1,=|1=(

iii

iii

MTDP

MTDP
Z   

         
1)=1,=1,=|1=(

0)=1,=1,=|1=(
=

iiii

iiii

MRTDP

MRTDP
 

   .
1)=0,=1,=|1=(

0)=0,=1,=|1=(
=

iiii

iiii

MRTDP

MRTDP
 (5) 

The numerator and denominator of the last line of eq. (5) can be estimated by the proportions of 

HIV positive among those who have previously taken an HIV test in MDHS and MDICP data, 

respectively. Using eq. (5), the following holds:  

1)=1,=|1=( iii RTDP 1)=1,=|1=(1)=1,=1,=|1=(= iiiiiii RTMPMRTDP  

 1)=1,=|0=(0)=1,=1,=|1=( iiiiiii RTMPMRTDP  

 1)=1,=|0=(1)=1,=|1=(1)=1,=1,=|1=(= iiiiiiiiii RTMZPRTMPMRTDP  , (6) 

where 1)=1,=1,=|1=( iiii MRTDP  can be estimated by the proportion of HIV-positive individuals 

among the refusers in MDICP-4. Note that everyone in the MDICP sample has taken an HIV test in 

MDICP-3. 

 We can interpret 1)=1,=|0=( iii RTMP  and 1)=1,=|1=( iii RTMP  as the urban and 

rural population shares, respectively, of Malawi among the individuals with 1=iT  and 1=iR . We 

estimate them by the urban and rural shares of the sample weights, respectively, among those refusers 

with a prior testing experience in the MDHS data. Once we have an estimate of 1)=1,=|1=( iii RTDP , 

all the remaining terms in eq. (4) can be estimated from the MDHS data.
b
 

To obtain  , we additionally need to compute 0)=0,=|1=( iii RTDP . Similar to the 

derivation of Z , define:  

 .
1)=0,=0,=|1=(

0)=0,=0,=|1=(
=

iiii

iiii'

MRTDP

MRTDP
Z  (7) 

As with Z , the denominator and numerator of 
'Z  can be estimated from the MDHS and 

MDICP data, respectively, using the proportion of HIV-positive among the non-refusers with no previous 

HIV-testing experience. This leads to:  

                                                      
b We use the MDHS sample weights to calculate ),|( iii RTMP  in eqs. (6) and (8) below. For the rest, we chose not to apply the weights in 

our main results as we do not have corresponding weights in the MDICP data. In the Appendix, we consider alternative weighting schemes and 

show that our main results remain unaffected by the choice of weights. 
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 0)=0,=|1=(1)=0,=0,=|1=(=0)=0,=|1=( iiiiiiiiii RTMPMRTDPRTDP   

 0)=0,=|0=( iii

' RTMPZ . (8) 

Note here that eq. (1) is an assumption that has to be empirically validated. When the assumption is 

violated, the lower bound is not guaranteed to be smaller than the upper bound. 

 

Method 2: When auxiliary longitudinal data is unavailable 

We now turn to the case where a longitudinal data set is not available. In this case, we are generally 

unable to calculate the bounds based on eqs. (6) and (8). However, it is still possible to evaluate the 

influence of refusals. To see this point, define the relative risk )1(k of HIV between non-refusers with 

no previous testing experience and refusers with previous testing experience:  

 ,
0)=0,=|1=(

1)=1,=|1=(
=

iii

iii

RTDP

RTDP
k  

which is the ratio of the right-hand-side to the left-hand-side in eq. (1). Given k , we can use the 

following expressions of   and  , which can be estimated from MDHS:  

1)]=0,=(1)=1,=(0)[=0,=|1=(0)=1,=(= iiiiiiiii RTPRTkPRTDPRDP   (9) 

1)]=0,=(1)=1,=([0)=0,=|1=(0)=1,=(= iiiiiiiii RTPRTPkRTDPRDP   (10) 

These expressions show that the width of the bounds,    , is driven by three factors: 

0)=0,=|1=( iii RTDP , 1)=0,=( ii RTP , and k . Therefore, when both 0)=0,=|1=( iii RTDP  

and 1)=0,=( ii RTP  are small, even for a conservative value of k , the bounds are relatively tight. 

When 1=k , the two inequalities in eq. (1) are held with equality and the following holds by eqs. 

(2), (9), and (10):  

 1).=(0)=0,=|1=(0)=(0)=|1=(=== iiiiiii RPRTDPRPRDP    (11) 

Notice that these bounds are different from the complete-case estimator even when 1=k , because the 

complete-case estimator is consistent for 0)=|1=( ii RDP  which is the same as eq. (11) if and only if 

0)=|1=(=0)=0,=|1=( iiiii RDPRTDP . This difference can also be seen from the fact that the 

complete-case estimator does not make use of information from the previous testing experience. 

 

Results 

In theory, the foregoing derivations allow us to apply the methods to any sub-population of interest. 

However, when using eqs. (3) and (4) with Method 1, we must ensure that the bounds are empirically 
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consistent with eq. (1). This issue is especially important when the relevant sub-sample is small and a few 

positive HIV cases can significantly influence the results. To avoid this problem, we let k  to depend 

only on the sex of individuals while other quantities in eqs. (6) and (8) such as 0)=1,=( ii RDP , 

0)=1,=( ii RTP , and 1)=1,=( ii RTP  are allowed to depend both on the location of residence as 

well. 

  

Table  1: Method 1 estimates of   and  . 

 

  Male Female Total 

  
            

North Rural 0.0393 0.0418 0.0726 0.1043 0.0565 0.0741 

 Urban 0.1300 0.1304 0.1987 0.2214 0.1645 0.1761 

 Total 0.0609 0.0630 0.1055 0.1349 0.0839 0.1000 

Central Rural 0.0662 0.0701 0.0947 0.1359 0.0808 0.1038 

 Urban 0.1009 0.1038 0.1331 0.1574 0.1167 0.1301 

 Total 0.0679 0.0717 0.0964 0.1369 0.0824 0.1049 

South Rural 0.1140 0.1182 0.1762 0.2148 0.1465 0.1688 

 Urban 0.1561 0.1602 0.2321 0.2716 0.1936 0.2152 

 Total 0.1213 0.1255 0.1835 0.2222 0.1535 0.1757 

Total Rural 0.0863 0.0902 0.1345 0.1732 0.1112 0.1331 

 Urban 0.1431 0.1462 0.2100 0.2423 0.1761 0.1937 

 Total 0.0943 0.0981 0.1438 0.1817 0.1197 0.1410 

 

 

The estimates based on Method 1 are given in Table 1. A few notable patterns emerge from this 

table. First, there are sizeable geographic variations in HIV prevalence in Malawi with the Southern 

region having a substantially higher prevalence than Northern and Central regions. Second, in each of 

these three regions, urban prevalence is substantially higher than rural prevalence. In fact, the rural upper 

bound is lower than the urban lower bound for both males and females in all regions with the exception of 

female prevalence in the Central region. Third, the tightness of the bounds varies across regions. The 

bounds in the Northern region are tighter than those in the Central and Southern regions. These three 

points indicate that the policies to tackle HIV would need to take into account the geographic differences 

in HIV prevalence. 

Fourth, there is also a wide gap between male and female HIV prevalences. Male upper bound is 

lower than female lower bound in all locations we considered. Further, the bounds for males are generally 

much tighter than those for females. This is in part because men generally have lower HIV prevalence. In 

particular, the HIV prevalence for the participants with no previous HIV testing (i.e., 

0)=0,=|( iii RTDP ) is 0.0951 for males and 0.1464 females. The empirically obtained values of k  

for males ( 1.282=k ) is also lower than that for females ( 3.297=k ). These two factors contribute to 
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the tighter bounds for males. On the other hand, 1)=0,=( ii RTP  for males is slightly larger than that 

for females (0.1999 for males and 0.1903 for females). 

Even when an auxiliary longitudinal data set like MDICP is unavailable, it is possible to evaluate 

how serious the refusal issue may be by varying the values of k  within a reasonable range and thereby 

checking the sensitivity of the bounds with respect to k  using Method 2. Note that the left-hand-side of 

eq. (1) is guaranteed to be no larger than the right-hand-side for any 1)(k  in Method 2. 

  

Table 2: Method 2 estimates of   and  . 

  

Value of k  k=1 k=2 k=3 k=4 

Bound 
  =              

Male North Rural 0.0337 0.0345 0.0394 0.0354 0.0451 0.0363 0.0508 

  Urban 0.1317 0.1317 0.1348 0.1317 0.1378 0.1317 0.1408 

  Total 0.0596 0.0608 0.0672 0.0619 0.0749 0.0630 0.0825 

 Central Rural 0.0642 0.0661 0.0788 0.0680 0.0934 0.0699 0.1079 

  Urban 0.1159 0.1224 0.1449 0.1288 0.1739 0.1353 0.2029 

  Total 0.0668 0.0688 0.0821 0.0709 0.0975 0.0729 0.1128 

 South Rural 0.1257 0.1291 0.1549 0.1326 0.1841 0.1360 0.2133 

  Urban 0.1914 0.2064 0.2484 0.2214 0.3054 0.2364 0.3624 

  Total 0.1361 0.1410 0.1692 0.1459 0.2023 0.1507 0.2354 

 Total Rural 0.0897 0.0921 0.1094 0.0946 0.1292 0.0971 0.1489 

  Urban 0.1655 0.1752 0.2036 0.1848 0.2416 0.1944 0.2797 

  Total 0.1002 0.1034 0.1224 0.1065 0.1445 0.1097 0.1667 

Female North Rural 0.0633 0.0644 0.0735 0.0656 0.0838 0.0667 0.0940 

  Urban 0.2123 0.2203 0.2460 0.2283 0.2797 0.2364 0.3134 

  Total 0.1026 0.1049 0.1193 0.1073 0.1361 0.1097 0.1528 

 Central Rural 0.0894 0.0917 0.1097 0.0941 0.1301 0.0964 0.1504 

  Urban 0.1353 0.1353 0.1482 0.1353 0.1611 0.1353 0.1740 

  Total 0.0915 0.0938 0.1116 0.0960 0.1317 0.0983 0.1519 

 South Rural 0.1934 0.1996 0.2367 0.2058 0.2800 0.2119 0.3233 

  Urban 0.2680 0.2838 0.3377 0.2995 0.4075 0.3153 0.4772 

  Total 0.2026 0.2097 0.2488 0.2169 0.2950 0.2240 0.3411 

 Total Rural 0.1397 0.1436 0.1699 0.1475 0.2002 0.1514 0.2304 

  Urban 0.2312 0.2414 0.2791 0.2516 0.3270 0.2619 0.3749 

  Total 0.1509 0.1554 0.1832 0.1599 0.2156 0.1644 0.2480 

 

 

In Table 2, we report the lower and upper bounds for {1,2,3,4}k  calculated solely from the 

MDHS data set. While the choice of these values is subjective, it could serve as rule-of-thumb figures to 

use in Africa given the empirical estimtates of k used in Method 1. 

Table 2 shows that both the lower and upper bounds tend to increase as k  goes up. However, 

when no one with a previous testing experience refuses to participate in the sample, the lower bound does 

not vary with k . This is indeed the case for males in the rural Northern region and females in the urban 
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Central region. 

The table also shows that the tightness of the bounds varies substantially between the sexes, 

between urban and rural areas, and across regions. The bounds are reasonably tight when k  is less than 

2. However, when 4=k , the width of the bounds can be as large as 16.2 percentage points (females in 

the urban Southern region) and as small as 0.9 percentage points (males in the urban Northern region). 

Overall, the results from Methods 1 and 2 indicate that we need to exercise greater caution when 

interpreting female HIV prevalence. 

 

Discussion 

Existing studies on refusal bias in the estimation of HIV prevalence typically either provide some 

evidence of the existence of the bias or try to correct for the bias by making some (often strong) 

behavioral assumptions about the subjects. In this paper, we have instead derived plausible lower and 

upper bounds for HIV prevalence under mild and intuitive assumptions by exploiting a longitudinal data 

set in addition to the DHS data set. This study complements the results of an earlier report on the potential 

bias due to refusal/absence using the MDICP data
10

 by showing the significance of the refusal issue in the 

estimation of the national HIV prevalence based on the MDHS data set. 

We find that the prevalence bounds are fairly tight for males and also close to the complete case 

estimator. Since these bounds are created under very mild conditions, the refusal bias in the 

complete-case MDHS estimates for males is likely to be small. On the other hand, the bounds for females 

are much wider. Based on Method 1, the upper bound for women (0.1817) being over three percentage 

points above the complete-case estimate (0.1521) (Further details available in the Appendix). This may be 

because women are more likely to suffer from and thus sensitive to the stigma associated with HIV/AIDS. 

This in turn suggests that the refusers, especially those with a previous testing experience, may be 

systematically different from the non-refusers. The results based on Method 2 shows that the significance  

of refusal can be meaningfully evaluated by varying the value k  within a plausible range. 

Our results also provide encouraging evidence that longitudinal data sets can be fruitfully used to 

supplement DHS data for drawing  inferences, even when the longitudinal study is not nationally 

representative. This point is important because longitudinal surveys in such settings are often based on 

more stable populations in rural communities and not necessarily nationally representative  (for example, 

longitudinal studies of malaria in Africa have been typically conducted in rural communities). However, 

they differ from urban counterparts both in access to treatment and in demographic and socioeconomic 

characteristics and inferences drawn from these studies cannot be directly extrapolated to the general 

population. We addressed this issue by explicitly taking into account the differences between the MDICP 
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and non-MDICP populations.  

Given the increasing  number of longitudinal health studies,
11, 12, 13, 14

 it is likely that we will be 

able to obtain better empirical estimates of k over time, which in turn would allow us to derive more 

reliable bounds in areas where relevant longitudinal survey is unavailable. 
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Appendix: Additional tables 

Tables 3 and 4 are the same as Tables 1 and 2 except that we apply the MDHS sample weights in the 

calculation of joint probabilities in eqs. (3) and (4) estimated directly from the MDHS (i.e., 

0)=1,=( ii RDP , 1)=1,=( ii RTP , and 1)=0,=( ii RTP ). The results are generally similar to the 

unweighted counterpart. 

In Table  5, we use the 2008 Population and Housing Census data downloaded from the 

National Statistical Office website
c
 to estimate ),|( iii RTMP  used in eqs. (6) and (8) under the 

additinal assumption that iM  is independent of ),( ii RT . We do this exercise because the census 

population estimates are based on the actual household visits and thus likely to be more accurate than the 

estimates based on the MDHS sample weights. However, the drawback of the census is that we need the 

independence assumption as we do not have observations of iT  and iR  in the census. 

When the census-based estimates of ),|( iii RTMP  is used, the gap in the value of k  between 

male and female is slightly larger with 1.055=k  for males and 3.324=k  for females. However, as 

the comparison of Table  5 with Table 1 shows, the use of census-based estimates of ),|( iii RTMP  

does not alter the results much overall. 

Finally, we report the complete-case estimates of the HIV prevalence in Table 6. 

  

Table  3: Method 1 estimates of   and   with MDHS sample weights. 

  

  Male Female Total 

  
            

North Rural 0.0363 0.0381 0.0826 0.1144 0.0602 0.0775 

 Urban 0.1522 0.1526 0.2436 0.2624 0.1981 0.2077 

 Total 0.0508 0.0523 0.1141 0.1434 0.0833 0.0992 

Central Rural 0.0606 0.0632 0.0971 0.1397 0.0793 0.1023 

 Urban 0.1209 0.1228 0.1653 0.1957 0.1427 0.1586 

 Total 0.0637 0.0662 0.1002 0.1422 0.0823 0.1049 

South Rural 0.1200 0.1225 0.1833 0.2198 0.1531 0.1734 

 Urban 0.1574 0.1598 0.2076 0.2484 0.1822 0.2036 

 Total 0.1253 0.1279 0.1860 0.2230 0.1568 0.1772 

Total Rural 0.0863 0.0888 0.1405 0.1785 0.1143 0.1352 

 Urban 0.1504 0.1524 0.2112 0.2444 0.1804 0.1978 

 Total 0.0932 0.0956 0.1476 0.1852 0.1212 0.1416 

 

  

  

                                                      
c
 http://www.nsomalawi.mw/images/stories/data_on_line/demography/census_2008/Main 

Report/Statistical tables/Population Size and Composition.xls 
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Table 4: Method 2 estimates of   and   with MDHS sample weights. 

  

Value of k  1.0 2.0 3.0 4.0 

Bound 
  =              

Male North Rural 0.0293 0.0301 0.0344 0.0309 0.0395 0.0317 0.0446 

  Urban 0.1570 0.1570 0.1641 0.1570 0.1711 0.1570 0.1781 

  Total 0.0478 0.0490 0.0558 0.0502 0.0638 0.0514 0.0717 

 Central Rural 0.0570 0.0589 0.0710 0.0609 0.0850 0.0628 0.0990 

  Urban 0.1454 0.1554 0.1854 0.1654 0.2253 0.1754 0.2653 

  Total 0.0615 0.0637 0.0769 0.0659 0.0922 0.0681 0.1075 

 South Rural 0.1321 0.1356 0.1615 0.1392 0.1909 0.1427 0.2204 

  Urban 0.1907 0.2059 0.2444 0.2210 0.2981 0.2362 0.3518 

  Total 0.1398 0.1445 0.1720 0.1493 0.2042 0.1540 0.2365 

 Total Rural 0.0893 0.0919 0.1091 0.0945 0.1289 0.0971 0.1487 

  Urban 0.1787 0.1910 0.2239 0.2032 0.2690 0.2155 0.3142 

  Total 0.0986 0.1019 0.1208 0.1051 0.1431 0.1083 0.1653 

Female North Rural 0.0760 0.0773 0.0889 0.0786 0.1019 0.0799 0.1148 

  Urban 0.2638 0.2725 0.3008 0.2812 0.3379 0.2900 0.3749 

  Total 0.1148 0.1172 0.1345 0.1196 0.1542 0.1219 0.1739 

 Central Rural 0.0926 0.0950 0.1148 0.0975 0.1370 0.0999 0.1591 

  Urban 0.1729 0.1729 0.1942 0.1729 0.2155 0.1729 0.2368 

  Total 0.0965 0.0989 0.1188 0.1013 0.1412 0.1037 0.1636 

 South Rural 0.2011 0.2072 0.2440 0.2134 0.2870 0.2195 0.3300 

  Urban 0.2381 0.2472 0.2977 0.2564 0.3572 0.2655 0.4168 

  Total 0.2049 0.2113 0.2495 0.2178 0.2940 0.2242 0.3386 

 Total Rural 0.1473 0.1513 0.1790 0.1553 0.2108 0.1593 0.2426 

  Urban 0.2357 0.2429 0.2836 0.2501 0.3315 0.2572 0.3794 

  Total 0.1563 0.1606 0.1898 0.1649 0.2233 0.1692 0.2569 

 

Table 5: Method 1 estimates using the census estimate of urban and rural population shares. 

 

  Male Female Total 

  
̂  ̂  ̂  ̂  ̂  ̂  

North Rural 0.0402 0.0407 0.0745 0.1095 0.0579 0.0762 

 Urban 0.1302 0.1303 0.2006 0.2258 0.1656 0.1782 

 Total 0.0617 0.0621 0.1074 0.1399 0.0852 0.1021 

Central Rural 0.0676 0.0684 0.0972 0.1428 0.0827 0.1065 

 Urban 0.1018 0.1024 0.1340 0.1610 0.1176 0.1312 

 Total 0.0692 0.0701 0.0988 0.1436 0.0843 0.1075 

South Rural 0.1155 0.1165 0.1787 0.2214 0.1486 0.1714 

 Urban 0.1572 0.1581 0.2354 0.2790 0.1958 0.2178 

 Total 0.1228 0.1237 0.1861 0.2289 0.1556 0.1783 

Total Rural 0.0877 0.0885 0.1369 0.1797 0.1131 0.1357 

 Urban 0.1440 0.1447 0.2126 0.2483 0.1779 0.1958 

 Total 0.0956 0.0965 0.1462 0.1881 0.1216 0.1435 
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Table 6: Complete-case estimates. 

  

  Male Female Total 

North Rural 0.0333 0.0646 0.0495 

 Urban 0.1313 0.2101 0.1708 

 Total 0.0596 0.1036 0.0823 

Central Rural 0.0651 0.0901 0.0779 

 Urban 0.1081 0.1395 0.1235 

 Total 0.0673 0.0926 0.0802 

South Rural 0.1292 0.1941 0.1631 

 Urban 0.1921 0.2667 0.2289 

 Total 0.1395 0.2032 0.1725 

Total Rural 0.0914 0.1408 0.1170 

 Urban 0.1629 0.2310 0.1965 

 Total 0.1017 0.1521 0.1276 
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