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Abstract

We study how signaling affects equilibrium outcomes and welfare in markets with adverse

selection. Using data from an online credit market, we estimate a model of borrowers and

lenders where low reserve interest rates can signal low default risk. Comparing a market with

and without signaling relative to the benchmark case with no asymmetric information, we find

that adverse selection destroys as much as 16% of total surplus, up to 95% of which can be

restored with signaling. We also find the credit supply curves to be backward-bending for some

markets, consistent with the prediction of Stiglitz and Weiss (1981).

JEL Code: D82, D83, G21, L15
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1 Introduction

Inefficiencies arising from adverse selection is a key feature in many markets, with examples rang-

ing from “lemons” in used car markets (Akerlof, 1970) to toxic assets in financial markets (Morris

and Shin, 2012). An important source of inefficiency in these markets lies in the inability of agents

who are of “good” types (e.g., sellers of high–quality cars) to distinguish themselves from the
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Rob Porter, Jeffery Prince, Quang Vuong, Yasutora Watanabe, and Michael Whinston for their valuable comments and

suggestions.
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‡Singapore Management University: kenonishi@smu.edu.sg
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“bad” (e.g., sellers of low–quality cars), resulting in markets to unravel completely in the worst–

case scenario. The key insight of Spence (1973), however, is that when costly signaling devices are

available, agents who have different marginal cost of signaling can be induced to take action that

reveals their true type in equilibrium. Hence signaling can prevent the market from unraveling,

with possibly large welfare implications.

Recently, there is a growing empirical literature in industrial organization that studies the effect

of adverse selection on market outcomes and welfare.1 In this paper, we ask the natural next ques-

tion, how signaling affects equilibrium outcomes and welfare in markets with adverse selection.

While the theory of signaling has been applied to a wide range of topics in industrial organiza-

tion, there is very little empirical work that quantifies the extent to which signaling affects market

outcomes and welfare relative to a market with no signaling (i.e., pooling). An empirical analysis

of welfare seems especially important given that whether signaling improves or decreases total

welfare relative to pooling is theoretically ambiguous.2

This paper studies these questions by building an estimable model of signaling in credit markets

for unsecured loans using data from Prosper.com, an online peer-to-peer loan market. At least since

the seminal work of Stiglitz and Weiss (1981), markets for unsecured loans have been considered

to be classic examples of markets that suffer from potential adverse selection problems. A key

feature of Prosper.com, however, is that each borrower can post a public reserve interest rate – the

maximum interest rate that the borrower is willing to accept – when the borrower creates a listing

on its Web site.3 In this paper, we provide evidence that the borrower’s reserve interest rate signals

his creditworthiness and explore how signaling affects market outcomes and welfare.

Prosper.com is an online platform that matches potential borrowers with potential lenders with

more than $280 million in funded loans (as of 2011). Established in 2006, it specializes in small-

scale unsecured loans to individuals with a standardized loan repayment length of 36 months. The

average funded loan is about $5,800 and debt consolidation is, by far, the most commonly stated

purpose of the loan, accounting for about 46% of all listings.

While Prosper is a relatively young and small market, it is an ideal setting for investigating

the effect of signaling on market outcomes and welfare. First, in this market we observe both the

reserve interest rate choice of the borrower as well as the contract interest rate determined by the

auction. The contract interest rate is the actual interest rate that the borrower faces in repayment

and it is often lower than the reserve interest rate. Because the reserve interest rate should not

1See Einav, Finkelstein and Levin (2010) for a survey and motivation of recent papers that go beyond testing the

existence of information asymmetry.
2For a brief discussion of how signaling equlibriun can be pareto dominated by a pooling equilibrium, see Mas-

Colell, Whinston and Green (1995), Chapter 13.C, p.454.
3We use borrower listing data from May through October of 2008 and the corresponding loan repayment data that

goes until 2011. Our description of the institutional details pertain to this period.
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affect the borrower’s repayment behavior conditional on the contract interest rate, we can isolate

the signaling value (as opposed to moral hazard) of the reserve rate by studying how the reserve rate

correlates with the default probability conditional on the contract interest rate. Second, transaction

in this market takes place online and basically all of the information that lenders observe about

the borrowers are also available to the econometrician, unlike in traditional markets. This feature

makes us somewhat less concerned about unobserved heterogeneity than in other settings.

The idea that the reserve interest rates can signal the borrowers’ creditworthiness is quite intu-

itive in the particular market we study. Consider, for example, a borrower who is posting a high

reserve rate – say, higher than the prime rate charged for typical bank loans. Then the lenders may

infer that this borrower faces difficulty borrowing from outside sources, which also raises con-

cerns about the repayment ability of the borrower. This will lead lenders to charge high interest to

compensate for the high risk. Of course, this intuition is not a complete explanation of signaling,

because there needs to be a countervailing force that induces the borrower to post a higher reserve

interest rate (otherwise, all borrowers would want to post a low reserve rate). In the market we

study, the natural countervailing force is the probability of obtaining a loan. As long as the fund-

ing probability increases as a function of the reserve rate, this can counteract the incentive for the

borrower to post a low reserve rate. These two opposing incentives create different trade-offs for

different borrowers, giving rise to the possibility of equilibrium dispersion in the reserve rate.

This rather simple intuition forms the basis of our model of the borrowers. In our model,

borrowers are heterogeneous with regard to the cost of borrowing from outside sources and the

ability to repay the loan. Given a trade-off between higher funding probability and higher interest

rate, the heterogeneity in the cost of borrowing translates to the single-crossing condition. The

low-cost types (e.g., borrowers with easy access to credit from local banks) value a decrease in the

interest rate on the potential loan relatively more than an increase in the probability of obtaining

a loan from Prosper. Conversely, the high–cost types (e.g., borrowers that do not have access to

outside credit) would value an increase in the probability of obtaining a loan relatively more than

a decrease in the interest rate. As long as the low–cost types also tend to have higher ability to pay

back loans, a separating equilibrium can be sustained in which the low–cost types have incentives

to post low reserve rates (and receive low interest loans with relatively low probability) and the

high–cost types have incentives to post high reserve rates (and receive high–interest loans with

relatively high probability).

In order to see whether the reserve interest rate functions as a signal in this market, we begin

our analysis by providing results from a series of regressions. In our first set of regressions, we

examine the effect of the reserve interest rate on the funding probability and on the actual interest

rate conditional on being funded. The results indicate that a lower reserve rate leads to a lower

funding probability, but it also leads to a more favorable contract interest rate on average even after
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controlling for various observables and selection. This implies that borrowers indeed face a trade-

off between the funding probability and the interest rate in setting the reserve rate. Moreover, this

is consistent with the notion that there exists heterogeneity in how borrowers evaluate this trade-

off: The considerable dispersion that we observe in the reserve interest rate suggests that those who

post high reserve rates care more about the probability of being funded than about what interest

they will pay and vice versa.4

In our second set of regressions, we examine whether there are any systematic differences

between those who post high reserve rates and low reserve rates. We find that those who post

high reserve rates are more likely to default than those who post low reserve rates, even after

conditioning on the contract interest rate (the actual interest rate that the borrower pays on the

loans). Given that the reserve rate should not directly affect the borrower’s repayment behavior

conditional on the contract interest rate, this result suggests that there is informational value in

the reserve rate. From the perspective of the lender, this implies that the reserve interest rate

is informative about the creditworthiness of the borrower, i.e., the reserve rate is a signal of the

borrower’s unobserved type.

Given the results of our preliminary analysis, we devote the second part of our paper to de-

veloping and estimating a structural model of the online credit market that agrees with the basic

findings of the preliminary analysis. Our model of the borrowers allows for heterogeneity regard-

ing creditworthiness and the cost of borrowing, which are privately known to the borrowers. The

borrowers choose which interest rate to post, where the choice reveals their types in equilibrium.

As for the supply side of the credit market, we model the lenders to be heterogeneous regarding

their attitude toward risk. Each lender chooses whether to fund a listing or not, what interest rate to

charge, and how much to lend. Once the loan is originated, the borrower faces monthly repayment

decisions, which we model as a single–agent dynamic programming problem.

In terms of identification, the key primitives of the model that we wish to identify are the

distribution of the borrowers’ types and the distribution of the lenders’ attitude toward risk. For

identifying the borrowers’ type distribution, we exploit variation in the borrower’s reserve rate and

how it is related to the default probability. In particular, we use the fact that the borrower’s type and

the borrower’s reserve rate have a one-to-one mapping in a separating equilibrium. This feature

is very useful, because it allows us to condition on a particular quantile of the borrower’s type

distribution by simply conditioning on a quantile of the reserve rate distribution. Then the observed

default probability at each quantile of the reserve rate distribution nonparametrically identifies the

borrower’s type. The distribution of the lenders’ attitudes toward risk is also nonparametrically

4Note that it is probably safe to assume that many borrowers are aware of this trade-off: In a prominently displayed

tutorial, Prosper informs the borrowers that setting a higher reserve rate increases the probability that the loan will be

funded.

4



identified by relating the expected return of listings to their funding probability.

In our counterfactual experiment, we compare the equilibrium market outcome and welfare

under three alternative market designs – a market with signaling, a market without signaling (i.e.,

pooling) and a market with no information asymmetry between borrowers and lenders. In partic-

ular, we simulate the credit supply curve under each of the three market designs by re-computing

the lenders’ and borrowers’ behavior using the estimates of our structural model. As pointed out

by Stiglitz and Weiss (1981), the credit supply curve in loan markets may be backward bending, or

non-monotonic in the interest rate, because of adverse selection.5 The results of our counterfactual

support their prediction: the credit supply curve becomes more backward bending under pooling

when borrowers cannot signal their type with the reserve interest rate.

With respect to welfare, we find that the cost of adverse selection can be as much as 16% of the

total surplus created under no asymmetric information. We also find that while signaling restores

up to 95% of the difference in the surplus between pooling and no asymmetric information in

some markets, it destroys welfare in others. Our results provide some empirical evidence regarding

when signaling may improve welfare. Signaling seems to improve welfare most when the degree

of adverse selection is severe, while it may destroy welfare when it is modest.

The empirical findings of this paper directly apply only to the market of Prosper.com and our

model is tailored to the setting in which agents signal through the reserve rate. However, our basic

methodology can be extended to study other markets in which signaling plays an important role,

for example, pricing of new issues in IPO markets (e.g., Allen and Faulhaber, 1989), convertible

debt recalls (Harris and Raviv, 1985), etc. As long as both the signal and the ex-post performance

are observable, our model and identification strategy can be used to quantify the effect of signaling

on market outcomes and welfare.

Related Literature Our paper is related to several strands of the literature. First, our study

is related to the literature on adverse selection in credit markets. Since the seminal work of Stiglitz

and Weiss (1981), there have been many studies testing for adverse selection in credit markets. Ex-

amples include Berger and Udell (1992), Ausubel (1999), Karlan and Zinman (2009), and Freed-

man and Jin (2010).6 While testing for adverse selection is important in its own right and is the

first step for further analysis, estimating a model that explicitly accounts for information asymme-

5Recently, Arnold and Riley (2012) shows that the credit supply curve cannot be globally backward-bending. They

obtain this result under the assumption that the type of the borrowers affect the variance of the return but not the mean.

In our setting, the type of the borrower affects the mean as well as the variance. Hence, the mean return from a loan

can be globally concave in our setting.
6Freedman and Jin (2010) uses data from Prosper.com. Other papers that also use the data include Rigbi (2011),

Ravina (2008), Iyer et al. (2010). In Iyer et al. (2010), the authors examine the lenders’ ability to infer borrowers’

creditworthiness. They find, among other things, that the reserve interest rate affects the contract interest rate, and note

that signaling can be one interpretation of their finding.
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try among the players allows researchers to answer questions regarding welfare and market design.

Our paper goes in this direction.

The second strand of the literature to which our paper is related is the theoretical literature

on signaling. Starting with the seminal work of Spence (1973), signaling has been applied to

a wide range of topics. Even confined to applications in industrial organization, signaling has

been applied to advertising (e.g., Milgrom and Roberts, 1986), entry deterrence (e.g., Milgrom and

Roberts, 1982), war of attrition (Hörner and Sahuguet, 2011), as well as credit markets (e.g., Bester

1986, Milde and Riley 1988). Bester (1986) shows that borrowers can signal their type through

the amount of collateral and Milde and Riley (1988) show that borrowers can signal through the

loan amount. There is also a small theoretical literature on signaling in auctions, whereby a seller

signals her private information through the reserve price (Cai, Riley and Ye, 2007, and Jullien and

Mariotti, 2006, for example).7 The signaling mechanism that we consider in this paper is very

similar to those studied in Cai, Riley and Ye (2007) and Jullien and Mariotti (2006).

In contrast to the large body of theoretical work, however, the empirical industrial organization

literature on signaling is very thin. This is because identifying the effect of signaling often requires

data on both the transaction and ex-post outcome, something that is hard to come by in industrial

organization.8 In this sense, the data set of Prosper is ideal because it allows us to link the the

signal (i.e., the reserve rate) to the outcome (i.e., default). Moreover, the fact that we can link the

two conditional on the contract interest rate allows us to isolate the signaling effect from moral

hazard.

Our paper is also related to the large empirical literature on screening. In particular, Adams,

Einav and Levin (2009) and Einav, Jenkins and Levin (2012) are two papers that are closely related

to our paper. They consider how an auto insurer can screen borrowers using the down payment.

They show that partly because of adverse selection, the lender’s expected return on the loan is non-

monotone in the loan size. A key feature of our paper that is different from theirs is that our paper

examines signaling while their paper examines screening. Moreover, our model of credit supply

has a large number of heterogenous lenders while their model has a single lender.

A Two Type Example In order to illustrate how signaling can be sustained in our setting, we

first describe a numerical example with two types of borrowers, ϕL and ϕH (ϕL < ϕH). The types

are privately known to the borrowers and we interpret ϕL as a “bad” type who is likely to default

7Relatedly, Roberts (2013) shows how the reserve rate can be used to overcome unobserved heterogeneity in

auctions. He studies an environment in which there is informational asymmetry between the players and the econo-

metrician, but there is no asymmetric information between the sellers and the buyers.
8Gedge, Roberts and Sweeting (2012) is one of the few papers on signaling in industrial organization. Outside of

industrial organization, there are some empirical papers that examine signaling, for example, papers on the sheepskin

effect (e.g. Hungerford and Solon, 1987). However, much of the literature have tended to focus on testing for the

existence of signaling (a few exceptions are Gayle and Golan, 2012, and Fang, 2006).
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and ϕH as a “good” type who is likely to repay. Conditional on obtaining a loan at interest r, we

let u(r) + ε denote the borrower’s utility from repaying the loan and D(ϕ) (ϕ ∈ {ϕL, ϕH}) denote

the utility from default, where ε is a random shock that is realized after the borrower obtains the

loan. We let D(ϕH) < D(ϕL). The borrower’s utitlity from obtaining a loan at interest r is then

max{u(r) + ε, D(ϕ)}. We let λ(ϕ) be the borrower’s utitlity from not borrowing and assume that

λ(ϕH) > λ(ϕL). This assumption simply reflects the idea that “good” types who value their credit

history, for example, have an easier time obtaining a loan from outside sources and hence have a

higher outside option. On the other hand, “bad” types, with low cost of default, e.g., borrowers who

have a damaged credit history or are expecting to default, are likely to have only limited alternative

sources of funding, and hence have a lower outside option. The borrower chooses a reserve interest

s at the time the borrower posts a listing

As for the lender, we let the lender’s utitlity from lending money be a function of the mean and

variance of the return as µ−Ajσ2, where Aj is the lender specific random variable that determines

her attitude toward risk. In this example, we assume that every borrower is randomly matched

with two lenders each of whom decides whether or not to bid on the listing, and at what interest.

The lender observes the reserve interest that the borrower posts when making her decision. The

contract interest is determined by a second price auction, i.e., the contract interest is equal to the

second lowest interest if two bidders decide to bid on the loan, and it is equal to the borrower’s

reserve rate if only one lender bids on the loan.9 We assume, in this example, that whoever bids

a lower interest rate becomes the sole lender. In this setting, the lender has a weakly dominant

strategy: If we let rj denote the interest rate at which lender j is indifferent between lending and

not lending, the weakly dominant strategy for the lender is to bid rj if rj ≤ s and not bid otherwise.

In this simple example, a signaling equlibrium would consist of two different reserve interests

sH and sL such that ϕH prefers sH to sL and vice versa. The lenders, upon observing sH , believes

that the borrower is type ϕH and vice versa.10 Figure XYZ and Table 1 illustrate one particular

signaling equlibrium for u(r) = −r, D(ϕ) = −ϕ, λ(ϕ) = 0.105ϕ, Aj distributed uniform [0, 1],

ε distributed type I extreme value and ϕ ∈ {1.7, 1.8}. In Figure XYZ, two curves are drawn, the

dotted curve corresponding to the indifference curve of ϕH and the solid curve corresponding to the

indifference curve of ϕL. The borrowers’ utility level is higher to the northeast of the indifference

curve.11 The horizontal axis corresponds to the beliefs of the lender (ϕ̂) and the vertical axis

corresponds to the reserve rate. The figure shows that if ϕH chooses point sH and ϕL chooses sL,

9Show that renegotiation proof? Lender and borrower both want lower r? (Possible with moral hazard)
10To be complete, one needs to specify the off-path beliefs of the lenders. One possibility is to assume that lenders

belive that ϕ = ϕL upon observing s 6= sH : Pr(ϕ = ϕL| s 6= sH) = 1.
11The utility level is higher to the north because raising s increases the probability of obtaining a loan. At the

current parameter values, the marginal gain from increasing the funding probability outweighs the marginal loss from

increasing in the contract interest rate for both types.
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Type Reserve Rate Lender Belief (ϕ̂) Funding Pr. Interest Rate Utility

ϕH sH ϕH 35.5% 27.2% 0.300

sL ϕL 44.5% 35.2% 0.299

ϕL sH ϕH 35.5% 27.2% 0.300

sL ϕL 44.5% 35.2% 0.302

Table 1: Outcomes and Utility Associated with Choosing sH (27.5%) and sL (36.0%). In this

Table, we show the outcomes and utility levels that correspond to choosing sH or sL for each type

of borrower.

we have a separating equilibrium.

In Table 1, we show the outcomes and the utility levels associated with choosing sH and sL for

both types of borrowers when lenders believe that sH signals high type and sL signals low type.

If a borrower posts s = sH , the funding probability is relatively low (35.5%) but the interest rate

is relatively favourable (27.18%) and vice versa. For ϕH types, the favorable interest rate at sH

more than compensates for the low funding probability. Hence, the expected uility of choosing

sH (0.300) is higher than the expected utility of choosing sL (0.299) for ϕH types. On the other

hand, the expected utility of choosing sL (0.302) is higher than the expected utility of choosing

sH (0.300) for ϕL types. This corresponds to the fact that the indifference curve of ϕH that goes

through (ϕH , sH) lies to the northeast of (ϕH , sL) and similarly for the indifference curve of ϕL

that goes through (ϕL, sL).

In the full model which we present in Section 4, the types of the borrowers are continusouly

distributed and the borrowers’ decision to repay or default is modeled explicitly as a single-agent

dynamic programming problem. Moreover, the lenders will bid both an interest rate and an amount

consistent with the actual way in which Prosper operates. The number of lenders are also random.
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However, our two type example captures the basic forces behind the signaling equilibrium. There

is an inherent trade-off between funding probability and interest rate. Given that different types

differentially evaluate this trade-off, it becomes possible to sustain signaling in equilibrium.

Caption Figure A Plot of Indifference Curves on ϕ̂− s Plane. The figure plots two indifference

curves; (1) the indifference curve of ϕH that goes through (ϕ̂H , sH) (dotted curve) and (2) the

indifference curve of ϕL that goes through (ϕ̂L, sL) (solid curve).

2 Institutional Background and Data

2.1 Institutional Background

Prosper.com is an online peer-to-peer lending Web site that matches borrowers with lenders and

provides loan administrative services for the lenders. Established in 2006, it has become America’s

largest peer–to–peer lending marketplace, with more than a million members and over $280 million

in loans. In this section, we describe how Prosper operates, with a particular emphasis on the

auction mechanism used to determine the interest rate.12 For details on other aspects of Prosper,

see Freedman and Jin (2010).

The sequence of events occurs according to the following timeline, (1) A borrower posts a

listing, (2) Lenders bid, (3) Funding decision is made, and (4) The borrower makes monthly loan

repayments. We explain each step in turn.

1. Borrower posts a listing A potential borrower who is interested in obtaining a loan

through Prosper first creates an account with Prosper, who pulls the applicant’s credit history from

Experian, a third-party credit-scoring agency. As long as the credit score is above a certain thresh-

old, the borrower can create a listing on Prosper’s web site. Each listing contains information

regarding the amount of loan requested, the reserve interest rate and the borrower’s characteris-

tics. The loan amount and the reserve interest are both variables that the borrower chooses, subject

to Prosper’s conditions and usury laws.13 During our sample period, the maximum loan amount

allowed on Propser was $25,000 and the usary law maximum was 36%.

The characteristics of the borrower that appear in the listing page include credit grade, home-

ownership status, debt-to-income ratio, purpose of the loan, as well as any other additional infor-

mation (text and pictures) that the borrower wishes to post. The credit grade, which corresponds to

seven distinct credit score bins (AA, A, B, C, D, E, and HR), and home-ownership status are both

12The Online Appendix contains a more detailed description of the institutional background.
13In a tutorial that walks borrowers through the listing process, Prosper advises borrowers to “Think of the interest

your are paying on your next best alternative” when posting the reserve insterst rate.
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verified by Prosper.14 Other information, such as debt-to-income ratio and purpose of the loan, is

provided by the borrower without verification by Prosper. The most commonly stated purpose of

the loan is debt consolidation, accounting for about 46% of all listings.

2. Lenders Bid Prosper maintains a list of active listings on its Web site for potential lenders.

If a potential lender finds a listing to which she wishes to lend money, she may then submit a bid

on the listing, similar to a proxy bid in online auctions. Each bid consists of an amount that the

lender is willing to lend (typically a small fraction of the loan amount that the borrower requests),

and a minimum interest rate that the lender is willing to accept. The lender can submit a bid with

an amount anywhere between $50 and the borrower’s requested amount, but the modal bid amount

is $50. The lender can bid on any active listing at any time.

For each active listing, Prosper displays the fraction of the loan funded and the active interest

rate in addition to information regarding borrower characteristics, loan amount, and the reserve in-

terest rate. The active interest rate corresponds to the standing marginal bid in multi-unit auctions.

We will explain what the active interest is, in more detail below.

3. Funding Decision The auction used in Prosper is similar to a uniform–price auction with a

public reserve price. Using an example, we explain below how the terms of the loan are determined

and which bidders become lenders. Suppose a borrower creates a listing with a requested amount

of $10,000 and a reserve interest rate of 25%. Then, Prosper adds the listing to the set of currently

active listings. For simplicity, let us assume that the lenders can submit a bid amount of only $50.

At the time the lender submits her bid, she observes the fraction of the loan funded (e.g., 80% for

the left panel in Figure 1 and 100% for the right panel). For listings that have yet to attract enough

bids to reach the requested amount (i.e., fraction of loan funded is less than 100%) that is all she

observes about what other bidders are doing. In particular, she does not observe the interest rate

of each bid. As for listings that have already received enough bids to cover the requested amount,

(i.e., fraction of loan funded is equal to 100%) the lender observes the active interest rate, which is

the interest rate of the marginal bid that brings the supply of money over the requested amount. In

our example, this corresponds to the interest rate of the 200th bid when we order the submitted bids

according to their interest rate, from the lowest to the highest. Moreover, for fully funded listings

that are still active, the lender also observes the interest rate of the losing bids, i.e., the interest rate

of the 201st bid, 202nd bid, and so on. However, the lender does not observe the interest rate of

the bids below the marginal bid.

At the end of the bid submission period, listings that have attracted more bids than is necessary

14A credit grade of AA corresponds to a credit score of 760+, a grade of A corresponds to 720–759, B to 680–719,

C to 640–679, D to 600–639, E to 540–599, and HR to 540–. The numerical credit score is not listed.
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Figure 1: Funding Decision – The figure shows how a loan is funded for the simple case in which lenders only

submit a bid with an amount of $50. The horizontal axis corresponds to amount and the vertical axis corresponds to

the interest rate. The left panel illustrates a situation in which the requested amount is $10,000, and the listing has

received 160 bids ($8,000). The right panel illustrates the situation in which the requested amount is $10,000, and it

has attracted more than 200 bids.

to fund the full requested amount are funded. However, there are no partial loans for listings that

have failed to attract enough bids to fund the total requested amount. Hence the borrower would

receive no loan in the situation depicted in the left panel of Figure 1. In our sample, about 20% of

the borrowers whose loans are not funded relist on Prosper.15

As for fully funded listings, the interest rate on the loan is determined by the marginal bid,

and the same interest rate applies to all the lenders. In the second panel of Figure 1, the listing is

funded at 24.8% and the same rate applies to all lenders who submitted bids below 24.8%. In this

sense, the auction is similar to uniform-price auctions.

4. Loan Repayments All loans originated by Prosper are unsecured and have a fixed loan

length of 36 months. The borrower pays both the principal and the interest in equal installments

over the 36-month period. If a borrower defaults, the default is reported to the credit bureaus, and a

third–party collection agency is hired by Prosper to retrieve any money from the borrower.16 From

the perspective of the borrower, defaulting on a loan originated by Prosper is just like defaulting

on any other loan, resulting in a damaged credit history.

2.2 Data

The data for our analysis come directly from Prosper.com. The data set is unique in the sense that

virtually all the information available to potential lenders as well as the ex-post performance of the

loans are observed to the researcher. We have data on the borrower’s credit grade, debt–to–income

15Interestingly, borrowers that relist on Prosper do not adjust the reserve interest rate by much. The median borrower

who relists does not change the reserve rate at all. The average change in the reserve rate is about 1.2%.
16We could not find data on the amount recovered through the collection agency.
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Amount Reserve Debt/ Home Bid Fund

Grade Requested Rate Income Owner Count Pr. Obs.

mean sd mean sd mean sd mean sd mean sd

AA 13,144.8 8,342.8 0.132 0.047 0.364 0.976 0.812 0.391 171.0 204.2 0.534 1,420

A 12,396.2 7,881.7 0.165 0.067 0.376 0.673 0.612 0.487 116.1 161.6 0.409 1,850

B 10,622.4 6,096.5 0.211 0.075 0.386 0.655 0.593 0.491 82.5 117.2 0.334 3,068

C 7,622.3 5,158.0 0.246 0.078 0.373 0.623 0.556 0.497 39.3 65.2 0.247 5,203

D 6,368.5 4,691.3 0.287 0.075 0.389 0.711 0.370 0.483 19.8 42.3 0.155 6,581

E 4,783.5 4,868.2 0.310 0.073 0.360 0.680 0.329 0.470 4.7 13.7 0.068 5,757

HR 4,350.7 4,599.4 0.315 0.069 0.308 0.641 0.221 0.415 2.2 7.3 0.030 11,362

All 6,603.9 5,937.8 0.274 0.089 0.354 0.679 0.393 0.488 31.1 84.1 0.158 35,241

Table 2: Descriptive Statistics – Listings: This table presents summary statistics of listings posted on Prosper.com by

credit grade. Debt/Income is the debt-to-income ratio of the borrower. Home Owner is a dummy variable that equals 1

if the potential borrower is a homeowner and 0, otherwise. Bid Count is the number of submitted bids by the lenders.

Fund Pr. stands for the percentage of listings that are funded.

ratio, home ownership, etc., and additional text information that borrowers provide to lenders.17

We also have monthly repayment data of the borrowers.

Our data consist of all listings that were created from May to October of 2008 (and the corre-

sponding loan repayment data for funded listings which go until the end of 2011). Note that all

loans in our sample have either matured or ended in default. From this sample, we drop obser-

vations that were either withdrawn by the borrower, cancelled by Prosper, or missing parts of the

data. We are left with a total of 35,241 listings, of which 5,571 were funded. Our Online Appendix

contains a more detailed description of our data construction.

Table 1 reports sample statistics of the listings by credit grade. The mean requested amount is

reported in the first column, and it ranges from a high of more than $13,000 for AA listings to a low

of less than $5,000 for HR listings. In columns 2 through 4, we report the average reserve interest

rate, the debt-to-income ratio, and the home–ownership status by credit grade. In column 5, we

report the bid count, which is the average number of bids submitted to a listing, and in column 6,

we report the funding probability.

In Figure 2, we present the distribution of the reserve rate across different credit grades. As

expected, the reserve rate is higher for worse credit grades. One important thing to note is that

there is a spike at 36% for credit grades B and below. This is because 36% was the usury law

maximum for our sample. As the main focus of our analysis is on the reserve rate and the extent to

which it can be used as a signal of the creditworthiness of the borrower, variation in the reserve rate

is crucial for our analysis. The fact that there is little variation in the reserve rate among listings for

credit grades D and below implies that listings in these categories are not very informative about

17The only piece of information missing is the conversation that takes place between borrowers and potential lenders

through the Prosper Web site.
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Figure 2: Distribution of Reserve Interest Rate by Credit Grade – We show the distribution of reserve interest rate by

credit grade. The reserve interest rate is capped at 36% because of the usury law.

the signaling value of the reserve interest rate. As a consequence, we focus on the results from the

top four credit grades (AA, A, B and C) in presenting some of our analysis below.

In Figure 3, we plot the cumulative distribution functions of the contract interest rate (r) condi-

tional on the reserve interest rate (s), by credit grade. In the top left panel, we report two distribu-

tions for credit grade AA, one corresponding to s = 10% and the other corresponding to s = 20%.

Given that almost no borrowers in credit grade AA post a reserve rate of 30% or more (see Figure

2), we only report the distribution for s equal to 10% and 20% for credit grade AA. The other

panels of Figure 3 plot similar distributions for credit grades A – HR and s = 10%, 20%, 30%

and 36%. Overall, the distributions of contract interest rate given s lie to the right of s0 whenever

s0 ≤ s. This suggests that borrowers who post low reserve rates are more likely to obtain low

interest. In the next section, we show that this relationship is true even after controling for the fact

that r is right-censored at s.18

In Figure 4, we report the distributions of the bid amount, again by credit grade. The fraction of

lenders who bid $50 exceeds 70% across all credit grades, and the fraction of lenders who bid $100

is more than 10% in all credit grades. Hence, more than 80% of lenders bid either $50 or $100 for

a given loan. We also find that a small fraction of lenders bid $200, but rarely beyond that. These

observations motivate us to formulate the potential lenders’ amount choice as a discrete–choice

problem in our model section, where lenders choose from {$50, $100, and $200} rather than from

a continuous set.

Table 2 reports sample statistics of listings that were funded, which is a subset of the set of

listings. Note that the mean loan amount reported in Table 2 is smaller than the mean requested

amount shown in Table 1, which is natural given that smaller listings need to attract a smaller

18Given that the contract interest is always less than the reserve interest, the distribution F (r|s) is truncated above

at s, by construction.
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Figure 3: Distribution Function of Contract Interest Rate Given Reserve Interest Rate, by Credit Grade – The Figure

plots the distribution of contract interest rate (r) conditional on reserve interest rate (s). For s = 10%, 20%, and

30%, the distribution is computed by pooling funded listings with s ∈ [s− 1, s+ 1]. For s = 36%, the distribution

is computed by pooling funded listings with s ∈ [34%, 36%].
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Figure 4: Distribution of Bid Amount – The figure shows the distribution of bid amount for each credit grade. Bids

with amount exceeding $250 are not shown. The fraction of these bids is about 3.5%.
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Amount Reserve Contract Debt/ Home Bid

Grade Requested Rate Rate Income Owner Count Obs.

mean sd mean sd mean sd mean sd mean sd mean sd

AA 9,710 7,384 0.131 0.046 0.096 0.033 0.21 0.39 0.80 0.40 131.5 99.3 755

A 8,723 6,626 0.165 0.060 0.127 0.045 0.23 0.14 0.55 0.50 114.0 84.4 755

B 7,347 4,858 0.216 0.063 0.164 0.046 0.27 0.34 0.56 0.50 100.9 67.6 1,023

C 4,687 2,998 0.247 0.064 0.181 0.062 0.25 0.21 0.48 0.50 53.4 38.3 1,285

D 3,578 2,380 0.280 0.064 0.210 0.066 0.24 0.17 0.26 0.44 21.6 11.7 1,022

E 1,890 1,187 0.339 0.028 0.291 0.057 0.22 0.22 0.26 0.44 44.7 30.6 392

HR 1,690 1,288 0.339 0.036 0.300 0.057 0.20 0.44 0.17 0.38 17.6 10.4 339

All 5,821 5,285 0.233 0.086 0.179 0.079 0.24 0.28 0.47 0.50 80.0 76.7 5,571

Table 3: Descriptive Statistics – Loans: This table reports the summary statistics of loans. Contract Rate is the

interest rate charged to the borrower. Debt/Income refers to the debt-to-income ratio of the borrower. Home Owner is

a dummy variable that equals 1 if the potential borrower is a homeowner and 0, otherwise. Bid Count is the number

of submitted bids by the lenders.

number of bids in order to get funded. Also, note that the average bid count in Table 2 is higher

than in Table 1, for the obvious reason that listings need to attract sufficient number of bids to get

funded: Recall that there is no partial funding for listings that fail to attract enough bids to cover

the requested amount.

For each loan originated by Prosper, we have monthly data regarding the repayment decisions

of the borrower, i.e., we observe whether the borrower repaid the loan or not every month, and

whether the borrower defaulted. In the first column of Table 3, we report sample statistics regarding

the default probability by credit grade. The average default probability is lowest for AA loans at

14.9%, while it is highest for HR loans at 43.9%. Table 3 also reports the mean and the quantiles

of the internal rate of return (IRR) of the loans.19 The average IRR for all listings is -4.6%, and

it is negative in all credit grades except grade E, whose average IRR is 0%. The IRR for our

sample period is generally low. These low returns may reflect the fact that our sample coincides

with the period of economic downturn during the financial crisis. (Note that the return on the S&P

was at -37% during 2008).20 It may also reflect the fact that lenders were not fully aware of the

creditworthiness of the pool of borrowers on Prosper.21

Finally, Table 5 reports the summary statistics of the lenders. We find that lenders fund, on

average, 17.5 loans with a total portfolio size of about $1, 325. The median lender funds 6 loans

19If we denote the (monthly) IRR by R, then R is the interest rate that equalizes the loan amount to the discounted

sum of the stream of actual monthly repayments. In Table 3, we report the annualized IRR.
20There is evidence that loans originated after the end of our sample seem to be doing better. Using the subset of

loans that originated right after Prosper resumed operation in 2009, we find that the average IRR was 1.1%, which

is significantly higher than −4.6%. Moreover, this estimate of 1.1% is conservative because some lenders had not

finished repaying by the day we retrieved our data.
21Freedman and Jin (2010) study lender learning where lenders learn about the creditworthiness of borrowers over

time.
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Grade Default Prob. Mean IRR sd 10% 25% 50% 75% 90% Obs

AA 0.149 -0.011 0.283 -0.449 0.061 0.082 0.110 0.132 755

A 0.211 -0.025 0.331 -0.767 0.072 0.094 0.135 0.181 755

B 0.297 -0.074 0.404 -0.871 -0.229 0.136 0.169 0.211 1,023

C 0.309 -0.060 0.413 -0.871 -0.211 0.135 0.196 0.256 1,285

D 0.321 -0.036 0.424 -0.865 -0.192 0.153 0.231 0.316 1,022

E 0.372 0.000 0.475 -0.861 -0.315 0.249 0.345 0.394 392

HR 0.439 -0.112 0.532 -0.886 -0.800 0.202 0.345 0.398 339

All 0.286 -0.046 0.402 -0.858 -0.100 0.121 0.187 0.281 5,571

Table 4: Descriptive Statistics – Default Probability and Internal Rate of Return (IRR): This table reports the default

probability and IRR of the loans originated by Prosper. We present the average IRR, the standard error, and the

quantiles of the distriubution.

Mean sd 5% 25% 50% 75% 95% Obs

Portfolio Size (# of Loans) 17.5 42.4 1 2 6 16 68 29, 176
Portfolio Size ($) 1, 325 5, 314 50 126.6 350 1000 4950 29, 176

Average IRR −0.041 0.166 −0.332 −0.076 −0.005 0.039 0.144 29, 176

Table 5: Descriptive Statistics – Lender Portfolio Characteristics: This table reports the summary statistics of the

lender’s portfolio. We present the number of loans that a lender owns in her portfolio, the total amount of loans lent

by the lender, average IRR of loans in a portfolio, the standard deviation of IRR of the loans within a portfolio for the

full sample, and the standard deviation of IRR of the loans within a portfolio for the lenders who own more than 10

loans.

and a total of $350. This suggests that the lenders do not invest a lot of money on Prosper, in

general. The mean IRR of a lender’s portfolio is about -4.1% with a standard deviation of 0.166.

3 Evidence of Signaling Through the Reserve Rate

In this section, we provide some reduced-form evidence that the borrower’s reserve interest rate

serves as a signaling device. In particular, we first show evidence that suggests that raising the

reserve rate (1) increases the funding probability; (2) increases the contract interest rate; and (3)

increases the default probability. We next argue that, taken together, these results suggest that the

reserve rate serves as a signal.

While the baseline results that we present below are based on a relatively parsimonious speci-

fication of the reduced form, the Online Appendix contains results from richer specifications with

interactions of covariates as well as specifications with additional covariates, such as text informa-

tion and more detailed credit information of the borrowers. The baseline results we report below

are broadly consistent with the results of these alternative specifications.
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Funding Probability In order to analyze the effect of the reserve rate on the funding proba-

bility, we run a Probit model as follows:

Fundedj = 1{βssj + x′jβx+εj ≥ 0}, (1)

where Fundedj is a dummy variable for whether listing j is funded or not, sj is the reserve rate and

xj is a vector of controls that include the requested amount, the debt–to–income ratio, a dummy

variable for home ownership, the credit grade, calendar month, and hour of day the listing was

created.

The first column of Table 6 reports the results of this regression. The coefficient that we are

interested in is the one on the reserve rate. As reported in the first row, the coefficient is estimated

to be 2.13 and it is statistically significant. In terms of the marginal effect, a 1% increase in sj is

associated with about a 0.32% increase in the funding probability.

Contract Interest Rate Next, we run the following Tobit regression to examine the effect of

the reserve rate on the contract interest rate:

r∗j = βssj + x′jβx+εj , (2)

rj =

{
r∗j if r∗j ≤ sj

missing otherwise
.

In this expression, rj denotes the contract interest rate, r∗j is the latent contract interest rate, sj

is the reserve rate, and xj is the same vector of controls as before. The first equation relates the

latent contract interest rate to the reserve rate and other listing characteristics. r∗j is interpreted as

the latent interest rate at which the loan is funded in the absence of any censoring. The second

equation is the censoring equation, which accounts for the fact that the contract interest rate rj is

always less than the reserve rate, sj . Note that if we were to run a simple OLS regression of rj on

sj and xj , the estimate of βs would be biased upwards because the mechanical truncation effect

would also be captured in βs.

We report the results from this regression in the second column of Table 6. As reported in

the first row, we estimated βs to be positive and significant, which seems to suggest that a lower

reserve interest rate leads to a lower contract interest rate, consistent with our hypothesis. As we

discuss next, borrowers who post high reserve rates are relatively less creditworthy. If we take this

as given, the results of regression (2) seem to suggest that lenders charge higher interest to riskier

borrowers.

In addition to the Tobit model above, we also estimated a censored quantile regression model

(see, e.g., Powell, 1986) using the same specification as equation (2). The quantile regression
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(1) (2) (3) (4)

Funded Contract Rate Default Rate of Return

Reserve rate 2.1368∗∗∗ 0.6834∗∗∗ 2.8584∗∗∗ -0.5919∗∗∗

(0.0263) (0.0145) (0.7256) (0.1313)

Contract rate 3.2375∗∗∗ 0.0540

(0.6507) (0.1372)

Amount -0.1070∗∗∗ 0.0077∗∗∗ 0.0349∗∗∗ -0.0045∗∗∗

(0.0024) (0.0002) (0.0077) (0.0013)

Debt / income -0.7971∗∗∗ 0.0731∗∗∗ 0.0528 -0.0314

(0.0015) (0.0037) (0.0713) (0.0197)

Home owner -0.1513∗∗∗ 0.0137∗∗∗ 0.1400∗∗∗ -0.0471∗∗∗

(0.0004) (0.0018) (0.0633) (0.0117)

Grade

AA 3.6468∗∗∗ -0.3013∗∗∗ -0.3966∗∗ 0.0595

(0.0044) (0.0061) (0.2179) (0.0402)

A 3.0727∗∗∗ -0.2670∗∗∗ -0.3208∗∗ 0.0475

(0.0033) (0.0055) (0.1932) (0.0366)

B 2.5681∗∗∗ -0.2347∗∗∗ -0.1516 0.0224

(0.0022) (0.0046) (0.1492) (0.0320)

C 1.8743∗∗∗ -0.1862∗∗∗ -0.1398 0.0380

(0.0014) (0.0038) (0.1233) (0.0288)

D 1.2754∗∗∗ -0.1329∗∗∗ -0.1825 0.0636∗∗

(0.0011) (0.0034) (0.1135) (0.0272)

E 0.5022∗∗∗ -0.0499∗∗∗ -0.3949∗∗∗ 0.1155∗∗∗

(0.0014) (0.0036) (0.1271) (0.0296)

Observation 35,241 35,241 91,939 5,571

R2 0.2827 0.0224

Likelihood -1,137 -4,805

Table 6: Reduced Form Analysis - Funding Probability, Contract Interest Rate and Repayment Behavior: The first

column reports the estimated coefficients of the Probit model (expression (1)). The unit of observation is a listing.

The dependent variable is an indicator variable that equals one if the listing is funded and zero, otherwise. The second

column reports the estimated coefficients of the Tobit model (expression (2)). The dependent variable is the contract

interest rate charged to the borrower. The third column reports estimated coefficients from the panel Probit model

(expression (3)). The unit of observation is a loan - period. The dependent variable is an indicator variable that

equals one if the loan ends in default at period t. The fourth column presents estimated coefficients of the OLS model

(expression (4)). In this model, the unit of observation is a funded loan. In addition to the independent variables

shown in the table, we also control for month dummies, day-of-the-week dummies, and hour-of-the-day dummies in

all of the regressions. Standard errors are robust-heteroskedasticity-consistent and clustered at the loan level. They are

presented in parentheses below the coefficients.
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allows us to test whether a similar relationship between r∗j and sj that we find for the mean holds

for different quantiles. The results of the quantile regressions are qualitatively similar.22 The results

seem to imply that F (r∗|s) first order stochastically dominates F (r∗|s′) for s ≥ s′ (See also Figure

3).

The results of regressions (1) and (2) suggest that a borrower faces a trade-off in setting the

reserve price, i.e., the borrower must trade-off the increase in the probability of acquiring a loan

with the possible increase in the contract interest. Note that it is probably safe to assume that

many borrowers are actually aware of this trade-off: In a prominently displayed tutorial, Prosper

informs the borrowers that setting a higher reserve rate increases the probability that the loan will

be funded. Given the dispersion in the reserve rate (See Figure 2), it is natural to think that there is

unobserved borrower heterogeneity that induces borrowers to weigh the trade-off differently. For

example, if borrowers are heterogeneous with respect to the cost of obtaining credit from outside

sources, borrowers who have low cost will tend to post low reserve rates, while those who have

high cost will post high reserve rates, giving rise to dispersion in the reserve rate.

Repayment Behavior We now explore the extent to which borrowers who post high reserve

rates are similar to or different from those who post low reserve rates in terms of their ability to pay

back. In order to do so, we first run a panel Probit of an indicator variable for default on observable

characteristics of the loan as well as the reserve rate:

Defaultjt = 1{βssj + βrrj + x′jβx + µt + αj + εjt ≥ 0}, (3)

where Defaultjt denotes a dummy variable that takes a value of 1 if borrower j defaults on the

loan at period t, µt is a period-t dummy, and αj is a borrower random-effect. The coefficient βs

captures the relationship between the reserve interest rate and the default probability. Note that

because we control for the contract interest rate (rj) in the regression, the effect captured by βs is

purely due to selection. In other words, βs is not picking up the effect of moral hazard given that

the reserve rate should not directly affect the behavior of the borrower once we condition on the

contract interest rate.

The parameter estimates obtained from this regression are shown in the third column of Table 6.

The coefficient associated with the reserve interest rate is positive and significant, with βs = 1.54.

In terms of the marginal effect, a 1% increase in sj is associated with about a 1.25% increase in

the default probability. This implies that borrowers who post higher reserve interest rates tend to

default more often, which is consistent with the notion that the reserve rate is informative about the

type of the borrowers, i.e., the reserve interest rate can be used as a signal of the creditworthiness

22The results are available on request.

19



of the borrower. In the second row, we also report our estimates of the coefficient on the contract

interest rate and the coefficient on the requested amount. We find that both coefficients are positive

and statistically significant. The positive coefficient on the contract interest rate may be capturing

moral hazard – higher interest tends to increase the probability of default. The positive coefficient

on the amount can be a result of either signaling or moral hazard. Borrowers who request a bigger

loan may be less creditworthy, or a bigger loan may induce borrowers to default more often because

of higher interest payments. The former explanation would be consistent with signaling, and the

latter would be consistent with moral hazard.23

We now wish to examine how the reserve rate relates to the borrower’s repayment behavior

from the perspective of the lender. In order to do so, we analyze how the IRR is related to the

reserve interest rate by estimating the following model:

IRRj = βssj + βrrj + x′jβx + εj , (4)

where IRRj is the internal rate of return of loan j and xj is the same vector of observable charac-

teristics as before. As with our discussion of regression (3), the coefficient on sj captures the pure

selection effect given that we control for the contract interest rate in the regression.

The parameter estimates obtained from this regression are shown in the fourth column of Table

6. As expected, the coefficient on sj is negative and significant (βs = −0.59). This is consistent

with the results of regression (3), where we examined the relationship between rj and the default

probability. The coefficient on rj is positive, but not statistically significant. This may be due to

moral hazard.

Interpretation of the Results Taken together, our regression results seem to indicate that (1)

there is a trade-off in setting the reserve rate, i.e., a trade-off between a larger funding probabil-

ity and a higher contract interest rate; (2) borrowers are heterogeneous with respect to how they

evaluate this trade-off; (3) those who post high reserve rates tend to be relatively less creditworthy

and those who post low reserve rates tend to be relatively more creditworthy; and (4) the lenders

anticipate this and charge higher interest to riskier borrowers who post high reserve rates. These

results are informative about how signaling is sustained in equilibrium: “high cost” types, who

have high cost of borrowing from outside sources are more willing to sacrifice a favorable interest

rate for a bigger probability of being funded, while the opposite is true of the “low cost” types.

Because borrowers who post high reserve rates default relatively more often than borrowers who

23The borrower’s choice of the loan size is an interesting issue, but it is hard to tease out moral hazard and adverse

selection. That is one reason why our paper focuses on the borrower’s choice of the reserve rate. Note, however, that

we are not ruling out the possibility that the loan amount can also be a signal. See section 4.4 for more details. For

an analysis of the loan size and down payment in the context of subprime lending in used–car markets, see Adams,

Einav, and Levin (2009) and Einav, Jenkins, and Levin (2012).

20



post low reserve rates, “high cost” types are also less creditworthy while “low cost” types are more

creditworthy. Hence borrowers who are “low cost” and creditworthy prefer {low interest, low

probability of receiving a loan} to {high interest, high probability of receiving a loan}, and vice

versa. This prevents “bad” types from mimicking “good” types and sustains separation of types

through signaling.

While the results that we present in this section correspond to relatively parsimonious spec-

ifications of the reduced form, the results are quite robust. As we discussed before, the Online

Appendix contains results from various alternative specifications which are qualitatively similar to

those presented above. For example, we obtain similar results when we restrict the sample only to

the set of listings posted by borrowers for the purpose of consolidating debt. In addition, there are

papers using additional graphical and textual data that report similar effect of the reserve rate on

various outcome variables. For example, Ravina (2008) augments the Prosper data with the per-

ceived attractiveness of the borrowers using the photos that borrowers post and Freedman and Jin

(2010) includes variables such as social ties of the borrower, etc. Their findings are reassuring in

the sense that inclusion of these additional variables do not change much the estimated coefficients

of the reserve rate (see Table 5 of Freedman and Jin, 2010 and Table IV of Ravina, 2008). While

there may still be omitted variables in our specification, we think that the bias arising from them

are limited.

4 Model

In this section, we develop a model of the borrowers and the lenders who participate in Prosper,

which we later take to the data. Our model has three parts. The first part of our model concerns

the reserve interest rate choice of the borrowers, the second part concerns the lenders’ bidding

behavior and the third part of our model pertains to the borrowers’ repayment behavior. We collect

and discuss our modeling choices and assumptions at the end of this section.

4.1 Borrowers

Borrower Repayment We first describe the repayment stage of the borrower’s decision prob-

lem and work our way backwards. We model the repayment behavior of the borrower as a sequen-

tial decision of 36 (= T ) months, which is the length of the loans that Prosper originates. We write

the terminal decision of the borrower at period T as follows:{
full repayment: if uT (r) + εT ≥ D(ϕ)

default: otherwise,
(5)
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where uT (r) + εT denotes the period utility of the borrower if he repays the loan in full, r denotes

the interest rate on the loan, and ϕ denotes the (unobserved) type of the borrower that determines

the likelihood of repaying the loan. While there are many ways to interpret ϕ and D(·) – e.g., as

unobserved liquid asset/wealth of the borrower – we adopt the interpretation ofD(ϕ) as the default

cost of a borrower whose type is equal to ϕ. That is, the borrower compares the utility of repaying

the loan (uT (r) + εT ) with the cost of default (D(ϕ)), choosing to repay the loan if and only if the

former is greater than the latter.

We assume without loss of generality that D(ϕ) is monotonically decreasing in ϕ, i.e., the

disutility of defaulting is larger for borrowers with higher ϕ. Hence, borrowers with high ϕ are

“good” types who value avoiding default and maintaining a good credit history. Note that our

interpratation of ϕ is only one of many.24 In the Online Appendix, we provide an isomorphic

model in which ϕ is interpretated as wealth/asset of the borrower.

We assume ϕ to be independent of εT , conditional on observables. The conditional indepen-

dence of εT and ϕ may appear to be a very strong assumption, but mean independence is actually

without loss of generality. To see this, if E[εT |ϕ] 6= 0, we can subtract E[εT |ϕ] from both sides of

equation (5) and by appropriately redefining D(·) and εT , we have an observationally equivalent

model with E[εT |ϕ] = 0. This is possible because we allow D(·) (or equivalently, the distribution

of ϕ) to be nonparametric.25 While mean independence is not the same as independence, we think

that this alleviates some of the concerns regarding our assumption. We come back to this point at

the end of this section (Section 4.4).

Now let VT denote the expected utility of the borrower at the beginning of the final period T ,

defined as VT (r, ϕ) = E[max{uT (r) + εT , D(ϕ)}]. Then, the decision of the borrower at period

t < T is as follows: {
repayment: if ut(r) + εt + βVt+1(r, ϕ) ≥ D(ϕ)

default: otherwise,

where ut(r) + εt is the period t utility of repaying the loan, β is the discount factor, and Vt+1(r, ϕ)

is the continuation utility, which can be defined recursively. We allow ut to depend on t in order

to capture any deterministic time dependence while we assume {εt} to be i.i.d across t and mean

zero.

We have presented the model up to now without making explicit the dependence of the prim-

itives of the model on observable borrower/listing characteristics such the credit grade. This is

purely for expositional purposes. In our identification and estimation, we let ut, Fεt , and Fϕ de-

24ϕ is the unobserved type of the borrower that affects the propensity to make repayments. The exact interpretation

of ϕ is not very important for our purposes.
25Intuitively, one can think of this as loading all of the "systematic" component onϕ. In other words, ifE[εT |ϕ] 6= 0,

we can load on ϕ the part of εT that is correlated with ϕ.
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pend on observable characteristics. In particular, we allow Fεt and Fϕ to depend on observable

characteristics in an arbitrary manner in our identification.

Borrower Reserve Rate Choice Now we describe our model of the borrower’s reserve in-

terest choice. When the borrower determines the reserve interest rate, s, he has to trade off its

effect on the probability that the loan is funded, and its effect on the contract interest rate, r. The

borrower’s problem is then to choose s, subject to the usury law limit of 36%, as follows:

max
s≤0.36

V0(s, ϕ) = max
s≤0.36

[
Pr(s)

∫
V1(r, ϕ)f(r|s)dr + (1− Pr(s))λ

]
, (6)

where Pr(s) is the probability that the loan is funded, f(r|s) is the conditional distribution of

the contract interest rate given s, and λ is the borrower’s utility from the outside option, i.e., the

borrower’s utility in the event of not obtaining a loan from Prosper. Borrowers with high values

of λ have good outside option, e.g., borrowing money from relatives, friends, and local banks, etc.

Borrowers with low values of λ have bad outside option. We suppress the dependence of Pr(s) and

f(r|s) on the characteristics of the borrower. Although Pr(s) and f(r|s) are equilibrium objects,

they are taken as exogenous and known by the borrower.

Note that an important choice variable for the borrower that we do not model is the loan amount.

We treat the loan amount as part of the set of conditioning variables. Given that the borrowers’

reserve rate choice has to solve equation (6) conditional on the optimal choice of the loan amount,

treating the loan size as a covariate does not bias our estimates. To the extent that the loan size

has a signaling effect, we will be able to pick this up directly when we estimate the distribution of

types conditional on borrower covariates. We come back to this point at the end of this section.

The first term in the bracket in equation (6) captures the borrower’s expected utility in the event

of obtaining a loan through Prosper: V1(r, ϕ), which is the value function of the borrower at period

t = 1, is integrated against the distribution of the contract interest rate f(r|s). The second term

captures the utility of the borrower in the event the loan is not funded: (1−Pr(s)) is the probability

that this event occurs, which is multiplied by the utility of the outside option, λ.

In what follows, we assume that ϕ and λ are related as

λ = λ(ϕ),

where λ(·) is an increasing function of ϕ, where ϕ is the private type of the borrower we defined

earlier. This assumption simply reflects the idea that “good” types (high ϕ), who value their credit

history, for example, have an easier time obtaining a loan from outside sources, such as relatives,

friends, and local banks, etc., and hence have a high λ(ϕ). On the other hand, “bad” types, with

low cost of default, e.g., borrowers who have a damaged credit history or are expecting to default
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in the future anyway, are likely to have only limited alternative sources of funding, and hence have

a low λ(ϕ).

The first–order condition associated with problem (6) is as follows,

∂

∂s
Pr(s)

(∫
V1(r, ϕ)f(r|s)dr − λ(ϕ)

)
+ Pr(s)

∫
V1(r, ϕ)

∂

∂s
f(r|s)dr = 0, (7)

for an interior solution. Equation (7) captures the trade-off that the borrower faces in determining

the reserve interest. The first term is the incremental utility gain that results from an increase in the

funding probability, and the second term is the incremental utility loss resulting from an increase

in the contract interest rate.

Recall from the previous section that we found strong evidence that Pr(s) is increasing in s and

that F (r|s) first order stochastically dominates F (r|s′) for s ≥ s′, where F (r|s) is the conditional

CDF of r. We note that under these conditions, the single crossing property (SCP) is satisfied

for s < 0.36. From the perspective of the borrower, SCP is necessary and sufficient to induce

separation. Hence there is no pooling among types below the usury law maximum and pooling

occurs only at the maximum. We state this as a proposition below.

Proposition 1 If ∂
∂s

Pr(s) > 0 and F (r|s) FOSD F (r|s′) for s′ > s, then we have SCP, i.e.,

∂2

∂s∂ϕ
V0(s, ϕ) < 0.

Proof. See Appendix.

To see the intuition for why SCP holds, consider the marginal utility from increasing s, ∂
∂s
V0(s, ϕ),

for a given type ϕ. As we explained above, ∂
∂s
V0(s, ϕ) has two components. One is the incremental

utility gain from an increase in the funding probability, and the other is the incremental utility loss

resulting from an increase in the contract interest rate. The first component is decreasing in ϕ,

because borrowers with high ϕ already have a high outside option – these borrowers do not appre-

ciate the increase in the funding probability as much as low ϕ types. The second component is also

decreasing in ϕ, because borrowers with high ϕ are likely to bear the full cost of an increase in r,

while borrowers with low ϕ will not – the low ϕ types will default with high probability anyway.26

A formal proof of this proposition as well as all other proofs are contained in the Appendix.

Before turning to the lenders’ model, we briefly discuss the optimal reserve rate choice of the

borrowers when the usury law limit is binding. Recall from our discussion of Figure 2 that there

is a non-negligible mass at exactly 36% for credit grades B and below, implying that the usury law

maximum is a binding constraint for many borrowers in these credit grades. For credit grades B

and C, the pattern in the data seem broadly consistent with partial pooling, i.e., separation of types

26Conditional on default, the borrower does not have to bear the full cost of a high interest rate.
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below 36%, and pooling at 36%. For there to be partial pooling, we need an extra condition to hold

(in addition to the requirements in Proposition 1) that prevents the pooled types from deviating.

We describe these conditions in the Online Appendix. For these two credit grades (i.e., B and C),

we will use them in our estimation accounting for the fact that there is separation of types below

36%, and some pooling at 36%. For credit grades D and below, an even larger fraction of the

borrowers submit a reserve interest rate at the usury law maximum, leaving little variation in the

reservation interest rate. This means that data from these categories are not very informative about

the signaling value of the reserve rate. Hence in our estimation, we only focus on credit grades

AA, A, B, and C.

4.2 Lenders

In this subsection, we describe the model of the lenders. LetN be the (random) number of potential

lenders. We let FN denote its cumulative distribution function with support {0, 1, · · · , N̄}, where

N̄ is the maximum number of potential lenders. The potential lenders are heterogeneous with

regard to their attitude toward risk and with regard to their opportunity cost of lending.

Each potential lender must decide whether to submit a bid or not and what to bid if she does,

where a bid is an interest-amount pair. At the time of bidding, a potential lender observes the

active interest rate in addition to various characteristics of the listing, such as the reserve rate. In

principle, the lender is free to bid any amount between $50 and the full amount requested by the

borrower, but as we showed in Section 2, the vast majority of the bid amounts are either $50, $100,

or $200. We therefore proceed with the assumption that lenders face a discrete set of amount {$50,

$100, $200} to choose from.

Lender’s Problem with No Amount Choice We first describe the case when the lender can

only bid $50, so that the lender’s decision is whether to bid or not and what interest rate to bid. We

later extend the model to the case with amount choice. Before the lender can decide what to bid,

the lender must first form beliefs over the return she will make if she funds a part of the loan. Given

that the average return from funding loans on Prosper was negative for this sample period, we do

not want to impose rational expectations. In our baseline results, we allow the lenders’ beliefs to

be different from the actual realized distribution of returns, albeit in a very simple way.

Following the standard specification used in the asset pricing literature, we assume that the

lender’s utility from owning an asset depends on the mean and variance of the return on the asset.
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Thus, we specify the utility of lender j who lends to listing Z at contract interest rate r, as follows:

U = ŨL
j (Z(r))− ε̃0j

where ŨL
j (Z(r)) = µ̃j(Z(r))− Ajσ̃2j(Z(r))− c.

Z(r) is the random return from investing in Z at rate r, and µ̃j(Z(r)) and σ̃2j(Z(r)) are lender j’s

expecation of the return and variance. Aj is a lender specific random variable known only to lender

j that determines her attitude toward risk and c and ε̃0j are deterministic and random opportunity

costs of lending to listing Z. If we express µ̃j and σ̃2j as deviations from the mean and variance that

correspond to the actual realization of returns, we can rewrite the previous expression as follows:

U = UL
j (Z(r))− ε0j

where UL
j (Z(r)) = µ(Z(r))− Ajσ2(Z(r))− c

ε0j = ε̃0j + UL
j (Z(r))− ŨL

j (Z(r)),

where ε0j now includes lender forecasting error as well as the opportunity cost of lending. µ(Z(r))

and σ2(Z(r)) are the expected return and variance computed using the realized distribution of

returns.

For our baseline results, we make two important assumptions, which are (1) ε0j does not depend

on r; and (2) Aj and ε0j are independent. The two assumptions are very convenient because the

lender’s model is then isomorphic to the model in which lenders have rational expectations. While

these are strong assumptions, they still allow, for example, the lenders to be optimistic about the

expected return. This would be the case if µj(Z(r)) = µ(Z(r)) + εµj and εµj has positive mean.

However, the independence assumption implies that the lenders’ beliefs over the variance coincide

with the realized variance. We relax the independence assumption in Section 9.

Note that the mean and variance depend on the characteristics of listing Z, such as the reserve

interest rate, loan amount, credit grade, etc., in addition to r. The characteristics of the loan other

than r are suppressed to simplify notation. Also, in order to account for the possibility that lenders’

beliefs change over time, we let the mean of ε0j to change each month. This time dependence is

also supressed.

In order to study the lender’s problem, it is useful to illustrate it graphically. Figure 5 is a

graphical representation of the lender’s problem. In the left panel of this figure, we take σ2 to be

the horizontal axis and µ to be the vertical axis. Now, consider a listing Z. For each realization

of the contract interest rate, consider the mean return, µ(Z(r)), and the variance of the return,

σ2(Z(r)). Note that we can plot the points (µ(Z(r)), σ2(Z(r))) on this µ− σ2 plane for each r.
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Figure 5: Graphical Representation of the Lender’s Problem: Case of No Amount Choice – The figure illustrates how

the lender should bid when there is no amount choice. In the left panel, the horizontal axis is σ2 and the vertical axis

is µ. For each listing and for each realization of the contract interest rate, we can assign a corresonding point on this

µ − σ2 plane. Curve C corresponds to the mean and variance of a listing for different realizations of r. The dashed

line is the lender’s indifference curve. The right panel plots ULj (Z(r)) against r.

Curve C in the left panel of Figure 5 illustrates the possible mean and variance for a given

listing. The end point of the curve corresponds to the return and variance associated with the case

when the listing is funded at the reserve rate, so that r = s. As the contract rate is bid down from

s, the corresponding point on the µ − σ2 plane changes, and this is shown as a movement along

Curve C in the direction of the arrows. Note that we have also drawn a dashed line in the left panel

of Figure 5. This is the lender’s indifference curve, i.e., the set of points that makes the lender

indifferent between lending and not lending. As the lender’s utility function is linear with respect

to µ and σ2, the indifference curve is a straight line, i.e., µ−Ajσ2− c− ε0j = 0. Any point above

this line gives the lender a strictly higher utility than the outside option, and vice versa. The lender

is exactly indifferent between lending money and not lending money when the contract interest

rate is r0.

In the right panel of Figure 5, we plot the utility of the lender, UL
j (Z(r)), as a function of r. As

the contract rate is bid down from s, and as the corresponding point on the µ− σ2 plane changes,

so does the utility from funding the loan. At r = r0, the lender is indifferent between lending and

not lending, which is reflected in the fact that UL
j (Z(r)) crosses ε0j at r0. Note that as drawn in the

figure, CurveC intersects with the lender’s indifference curve only once, or equivalently, UL
j (Z(·))

crosses ε0j just once. The analysis for the case in which Curve C intersects with the indifference

curve multiple times is more or less the same so we assume it away to simplify exposition. Our

Proposition 3, which covers the case with lender amount choice is general enough to allow for

multiple intersections.

We now claim the following: Under the assumption that the lender behaves as if she is never

pivotal (i.e., never marginal), and that UL
j (Z(·)) crosses ε0j just once, bidding r0 is a (weakly)

27



dominant strategy for the lender. That is, it is optimal for the lender to bid an interest rate that

makes the lender indifferent between lending and not lending. We state this as a proposition below.

Proposition 2 Suppose that UL
j (Z(·)) crosses ε0j just once. Under the assumption that the lender

behaves as if she is never marginal, it is a weakly dominant strategy for the lender to bid an interest

rate that makes the lender indifferent between lending and not lending.

Proof. See Appendix.

The reason for why this strategy is weakly-dominant is the same as why bidding one’s value

is weakly dominant in a second-price auction. That is, as long as the lender is infra-marginal (i.e.,

not pivotal), increasing the bid does not affect the contract interest rate. Hence, it is in the lender’s

best interest to bid her value. The proof of the proposition is in the Appendix.

While it is certainly restrictive, we think that assuming that lenders behave as if they will never

be pivotal is a reasonable approximation of the lenders’ behavior. Given that the average requested

amount is $6, 603 for all listings ($5,821 for funded listings) and that the vast majority of the

lenders bid $50, a large number of bids are required to fund a single loan (on average there are

about 80 winning bids; see Table 2). Hence the probability of becoming the pivotal bidder is quite

low. Moreover, not only is the probability of being the pivotal bidder very low, the possible gain

from bidding strategically is also small – the difference between the lowest interest rate among the

losing bids and the interest rate of the marginal bid is only about 0.12%, on average. For these

reasons, we assume in what follows that lenders behave as if they will not be pivotal.

Lender’s Problem with Amount Choice Thus far, our discussion has considered the case

with no amount choice for the lenders. Now consider the case with amount choice, where the

borrower chooses q from the set M = {50, 100, 200} or chooses not to bid. Note that if the lender

bids amount q to listing Z at contract interest rate r, thenE[qZ(r)] = qµ(Z(r)) and V ar(qZ(r)) =

q2σ2(Z(r)). Hence, lender j’s utility can be expressed as follows,

U = UL
j (qZ(r))− ε0j = qµ(Z(r))− Aj(qσ(Z(r)))2 − cq − ε0j , (8)

where the cost of lending now depends on q as cq.

When the lender faces an amount choice, she needs to keep track of the utility associated with

all possible actions. This is depicted in Figure 6. The three curves in Figure 6 correspond to

UL
j (50Z(·)), UL

j (100Z(·)), and UL
j (200Z(·)). Just as before, there is a (weakly) dominant strategy

for the lender under the assumption that the bidder is not pivotal. For the case shown in Figure 6,
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Figure 6: Graphical Representation of the Lender’s Problem: Case of Amount Choice – The figure illustrates how

the lender should bid when there is amount choice. Each curve ULj (qZ(r)) illustrates the relationship between r and

the lender’s utility net of ε0j when the lender bids q. I1 corresponds to the region of the active interest rate for which

bidding $200 is optimal. I2, I3, and I4 correspond to the regions of the active interest rate for which bidding $100,

$50, and $0 is optimal, respectively.

a (weakly) dominant strategy can be described by the following bidding strategy:

bid amount $200 at interest r′ if active interest rate ∈ [r′, s]

bid amount $100 at interest r′′ if active interest rate ∈ [r′′, r′)

bid amount $50 at interest r
′′′

if active interest rate ∈ [r
′′′
, r′′)

do not bid if active interest rate ∈ [0, r′′′),

where the active interest rate is understood to be equal to s if the listing has not attracted enough

bids to reach the requested amount. Basically, the lender should bid an amount q that maximizes

UL
j (qZ(r)) when the active interest rate is r. The optimal interest rate associated with the amount

is the minimum interest that makes UL
j (qZ(·)) higher than UL

j (q′Z(·)). We now state the previous

analysis in the form of a proposition.

Proposition 3 Define a partition I0 = [0, r1], I1 = [r1, r2],· · · IM = [rM , s], and a corresponding

quantity for each interval, q(0), q(1),· · · , q(M), where q(k) ∈ {$0} ∪M , so that UL
j (q(k)Z) −

ε0j ≥ UL
j (q′Z)−ε0j for all q′ and r ∈ Ik.27 Under the assumption that the lender behaves as if she

is never pivotal, it is a dominant strategy to bid q(k) and interest rate rk when the active interest

rate is in Ik.

We conclude the lender’s model by briefly discussing the relationship between the model and

identification. Using the ex-post borrower repayment data, we can identify µ(Z(r)) and σ(Z(r))

27To be more precise, when q(k) 6= 0, ULj (q(k)Z)−ε0j ≥ max{0,maxq∈M ULj (q(k)Z)−ε0j} and when q(k) = 0,

0 ≥ maxq∈M ULj (q(k)Z)− ε0j .
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for each r.28 In particular, we can identify µ(Z(s)) and σ(Z(s)), where s is the reserve interest

rate, i.e., we can identify the “starting end point” of Curve C for any listing. This means that for

each distribution of A and N (the risk aversion parameter of the lender and the number of potential

lenders) the lenders’ bidding strategy described above will induce a probability distribution over

(i) whether a listing is funded and (ii) the number of lenders who bid $0, $50, $100, and $200 for

listings that are not funded. In the next section, we show that this mapping from the primitives to

the probability distribution over (i) and (ii) is actually a one-to-one mapping. Correspondingly, our

estimation is based on matching the predicted distribution with the sample distribution.

4.3 Equilibrium

We now discuss equilibrium existence and uniqueness. There always exists an equilibrium of the

model we described, but there may not exist a separating equilibrium.2930 Mailath (1987) (see also

Mailath and von Thadden (2013)) provides sufficient conditions for the existence of a separating

equilibrium. The main condition is a single-crossing condition on the borrower’s utility function,

V0:
∂

ds
V0(s, ϕ, ϕ̃;X)

/
∂

dϕ̃
V0(s, ϕ, ϕ̃;X) is monotone increasing in ϕ, ∀X , (9)

where V0(s, ϕ, ϕ̃;X) is the borrower’s expected utility from posting a reserve interest rate s, when

the borrower is of type ϕ, and the lenders perceive him to be of type ϕ̃.31 X is a vector of condi-

tioning variables such as borrower and listing characteristics. As long as lenders play the strategy

described in Proposition 2, we can compute the funding probability and the distribution of r when

lenders perceive the borrower to be of type ϕ̃. Hence, we can evaluate V0 for any given parameter

value.

While it is relatively straightforward to check numerically whether the model satisfies (9) for

a given parameter value, it is not easy to analytically characterize the set of parameters that satisfy

these conditions. This is because V0 is a fairly complicated object – it is an integral of a value

function.

28µ(Z(r)) and σ(Z(r)) correspond to the mean and variance of Z(r) computed assuming rational expectations.
29To be more precise, there exists an equilibrium in which all lenders have rational expectations. Note that our

model is isomorphic to the model with rational expectations.
30There always exists a pooling equilibrium. As long as the lenders’ beliefs off the equilibrium path are sufficiently

pessimistic, all borrowers will find it optimal to post the same reserve rate.
31More precisely,

V0(s, ϕ, ϕ̃) = Pr(s, ϕ̃)

∫
V1(r, ϕ)f(r|s, ϕ̃)dr + (1− Pr(s, ϕ̃))λ(ϕ),

where we have suppresed the dependence onX . Pr(s, ϕ̃) and f(r|s, ϕ̃) are the funding probability and the distribution

of the contract interest rate, respectively, when the lender percives the borrowe to be of type ϕ̃.
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In what follows, we proceed by estimating the model without checking whether or not a sepa-

rating equilibrium exists at any given parameter. Once we have estimated our parameters, we then

check whether the sufficient conditions for separation are satisfied at the estimated values.32 At

the estimated parameter values, the conditions seem to generally hold. Note that this procedure

gurantees consistency of the estimates that we obtain.33

As for uniqueness, signaling models generally admit multiple equilibria because there are al-

ways pooling equilibria in which no information is transmitted. It turns out, however, that under

a mild assumption on the beliefs over borrower types off the equilibrium path, there is a unique

separating equilibrium (see Mailath, 1987).34 Given our regression results from section 3, assum-

ing that the agents are playing a separating equilibrium is not unreasonable. Hence, as long as the

assumptions on the off-path beliefs are satisfied, we do not need to worry about multiple equilibria.

4.4 Model Discussion

In this section, we discuss some of our modeling choices and assumptions.

Independence of εt and ϕ An important assumption we made in our borrower’s repayment

model is the independence of εt and ϕ. As we discussed above, mean independence of εt condi-

tional on ϕ, i.e., E[εt|ϕ] = 0, is without loss of generality. This is because we can always redefine

εt and ϕ – redefine εt as (εt − E[εt|ϕ]) and D(·) as (D(·)− E[εt|·]) – so that E[εt|ϕ] = 0. Given

that we allow D(·) (or equivalently, the distribution of ϕ) to be nonparametric in our identification

and estimation, this is without loss of generality. While, we assume independence of εt and ϕ,

which is stronger than mean independence, it gives some credibility to the independence assump-

tion.

Serial Correlation in εt Another assumption we made in our borrower’s repayment model

is the independence of {εt} across t. Note that what we observe in the data are a sequence of

binary decisions (repay or default) for each borrower, in which default is an absorbing state: If

a borrower defaults, we do not observe any repayment decisions from that point on. Unlike in a

situation where there are distinct decisions for each of the T periods (i.e., no absorbing state), our

32The reason why we don’t include this condition in our estimation routine is because we need to verify whether the

monotonicity requirement is satisfied for all X . It would be very computationally intensive to include this condition

in the estimation routine.
33The set of parameters for which (9) is satisfied, say, ΘM , is a subset of the set of all parameters, say Θ. Hence,

if we find that our estimate (the minimizer of the criterion function over Θ) satisfies (9), then the same parameter

minimizes the criterion function over ΘM .
34A sufficient condition is that lenders associate off the equilibrium action with the worst borrower type.
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particular data structure precludes us from identifying possible serial correlation in {εt}.35 Only

the marginals of {εt} are relevant for data generation. While this may appear to be a limitation,

this means that as long as {εt} is structural, our counterfactual policy is robust to serial correlation

among {εt}.

Interpretation of ϕ Recall that the unobservable type of the borrower (ϕ) is interpreted as

default cost in our model. However, we can write an alternative, observationally equivalent model

where ϕ has the interpretation of unobserved income/assets of the borrower. We show this in the

Online Appendix. While there are several ways to model borrower heterogeneity – default cost,

income, or some combination of the two – the implied default pattern may be very similar. For our

purposes, the exact nature of heterogeneity among the borrowers is not very important because it

is structural to our counterfactual policy. This is not to say, however, that the distinction may be

very important in other contexts.

Signaling through the Loan Amount In addition to the reserve interest rate, an important

variable that the borrower needs to optimize over is the requested amount. We do not explicitly

model the amount choice of the borrower and instead focus only on the reserve rate choice. First of

all, the reserve rate choice offers a cleaner setting to analyze the effect of signaling. Given that the

reserve rate should not affect the lender’s repayment behavior conditional on the contract interest

rate, the correlation between the reserve rate and the default probability is informative about the

pure informational value of the reserve rate as a signal. On the other hand, the requested amount

can affect the default probability both through informational channels as well as through moral

hazard.

Moreover, note that focusing only on the reserve rate choice and abstracting away from the

amount choice does not bias our results for the following two reasons. First, even when the bor-

rower optimizes over the requested amount, the borrower still chooses the reserve rate in accor-

dance with equation (6).36 That is, conditional on the amount that the borrower requests, the

borrower’s reserve interest rate still solves equation (6). Second, we are allowing ϕ to be (arbitrar-

ily) correlated with the requested amount, allowing for the possibility that the requested amount

35Consider an extreme case when {εt} takes on only two values, {+∞,−∞}. The following two cases are ob-

servationally equivalent: (1) {εt} are perfectly correlated, so ε1 = · · · = εT , and Pr(ε1 = +∞) = p (2) {εt} are

independently (but not identically) distributed, with Pr(ε1 = +∞) = p, and εt = +∞ with probability 1 for all

t ≥ 2. For case (1), either ε1 = · · · = εT = +∞ or ε1 = · · · = εT = −∞ with probability p and 1 − p. For case

(2), ε1 = +∞ or ε1 = −∞ with probability p and 1 − p, but εt = +∞ with probability 1 for all t ≥ 2. Note that

(1) and (2) are different ({εt} are correlated in (1) and independent in (2)), but we cannot identify between (1) and

(2): In both cases, the borrower would default with probability p in the first period, and conditional on not defaulting

in the first period, the borrower never defaults later. Our counterfactual results would be the same under either data

generating process.
36We do need Pr(s) to be strictly monotone for all s.
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can be informative about ϕ. To the extent that the requested amount has a signaling aspect, we will

be able to capture it directly when estimating the distribution of ϕ as a function of covariates.

Lender Beliefs The lenders of our model form beliefs over the distribution of the return on

the loans when they make their bidding decisions. While we allow the lenders’ beliefs to differ

from the realized distribution of returns, we do so in a very restricted manner. In order to check the

robustness of our results, we estimate our model under alternative beliefs. The robustness results

are presented in Section 9.

Lender Portfolio In our model, we abstracted from the portfolio decision of the lenders. In

principle, however, lenders should care about the correlation between a given loan and existing

loans. Hence, the lender’s utility should include a term that captures this correlation – which is

currently missing.

As we discussed in Section 2.2, the average lender funds a total of 17.5 loans with a total

portfolio size of about $1, 300. Given that this is a relatively small amount of money, the correlation

in the returns among loans may not be of first-order importance to many lenders. However, to the

extent that portfolio considerations are important, our estimate of the distribution of the lender’s

risk attitude (Aj) may pick up the correlation between the listing’s return and the lender’s other

loan holdings as well as lender specific risk attitude.37

Cost of Revising the Bid The optimal strategy described in Proposition 2 requires the lenders

to submit new bids as the active interest rate changes. In the situation depicted in Figure 6, for

example, the lender would submit new bids as the active interest rate drops below r′, r′′, and r′′′.

This implicitly takes as given that lenders have low cost of revising their bid.38 While this may

be a strong assumption, it allows us to abstract from the dynamics of bidding and increases the

tractability of the model. Also, in order to make sure that our estimates are not too sensitive to this

assumption, we do not use the full implications of the dominant strategy (For example, we do not

use the exact distribution of the realized contract interest rate). Our estimation only uses moments

that are not too sensitive to this assumption as we describe below.

37The lender may care about the variance of a given loan (σ2(Z)) as well as the correlation between Z and other

loans. The correlation term will get picked up by Aj in the estimation.
38Some bidding strategies can be replicated with a one-time proxy bid. For example, one can submit four $50 bids,

two bids with interest rate r′, and two others with r′ and r′′, respectively. This bidding strategy is equivalent to the

dominant strategy we described for Figure 6.
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5 Identification

5.1 Identification of the Borrower’s Primitives

The primitives of the borrower that we would like to identify are the period utility function, ut(·),

the distribution of borrower types, Fϕ|X , the cost of default, D(·), the utility from the outside

option, λ(·), and the distribution of εt, Fε|X . We specify ut to depend on the repayment amount

and a time trend as ut(r) = −(r×xamt)+dt, where xamt is the loan size and dt is a period specific

constant term.

We begin with a few remarks. First, note that we allow the distribution of ϕ, Fϕ|X , as well

as the distribution of εt, Fε|X , to depend on borrower/listing characteristics, X . In particular, the

distribution of ϕ can depend on the amount requested. To the extent that there is some signal-

ing value in the requested amount, the conditional distribution of ϕ will depend on the amount

requested. We are allowing for this possibility. Second, note that we can normalize either D(·)
or Fϕ|X (for some X = X∗) without loss of generality. For identification (and estimation) we

normalize D(ϕ) = −ϕ.39 It is also easy to see that we can normalize one of the constants in ut

without loss of generality: Hence we set dT = 0.40

The intuition for our identification is quite simple. Recall that we model the borrowers’ re-

payment decision as a sequence of binary decisions. Hence, if we knew the value of ϕ for each

borrower, our model is a simple binary threshold crossing model and identification of the primi-

tives easily follow from existing results (See, e.g., Mazkin (1992)).41 The question then becomes

how we identify ϕ. The identification of ϕ relies on the observation that there is a one-to-one

(monotonic) mapping of s to ϕ conditional on X (for the case of no pooling). Recall from Propo-

sition 1 that the objective function of the borrower when choosing s (see equation (6)) satisfies the

single crossing property. This guarantees that types with higher ϕ choose lower s conditional on

X . In particular, if we take loans for which the reserve rate is equal to the α quantile of Fs|X , the

borrowers all have ϕ equal to the 1 − α quantile of Fϕ|X . Then the default rate among borrowers

with reserve rate equal to F−1s|X(α) identifies Fϕ|X(α) (and hence the value of ϕ for each borrower).

The following proposition states our results formally:

Proposition 4 Fϕ|X , Fε|X and λ(·) are nonparametrically identified up to location normalizations.

{dt} are also identified.

39This is because a specification with D̃(ϕ) = −ϕ, F̃ϕ|X = Fϕ|X ◦ D−1, and λ̃ = λ ◦ D−1 is going to be

observationally equivalent to one with D, Fϕ|X , and λ. The important component of the model is the distribution of

D(ϕ), rather than the distribution of ϕ or the shape of D(·) per se.
40If we set d̃t = dt + κ (∀t) ε̃t = εt − κ (∀t), it will be observationally equivalent to dt, Fε|X .
41To be precise, the binary threshold crossing model identifies Fεt|X∗ for some X∗. In order to identify Fεt|X∗ for

X 6= X∗, we also use the first-order condition (7). Once Fϕ|X and Fε|X are identified, λ(·) is identified from equation

(7).
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Proof. See Appendix.

Nonparametric identification of Fϕ|X , Fε|X and λ(·) holds even when there is partial pooling at

36%. The proof of this Proposition when there is no pooling appears in the Appendix. The Online

Appendix contains the proof of the proposition when there is partial pooling.

5.2 Identification of the Lender’s Primitives

The primitives of the lender’s model that we need to identify are the distribution of the coefficient of

risk, FA, the distribution of the outside option, Fε0 , the cost of lending, cq, and the distribution of the

number of potential bidders, FN , which is assumed to have finite support {1, .., N}. Our proof of

identification proceeds by first showing identification of FA, Fε0 , and cq under the assumption that

Pq(µ, σ), which we will define below, is identified for all values of (µ, σ) and q ∈M∪{$0} ≡ {$0,

$50, $100, $200}. We will then show that Pq(µ, σ) and FN are identified. Given a listing with mean

and variance of return equal to µ and σ2, define Pq(µ, σ) to be the probability that funding q dollars

gives higher utility to a lender than funding q′ (q′ 6= q) dollars. Formally, Pq(µ, σ) is expressed as

follows:

Pq(µ, σ) =


Pr

(
qµ− A(qσ)2 − cq − ε0 ≥ max

{
0,max

q′∈M
{q′µ− A(q′σ)2 − cq′ − ε0}

})
for q ∈M

Pr(0 ≥ max
q′∈M
{q′µ− A(q′σ)2 − cq′ − ε0}) for q = 0

.

Note that Pq(µ, σ) corresponds to the probability that (A, ε0) lie in the region defined by the in-

equalities in the expression above. By varying µ and σ, this region changes. Proposition 5 claims

that with enough variation in µ and σ, we can recover the probability that (A, ε0) is contained in

an arbitrary set, i.e., identify FA and Fε0 .
42 In other words, (FA, Fε0 , cq) is identified if Pq(µ, σ)

are identified.

Proposition 5 (FA, Fε0 , cq) are identified if (Pq(µ, σ), P0(µ, σ)) are identified.

Proof. See Online Appendix.

The next proposition claims that Pq(µ, σ) and FN are both identified.

Proposition 6 Pq(µ, σ) is identified for all q and (µ, σ) on the support of (µ, σ). FN is also

identified.

Proof. See Online Appendix.

The proof of Propositions 5 and 6 are contained in the Online Appendix. Here, we briefly

discuss the intuition for why FN and Pq(µ, σ) are identified. Consider a listing which has yet to be

42Our identification strategy is similar to the one taken in Cohen and Einav (2007).
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fully funded. Let xamt denote the requested loan amount and (µ, σ2) denote the mean return and

variance of this listing if funded at the reserve interest, s. Under the strategy described in section

4.2, lender j bids an amount equal to q if and only if lender j’s risk aversion parameter and the

outside option, (Aj ,ε0j), are such that UL
j (qZ(s)) − ε0j ≥ max{maxq′∈M UL

j (q′Z(s)) − ε0j, 0}.
The probability of this event is Pq(µ, σ). Given that a listing is funded if and only if there is a

sufficient number of potential bidders who are willing to fund it, we can express the probability

that a listing is funded as a function of FN and {Pq(µ, σ)}. Since the probability that a listing

is funded can be identified for all xamt, µ, and σ2, if we assume that FN is invariant to xamt and

(µ, σ), sufficient variation in xamt and (µ, σ) identifies both FN and Pq(µ, σ).43

Our identification relies on the fact that when a lender with (Aj , ε0j) visits a listing that is

still not fully funded, the lender submits a bid with amount q if and only if UL
j (qZ(s)) − ε0j ≥

max{maxq′∈M UL
j (q′Z(s))− ε0j, 0}, where Z(·) is evaluated at the return from funding the listing

at s. Note that this lender behavior is consistent with the dominant strategy we described in section

4.2.

6 Estimation

We estimate our model in three steps. First, we estimate the conditional distribution of the contract

interest rate given the reserve rate, f(r|s, x), and the funding probability, Pr(s, x). We estimate

these two functions nonparametrically as f(r|s, x) and Pr(s, x) are both equilibrium objects. The

second step involves estimating the primitives of the model of the borrower, and in the last step,

we estimate the model of the lender. While our discussion of identification in the previous section

focused on nonparametric identification, we place parametric functional forms for some of the

model primitives in our estimation, as we will describe below.

6.1 Estimation of f(r|s, x) and Pr(s, x)

Our estimation proceeds first by estimating f(r|s, x) and Pr(s, x), where x is a vector of observable

listing characteristics such as the credit grade, requested amount, debt-to-income ratio, and home

ownership. We use a (second-order) Hermite series approximation to estimate f(r|s, x), following

Gallant and Nychka (1987). Our estimation of Pr(s, x) is based on a Probit model with flexible

functional forms. The details regarding the estimation are contained in the Online Appendix.

43Assuming that there is rich variation in xamt is a bit problematic because the borrowers cannot request more than

$25, 000 i.e., xamt ≤ 25000.
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6.2 Estimation of the Borrower Model

We parameterize the borrower’s period t utility function and outside option with parameters θB and

denote them by ut(r, xamt; θB) and λ(ϕ; θB). The default cost D(ϕ) is normalized as D(ϕ) = −ϕ
(see Section 5.1).

In order to estimate θB, we maximize the likelihood of repayment and default for each bor-

rower. Note that for any θB, our borrower’s repayment model generates a probability distribution

over sequences of repayment and default decisions for each borrower type ϕ. Given that we do not

observe ϕ, we cannot use the probability distribution directly to form a likelihood. Recall, however,

that there is a monotone relationship between ϕ and s (conditional on x), where this relationship

is implicitly defined by the borrower’s first-order condition (equation (7)). This means that we can

back out the type of the borrower from his choice of s by using the first order condition. Once we

can assign a ϕ for each borrower, we can then compute the likelihood of repayment and default.

The actual computation of the likelihood proceeds as follows: First, recall that the borrower’s

choice of the reserve rate satisfies the first-order condition;

∂ Pr(s, x)

∂s

(∫
V1(r, ϕ, x; θB)f(r|s, x)dr − λ(ϕ; θB)

)
+Pr(s, x)

∫
V1(r, ϕ, x; θB)

∂f(r|s, x)

∂s
dr = 0.

(10)

Given that we observe the reserve rate chosen by each borrower, this equation can be seen as an

equation in ϕ. In other words, the first-order condition reveals, for each choice of s, the type of

borrower ϕ who found it optimal to choose s. Since we have estimated Pr(s, x) and f(r|s, x) in

the first step, we can replace these objects with our nonparametric estimates P̂r(s, x) and f̂(r|s, x).

We can also compute V1(r, ϕ, x; θB) for each value of {r, ϕ, x} given θB by recursively solving the

borrower’s dynamic problem. This allows us to back out the borrower’s type, ϕ̂ ≡ ϕ̂(s, x; θB), for

each borrower. Note that Proposition 1 shows that the right-hand side of equation (10) is monotonic

in ϕ, guaranteeing a unique solution given s and x (for unpooled types).44

The second step of our procedure is to compute the likelihood for a given sequence of repay-

ment decisions for each borrower i, using ϕ̂i = ϕ̂(si, xi; θB). Borrower i’s default probability at

44In practice, there are a few borrowers (less than 10% of the sample) for whom we could not solve for ϕ̂(s, x; θB)
even when s < 36%. This would happen if the single-crossing condition is not satisfied for a given (s,x), i.e., f(r|x, s)
does not satisfy FOSD or Pr(s, x) is not increasing at (s,x).

In principle, Mailath (1987) gives conditions under which a separating equilibrium exists (in particular, these condi-

tions imply that the single crossing property for the borrowers is satisfied for equation (10)). We checked whether the

conditions in Mailath (1987) are satisfied at the estimated parameters: By-and-large, they seem to be. But for some

values of x, the condition fails, and as a result, we cannot solve for ϕ̂(s, x; θB) for some borrowers. When we fail to

solve for ϕ̂, we replace ϕ̂ with default values. We tried two different default values and the results seem to be pretty

stable. The results from the different specifications are available on request.
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period t is

Pr(default at t; θB) =

∫
1 {−ϕ̂i ≥ ut(ri, xi,amt; θB) + dt + εit + βVt+1(ri, ϕ̂i)} dFε|x, (11)

and the probability of paying back at period t is 1 − Pr(default at t; θB). Let ιit be an indicator

variable that is equal to 1 if borrower i defaults at period t, and 0 otherwise.

Finally, the likelihood is written as

L(θB) =

NL∏
i=1

[
Ti∏
t=1

Pr(default at t; θB)ιit × Pr(repay at t; θB)(1−ιit)

]
, (12)

whereNL is the number of loans, {ιit}, is the sequence of repayment decisions, and Ti ≡ max{1+∑T
τ=1 ιiτ , 36}, i.e., the number of periods until default or 36 periods, whichever is smaller. We

obtain our parameter estimates by maximizing the likelihood function.45

6.3 Estimation of the Lender Model

The last part of the estimation considers the model of the lender’s bidding behavior. In particular,

we discuss how to estimate the distribution of the number of potential bidders, FN(·; θL), the dis-

tribution of the lender’s risk attitude, FA(·; θL), the distribution of the opportunity cost of lending,

Fε0(·; θL), and the lender’s cost of bidding, cq.

We use a (simulated) method of moments by matching the conditional funding probability and

the number of bids. First, let fdi be a dummy variable which equals 1 if listing i is funded, and

0 otherwise. Then 1
I

∑I
i=1 fdi gives the (empirical) probability that a listing is funded, where I

is the number of observations. Likewise, let fdi(θL) (≡ fd(xi, si; θL)) denote a random dummy

variable which equals 1 if listing i is funded and 0 otherwise, given listing characteristic xi, reserve

interest si, and parameter θL. As we will explain below, fd(xi, si; θL) can be expressed as

fd(xi, si; θL) = 1

{
N∑
j=1

q∗j ≥ xi,amt

}
and (13)

q∗j = arg max
qj∈M∪{0}

{
1{qj 6= 0}

(
UL
j (qjZ(s))− ε0j

)}
,

whereN is the (random) number of potential lenders, UL
j (qjZ(s)) is the utility of lending qj dollars

45Up to now, our discussion focused on the case when there is no pooling among the borrowers. Note that even when

there is (partial) pooling, we can obtain the same likelihood for the types that are not being pooled. For estimating the

parameters of the borrowers when there is pooling, we proceed by using just the subsample of borrowers who are not

pooled. While this may not be the most efficient way of estimation, our estimates of the parameters are still consistent

for all of the borrower primitives except for Fϕ|X , for which we will not have a point estimate.
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at interest rate s (defined in expression (8)), and 1E is an indicator function that equals one if event

E is true. Taking this expression as given for now, our objective function minimizes the difference

between the sample moments and the model expectation:

1

I

I∑
i=1

fdi − E[fdi(θL)].

We now explain why fdi(θL) can be expressed as (13). Suppose that there are N potential

lenders and their risk attitude and outside option are (Aj)
N
j=1 and (ε0j)

N
j=1. When the loan is not

fully funded yet, the optimal choice is given by the second equation in expression (13), where

UL
j (qjZ(·)) is evaluated at the reserve interest rate s. Now consider the right hand side of the first

equation of (13). xi,amt is the loan amount requested by borrower j, and
∑N

j=1 q
∗
j is just the sum of

the lenders’ bid amount. Assuming that the lenders play the strategy we described in section 4.2, a

loan is funded if and only if
∑N

j=1 q
∗
j ≥ xi,amt.

In addition to the funding probability, we also match two moments. The first is the number of

lenders, in particular, the number of lenders who bid an amount q ∈ {50, 100, 200} to unfunded

listings. The second is the fraction of listings that receive no bids. These objects can be expressed

as functions of the primitives as long as lenders play the strategy we described in section 4.2.

Note that the set of moments that we use in the estimation does not use the full implications

of the strategy we defined in section 4.2. For example, we do not use information concerning the

realization of the actual contract interest rate or the number of lenders who bid an amount equal to

q conditional on the listing being funded. This is because these objects are quite sensitive to the

particular dominant strategy described in section 4.2. If lenders are playing other strategies (say,

because revising their bid is costly), the distribution over the contract interest rate could be quite

different depending on how we specify the timing of lender arrival. Finally, we have suppressed the

conditioning variables in our exposition, but we construct moment conditions for each conditioning

variable.46

7 Results

The exact specification we use to estimate the model of the borrower is as follows: First, we set

the period utility function as ut(rj; θB) = −r × xamt + θt, where {θt} (t ∈ {1, 2, ..., 35}) are time

dummies.47 D(ϕ) is normalized to−ϕ and the outside option λ(ϕ) is specified as a linear function

46For our first two moments (fdi and 1{fdi = 0}Ni,q), we compute the moments for each credit grade, each

quantile of the debt-to-income ratio and each quantile of the amount requested. For our last moment (nbi), we just

compute one moment for each credit grade. We then sum the moment conditions for each credit grade.
47In practice, we estimate 11 time dummies for each credit grade by imposing θt = θt+1 = θt+2 for t = 3N + 1

(N ∈ {0, ..., 11}) and normalizing one of them.
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Amount Quantile Type Quantile AA A B C

25% 10.683 7.437 2.966 3.196

25% 50% 10.872 7.635 3.365 3.479

75% 10.966 8.735 3.867 4.012

25% 9.999 7.085 2.944 3.041

50% 50% 10.302 7.229 3.207 3.424

75% 10.595 8.013 3.726 4.031

25% 7.984 5.685 2.755 3.099

75% 50% 8.196 5.947 2.923 3.463

75% 8.427 6.406 3.454 3.977

25% 7.890 6.118 2.753 3.007

All 50% 9.756 7.199 3.224 3.404

75% 10.683 7.785 3.760 3.947

Table 7: Quantiles of the Borrower’s Type Distribution: This table reports the estimated quartiles of the default cost

of the borrower, ϕ, by credit grade and by requested amount. The unit is $1,000.

with a credit grade specific slope as λxgrϕ. The key primitive of the borrower’s model, the type

of each borrower, is recovered nonparametrically for each borrower. Lastly, Fε is specified to be

a Type I extremum value distribution with standard error equal to σε and the discount factor, β, is

set to 0.951/12.

As for the lenders’ side, we estimated the distribution of potential lenders, FN , the distribution

of lender’s risk attitude, FAj , the distribution of the outside option and forecasting error, Fε0j ,

and the costs of bidding for each amount choice, {c50, c100, c200}. In our estimation, we specified

FN to follow a log normal distribution with parameters µN and σ2N . Moreover, we specified the

distribution of both the risk attitude, FAj , and the outside option, Fε0 , to be Normally distributed

with N(µA, σ
2
A) and N(µε0,τ , σ

2
ε0

). The mean of the distribution of Fε0j is allowed to depend on

the calendar month, τ , to capture changes in the lender’s outside option or beliefs due to factors

such as macro shocks. Given that one of {c50, c100, c200, µε0,τ} can be normalized to zero, we set

c50 = 0.

We report the estimation results in Table 7 and Table 8. In Table 7, we report the distribution

of the default cost of the borrower (ϕ), by credit grade and requested amount. Table 8 report the

parameter estimates of the model.

Table 7 reports the quantiles of borrower type (ϕ) by credit grade and by requested amount in

units of $1, 000. Recall that one interpretation of ϕ is the borrower’s default cost, with good types

having high default cost (and hence less likely to default) and bad types having low default cost

(and hence more likely to default). We find that the median default cost (across all requested loan

amount) are estimated to be around $9, 800 for credit grade AA, $7, 200 for credit grade A, $3, 200

for credit grade B and $3, 400 for credit grade C (second to last to row).48 We find that borrowers

with credit grades AA and A have much higher default cost compared to borrowers with credit

48For borrowers who posted a reserve rate equal to 36%, we do not have a point estimate of their types. The

quantiles are not affected by this however.
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Borrower Lender Estimates by Grade

Parameter Estimates Parameter AA A B C

σε 6.0096 µN 4.5848 3.5513 4.3386 2.9504
(0.2095) (0.0635) (0.1569) (0.2761) (0.0733)

λAA 3.0965 σN 0.7213 1.3940 1.1132 1.4640
(0.0827) (0.0442) (0.0984) (0.3151) (0.0448)

λA 4.3398 µA 2.24× 10−2 1.91× 10−2 3.67× 10−2 3.46× 10−2

(0.1384) (1.64× 10−3) (1.72× 10−3) (8.22× 10−3) (1.79× 10−3)
λB 9.4551 σA 2.22× 10−2 2.00× 10−2 1.75× 10−2 1.58× 10−2

(0.3477) (9.36× 10−4) (6.58× 10−4) (3.29× 10−3) (4.56× 10−4)
λC 8.8111 µε0 −14.8775 −13.2908 −9.6035 −1.4651

(0.3551) (0.8411) (0.7640) (1.8669) (0.0385)
σε0 86.4102 62.7313 32.1786 88.4056

(10.2508) (4.0462) (4.4980) (2.6275)
c100 −1.6206 −1.7003 −0.5006 0.5668

(0.3704) (0.1413) (0.0755) (0.0238)
c200 −21.9644 −27.3998 −10.9928 −14.8229

(3.1801) (2.8967) (2.7251) (0.5049)
Obs 3, 818 1, 420 1, 850 3, 068 5, 203

Table 8: Parameter Estimates of the Borrower’s and Lender’s Model. We report the parameter estimates of the

borrower’s model in the first column of this table and the estimation results of the lender’s model in the rest. Time

dummies are included in the estimation of both the borrower’s and lender’s model, but we omit the estimates from the

table. Standard errors are obtained by bootstrap (150 times) and they are reported in parentheses. Borrower’s model is

scaled in $1,000, and the lender’s model is scaled in $1.

grades B or C. This seems natural given that we expect borrowers with good credit grades to have

higher default cost. While we find it somewhat surprising that borrowers with credit grade C have

slightly higher default cost than borrowers with credit grade B, this probably reflects the fact that

borrowers of these two credit grades are not that different – as we reported in Table 3, the average

default probability of borrowers in these two credit grades were only about 1% apart.

Another general pattern that can be seen from Table 7 is that borrowers who request a large

amount generally have lower values of ϕ. For example, the median AA borrower with a requested

loan amount at the 75% quantile has a default cost equal to about $8, 200 – which is more than

$2, 000 lower than the default cost of the median AA borrower with a requested amount at the

25% quantile. Note that conditioning on the requested amount tightens the distribution of ϕ sig-

nificantly in credit grades AA and A, but less so for B and C. For example, the unconditional

interquartile range of credit grade AA is about 2.8 whereas the conditional interquartile range at

the median requested amount is less than 0.6. For credit grade C, the unconditional and the condi-

tional interquartile range are about the same. These results imply that the requested amount has an

important signaling value for credit grades AA and A, but not so much for credit grades B and C.

In the first two columns of 8 we report the parameter estimates of the borrowers’ model. The

rest of Table 8 presents the estimation results of the lenders’ model. Recall that λxgr is a parameter

that measures the relationship between the default cost of the borrower (ϕ) and the utility of the

outside option (λxgrϕ). Our estimates of λxgr indicate that it is smaller for high credit grades
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(λAA = 3.1 and λA = 4.3) and becomes larger for low credit grades (λB = 9.5 and λC = 8.8).

Our estimates imply that a $100 increase in the default cost of the borrower translates to a $310

increase in the outside option for credit grades AA, $430 increase for credit grade A, and so on.

The relatively large estimate of λxgr that we find for low credit grades compared to high credit

grades may reflect the fact that the marginal increase in the default cost of the borrower for low

credit grades leads to a disproportionate increase in the default probability. A given reduction in

the default cost may translate to more credit at lower credit grades and hence to a higher utility

from the outside option.

Columns 3 through 7 of Table 8 report the parameter estimates for the lenders. We estimated a

log Normal distribution for the number of potential bidders. The parameter estimates reported in

the table (µN , σN ) translate to a mean number of potential lenders of about 127.1, 92.1, 142.3, and

55.8 for each of the four credit grades. Our estimates of the lenders’ risk aversion parameter (µA,

σA) range from 1.91 × 10−2 to 3.67 × 10−2, which are comparable to the risk aversion estimates

reported in Paravisini, Rappoport and Ravina (2013) who studies a similar setting. They estimate

that the average risk aversion among participants of Lending Club, another P2P lending web site,

is about 3.68 × 10−2, with a standard deviation of about 2.37 × 10−2. Our results also lie in that

range of estimates reported in Holt and Laury (2002).

Finally, Table 8 reports our estimate of the mean of ε0j (µε0), which range from -1.47 to -14.88.

Note that we let µε0 vary by month – the estimates in Table 8 correspond to the mean of ε0j for

October 2008.49 The estimates of µε0 for other months are not reported in the table but they are

quite similar.

Recall that ε0j is a term that captures a combination of the lender’s forecasting error and oppor-

tunity cost. Given our specification, −ε0j can also be interpreted as lender j’s utility from lending

$50 to a loan that is certain to yield a 0% interest (µ = σ = 0). The negative estimates of µε0 imply

that lenders are, on average, willing to fund such a loan. This suggests that lenders had overly

optimistic beliefs, and that some of this optimism is captured in ε0j .

8 Counterfactual Experiment

In our counterfactual experiment, we compare the equilibrium market outcome and welfare under

three alternative market designs – a market with signaling, a market without signaling (i.e., pool-

ing) and a market with no information asymmetry between borrowers and lenders. This counter-

factual is interesting because it allows us to empirically quantify the extent to which credit markets

suffer from adverse selection and the extent to which signaling can affect market outcomes. In

49October 2008 is the last month of the sample period.
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Figure 7: The Credit Supply Curve for the Borrower of the Median Type – The thick dotted curve corresponds

to the credit supply curve under no signaling (i.e., pooling). The solid line corresponds to the credit supply curve

under signaling, and the dotted line that lies on top of it corresponds to the credit supply curve under no asymmetric

information. Borrower covariates are set to the median values.

particular, the question of how adverse selection affects credit supply goes back to Stiglitz and

Weiss (1981) but few empirical attempts have been made to study the effect.50

In Figure 7, we present the credit supply curves for each of the four credit grades. The horizon-

tal axis in the figure corresponds to the average supply of credit and the vertical axis corresponds

to the interest rate. The scale of the horizontal axis is different for each of the four panels reflect-

ing the fact that the amount of credit supply varies considerably from credit grade to credit grade.

The curves in the figure correspond to the credit supply curve under signaling, no asymmetric

information, and pooling. Below, we explain each in turn.

• Credit supply curve under signaling: The solid curves in Figure 7 correspond to the credit

supply curves under signaling. These supply curves correspond to the average amount of

credit that potential lenders are willing to supply under the actual mechanism used by Pros-

per. The supply curves are drawn for the median (unobserved) borrower type in each credit

grade.51 The reserve interest rate for the median type corresponds to about 11%, 15%, 20%,

22%, for credit grades AA, A, B and C, respectively. The credit supply curves trace the

average amount of credit that potential lenders are willing to supply to the median borrower

type at different interest rates. Note that the supply curves are truncated above at the reserve

interest rates (e.g., 11% for credit grade AA). The borrower does not have access to credit

above the reserve rate in the signaling equilibrium.

• Credit supply curve under no asymmetric information (NAI): The dotted curves that lie

on top of the signaling credit supply curves correspond to the case with NAI. The supply

50We treat FN , the distribution of the number of lenders as exogenous in simulating our counterfactual. We also

take Fϕ, the borrower’s type distribution, as exogenous. We acknowledge that these are potential limitations of our

counterfactual experiment.
51We also fix the observable characteristic of the borrwer to xamt = 10, 000, debt-to-income ratio equal to 0.2, and

home ownership variable equal to one.
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curves are again drawn for the median (unobserved) borrower type. The credit supply un-

der NAI are computed under the counterfactual scenario in which the lenders can directly

observe ϕ (as opposed to learning ϕ through the reserve rate). Note that under both the

signaling equilibrium and NAI, the lenders have perfect knowledge of borrower types in

equilibrium: The lenders know that they are lending to a borrower of a particular type. Thus,

the credit supply curves under signaling and NAI partly coincide.

The difference between signaling and NAI is that the borrowers do not need to signal their

type by the reserve price under NAI. Hence, they can borrow at rates that are higher than the

reserve rate that they would post under the signaling equilibrium. This means that the credit

supply curve for NAI extends beyond the reserve rate all the way until the point at which the

borrower is indifferent between borrowing and not borrowing. The truncated supply curve

under the signaling equilibrium can be viewed as capturing the cost that borrowers must pay

(i.e., the surplus that has to be burned) in order to differentiate himself from lower types in

the signaling equilibrium.

• Credit supply curve under no signaling (i.e., pooling): The thick dotted curve in each of

the panels represent the credit supply curve under asymmetric information with no signaling

(i.e., pooling). This curve is computed assuming that each borrower can post a secret reserve

price. That is, we let the borrower take out a loan only if the contract interest at the end

of the bid closing period is less than the secret reserve price. Note that under this market

design, it is a dominant strategy for each borrower to submit a secret reserve rate equal to

the interest rate at which the borrower is indifferent between borrowing and not borrowing.52

This market design would induce pooling of types, i.e., at a given interest rate, there would

be a mix of different borrowers who take out the loan, and the lenders have no way of

differentiating among them. The supply curve traces out the average amount of credit that

potential lenders are willing to supply to a pool of borrower types at a given interest rate.

The pool of borrowers correspond to the set of borrowers whose secret reserve price is higher

than the given interest rate.

Figure 7 makes clear the role of adverse selection and moral hazard in credit markets. First,

note that the credit supply curve under signaling and under no asymmetric information for grades B

and C are backward bending. This is the result of moral hazard. As borrowers are charged higher

interest rates, the likelihood of default increases. Above a certain interest rate, the marginal in-

crease in revenue from a higher interest rate is overwhelmed by the loss from increased probability

of default. As a result, the supply of credit starts to decrease at a certain point.

52For a more detailed computational procedure for obtaining the credit supply curve under pooling as well as the

supply curve under signaling and under no asymmetric information, see Online Appendix.
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Expected Median

Borrower Lender Total Borrower Lender Total

Signaling 466.4 1642.6 2109.0 423.3 1645.2 2068.5

AA Pooling 613.2 2531.4 3144.6 567.7 2587.1 3154.9

Symmetric 675.7 2801.6 3477.2 633.0 2885.6 3518.6

Signaling 143.0 1470.4 1613.4 143.1 1488.6 1631.7

A Pooling 142.7 1491.7 1634.4 142.4 1497.5 1639.9

Symmetric 143.3 1481.5 1624.8 143.1 1488.6 1631.7

Signaling 396.7 573.5 970.2 380.4 577.9 958.3

B Pooling 343.1 477.6 820.7 327.7 478.1 805.7

Symmetric 398.4 579.8 978.2 382.2 581.7 963.9

Signaling 417.9 510.0 927.9 434.5 508.5 943.0

C Pooling 374.7 445.3 820.0 392.1 446.1 838.2

Symmetric 425.5 518.7 944.2 446.7 517.3 964.0

Table 9: Expected Surplus for Different Market Designs by Credit Grade: The first three columns correspond to the

expected surplus of the borrwer, the lender and the sum of the two. The last three columns correspond to the expected

surplus genrated from loans to the median borrower.

On the other hand, the shape of the supply curves under pooling reflects both moral hazard

and adverse selection. Both adverse selection and moral hazard combine to suppress the supply

of credit at higher interest rates. The borrowers who are willing to take out a loan at high interest

rates tend to be of low types who are likely to default to begin with. Moreover, the borrowers

that take out the loan are likely to default because of high interest. This is the reason why the

supply curves for pooling start to bend backwards sooner (i.e., at lower interest rates) than the

supply curves under signaling and under no asymmetric information. Depending on the shape of

the credit demand curve there could be credit rationing, as demonstrated by Stiglitz and Weiss

(1981).

Figure 7 is also informative about the severity of adverse selection for different credit grades.

There are substantial differences between the credit supply under pooling and the supply curve

under no asymmetric information for grades B and C. This is indicative that adverse selection in

these credit categories is relatively more severe. This is also broadly consistent with the findings in

Iyer et. al. (2010) where they find that conditional on the credit grade, the borrowers’ credit score

had a statistically significant effect on the default rate in grade C, but not in better credit grades.

Finally, we examine the welfare implications of signaling and information asymmetry. In Table

9, we report the surplus of the lenders and the borrowers per listing for each of the three different

market designs we consider. The surplus of a borrower with type ϕ is the product of the probability

of being funded (Pr(funded)) and the surplus conditional on borrowing (Er[V1(r, ϕ) − λ(ϕ)]),

where the expectation is over the contract interest rate. The surplus of lender j is Er[U
L
j (r)], if a

loan is funded and 0, otherwise. We compute the average and the median surplus by simulating
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the model using the estimates we obtained from our structural model. Details of the computation

are discussed in the Online Appendix. Listing characteristics such as the amount, debt-to-income

ratio, and home ownership are set to their median values, as before.

In the first three columns, we report the expected surplus averaged over the borrower’s type

distribution. First, consider the welfare of the borrowers reported in the first column. Comparing

the borrower welfare under pooling and under no asymmetric information, we find that the welfare

loss from information asymmetry is relatively modest in credit grade A ($142.7 under pooling

and $143.3 under no asymmetric information) while the welfare loss is relatively more severe

in credit grades AA, B and C. Comparing these numbers to borrower welfare under signaling,

we find that welfare improves relative to pooling in all credit grades except for credit grade AA.

In particular, for credit grades B and C, signaling restores most of the welfare loss caused by

adverse selection. For credit grade AA, the borrower welfare under pooling is higher than the

borrower welfare under signaling. This happens because the surplus that must be burned (i.e., the

transactions that must be foregone by submitting a lower reserve interest rate under signaling) in

order to maintain a separating equilibrium is sufficiently costly. This off-sets any benefits gained

by reducing information asymmetry between the lenders and the borrowers. Note that in general,

it is not possible to Pareto-rank equilibrium under pooling and signaling.

Second, consider the welfare of the lenders reported in the second column. Comparing the

welfare of the lenders under pooling and under no asymmetric information, we find that welfare

decreases considerably under pooling in all credit grades except for credit grade A, where welfare

of the lenders is slightly higher under pooling.53 Similar to what we found for the case of bor-

rowers, we find that signaling improves welfare in credit grades B and C, but not in credit grade

AA (and A). Again, the reason for this is that for credit grade AA, there is a net decrease in the

listings that are funded as a result of low reserve rates. This is in contrast to credit grades B and C

where the increased credit supply from reducing information asymmetry outweighs the reduction

in transactions that result from lower reserve interest rates.

The third column of Table 9 is informative about the cost of adverse selection, as well as the

extent to which welfare can be restored through signaling. Comparing the total surplus under

pooling and no asymmetric information, we find that the cost of adverse selection can be quite

large, with a 16% ($157.5) decrease in total surplus for credit grade B and a 13% ($124.2) decrease

in total surplus for credit grade C. We also find that in some instances, signaling can restore a large

fraction of the potential welfare loss from adverse selection, with 95% and 87% of the welfare loss

avoided through signaling in credit grades B and C.

53Given that borrowers have limited liability, welfare is not necessarily maximized under no informational asym-

metry. More borrowers may obtain credit under pooling than under no information asymmetry and total welfare may

be lower under the latter setting than under the former.
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Figure 8: The Credit Supply Curve for the Borrower of the Median Type. See Figure 7 for description.

Lastly, we report the expected surplus of the borrowers and lenders given a listing posted by

the median borrower type in columns four through six. The overall patterns are similar to those of

the mean reported in the first three columns.

9 Robustness

An important assumption that we have made all along is that the lenders’ beliefs over the return

from lending money deviate from rational expectations in very limited ways. In particular, we

assumed that the lender’s risk attitude (Aj) and ε0j are independent. This assumption implies that

the lenders’ beliefs over the variance of return to conincide with the realized variance.

In order to check the robustness of our results to this assumption, we estimated an alternative

specification with more structure on the lenders’ beliefs. In particular, we estimated a model where

the beliefs of the lenders are given by

µ = µRE + ρ0 + ρ1µS&P

σ2 = σ2RE × exp(ν1σ
2
S&P ),

where µRE and σ2RE are the mean and variance of the realized loan return and µS&P and σ2S&P
are the weekly mean and the volatility index of the S&P 500 and ρ0, ρ1 and ν1 are parameters

to be estimated. The mean of ε0j is set to zero, instead. Our estimates (full results are reported

in the Online Appendix) of ρ1 and v1 are quite close to zero, implying that including the stock

market performance does not improve much relative to our baseline results. Figure 8 plots the

counterfactual credit supply curve from this specification. The supply curves are qualitatively

similar to the baseline results in Figure 7.
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10 Conclusion

In this paper, we study how signaling can restore some of the inefficiencies arising from adverse se-

lection using data from an online peer-to-peer lending market, Prosper.com. We first provide some

evidence showing that the reserve interest rate posted by potential borrowers work as a signaling

device. Based on this evidence, we then develop and estimate a structural model of borrowers and

lenders. In our counterfactual, we compare the credit supply curve and welfare under three dif-

ferent market designs: a market with signaling, a market without signaling, and a market with no

asymmetric information. We find that in one of the credit grades, signaling exacerbates the welfare

cost of adverse selection, but we also find that signaling can restore much of the welfare losses that

result from adverse selection in other credit grades.

Our paper is the first structural analysis of signaling in industrial organization to the best of our

knowledge, and it is also the first attempt at estimating the credit supply curve, as far as we are

aware. We also believe that the methods developed in the paper can be applied to other settings in

which signaling is important (e.g., auctions and reservation price). For future research, we think

that it is important to study other types of credit markets in order to understand more fully the costs

of adverse selection and the benefits of signaling.

A Appendix

A.1 Proof of Proposition 1

We provide a proof of Proposition 1. We do so by first proving the following lemma.

Lemma 1 ∂
∂ϕ
V1(r, ϕ) is non-increasing in r.

Proof. The proof is by induction. We first show that ∂
∂r∂ϕ

VT (r, ϕ) ≤ 0, ∂
∂r
VT (r, ϕ) ≤ 0, and

D′(ϕ) ≤ β ∂
∂ϕ
VT (r, ϕ) < 0. We then show that if ∂

∂r∂ϕ
Vτ (r, ϕ) ≤ 0 and D′(ϕ) ≤ ∂

∂ϕ
Vτ (r, ϕ) < 0

for some τ ≤ T , then the same conditions hold for τ − 1. First, for t = T ,

∂

∂ϕ
VT (r, ϕ) =

∂

∂ϕ

∫
max{uT (r) + εT , D(ϕ)}dFεT (εT ) = D′(ϕ) PrT (r, ϕ) ,

where PrT (r, ϕ) = Pr(uT (r) + εT < D(ϕ)). It is easy to see that D′(ϕ) ≤ ∂
∂ϕ
VT (r, ϕ) <

β ∂
∂ϕ
VT (r, ϕ) < 0 because D′(ϕ) < 0, by assumption and Pr (uT (r) + εT < D(ϕ)) ∈ (0, 1). Also,

note that ∂
∂r
uT (r) < 0 implies ∂

∂r
Pr (uT (r) + εT < D(ϕ)) > 0, which means that ∂

∂r∂ϕ
VT (r, ϕ) ≤

0. It is also easy to see that ∂
∂r
VT (r, ϕ) < 0.
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Now, assume ∂
∂r∂ϕ

Vt+1(r, ϕ) ≤ 0, ∂
∂r
Vt+1(r, ϕ) ≤ 0, and D′(ϕ) ≤ β ∂

∂ϕ
Vt+1(r, ϕ) < 0 for some

t. Then,

∂

∂ϕ
Vt(r, ϕ) =

∂

∂ϕ

∫
max{ut(r) + εt + βVt+1(r, ϕ), D(ϕ)}dFεt(εt)

=
∂

∂ϕ
βVt+1(r, ϕ)(1− Prt (r, ϕ)) +D′(ϕ) Prt (r, ϕ) ≥ D′(ϕ),

where Prt (r, ϕ) = Pr(ut(r) + εt + βVt+1(r, ϕ) < D(ϕ)). The last inequality holds since
∂
∂ϕ
Vt+1(r, ϕ) ≥ D′(ϕ). Again, it is easy to see ∂

∂ϕ
Vt(r, ϕ) < 0, and ∂

∂r
Vt(r, ϕ) ≤ 0. To see

that ∂
∂r∂ϕ

Vt(r, ϕ) ≤ 0, note that

∂

∂r∂ϕ
Vt(r, ϕ) =

∂

∂r

[
∂

∂ϕ
βVt+1(r, ϕ)(1− Prt (r, ϕ)) +D′(ϕ) Prt (r, ϕ)

]
=

∂2

∂r∂ϕ
βVt+1(r, ϕ)(1− Prt (r, ϕ)) +

∂

∂r
Prt (r, ϕ)× (D′(ϕ)− ∂

∂ϕ
βVt+1(r, ϕ)) ≤ 0.

By induction we conclude that ∂
∂r∂ϕ

V1(r, ϕ) ≤ 0.

Proposition 1 If ∂
∂s

Pr(s) > 0 and F (r|s) FOSD F (r|s′) for s′ > s, then we have SCP, i.e.,

∂2

∂s∂ϕ
V0(s, ϕ) =

∂2

∂s∂ϕ

[
Pr(s)

∫
V1(r, ϕ)f(r|s)dr + (1− Pr(s))λ(ϕ)

]
< 0.

Proof. First, let us consider the second term. Note that ∂2

∂s∂ϕ
(1−Pr(s))λ(ϕ) = −Pr′(s)λ′(ϕ) <

0. This is because Pr′(s) > 0 and λ′(ϕ) > 0 by assumption. Second, we consider the first term.

Note that for s0 < s1, F (r|s1) first-order stochastically dominates F (r|s0). Hence if ∂
∂ϕ
V1(r, ϕ)

is non-increasing in r, then
∫

∂
∂ϕ
V1(r, ϕ)dF (r|s0) ≥

∫
∂
∂ϕ
V1(r, ϕ)dF (r|s1) for any s0 and s1 s.t.

s0 < s1. This implies that ∂
∂s∂ϕ

Pr(s)
∫
V1(r, ϕ)dF (r|s) ≤ 0. Thus, we complete the proof.

A.2 Proof of Proposition 2

Suppose that the lender bids an interest rate, rj , that is higher than r0 (the interest rate at which the

lender is indifferent between lending and not lending). If the final contract interest r turns out to

be above rj , then the lender funds a loan at r regardless of whether she bid r0 or rj . If the contract

interest r turns out to be less than r0, then the lender does not get to fund the loan, regardless of

whether she bid r0 or rj . The only circumstance under which bidding rj or r0 makes a difference

is when the final contract interest rate is between r0 and rj . In this case, the lender will be able

to lend at a rate equal to r if she bids r0, while she will not be able to lend if she bids rj . Since

lending at r ∈ [r0, rj] gives the lender higher utility than not funding the loan, setting the rate equal
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to r0 weakly dominates setting it to rj . Likewise, it is also easily shown that submitting a bid that

is lower than r0 is weakly dominated by bidding r0.

A.3 Proof of Proposition 4

In this Appendix, we provide a proof of identification of Fϕ|X , Fε|X , and λ(ϕ). We first note that

we can normalize one of the constants in ut without loss of generality: Hence we set dT = 0.54

Also, we can normalize the location of Fϕ|X at one point: Hence, we set F−1ϕ|X∗(α
∗) = 0 for some

α∗ ∈ (0, 1) and X∗.55 In what follows, we consider the case when there is no pooling. The Online

Appendix contains the proof for the case when there is partial pooling.

Consider the repayment decision of the borrower with F−1ϕ|X∗(α
∗)(= 0) at period t = T . The

borrower’s problem is as follows:{
repay: if − (r × x∗amt) + εT ≥ −F−1ϕ|X∗(α∗) = 0

default: otherwise,

where x∗amt is an element of X∗. This is simply a binary threshold-crossing model; hence using

variation in r, we can nonparametrically identify the conditional distribution of εT given X∗, i.e.,

Fε|X∗ . Once Fε|X∗ is identified, we can identify F−1ϕ|X∗(α) for all α given X∗ by conditioning

the sample on the α-quantile of s given X∗ (i.e., samples with s = F−1s|X∗(α)).56 This is because

F−1ϕ|X∗(α) is just a constant term in the binary threshold-crossing model where the distribution of

εT given X∗ has already been identified.

Now consider the t = T − 1 period problem with X = X∗:{
repay: if − (r × x∗amt) + dT−1 + βVT (r, F−1ϕ|X∗(α)) + εT−1 ≥ −F−1ϕ|X∗(α)

default: otherwise,

where VT (r, F−1ϕ|X∗(α)) and F−1ϕ|X∗(α) have already identified. Similarly as before, we can nonpara-

metrically identify the distribution of (εT−1 + dT−1) and the value of β using variation in r, given

that this is a simple binary threshold crossing model. It should be clear that {εt+dt}t≤T−2 can also

be identified by looking at the borrower’s period t problem and the associated default probability.

Now, we discuss how to identify λ(ϕ). Rearranging the borrower’s FOC in equation (7) evalu-

54If we set d̃t = dt + κ (∀t) ε̃t = εt − κ (∀t), it will be observationally equivalent to dt, Fε|X .
55Given that D(ϕ) = −ϕ, if we set ε̃t = εt + κ (∀t), F̃ϕ|X(h) = Fϕ|X(h + κ), d̃T = dT , d̃t = dt − βκ (t ∈

{1, ..., T −1}) and λ̃(ϕ) = λ(ϕ) +βκ, it will be observationally equivalent to εt, dt, Fϕ|X , and λ. This normalization

is convenient for proving identification, but we use an equivalent normalization (i.e., Med[εt|X] = const.) for our

estimation.
56Here, we are using the fact that ϕ ⊥ ε|X∗.
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ated at X = X∗ and solving for λ(ϕ), we obtain

λ(ϕ) =

∫
V1(r, ϕ;X∗)f(r|s;X∗)dr +

Pr(s;X∗)
∂
∂s

Pr(s;X∗)

∫
V1(r, ϕ;X∗)

∂

∂s
f(r|s;X∗)dr, (2)

where we have made the dependence on X∗ explicit. Note that all the terms on the right hand side

are identified. First, V1 is identified given that Fε|X∗ , Fϕ|X∗ , and β have already been identified.

Also, we know that borrowers of typeϕ submit a reserve rate equal to s(ϕ;X∗) = F−1s|X∗(Fϕ|X∗(ϕ)).

Then evaluating Pr(s;X∗) and f(r|s;X∗) – which are both directly observed in the data – at

s(ϕ;X∗), we can identify the right-hand side of the equation. Hence the previous equation identi-

fies λ(ϕ).

Lastly, we show that Fϕ|X and Fε|X are identified for any X . To see that Fϕ|X and Fε|X are

identified for any X , note that it is enough to identify Fϕ|X(0) – if Fϕ|X(0) is identified, we can

follow the same steps as above to identify Fϕ|X and Fε|X . In order to see that Fϕ|X(0) is identified,

consider a given profile, (F ∗ε|X , F
∗
ϕ|X , λ

∗, d∗t ). Note that the set of profiles that are observation-

ally equivalent to (F ∗ε|X , F
∗
ϕ|X , λ

∗, d∗t ) are given by {(Fε|X , Fϕ|X , λ, dt) : Fε|X(h) = F ∗ε|X(h − κ),

Fϕ|X(h) = F ∗ϕ|X(h + κ), dT = d∗T , dt = d∗t − βκ (t < T ), λ(ϕ) = λ∗(ϕ) + βκ}. Given that we

have already identified λ(ϕ), we can identify Fϕ|X(0). This concludes the proof of identification

when there is no pooling. In the Online Appendix we also discuss the case when there is pooling

at s = 36%.
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