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Real-Time Evaluation of Email Campaign Performance 

 

We develop a testing methodology that can be used to predict the performance of email 

marketing campaigns in real time.  We propose a split-hazard model that makes use of a time 

transformation (a concept we call virtual time) that allows for the estimation of straightforward 

parametric hazard functions to generate early predictions of an individual campaign’s 

performance (as measured by open and click rates).  We apply our method to 25 email 

campaigns and find that the method is able to produce in less than two hours estimates that are 

more accurate and more reliable than what the traditional method (doubling time) can produce 

after 14 hours.  

Other benefits of our method are that we make testing independent of the time of day and 

we produce meaningful confidence intervals. Thus, our methodology can be used not only for 

testing purposes, but also for live monitoring.  We show that a campaign selection rule based on 

our model rather than on the doubling method can improve overall response rates by 20%. 

Keywords: Database marketing, email, pre-testing, advertising campaigns. 
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Introduction 

Email can be a powerful vehicle for marketing communications.  Many marketers favor this new 

medium because it provides them with a cheaper and faster way to reach their customers. Further, 

the online environment allows marketers to measure consumers’ actions more accurately. This is 

a boon for marketing scientists in their desire to increase the effectiveness of marketing efforts 

and measure the ROI of marketing expenditures. 

Although email response rates started out high (especially when compared with those 

reported for online and offline advertising), they declined over time and are now below 2.5% 

(DMA 2005). Finding ways to raise these response rates is critical for email marketers. A useful 

tool to achieve this is an effective email testing methodology.  Identifying potential strengths and 

weaknesses of the content (the email creative) and the target population before the email is sent 

out at full scale can help marketers improve the response rates for their campaigns. 

As a motivating example for the problem we are interested in, consider the case of a 

product manager at one of the major movie studios. With two or three new DVDs coming out 

every week, studios often rely on email marketing to generate interest for upcoming titles. This 

online promotion is particularly important for smaller titles (e.g., Transporter 2) that will not 

benefit from mass advertising and will not be heavily pushed by Amazon or Blockbuster. For 

such titles, the product manager would typically ask her creative agency to come up with a few 

concepts, and pick one of the designs to send out. She would also use a series of criteria (e.g., 

movie genre, gender) to select a subset of her database as a target for the email. Given the 

number of new titles to promote every week, she would work on a short production cycle and 

send emails without formally testing the quality of the design or the target sample (this is 

different from large releases such as X-Men III which are planned months in advance and 
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receive broad advertising and channel support). The success of our manager’s emails might be 

much improved if she could test multiple creatives and target selection in a fast (she has short 

lead times) and inexpensive (the titles do not warrant large expenses) way.  There are no models 

in the extant marketing science literature that can be directly applied to provide such a test.   

The importance of testing elements of the marketing mix is not new to marketing 

scientists.   For example, in new product development (and distribution) the ASSESSOR model 

(Silk and Urban 1978, Urban and Katz 1983) has been used for decades to forecast the success of 

new products based on laboratory based test marketing.  Methods have also been developed to 

perform multiple parallel testing as predicated by the new product development literature (Dahan 

and Mendelson, 2001; Smith and Reinertsen, 1995).  A novel approach used by Moe and Fader 

(2002) utilizes advance purchase orders made via the CDNOW website to generate early 

indicators of new product sales for music CDs.  In advertising, the efficacy of an advertising 

campaign is assessed using a battery of tests designed to identify the best creative to use (e.g., the 

most persuasive or the most memorable) using selected members of the target audience.  Field 

experiments with split-cable television technology have also been used to study the impact of 

advertising on brand sales (Lodish et al 1995, Blair 1988).   

In direct marketing, modeling techniques have been developed to help marketers select 

the right customer group for a given content (Gönül and Shi 1998, Bult and Wansbeek 1995; 

Bitran and Mondschein 1996, Gönül, Kim, and Shi 2000, Gönül and Hofstede 2006).  Bult and 

Wansbeek (1995) build a regression model to predict each customer’s likelihood of responding 

to a direct marketing communication, and then select which customers should be contacted by 

explicitly maximizing the expected profits generated by each communication. Using a dynamic 

programming approach rather than using regression, Bitran and Mondschein (1996) take the 
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profit maximization a step further by incorporating inventory policies (inventory and out of stock 

costs) into the decision. Gönül and Shi (1998) extend this dynamic programming approach by 

allowing customers to optimize their own purchases behavior over multiple periods (i.e., both the 

firm and the customer are forward looking). In Gönül, Kim, and Shi (2000), the authors 

recognize that customers can order from old catalogs and that one can still garner new sales from 

old customers who were not sent a new catalog.  Thus, they propose a hazard function model of 

purchase where customers are sent a catalog only if the expected profits with the additional 

mailing exceeds the profits without the mailing.  Elsner, Krafft, and Huchzermeier (2004) use 

Dynamic Multilevel Modeling (DMLM) to optimize customer segmentation and communication 

frequency simultaneously. 

In practice, few direct marketing campaigns are rolled-out untested. The traditional 

approach (Nash 2000) is to use the doubling method to predict the ultimate response rate to a 

direct marketing offer. In the doubling method, one uses past campaign to estimate the time 

needed for half of the responses to be received (the doubling time). Then, when performing a test, 

one waits the doubling time, and multiplies by two the number of responses received at that time 

to estimate the ultimate response rate. The waiting period depends on the medium used.  For first 

class mailing, firms will wait a minimum of two weeks; for third class mailing, they will wait 

four weeks. Once the tests results are in the decision maker needs to make a go/no-go decision 

based on profitability. Morwitz and Schmittlein (1998) show that when making such projections, 

managers typically do not sufficiently regress test response rates to the mean.  

 Testing is also popular in Internet marketing applications.  Online advertisers track 

banner ad performance in real time to identify the appeal (click-through) of various advertising 

creative. Click-stream models can be implemented to test the appeal of content by measuring the 
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click-through rates or website stickiness (Bucklin and Sismeiro 2003). Eye tracking technology 

may be used to identify where (and if) a customer is viewing the advertising message embedded 

on a webpage (Drèze and Hussherr 2003).      

While some of these testing methodologies might be adapted to the context of email 

marketing, some unique features of email presents several new modeling challenges.  First, many 

firms have implemented tracking technologies for email campaigns that can accurately measure 

(to the second) when a customer responds to the email.  Given the goal of real-time testing, it is 

essential that we make full use of this continuous time data.  The data tells us both whether and 

when a customer responds to an email, and we need our methodology to make use of this 

information pertaining to campaign level success. 

Second, in contrast to a typical clickstream setting, email communications are initiated by 

the firm rather than the customer.  This adds a layer of complexity in that, while the delivery of 

an email is often close to being instantaneous, there is an observable delay between the time the 

email is sent out and the time it is opened. The opening of the message will depend on how often 

customers check their email.  Thus, although the marketer has direct control over when the email 

is sent out, there is little control over whether and when a customer responds to the email.  This 

is different from traditional clickstream models where the user requests the content, and we can 

assume that the content is being processed immediately. 

A third difference in email marketing involves the lead time for generating both the 

creative and the execution of the campaign.  Even a large email campaign can be sent out at 

relatively low cost and delivered in a matter of hours, consequently campaigns are short lived 

and often run with short lead times and consequently with compressed deadlines such as weekly 

(e.g., American Airlines, Travelocity, The Tire Rack), bi-weekly (e.g., Longs Drugstore on the 
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West Coast), or even daily basis (e.g., Sun Microsystems).  These short lead times place 

significant constraints on testing, simply because answers to a test are typically needed in just 

hours to be useful. 

For these reasons, effective email marketing communication requires a testing 

methodology that is able to generate actionable results in as short a time as possible.  The goal of 

such a testing procedure is to generate predictions of open incidence and click-through rates of 

any email campaign as quickly and accurately as possible. Our paper describes the development 

and test of an email pre-testing model.  We begin by developing a split-hazard log-logistic model 

of open behavior.  The split-hazard component models the incidence of open (versus not open); a 

Log-Logistic hazard rate is used to predict the distribution of open times.  Click behavior is then 

modeled using both a censored split hazard model and a simpler Binomial model. To help us 

produce stable estimates even when data is sparse (a common occurrence when trying to test 

campaigns in a short amount of time) we use Bayesian shrinkage estimation.  This allows us to 

take advantage of the information contained in past campaigns and weight this past information 

with response data observed in the focal campaign. Both sets of models are compared with the 

doubling method used by direct marketing practitioners.  

In our application of the models to actual data, we find it necessary to account for 

intraday variations in customer responses (e.g., to account for fewer emails opened at night). 

Consequently, we develop a concept of virtual time that allows us to produce a model that fits 

the data well while keeping the specification simple. Virtual time involves adjusting the speed of 

time to adapt to the marketers’ and customers’ availability throughout the day. Using virtual time 

allows us to keep the model specification simple. This makes shrinkage straightforward and 

allows for an easy interpretation of the model parameters.   
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We apply the testing procedure to data obtained from a large entertainment company.  

The analysis shows that using our approach, we can reduce testing time from 14 hours to less 

than two without any decrease in testing reliability. It also highlights the pitfalls inherent with 

compressing testing time.  Indeed, the more compressed the testing time, the more sensitive the 

quality of the results are to the specifications of the hazard function and to intra-day seasonality. 

Our model provides a number of substantial practical benefits. (1) The fast evaluation of 

a campaign allows for early warnings about the probable success or failure of the campaign.  

This can lead to timely go/no-go decisions for either campaigns or creative. (2) Our model 

provides diagnostic information that can help improve the results of an under-performing 

campaign. A simple decision model could discard any campaign that does not perform above 

some threshold level of response.  (3) Our testing procedure coupled with such a decision 

process can generate higher average (cross-campaign) response rates (20% higher in our 

simulation).  (4) An important additional advantage of our testing procedure is that only a small 

sample is required for testing.  The small sample size makes it easy to test the effectiveness of 

multiple advertising copies. Several sub samples can be generated, and a different creative sent 

to each sub sample. (5) Our process formalizes the use of the company’s knowledge base in 

modeling future campaigns.  Indeed, as the number of campaigns grows, the email marketer 

learns more about the distribution of response rates for campaigns sent. This leads to more 

accurate forecasts. 

1. Research Setting and Data Description 

We will calibrate and test our models using a database of twenty-five email campaigns sent as 

part of the online newsletter of an entertainment company.  Most of the emails are in the form of 

promotions aimed at inducing customers to purchase a movie title online or offline, or to click on 
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links to access further content (different campaigns have different purposes).  Each campaign has 

a subject line displaying the purpose of the promotion.  The main body of the email is only 

visible after the recipient has opened the email.  Within the body of the email, recipients are able 

to click on various links to activate the promotion or to direct them to a website.  It is important 

to note that clicks can only occur if a recipient opens the email.  

Summary statistics for the email campaigns are reported in Table 1.  The campaigns vary 

in size from around 5,000 to 85,000 emails sent.  Our database consists of 617,037 emails sent, 

of which 111,419 were opened, and 9,663 of those emails were clicked on at least once.  The 

open rate is thus 18.1% and the click-through rate is 8.7%.  The unconditional click rate (defined 

as the number of clicks divided by the number of emails sent) is about 1.6%.   

There is a wide range in both open and click-through rates across campaigns.  Clearly, 

the more successful campaigns are the ones that have both high open rates and high click-

through rates.   Using a median split on open and click-through rates, we find that 20% of our 

campaigns fall in this upper right quadrant (high open and click-through rates). Some campaigns 

(32% of our data) enjoy high open rates but have low click-through rates. This is probably an 

indication that these campaigns have broad appeal but are poorly executed. The firm might be 

able to move these campaigns to the upper right quadrant by using better creative. Another 28% 

of campaigns are in the opposite quadrant; they fail to attract enough attention to be opened, but 

generate high click-through given they were opened. In such cases, the execution is good, but the 

base appeal is low; the firm might improve the campaign through better targeting.  The 

remaining campaigns (20%) have both low open and click-through rates; improving these 

campaigns would require improving both the targeting and the content. If this cannot be done, it 

may be best to drop the campaign altogether. 
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Given the number of campaigns in each quadrant, it is clear that it is difficult to predict 

the success of a campaign ex ante.  The goal of our model is thus to predict out-of-sample open 

and click rates quickly and with small samples.  Providing a forecast in a timely manner allows 

the firm to adjust the creative or targeting of the campaign when needed, thereby improving 

overall results.  

Figures 1a and 1b present histograms of the time (in hours) for customers to open the 

email since it was sent, and the time (in minutes) it takes the customer to click on the email since 

it was opened.  Given our objective of reducing the time allocated to testing, several features of 

our data are highly pertinent to model construction: 

1. Opens usually occur within 24 hours of sending; clicks occur within a minute of being 

opened.  

2. There is a relatively low level of email activity during the first few hours after an email 

campaign is sent (see the first few hours of Figure 1a), followed by a build up.  

3. The histogram of the delay between send and open (Figure 1a) reveals a distinct multi-modal 

pattern underlying particularly during the first 24 hours after an email is sent. This pattern is 

also visible on individual campaign histograms. 

The first feature requires that a rapid testing model of open and click rate work well with 

censored data.  Indeed, by shortening the testing time, we reduce the amount of uncensored data 

available to us.  The second feature suggests that we must be careful about our assumptions 

regarding the data generation process when building our model.  This is particularly important in 

our case as we are trying to make predictions about the entire distribution of email activity based 

on only a few hours of activity.   
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The multimodal pattern found in the time until opening is troublesome as it does not 

appear to conform to any standard distribution and might be difficult to capture with a simple 

model. To understand what may be driving this multi-modal pattern, we plot the distribution of 

opens throughout the day (see Figure 2).  This graph shows considerable variation in activity 

through the day. There are fewer emails opened late at night and early in the morning than during 

the day. We refer to this pattern as intraday seasonality. We show in the next section how this 

seasonality is the cause of the multimodal feature of Figure 1a. 

Given these results, we will accommodate the following features in our modeling 

framework. To generate estimates within the first few hours after sending, we will have to work 

with censored data and only a small amount of data will be available for estimation.  We also 

need to take into account intraday seasonality to allow parsimonious parametric approach to 

model the number of opens.  In the next section, we develop a methodology that accommodates 

these issues. 

2. Model Setup 

We develop a rapid testing methodology for a specific application: the testing of online email 

campaigns. The rapid testing methodology requires a model that provides early feedback on 

whether a campaign is likely to be successful or not. In the spirit of traditional testing models, it 

is important that our methodology consumes as few resources as possible.  Ideally, the model 

would also be parsimonious (i.e., have few parameters), and would estimate quickly such that a 

test can be implemented in real time and would allow for the monitoring of an email campaign as 

it is being sent. Indeed, an overly complex or over-parameterized model that takes hours to 

generate predictions would defeat the purpose of rapid testing. 
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We first describe in more detail how the model accommodates intra-day seasonality. 

Next, we develop a split hazard model of open and click probabilities that takes into account the 

possibility that some emails are never opened or clicked on (given open).  We then derive the 

shrinkage estimators for the open and click models and state the likelihood function used in the 

estimation. 

2.1. From physical time to virtual time 

A traditional approach to handling seasonality, such as that displayed in Figures 1 and 2, is to 

introduce time-varying covariates in the model. There are two main problems with this approach.  

First, the covariates are often ad-hoc (e.g., hourly dummies). Second, they often make the other 

parameters less interpretable (e.g., a low open rate during peak hour could be larger than a high 

open rate during off-peak hours). To alleviate these concerns, we build on the approach 

developed by Radas and Shugan (1998). Radas and Shugan (hereafter RS) de-seasonalized a 

process by changing the speed at which time flows. They showed that by speeding up time 

during high seasons, and slowing down time during low seasons, one can create a new (virtual) 

time series that is devoid of seasonality. The benefits of this approach, assuming that one has the 

right seasonality pattern, is that one can use straightforward models in virtual time and easily 

interpret the meaning of the parameters of these models. 

The effectiveness of the RS approach hinges on having a good handle on the seasonal 

pattern present in the data. In their application (the movie industry) they produce seasonal 

adjustments by combining past sales data with industry knowledge (e.g., presence of major 

holidays with high movie demand). A shortcoming of this approach is that some of the 

seasonality may be endogenous to the firms’ decisions. For instance, if movie studios believe 

that Thanksgiving weekend is a ‘big’ weekend, they may always choose to release their best 
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movies during that weekend (Ainslie, Drèze, and Zufryden 2005). Thus, part of the seasonality 

observed during Thanksgiving will be due to the fact that more consumers have the time and 

desire to see movies on that weekend (consumer induced seasonality) and part of the seasonality 

will be due to the fact that firms release their bigger movies on that weekend (firm induced 

seasonality). If one uses past data as a base for seasonal adjustment without considering the 

decisions of the firm, one can potentially overcorrect and attribute all the seasonal effects to 

consumer demand while it is in fact also partly due to firm supply. 

In our case, we also have a potential for both consumer- and firm-induced seasonality. 

For instance, the average consumer is much less likely to open emails at four in the morning than 

at four in the afternoon. Similarly, firms do not work 24 hours a day. If we look at when the firm 

sends its email (Figure 3), we observe little (but some) activity during the night, then a peak at 

eight in the morning, a peak at noon, an a lot of activity in the afternoon. It is likely that these 

peaks are responsible for some of the increase in activity we see in Figure 1 at similar times. 

To separate consumer induced seasonality from firm induced seasonality, we benefit 

from two features of our modeling environment not present in RS. First, we have continuous 

time individual level data. While RS had to work with aggregate weekly measures, we know the 

exact time each email is sent and opened. Second, while a movie can open on the same day 

throughout the country, emails cannot all be sent at the same time. Emails are sent sequentially; 

for example, a million-email campaign can take 20 hours to send. Thus, we can simulate an 

environment that is devoid of firm based seasonality by re-sampling our data such that the 

number of emails sent at any point in time is constant through the say (i.e., Figure 3 for such a 

firm would be flat).  
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To resample the data, we proceed in three steps. First, for each minute of the day, we 

collect all emails that were sent during that minute.  Second, we randomly select with 

replacement 100 emails from each minute of the day (144,000 draws). Third, we order the open 

times of these 144,000 emails from 0:00:00 to 23:59:59 and associate with each actual open time 

a virtual time equal to its rank divided by 144,000. The relationship between real and virtual time 

based on their cumulative density functions is shown in Figure 4. This represents the passing of 

time as seen by consumers independent of the actions of the firm.  

We can use the relationship depicted in Figure 3 to compute the elapsed virtual time 

between any two events. For instance, if an email were sent at midnight and opened at two in the 

morning, we would compute the elapsed virtual time between send an open  by taking the 

difference between the virtual equivalent of two a.m. (i.e., 00:29:44 virtual) and midnight (i.e., 

00:00:00 virtual) to come up with 29 minutes and 44 seconds. Similarly, if the email had been 

sent at noon and opened at two p.m., then the elapsed virtual time would be 11:05:10 – 09:08:30 

= 1 hour 56 minutes and 40 seconds. 

Applying the virtual time transformation to the elapsed time between send and open for 

all emails in our dataset results in the histogram shown in Figure 4.  Comparing this histogram to 

Figure 1, we can see the effect of using a virtual time transformation. The underlying seasonal 

pattern has all but disappeared.  What was a multimodal distribution is now unimodal.  

2.2. A split-hazard model of open and click time 

The time it takes for customers to open an email from the time it is sent, or the time it takes to 

click on an email from the time the customer opens it are both modeled using a standard duration 

model (e.g., Moe and Fader 2002, Jain and Vilcassim 1991).  Since both actions can be modeled 

using a similar specification, we discuss them inter-changeably.  Starting with opens, we account 
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for the fact that in an accelerated test, a failure to open an email is indicative of one of two things.  

Either recipients are not interested in the email, or they have not had a chance to see it yet (i.e., 

the data is censored). Of course, the shorter the amount of time allocated to a test, the higher the 

likelihood that a non-response is indicative of censoring rather than lack of interest.  To account 

for this bias, we model the open probability and the open time simultaneously in a right-censored 

split hazard model (similar to Kamakura, Kossar, and Wedel (2004) and Sinha and 

Chandrashekaran (1992)).  

 The probability that a customer will open or click an email varies from campaign to 

campaign, and is denoted with k
eδ , where e is a subscript identifying different campaigns, and k is 

a superscript denoting an open ( o
eδ ) or click ( c

eδ ).   

The likelihood function is constructed as follows.  We start with a basic censored hazard 

rate model of the open time distribution: 

( ) ( )1
1

| |
k ke
ie ie

N R Rk k k k
e ie e ie e

i

L f t S T
−

=

= Θ Θ∏ , (1) 

where: e  is a subscript that identifies a specific email campaign, 

 k  is a superscript that identifies the model used ( { open, click}k o c∈ = = ), 

 i  is an index of recipients, 

 eN   is the number of recipients for email e, 

 k
ieR   is 1 if recipient i opened/clicked email e before the censoring point eT , 

 ieT  is the censoring point of email i of campaign e, 

 k
iet   is the elapsed time between send and open (open and click) in the event that 

the recipients opened (clicked) the email, 
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 ( | )f t Θ   is the pdf for time t, given a set of parameters Θ ,  

 ( | )S t Θ   is the corresponding survival function. 

We adjust the hazard rate to account for the fact that some recipients will never open the email.  

If we call o
eδ  the likelihood that email e will be opened ( c

eδ  for clicks), we have: 
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∏
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The estimation of k
eδ  and k

eΘ  for any parametric hazard function can be performed by 

maximizing this general likelihood function.   

2.3. Shrinkage estimators 

As in most practical applications, we benefit by having data available from past campaigns and  

we can use this information to improve the performance of our model. Specifically, we can use 

parameters from past campaigns to build a prior on the open and click hazard functions, as well 

as the split hazard component. This is especially useful at the beginning of a campaign when data 

is sparse.   

The implementation of the shrinkage estimator depends on the specific hazard functions 

used in the model. We therefore postpone our discussion of the shrinkage estimators until the 

empirical section of the paper where we evaluate different possible hazard functions.  

2.4. An Alternative Approach to Estimating Click Rates 

Although theoretically sound, using a split-hazard model to estimate the parameters of the click 

times (conditional on an open) might be overly complex.  Indeed, since most consumers click on 

an email within seconds of opening it, it is likely that few click observations are right-censored.  

In our sample, over 95 percent of all emails opened before the doubling point are also clicked on 
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before the doubling point.  Therefore, we develop and test an alternative model for estimating 

click rates.   We use a traditional binomial process with a Beta distributed prior in an empirical 

Bayes framework. Our hope is that a more parsimonious model will perform better at the 

beginning of a test, when few data points are available. 

Formally, we use the mean of the posterior of the Beta distribution as the estimate for c
eδ  

as follows.  Let c be the number of clicks, o be the number of opens, and Beta( , )υ ω  be our prior 

on the distribution of the click rate (built using prior campaigns).  Then the posterior distribution 

of the conditional click likelihood is distributed Beta( , )c o cυ ω+ + − . The estimate for the 

posterior mean is: 

  ˆc
e

c
o

υδ
υ ω

+
=

+ +
    (3) 

As before, estimates of the prior distribution parameters ( ),υ ω  are generated from available past 

campaigns.  The values for open (o) and click (c) are generated from the data at the time the test 

is conducted.  We refer to this click model as the Empirical Bayes Binomial Distribution (EBB). 

2.5. The Doubling Method 

Before discussing an application of our model, we would like to draw a comparison with existing 

approaches to predicting the success rate of direct marketing campaigns.  The most common 

model used by practitioners is the doubling method (Nash 2000). This method involves first 

examining the responses of past direct marketing campaigns and computing the amount of time it 

takes for 50% of the responses to be received (the doubling time).  The analyst then uses the 

heuristic that for any future campaigns, the predicted total number of responses is equal to 

double the number of responses observed at the doubling time.  In our case, the doubling time is 

14 hours, ranging from 4 to 29 hours (see Table 1).  
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The doubling method is a powerful and simple heuristic. It makes three implicit 

assumptions.  First, it assumes that not everybody will respond. Second, it assumes that it takes 

time for people to respond.  Third, it assumes that the timing of the responses is independent 

from the rate of response and approximately constant across campaigns. As a non-parametric 

method, it does not make any assumption about the underlying response process, nor does it 

provide any ways to test whether the current campaign conforms to the data collected from 

previous campaigns or runs faster or slower than expected. Hence, it does not provide any ways 

to evaluate whether a current test should be run for a longer period or could be finished early; an 

important piece of information our technique provides. 

In essence, the doubling method aggregates time into two bins; each containing half of 

the responses. This aggregation loses vital timing information that could be used to better model 

the response process.   

3. Application of the model to email campaign pre-testing 

We now apply our models to the data from the email campaigns described earlier and evaluate 

the relative predictive validity of various models.  Our application involves two main phases, a 

calibration and model specification phase and an estimation and validation stage.  We compare 

the predictions of our models with those of the “doubling” heuristic often used in direct 

marketing applications. 

Calibration and Model Specification: In the calibration phase, we are interested in learning 

which of the parametric functional forms we should use to drive our predictive models.  To 

implement this we compare a set of commonly used hazard rate distributions including 

Weibull/Exponential, Log-Logistic and Log-Normal.  The functional form that fits the data best 
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is used in the simulation and calibration phase.  The specification chosen for the hazard function 

also drives the specification required for shrinkage estimation.   

Simulation and validation: the main purpose of the simulation and validation stages is to validate 

the models proposed in the paper by studying the accuracy of the predictions they make out-of-

sample.  We also want to find out which of the models has the best predictive performance and 

whether we can generate estimates that are useful for decision making within a short amount of 

time (say hours) such that testing is feasible for real-time campaign planning.   

Given the best specification for the hazard rate found in the calibration phase, several 

models are compared for both the open and the click processes.  We compare the models based 

on real time (no time transformation) versus virtual time, and based on shrinkage versus no-

shrinkage estimation.  In summary, we fit and validate each of the following models for both the 

open and click processes in the simulation and validation phases: 

1) No-shrinkage estimation with real time  

2) No-shrinkage estimation with virtual time 

3) Shrinkage estimation with real time 

4) Shrinkage estimation with virtual time 

The EBB model is tested only for the clicks and represents our fifth specification tested: 

5) Empirical Bayes Binomial model for clicks only 

There is no need to test the virtual time transformation for the EBB model because this 

specification uses only a count of the number of clicks relative to the number of opens – it is 

therefore not based on the amount of time it takes for customers to click on the email given it 

was opened. 
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3.1. Calibration and Estimation 

Shape of the Hazard Function  

Researchers in marketing have employed several specifications for the hazard function when 

doing survival analysis see Jain and Vilcassim 1991, Sawhney and Eliashberg 1996, Chintagunta 

and Haldar 1998, Drèze and Zufryden 1998). Following their work, we considered the following 

four specifications: Exponential, Weibull, Log-Normal, and Log-Logistic. This set of distribution 

encompasses a wide range of consumer behavior. Our final choice of hazard function is based on 

how well it agrees with the data (goodness of fit).  

We estimated a campaign level hazard rate model for each distribution using the 

complete set of opens and clicks available for each campaign (i.e., this is a straight hazard model 

that is neither split nor censored). We report the fit statistics for all four specifications in Table 

2a (open model) and 2b (click model). The analysis suggests that the Log-Logistic distribution 

fits the data best overall for both open and click. The Log-Normal is a close second, but has the 

drawback of not having a closed form expression for its survivor function.  It is important to note 

that the Exponential distribution performs relatively poorly, emphasizing the need for a non-

constant hazard rate that allows for a delay between reception and open of an email, or between 

open and click (i.e., allows for enough time for consumers to process the message). The 

relatively poor fit of the Weibull distribution (which allows for a ramping up period) further 

shows that one also needs to accommodate for a decrease in the hazard rate after enough time 

has passed. Making the right assumptions regarding the change in hazard rate over time is thus 

crucial. This is especially true since much of the data available during the test will come from the 

first few hours of the test, representing the increasing part of the Log-Logistic hazard function.  
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Estimating this based on a Weibull or Exponential hazard function would clearly misspecify the 

model. 

The probability density function and the survivor function for the Log-Logistic are (see 

Kalbfleisch and Prentice (1985) for details about the Log-Logistic and other distributions 

mentioned in this paper): 
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where 0λ >  is a location parameter and 0α >  is a shape parameter.  Consistent with previous 

notation, we refer to the shape and location parameters for any given campaign (e) and email 

response action ( { },k o c∈ ) as k
eα , and k

eλ , respectively.  Depending on the value of α , the Log-

Logistic hazard is either monotonically decreasing ( 1α ≤ ) or inverted U-shape ( 1α > ) with a 
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Shrinkage Methodology 

Since we use a Log-Logistic hazard function, our split-hazard models have three 

parameters ( , , )α λ δ . We build informative priors for ( , , )α λ δ using the estimates obtained from 

other campaigns. Based on an inspection of the empirical distribution of these parameters, we 

specify our prior forδ  as a Beta distribution and α  and λ  are as a bivariate Log-Normal 

distribution:  

~  Beta( , )
( , ) ~ Log-Normal( , )

a b
a

δ δδ
λ μ Σ

 (5) 
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The parameters ( , , , )a bδ δ μ Σ  for a given campaigns are estimated using the method of moments 

from the parameters ( , , )α λ δ  obtained from all other campaigns.  To compute the correlation 

between parameters α  and λ   of the Log-Normal distribution we use the correction factor 

described in Johnson and Kotz (1972, page 20) to adjust for possible small sample bias. The 

correlation for the Log-Normal is: 
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where ,
N
α λρ  is the correlation coefficient for the Normal distribution of the two parameters.  Note 

that this correlation coefficient is independent of the means of the parameters, depending only on 

the standard deviations of the parameters (respectively, ,α λσ σ ).   

3.2. Simulation and validation 

Split-Hazard Model 

With the hazard function properly defined and the shrinkage methodology in place, we are now 

ready to fit and validate our models.  The final likelihood functions are as follows: 

1) Likelihood function for the Non-Shrinkage Model: 
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2) Likelihood function for the Shrinkage Model 
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where Σ  is the variance-covariance matrix for the Log-Normal prior distribution.  The EBB 

estimator is computed directly from (3) without resorting to its likelihood function.    

In each simulation, we adopt the perspective of a marketer who wishes to pretest his 

campaigns before committing to the final send. To this end, we look at each campaign assuming 

that the remaining (E - 1) campaigns have already been completed.  Thus, prior to the test, we 

know nothing about a focal campaign except the information contained in the priors, and the 

number of emails that need to be sent out.  Based on company policy, we set our sample test size 

at 2,000 emails (we varied the test size between 1,000 and 2,000 in increments of 200 emails but 

did not find any substantive difference in results). We also set different censor points, in 30 

minute increments, ranging from 30 minutes to 8 hours.  At each censor point, any email that had 

been opened prior to the censor point was used in the non-censored component of the log-

likelihood.  All observations beyond the censor point (regardless of whether they were ultimately 

opened or not) were coded as censored.  Based on this set of censored and uncensored 

observations, we then estimated the parameters of the split-hazard censored Log-Logistic rate 

model using priors constructed based on all other campaigns.   

As a practical matter, the distributions of open and click experience long tails, such that 

some responses continue to come in long after a campaign has run its course.  Our data reveals 

that 99% of all email responses are observed within 3 weeks of sending out the email 

communication.  Typically, the company conducts post-campaign debriefing 2-3 weeks after the 

emails are sent out.  Thus, we set a cut-off date of 3 weeks (504 hours) and use the numbers of 

opens and clicks observed at that time as the true value we are trying to predict.  Our forecast of 

the number of opens and clicks at 3 weeks is constructed using the parameter estimates for each 
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of the censored samples.  The cumulative distribution of opens and clicks at 504 hours is 

calculated using: 

( ) ( )e
ˆ ˆˆ504 hours | , Number Sento o o
e e eFδ α λ× ×  for the number of opens at 3 weeks, and  

( ) ( )e
ˆ ˆˆ504 hours | , Estimated opensc c c
e e eFδ α λ× ×  for the estimated number of clicks.    

Results for the “open” models 

The full results for each campaign and for each censoring point consists of a set of parameters 

( , ,o o o
e e eδ α λ ) for opens and ( , ,c c c

e e eδ α λ ) for clicks.  Since for each model we have 16 time points 

(between 30 minutes and 8 hours) and 25 campaigns, this means our analysis generates a total of 

6x16x30 = 2,880 estimates.  Given this large number of estimates it is difficult to present all the 

results in one table.  It is also not that meaningful to present any sufficient statistic of these 

estimates since they are censored at a different point in time.   

We therefore summarize our results by looking only at the estimated open and click rate 

response rates for each campaign ( ,o c
e eδ δ ).  Our summary includes a comparison of the 

predictions based on each set of estimates and at any given time point with their true (post-

campaign) values.  The summary also includes the corresponding average deviations of the 

predictions from their true values.  

 Figure 6 graphically presents this summary of the Mean Absolute Deviation (MAD) for 

the predicted number of opens across campaigns and in half hour increments.  The vertical axis 

represents the MAD, across campaigns, or the average absolute difference between the predicted 

number of opens from the model and the actual number of opens observed in the data.  The 

horizontal axis represents the half hour increments, starting at 30 minutes.  The prediction from 

the 14 hour doubling point is also plotted on the graph, the MAD is indicated by the height of the 
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vertical line plotted at six hours.  It is plotted at six hours because that is the time at which the 

best performing model yields an improvement over the doubling time model.  

We observe a general downward trend for all models as the censoring point moves to the 

right and a larger proportion of the total sample is available for calibration versus prediction.  

The results show a clear dominance in predictive performance of the shrinkage models over the 

non-shrinkage models. The MAD values for the shrinkage models are about a quarter of the 

MAD values for the non-shrinkage models. Based on prediction error, the virtual time/shrinkage 

model tends to outperform all other models.  Further, it achieves the same level of prediction 

error as the doubling method in as little as six hours compared to the 14 hours of the doubling 

method.  

To get a better sense of the benefits and drawbacks of each model, we plot the predicted 

number of opens for an illustrative campaign for each model (Figure 7).  The solid lines in the 

middle of each graph in Figure 7 represent the estimated number of opens at 504 hours, based on 

the censor point listed on the horizontal axis.  The small dotted lines tracking above and below 

each of the solid lines represent the confidence intervals.  The constant dashed line in the middle 

is the true value for the number of opens at 504 hours.  We find that, for this campaign, the non-

shrinkage models tend to perform quite badly compared with the shrinkage models.  We see also 

that they have some difficulty converging especially within only a few hours of sending the 

emails.   

A comparison across campaigns for each of these models reveals several benefits of the 

shrinkage over the non-shrinkage models.  In short we find that non-shrinkage models exhibit 

three types of problems. First, they often fail to converge during the first couple of hours of 
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testing. Second, when they do converge, they often produce confidence intervals that are too 

tight. Third, they traditionally underestimate response rates during the first day of testing. 

Shrinkage alleviates these problems, both in real time and in virtual time. Models 

converge quickly and reliably even with few data points. The confidence intervals produced are 

realistic. The benefits of the virtual time model over the real time model is that virtual time 

produces tighter and more stable estimates and produces the estimate faster.  Thus the virtual 

time model is well suited to test the performance of a campaign.  

Results for the “click” models 

When predicting click activity in our simulations, we proceed in two steps. First, we fit our 

models of click-through rate (using equations (7), (8) or (3) as appropriate). We produce 

estimates for ˆc
eδ  (five estimates total, four for the log-logistic hazard rate models plus one for the 

EBB model). Second, we predict the ultimate numbers of click for each model by multiplying 

ˆc
eδ  with the number of opens ( ˆo

eδ ) forecast obtained from the virtual time/shrinkage model of 

opens at the same point in time.  The virtual time/shrinkage model for open was used as a basis 

for this prediction because this is the one that performed best in the open model test and 

therefore represents the most realistic comparison. 

We compare the estimated clicks with the actual clicks and compute the MAD of each 

model.  Figure 8 reports MAD in 30-minute increments across all 25 campaigns for the four 

basic models and for the EBB model. The picture depicted here is similar to the case of the open 

prediction. The major difference is that the EBB model reveals itself to be the best performing 

model.  Indeed, by combining the EBB model with the virtual time open model, we can achieve 

a performance similar to the doubling method in only three and a half hours–a 75% reduction in 

testing time.  
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3.3. A Campaign Selection Decision Rule 

The preceding two sections show that our models can produce predictions of the open and click 

rates faster and more accurately than the doubling method. While the results do show a clear 

improvement in speed and accuracy, a natural question that arises is: are the benefits of the new 

models substantial from a managerial standpoint? To enumerate these benefits in the context of 

our application, we take the perspective of a campaign manager who uses a simple heuristic to 

eliminate any under-performing campaigns.  Let us say that the manager only wants to run 

campaigns that will produce an unconditional click-through rate (CTR) of 2% or more. One 

possible reason for not wanting to send a low yield campaign is that it costs more to send than its 

expected returns.  Such underperforming campaigns also represent an opportunity cost in that 

they tie up resources that could be used to send more profitable campaigns.  Furthermore, 

sending undesirable material could lead to higher customer attrition. 

We consider three different decision rules and compare the aggregate performance of the 

accepted campaigns under each decision rule.  First, we use the doubling method, where we wait 

for 14 hours and select any campaign with a predicted CTR of 2% or more. Second, we use our 

best performing model and select any campaign with a predicted CTR of 2% or more after three 

and a half hours of virtual time regardless of the confidence interval around the estimate. Third, 

we use our best performing model and run the test until the predicted CTR is significantly 

different than 2% at p = .05. Using this third rule, the time needed to test a campaign will vary 

depending on the observed data. 

The results of this test are shown in Table 3. As expected, our model performs better than 

the doubling method. The average campaign response rate can be increased by 9% simply by 
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applying our model and waiting for 3.5 hours of virtual time (3.63% CTR vs. 3.34%). One can 

gain a further 10% (4.00% vs. 3.63%, for a total improvement of 20%) by running the test to 

statistical significance rather than using a fixed time stopping rule. One should note that when 

using a statistical test rather than a rule of thumb to decide when to stop the test, the testing time 

varies widely across campaigns. Nine of the 25 campaigns reach statistical significance in as 

little as an hour. In contrast, one campaign takes the better part of three days (63 hours) before 

reaching statistical significance (it reaches 90% significance level after 90 minutes). 

3.4. When Is the Best Time To Test? 

Our comparison of the predictive ability for the split hazard rate model demonstrates that, on 

average, we can learn as much in three and a half hours as we can learn from the doubling 

method in 14 hours. However, it is important to remember that these three and a half hours are 

measured in virtual time.  In real time, the test will require more or less time depending on when 

it is performed. Figure 9 shows how long three and half virtual hours correspond to in real time, 

depending on the time of day when the test commences. There appears to be a “sweet spot” in 

the afternoon, between 1pm and 7pm where a three and half virtual hour test can be carried out 

in much less than three actual hours (the shortest it could take would be 1:51 hours if it starts at 

5:31 p.m.). Starting after 7pm will impose delays as the test is unlikely to be finished before 

people go to bed; if the test is started at 10:33 p.m. it will actually take 7 and a half hours to 

complete. 

4. Discussion and Conclusion 

The value of information increases with its timeliness.  Knowing quickly whether a campaign is 

going to be successful provides the opportunity to correct potential problems before it is too late 

or even stop the campaign before it is completed.  It is therefore imperative to develop methods 
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that improve both the accuracy and the speed with which campaign testing can be done.  In this 

article, we study a modeling procedure that can be implemented for the fast evaluation of email 

campaign performance.  

The performance of an email campaign is defined by its open and click rates. The 

methodology we propose predicts these rates quickly using a small sample pretest.  Reducing the 

sample size and testing period to a minimum produces multiple modeling challenges. Indeed, we 

propose to send 2,000 emails, and wait less than two hours to produce estimates of how the 

campaign will perform after three weeks.  In two hours, we typically observe fewer than a 

hundred opens and fewer than ten clicks. The key to successful prediction of the ultimate results 

of an email campaign based on so few data points lies in using the information to its fullest 

potential.  

There are three elements that make our methodology successful: (1) using the appropriate 

model specification, (2) transforming time to handle intra-day seasonality, and (3) using 

informative prior information. Each of these three elements provides its own unique contribution 

to the overall fit of the model.  

The appropriate hazard function is critical because our compressed-time tests produce 

observations that are heavily right censored. Thus, we are often fitting a whole distribution based 

only on its first quartile (or even less). A misspecification of the hazard function could cause 

severe errors in prediction.  In other words, the value of the responses of the first few people to 

respond to the email campaign is an important indicator of the success of the overall campaign. 

We find that the traditional exponential hazard function used in many models of online behavior 

is a poor fit for our process. Our results provide strong evidence to suggest that email response 

rates (both open and click-through) are driven by a non constant hazard rate.  Rather we see the 
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hazard rate rises in the early phase of an email campaign and then decreases as time progresses.  

We find that the best fitting parametric model for open times is the Log-Logistic.    

For modeling click-through rates, we compare the same Log-Logistic hazard rate model 

with a Binomial process.  We find that the straight binomial process is a good descriptor of the 

phenomenon given that the quick consumer response after an email is opened limits censoring to 

the point where it is not a factor.  Thus, we find that the click-through rate (the total number of 

clicks for a campaign, unconditional on open) is best predicted using a combination of the Beta 

binomial model for the click rate, and the Log-Logistic split hazard model for the open rate.  

We apply our split-hazard model to a virtual time environment. The virtual time 

transformation removes intra-day seasonality and makes our testing procedure invariant to the 

time of day at which it is performed. This is a key factor in the robustness of our model in that it 

allows us to bypass the need to handle seasonality directly in the model and allows for a 

straightforward specification with few parameters.  By limiting the numbers of parameters we 

must estimate to three for the open model and one for the click model, we make the best use of 

our limited data (we have a high ratio of data points to parameters, or high degrees of freedom) 

and we produce parameters that are directly interpretable (the click and open rates or estimate 

directly without the need for transformation). 

Another benefit of our time transformation is that by making each campaign independent 

of the time of day, we can compare results across campaign, and easily build informative priors 

for each of the parameters we need to estimate. This yields a procedure that produces meaningful 

estimates and confidence intervals with a minimum amount of data. It also allows a firm to 

conduct tests serially. That is, if they chose to modify a campaign’s creative of target population 

as the result of a test, they can retest the campaign and compare the new results to the first ones. 
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Overall, by putting these three elements together, we are capable of running in 1:51 a test 

that produces similar results to a traditional test in 14 hours (an 85% decrease in testing time).  In 

addition, our methodology produces meaningful confidence intervals. The implication of this is 

that the firm can monitor the accuracy of its test and decide to run the test for a longer or shorter 

period of time depending on how well it performs.  This finding is particularly important when 

one considers that a million-email campaign can take up to 20 hours to send. Using our model 

one could monitor the campaign as it is being sent, and implement a “stopping rule.”  The rule 

would allow a manager to make a decision to terminate a campaign that is underperforming, or 

even to change the creative for the remaining recipients. Thus, our methodology can be used not 

only for testing purposes, but also for live monitoring. If done right, this could significantly 

improve average response rates by limiting the detrimental impact of poor performing campaigns. 

Our model represents a first step towards better online marketing testing. As such, there 

is still much that can be accomplished. For instance, due to the lack of individual level 

information in our dataset, we did not include covariates in our models. It is likely that adding 

such information, were it available, should improve fit and predictive power. Further, if our 

dataset contained many data points per recipients (we have an average of 2 emails sent per name) 

one could model unobserved heterogeneity. Given current computational power such a model 

might, however, lead to estimation times that are too long to be beneficial in practice.  

Another issue is the link between click and purchase behavior. The assumption is that 

click behavior is a measure of interest and is highly correlated to purchase. As campaign 

managers are evaluated based on clicks, we feel our analysis is appropriate. However, in future 

applications and with better data, it should be possible to link click and purchase behavior, and 

thus optimize purchases rather then clicks. 
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A final area for further research involves expanding our model to allow for a biviarate 

process between open and click responses.  In the current model, we assumed independence 

between open and click probabilities.  It may further improve predictions to allow for some 

dependence between these two processes and can be used to test the idea that recipients who 

open an email quickly may also be more likely to click on links an email.   
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Figure 1a and 1b. Histograms of elapsed time between sent and open (1a) and between open and 

click (1b) events, across all campaigns.  
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Figure  2: Distribution of open time through the day (Pacific Standard Time).   
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Figure 3: Distribution of Email Sent through the day 
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Figure 4: Within day cumulative density functions of real and virtual time.  Real time is 

distributed uniformly throughout the day and therefore appears as the 45 degree line.  
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Figure 5. Histogram for virtual elapsed time between sent and open across all campaigns. 
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Figure 6: Mean Absolute Deviations (MAD) across models of Open response.  The 

height of the vertical dotted line represents the (14 hour) MAD for the doubling method. 
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Figure 7: Comparison of models for the open split hazard parameter ( o
eδ ) for a representative 

campaign.  The dashed horizontal line represents the true value for the parameter. The 

Solid line represents the estimated value with a 95% confidence interval.   

  

 



 43

Figure 8: Mean Absolute Deviations (MAD) across models of click response.  The MAD used 

for the click response models is made conditional on the prediction from the shrinkage-based 

virtual open response model.  The height of the vertical dotted line represents the (14 hour) 

MAD for the doubling method. 
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Figure 9: Test length as a function of time of day.  This graph plots translates the 3.5 hour virtual 

waiting time into real time based on the time of day a test is performed.   
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Table 1: Campaign Summary Statistics.  All campaign statistics are reported based on real time.   
 

  Mean Minimum Maximum Std Dev 
Emails 
Sent/Campaigns 24,681 5,171 84,465 20,393 
Opens/Campaigns 4,457 600 13,116 3,877 
Clicked/Campaigns 387 53 1,444 360 
Open rate 0.181 0.081 0.351 0.073 
Click-through | open 0.096 0.035 0.303 0.061 
Click-through rate 0.016 0.005 0.105 0.021 
Doubling Time (hours) 13.76 4 29 5.57 
First Open (minutes) 6.41 0.07 14.68 2.08 
First Click (seconds) 2.08 1.0 6.0 1.656 
Number of campaigns 25  
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Table 2a: Fit statistics for the virtual open time model. For the different specifications, the 

columns report the Log-Likelihood value (LL), the Bayesian Information Criterion (BIC) and the 

Akaike Information Criterion (AIC).  Shaded cells show the lowest AIC and BIC for a specific 

campaign. 

 

Campaign Exponential Weibull Log-Normal Log-Logistic 
 LL BIC AIC LL BIC AIC LL BIC AIC LL BIC AIC 

1 -3150 6303 6302 -2702 5412 5408 -2684 5375 5372 -2722 5451 5448
2 -5016 10035 10034 -4142 8292 8288 -3861 7730 7726 -3868 7744 7740
3 -3699 7401 7400 -3100 6208 6204 -2971 5950 5946 -2951 5910 5906
4 -32450 64904 64902 -26424 52858 52852 -24901 49811 49806 -25015 50039 50034
5 -2869 5741 5740 -2457 4922 4918 -2352 4711 4708 -2361 4729 4726
6 -7794 15591 15590 -6418 12844 12840 -6144 12296 12292 -6163 12334 12330
7 -13780 27564 27562 -12145 24299 24294 -11289 22587 22582 -11268 22545 22540
8 -21308 42620 42618 -18126 36261 36256 -16641 33291 33286 -16613 33235 33230
9 -4089 8181 8180 -3328 6664 6660 -3112 6232 6228 -3115 6238 6234
10 -18481 36966 36964 -15523 31055 31050 -14628 29265 29260 -14540 29089 29084
11 -4056 8115 8114 -3576 7160 7156 -3462 6932 6928 -3483 6974 6970
12 -11185 22374 22372 -9793 19595 19590 -8950 17909 17904 -8918 17845 17840
13 -4938 9879 9878 -3998 8004 8000 -3865 7738 7734 -3863 7734 7730
14 -8402 16808 16806 -7126 14260 14256 -6511 13030 13026 -6473 12954 12950
15 -5842 11687 11686 -5223 10454 10450 -4954 9916 9912 -4897 9802 9798
16 -29143 58290 58288 -25437 50884 50878 -23663 47335 47330 -23651 47311 47306
17 -4269 8541 8540 -3701 7410 7406 -3576 7160 7156 -3596 7200 7196
18 -1516 3035 3034 -1244 2495 2492 -1162 2331 2328 -1155 2317 2314
19 -6747 13497 13496 -5651 11310 11306 -5209 10426 10422 -5216 10440 10436
20 -26580 53164 53162 -23524 47057 47052 -21809 43627 43622 -21847 43703 43698
21 -5038 10079 10078 -4061 8130 8126 -4006 8020 8016 -3990 7988 7984
22 -5689 11381 11380 -4997 10002 9998 -4704 9416 9412 -4688 9384 9380
23 -17916 35836 35834 -16204 32417 32412 -15250 30509 30504 -15317 30643 30638
24 -8086 16176 16174 -6735 13478 13474 -6719 13446 13442 -6698 13404 13400
25 -7140 14283 14282 -5711 11430 11426 -5700 11408 11404 -5706 11420 11416
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Table 2b: Fit statistics for the virtual click time model.  For the different specifications, the 

columns report the Log-Likelihood value (LL), the Bayesian Information Criterion (BIC) and the 

Akaike Information Criterion (AIC).  Shaded cells show the lowest AIC and BIC for a specific 

campaign. 

 

Campaign Exponential Weibull Log-Normal Log-Logistic 
 LL BIC AIC LL BIC AIC LL BIC AIC LL BIC AIC 

1 -117 236 236 -115 235 234 -109 223 222 -110 225 224 
2 -217 436 436 -207 419 418 -189 383 382 -189 383 382 
3 -216 434 434 -215 435 434 -191 387 386 -189 383 382 
4 -2567 5137 5136 -2506 5019 5016 -2319 4645 4642 -2316 4639 4636
5 -144 290 290 -142 289 288 -126 257 256 -124 253 252 
6 -711 1425 1424 -697 1400 1398 -666 1338 1336 -672 1350 1348
7 -938 1879 1878 -908 1823 1820 -839 1685 1682 -834 1674 1672
8 -1972 3947 3946 -1921 3849 3846 -1708 3423 3420 -1669 3345 3342
9 -337 676 676 -330 666 664 -310 626 624 -310 626 624 
10 -546 1095 1094 -546 1098 1096 -512 1030 1028 -516 1038 1036
11 -844 1691 1690 -842 1690 1688 -805 1616 1614 -809 1624 1622
12 -396 794 794 -386 778 776 -347 700 698 -344 694 692 
13 -517 1036 1036 -506 1018 1016 -475 956 954 -475 956 954 
14 -341 684 684 -340 686 684 -311 628 626 -307 620 618 
15 -876 1755 1754 -876 1758 1756 -836 1678 1676 -838 1682 1680
16 -1923 3849 3848 -1887 3781 3778 -1713 3433 3430 -1693 3393 3390
17 -510 1022 1022 -486 978 976 -441 888 886 -437 880 878 
18 -101 204 204 -96 197 196 -89 183 182 -89 183 182 
19 -232 466 466 -221 447 446 -202 409 408 -200 405 404 
20 -851 1705 1704 -840 1686 1684 -772 1550 1548 -764 1534 1532
21 -122 246 246 -118 241 240 -110 225 224 -108 221 220 
22 -465 932 932 -450 906 904 -412 830 828 -407 820 818 
23 -938 1879 1878 -930 1867 1864 -865 1737 1734 -859 1724 1722
24 -556 1114 1114 -537 1080 1078 -492 990 988 -486 978 976 
25 -201 404 404 -199 403 402 -180 365 364 -178 361 360 
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Table 3: Results from the Decision Rule Simulation 

  Testing Rule 1 Testing Rule 2 Testing Rule 3 

 Actual 
Doubling Method  

at 14 Hours 
Proposed Model  

at 3.5 Hours 
Proposed Model  

at 95% CI 
Number of Campaigns Selected 7 11 9 7 
True Positives  7 6 5 
False Positive  4 3 2 
False Negative  0 1 2 
Average Testing Time (Hours)  14 3.5 6.9 
Minimum Testing Time  14 3.5 1 
Maximum Testing Time  14 3.5 63 
Click-through Rate 4.45% 3.34% 3.63% 4.00% 
Improvement over No Rule 123% 67% 82% 100% 
Improvement over DM 33% 0% 9% 20% 
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