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Stability and Endogenous Formation of Inventory Transshipment Networks

Xin Fang � Soo-Haeng Cho
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213

xfang@andrew.cmu.edu � soohaeng@andrew.cmu.edu

Abstract: This paper studies a cooperative game of inventory transshipment among multiple �rms.
In this game, �rms �rst make their inventory decisions independently, and then decide collectively
how to transship excess inventories to satisfy unmet demands. In modeling transshipment, we use
networks of �rms as the primitive, which o¤er a richer representation of relationships among �rms by
taking the coalitions used in all previous studies as special cases. For any given cooperative network,
we construct a dual price allocation under which the network is stable for any residual demands and
supplies in the sense that no �rms �nd it more pro�table to form subnetworks. Under the allocation
based on the marginal contribution of each �rm to its network (called the MJW value), we show
that various network structures such as complete, hub-spoke, and chain networks are stable only
under certain conditions on residual amounts. Moreover, these conditions di¤er across network
structures, implying that a network structure plays an important role in establishing the stability
of a decentralized transshipment system. While the previous coalition-based approach examines
only the grand coalition (i.e., the complete network), we �nd the complete network tends to be less
stable than incomplete networks under the MJW value. Finally, we consider the case when �rms
establish networks endogenously, and show that pairwise Nash stable networks underperform the
corresponding networks in centralized systems.
Subject classi�cations: Games/group decisions: Cooperative. Networks. Inventory.
Area of review: Manufacturing, Service, and Supply Chain Operations.

1 Introduction
Networks are often used to represent relationships among multiple �rms. In this paper, we inves-

tigate networks of �rms that share inventory through transshipment. When �rms are connected

in these networks, they can transship excess inventories (also called �residual supplies�) between

each other to satisfy unmet demands (also called �residual demands�). The bene�t of inventory

transshipment is straightforward. By joining a network of transshipment, �rms can generate addi-

tional revenues by utilizing their otherwise unused inventories and demands. According to Narus

and Anderson (1996), transshipment can reduce inventory cost by 15% to 20% and the amount of

lost sales by as much as 75%. Due to these bene�ts of transshipment, many manufacturers promote

inventory transshipment in their networks of independent retailers (Shao et al. 2011).

The importance of transshipment has been recognized well in the operations management (OM)

literature. In particular, our paper is related to the stream of research that studies transshipment of

inventories in decentralized systems. In these systems, multiple independent �rms cooperate in order

to maximize their own pro�ts. Thus a proper mechanism needs to be developed to ensure that �rms
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have incentives to participate in transshipment.1 The extant literature analyzes the incentives of

independent �rms using the cooperative game theory based on the concept of coalitions. A coalition

is a set of �rms, within which �rms can share their excess inventories and unmet demands, and

thus generate additional pro�ts from transshipment. When all �rms belong to one coalition, such

a coalition is called the grand coalition. The pro�ts from transshipment are allocated among �rms

within a coalition according to a predetermined allocation rule. A central question of this research

stream is whether a certain allocation is in the core. When a core allocation is used, no subset of

�rms has incentives to form subcoalitions by seceding from the grand coalition.

Our paper is distinguished from the previous research stream by analyzing transshipment net-

works in decentralized systems. As compared with a coalition-based cooperative game studied in the

literature, we consider a network-based cooperative game. Our network-based approach is funda-

mentally di¤erent from the coalition-based approach in the following two important aspects. First,

in a coalition-based game, any two �rms within a coalition can share their residual demands or

supplies directly with each other, meaning that transshipment between two �rms can occur without

the cooperation of other �rms. In contrast, in a network-based game, a �rm can share its residual

demands or supplies directly with the other �rms to which the �rm has links, and indirectly with

the other �rms to which the �rm has no direct links but is connected via other intermediate �rms.

In the latter case, transshipment occurs only when all intermediate �rms cooperate as well. To

illustrate this di¤erence, consider a market with three �rms. Figure 1(a) shows the grand coalition

in this market. In a coalition-based game, all three �rms can share their residuals with one another

only in the grand coalition. On the other hand, Figure 1(b)-(e) show that all three �rms can share

their residuals with one another in four di¤erent types of networks: the complete network in which

all three �rms are linked to each other (which is essentially the same as the grand coalition), and

three incomplete networks in which there is one link missing with respect to the complete network.

For example, in the incomplete network shown in Figure 1(c), �rm 1 and �rm 3 are connected

to each other through �rm 2, and they can share residuals only when �rm 2 cooperates. Second,

within a coalition, �rms are distinguished by the amount of their residual demands or supplies. In

a network, �rms are distinguished by their positions within the network as well as their residual

amounts. For example, in the network shown in Figure 1(c), �rm 2 is positioned better than �rms

1 and 3 because �rms 1 and 3 can share their residuals only through �rm 2, while �rm 2 can share

1A similar incentive problem can occur even among di¤erent branches within the same �rm. For example, in our

industry project with an energy distribution company, we observed that inventory transshipment occurred between

two branches that are located in di¤erent regions. In this company, each individual manager who operates a local

branch is evaluated based primarily on the performance of his/her own branch. Thus, in order for transshipment to

occur, two managers have to agree upon how the additional pro�t generated from transshipment is allocated.
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Figure 1: Coalition vs. network: (a) grand coalition, (b) complete network, and (c)-(e) incomplete

networks in which all three �rms are connected.

its residuals directly with �rm 1 or 3.

As illustrated in Figure 1, networks represent richer relationships among �rms than coalitions

by taking coalitions as special cases. For this reason, there have been advances in the theory

of a network-based cooperative game, starting with Myerson (1977) who notes that �there are

many intermediate possibilities between universal cooperation and no cooperation.� Such partial

cooperation structures can be captured by networks, but not by coalitions. For example, in the

network shown in Figure 1(c), �rm 1 and �rm 3 have partnerships with �rm 2, but not between each

other. A comprehensive review for the development of the theory and applications of a network-

based cooperative game can be found in Jackson (2006). Our paper is among the �rst papers in

the OM literature that apply this theory to �rms�operational decisions.

The analysis of various networks is also important from a practical viewpoint. The complete

network is often too expensive to implement in practice due to the cost of establishing connections

(Jackson 2006). Several papers reviewed by Paterson et al. (2011) have analyzed the e¢ ciency

of incomplete networks in a centralized system where a central coordinator optimally determines

transshipment based on those networks given exogenously. In our paper, we do not assume the

existence of such a central coordinator; instead, we examine �rms� individual incentives to join

transshipment networks in a decentralized setting, and also analyze a situation in which �rms build

their networks endogenously. The following examples further motivate our research:

� In a typical regional blood management system (e.g., Prastacos 1984, Fontaine et al. 2009),

multiple independent hospital blood banks set their own inventory levels for fresh units of whole

blood or red cells. When one blood bank experiences a shortage and has an urgent need for blood, it

needs to have it transshipped from another blood bank who has it in inventory. Such transshipment

occurs through a regional blood center (usually a large hospital) who re-distributes the unused units

of blood among smaller blood banks. Although a detailed arrangement of transshipment is fairly

complex, this system resembles a hub-spoke network depicted in Figure 1(c), in which a regional

blood center works as the hub and smaller blood banks work as spokes.

�Many states in the United States require auto manufacturers to sell their cars through independent
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dealers (Ramsey and Bauerlein 2013). The availability of various models and colors are di¤erent

across dealers. If a dealer does not have a stock of the speci�c model desired by a consumer, a

common practice is to have it transshipped from another dealer who has it in inventory (Zhao and

Atkins 2009). To initiate such transshipment, a salesperson in the dealer shop �rst needs to �nd out

which dealers have a desired model in inventory. This can be done either through shared web-based

inquiry tools or through phone calls by the salesperson. Once the salesperson has found the model

available in others� inventories, he needs to contact those other dealers and agrees upon various

terms and conditions for its transshipment. This process involves costs for labor and administrative

arrangements (Lien et al. 2011).

Similarly, decentralized transshipment networks are also used in industries such as machine tools

and repair parts (Narus and Anderson 1996) and trucking industry (Zhao and Atkins 2009). Duvall

(2000) reports that companies in a variety of sectors explore combining their inventories in either

physical or virtual warehouses.

To analyze a decentralized transshipment system, we develop a two-stage model that is similar

to those of Anupindi et al. (2001) and Granot and So�íc (2003), but we consider the formation

of networks instead of coalitions in the prior work. In the �rst stage, �rms make their inventory

decisions independently under uncertain demands. After the realization of the demands, some

�rms may have leftover inventories, while others may have unsatis�ed demands. In the second

stage, the �rms cooperate by transshipping residual supplies to satisfy residual demands. Then

the additional pro�ts generated from transshipment are allocated among participants according

to a predetermined rule. We analyze this model backwards with emphasis on the second-stage

network analysis. Our second-stage analysis contains two parts: (1) examining the stability of an

existing network, and (2) predicting networks to be established by �rms when there is no existing

network. Speci�cally, in the �rst part, we extend the concept of the core de�ned in a coalition-based

cooperative game of transshipment into a network-based cooperative game. In a coalition-based

cooperative game, to determine whether an allocation is in the core, one needs to show that no

subset of �rms has an incentive to form subcoalitions by seceding from the grand coalition. On

the other hand, in a network-based cooperative game, we need to examine the incentives of �rms

to form subnetworks by seceding from a given network. In the second part, we derive equilibrium

network structures when �rms form networks endogenously under the allocation rule based on

�rms�marginal contributions to their networks. In this case, each �rm simultaneously announces

a set of �rms to which it wants to set up a link, and a link is established when two �rms have

announced each other. For our �rst-stage analysis, we investigate the inventory decisions of the

�rms, and determine the conditions under which the Nash equilibrium inventory levels coincide
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with the inventory levels in a centralized system (i.e., the �rst-best inventory levels).

Our main contributions are three-fold. First, we present a novel model of inventory transship-

ment networks, and construct a dual price allocation that is in the core for any network structures

and for any residual amounts. Second, we examine the allocation based on the marginal contri-

bution of each �rm to its network that is proposed �rst by Myerson (1977) and is re�ned later

by Jackson and Wolinsky (1996) (which we call the �MJW value�). Under this allocation, various

network structures such as complete, hub-spoke, and chain networks are stable only under certain

conditions on residual amounts. Moreover, these conditions di¤er across network structures, imply-

ing that a network structure plays an important role in establishing the stability of a decentralized

distribution system. While the previous coalition-based approach examines only the grand coalition

(i.e., complete network), we �nd that the complete network tends to be less stable than incomplete

networks under the MJW value. Finally, while the previous OM literature on supply chain networks

(as reviewed by Netessine 2009) commonly assumes that a network of �rms is given exogenously, we

analyze the case when �rms establish networks endogenously, and show that pairwise Nash stable

networks underperform the corresponding networks in centralized systems.

2 Related Literature
Our paper is related to the stream of research that studies transshipment of inventories in decentral-

ized systems. For a comprehensive survey of the literature on inventory transshipment, the reader

is referred to Paterson et al. (2011).

Two pioneering papers in this stream are Anupindi et al. (2001) and Granot and So�íc (2003).

Similar to our model (except that we take a network approach), Anupindi et al. (2001) analyze a

two-stage game among multiple �rms that sell a common product. They show that a dual price

allocation is always in the core in the second stage of transshipment. In addition, for the �rst-stage

decisions, they establish conditions under which the Nash equilibrium inventory levels coincide with

the inventory levels in a centralized system. While Anupindi et al. (2001) assume that �rms share

all residual demands and supplies, Granot and So�íc (2003) consider a model in which each �rm

decides the amount of its residuals it wants to share with other �rms. They show that the dual

price allocation, although it is in the core, fails to induce the �rms to share all of their residuals.

Alternatively, the allocation based on the Shapley value (Shapley 1953), which allocates pro�ts

according to �rms�marginal contributions to their coalitions, induces the �rms to share all of their

residuals, but it is not always in the core.

Several researchers have studied transshipment in vertically decentralized supply chains. Dong

and Rudi (2004) and Zhang (2005) consider transshipment in a two-tier supply chain, where a
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supplier sells to a single downstream �rm with several locations. Slikker et al. (2005) consider a

newsvendor game in a supply chain with a single supplier and multiple retailers who coordinate their

orders to the supplier. They show that the game has a non-empty core. Özen et al. (2008) consider

a supply chain in which multiple �rms coordinate their orders supplied from multiple warehouses

to increase their joint pro�ts. Kemahl¬o¼glu-Ziya and Bartholdi (2011) study the use of the Shapley

value when a supplier and multiple retailers whose orders are �lled from the common pool can

form an inventory-pooling coalition. Shao et al. (2011) analyze the case in which a supplier sells

to multiple independent �rms, and compare their results with those in the case where the �rms are

under joint ownership.

There are some papers including Zhao et al. (2005), Rong et al. (2010), and Huang and

So�íc (2010a) that analyze transshipment games in multiple periods. In particular, Huang and

So�íc (2010a) extend Granot and So�íc (2003) into a repeated game, and show that it is a subgame-

perfect Nash equilibrium for �rms to share all of their residuals under the dual price allocation when

a discount factor is su¢ ciently high. So�íc (2006) extends Granot and So�íc (2003) by proving that,

although the Shapley value is not always in the core, the grand coalition is farsighted stable in the

sense that no �rms will secede from the grand coalition if they consider how others would react to

their actions.

Another stream of research studies the role of transshipment prices for distribution of residual

pro�ts. Using non-cooperative game theory, Rudi et al. (2001) and Hu et al. (2007) analyze a model

in which the residual pro�t from transshipment is allocated between two �rms using predetermined

prices. Rudi et al. (2001) develop the expressions for transshipment prices that achieve a �rst-best

outcome. Hu et al. (2007) extend Rudi et al. (2001) by considering the case when there are

�nite and uncertain capacities. When multiple �rms cooperate in transshipment, Huang and So�íc

(2010b) compare the performance of the two methods: the use of predetermined prices and the

dual price allocation. They show that neither allocation method dominates the other.

To our knowledge, Hezarkhani and Kubiak (2010) is the only work that analyzes the decentral-

ized transshipment problem using the concept of pairwise stability. They study a matching problem

in a two-sided market in which a link is established only between a �rm with residual supplies and

a �rm with residual demands. The core allocation they consider is from the coalition-based coop-

erative game, which does not take into account any network structure. In contrast, we allow for

general network structures under which any two �rms can build links, and both direct transship-

ment between two �rms and indirect transshipment through intermediate �rms are possible. Thus,

in our model, �rms�positions in a network play a critical role in establishing stability results.

While our paper focuses on the inventory transshipment problem, cooperative game theory
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has been applied to several other problems in the OM literature. These include bargaining in

supply chains (e.g., Reyniers and Tapiero 1995), alliance formation among competing �rms (e.g.,

Nagarajan and So�íc 2007), decentralized assembly systems (e.g., Granot and Yin 2008, Nagarajan

and So�íc. 2009, Yin 2010), group buying (e.g., Chen and Yin 2010, Nagarajan et al. 2010), and

capacity allocation and scheduling (e.g., Hall and Liu 2010). Readers are referred to Nagarajan

and So�íc (2008) for the review of early work. Note that all these papers analyze coalition-based

cooperative games.

Our paper contributes to this literature by applying the theory of social and economic networks

to the decentralized inventory transshipment problem. Our network-based approach provides a

richer form of representing relationships among �rms than the previous coalition-based approach,

and enables us to establish the stability of partial cooperation structures based on networks.

3 Coalition-Based Cooperative Transshipment Games
In this section, we �rst describe the simpli�ed variant of the model in Anupindi et al. (2001), which

excludes the possibility of storing stocks at commonly shared warehouses. This variant has also

been used by Granot and So�íc (2003) in comparing their work with Anupindi et al. (2001). We

then introduce some concepts of coalition-based cooperative game theory, and summarize the main

results of those two papers. This will help understand how the previous coalition-based approach

di¤ers from our network-based approach that will be presented in subsequent sections.

Consider a set N = f1; 2; :::; ng of �rms who sell a common product. The �rms make decisions
in two stages as follows. In the �rst stage, each �rm i 2 N determines its order quantity Xi

under uncertain demand Di by taking into consideration other �rms�inventory decisions as well

as transshipment in the following stage. De�ne inventory pro�le X = fX1; :::; Xng and demand
pro�le D = fD1; :::; Dng:2 Let ci denote a unit ordering cost. After the �rms receive what they have
ordered, demands are realized. Firm i generates revenue ri for each unit of the demand satis�ed,

and any excess inventory can be salvaged at ui (< ri) per unit. The model assumes that each

�rm satis�es its own demand �rst using its local inventory, and then ship any excess inventories to

satisfy unmet demands of other �rms. Let Hi = maxfXi�Di; 0g and Ei = maxfDi�Xi; 0g denote
the residual supply and demand of �rm i, respectively. In the second stage, the �rms transship the

residual supplies to satisfy the residual demands. Throughout the paper, we limit our interest to the

case where at least one �rm has residual demand and at least one �rm has residual supply because

otherwise no transshipment will occur. Let Yij denote the number of units shipped from �rm i

2This model allows the demand of some �rm i, Di, to be zero. Such �rms can be viewed as independent warehouses

that are built only for transshipment.
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to �rm j, and let tij denote the unit transportation cost associated with this shipment. Further,

de�ne transshipment pattern Y = fYij : i; j = 1; :::; ng. Since both �rms with residual supplies and
�rms with residual demands contribute to the additional pro�ts generated from transshipment, the

pro�ts are allocated among these �rms according to a predetermined allocation rule.

To characterize the transshipment in the second stage of the game, Anupindi et al. (2001) and

Granot and So�íc (2003) use the concepts from coalition-based cooperative game theory. A pair

(N;w) is called a cooperative game, in which w : 2N ! R is a characteristic function of the game.

A subset S of N is called a coalition and N itself is the grand coalition. The characteristic function

w(S) captures the value generated by a coalition S. An allocation rule in a cooperative game is a

function � :W (N)! Rn, whereW (N) is a set of all such games on the set N . An allocation rule is

e¢ cient if
P
i2N
�i(w) = w(N): An e¢ cient allocation rule speci�es how much of the value generated

by the grand coalition is attributed to each �rm. We consider only e¢ cient allocation rules in

this paper. When an allocation rule applies to a particular game (N;w), we call it an allocation,

denoted as ' = f'1; :::; 'ng. The core de�nes a set of allocations with a stability property. We say
that an e¢ cient allocation ' is a member of the core of (N;w) if

P
i2S
'i � w(S) for all S � N ; i.e.,

for any subset of �rms, the sum of allocations they receive in the grand coalition is at least as large

as the value that they can generate by forming a subcoalition. A core allocation leads to a stable

outcome of the cooperative game in the sense that no subset of �rms has an incentive to secede

from the grand coalition.

The allocation mainly considered by Anupindi et al. (2001) is a dual price allocation. To �nd

dual prices to be used in this allocation, they �rst formulate the centralized transshipment problem

in which a single decision-maker optimizes a transshipment pattern of all �rms. Speci�cally, given

inventory pro�leX and demand pro�leD, the central decision-maker solves the following program:

CTP (X;D) = max
Y

X
i;j2N

(rj � ui � tij)Yij (1)

s:t:
X
j2N

Yji � Ei 8i 2 N (2)

X
j2N

Yij � Hi 8i 2 N (3)

Yij � 0 8i; j 2 N: (4)

In (1), (rj � ui � tij) represents the pro�t of transshipping one unit of inventory from i to j. The

constraints in (2) ensure that the number of units transshipped to �rm i does not exceed its residual

demand Ei. The constraints in (3) ensure that the number of units transshipped from �rm i does

not exceed its residual supply Hi. Let i and �i be the dual prices associated with the constraints

in (2) and (3), respectively. According to the dual price allocation, each �rm i 2 N is allocated
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iEi + �iHi. The main result of Anupindi et al. (2001) is that the dual allocation is in the core of

the cooperative transshipment game for any residual supplies and demands.

Instead of the dual price allocation, Granot and So�íc (2003) consider the Shapley value (Shapley

1953). The Shapley value has many desirable properties such as symmetry, e¢ ciency, and additivity

(see details in Shapley (1953) or Granot and So�íc (2003)), and hence it is commonly used in the

literature. The allocation rule based on the Shapley value is de�ned as follows: for �rm i 2 N;

�SVi (w) =
X

S�Nnfig
fw(S [ fig)� w(S)g

�
#S!(n�#S � 1)!

n!

�
; (5)

where #S is the number of �rms in S. The standard interpretation of the Shapley value is as

follows (e.g., in Jackson (2006)). Consider all possible orderings of �rms. For each ordering,

consider building a society by adding one �rm at a time into that order. A �rm obtains the

marginal contribution that she/he makes to the society when added to the coalition formed by

the �rms before her/him in the order. So, a �rm i whose place in the order follows a coalition S

receives value w(S [ fig)�w(S). Since there are #S!(n�#S � 1)! such orderings, averaging over
all possible orderings n! leads to the Shapley value. Granot and So�íc (2003) have shown that the

Shapley value is not always in the core of the cooperative transshipment game although it induces

the �rms to share all their residuals.

4 Network-Based Cooperative Transshipment Games
This section is organized as follows. In §4.1, we present our network model of the decentralized

transshipment problem, and describe the concepts of network-based cooperative game theory that

we use to analyze our model. In §4.2, we examine whether the pair of a given network and a dual

price allocation is always in the core of the transshipment game. Finally, in §4.3, we examine the

conditions under which the MJW value is in the core for various network structures. Throughout

this section, we highlight the di¤erence between our network-based approach and the coalition-

based approach reviewed in §3.

4.1 Model of Transshipment Networks

Our model has the same sequence of the decisions as in the previous coalition-based model described

in §3. The main di¤erence is that transshipment in the second stage of our model occurs based on

a given network g. A node in g represents a �rm in N = f1; 2; :::; ng. We call a �rm with residual

supply a supply node, and call a �rm with residual demand a demand node. A bidirectional link

ij between nodes i and j represents a partnership between �rm i and �rm j; so that two �rms

can transship inventory directly between each other. We write ij 2 g to indicate that nodes i
and j are linked in the network g, and describe a network with a set of links. For example, for
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Figure 2: Subnetworks of the network g0 = f12; 23g : (a) g0jf1;2g; (b) g0jf2;3g; (c) g0jf1;3g; (d) g0jf1g;
(e) g0jf2g; and (f) g0jf3g:

N = f1; 2; 3g; g = f12; 23g represents a network with two links: one link between nodes 1 and 2 and
the other link between nodes 2 and 3. In the case of a regional blood management system, we may

represent a regional blood center as node 2, and two blood banks as nodes 1 and 3 that share their

residual supplies and demands through the regional blood center. We denote the network obtained

by adding link ij to g by g + ij, and denote the network obtained by deleting link ij from g by

g� ij. Further, we use gN to denote the complete network on N in which a link exists between any

two nodes i; j 2 N . A path between �rms i and j in g is a sequence of �rms i1; i2; :::; i� such that
ikik+1 2 g for each k 2 f1; 2; :::; � � 1g with i1 = i and i� = j. Transshipment can occur between
two �rms directly through a link between them or indirectly through a path between them. We use

Yij to denote the number of units shipped directly from �rm i to �rm j: If Hi units of inventories

are shipped indirectly from �rm i to �rm j through a path i1; i2; :::; i� with i1 = i and i� = j, then

we have Yikik+1 = Hi for k = f1; 2; ::; �� 1g:
We use the solution concepts in a network-based cooperative game proposed by Jackson and

Wolinsky (1996). In this game, the value of a coalition not only depends on the amount of residuals

of its members, but also on the structure of the network formed by its members. Similar to the

characteristic function in the coalition-based approach, the value function in the network setting

is de�ned as v : G(N) ! R, where G(N) denotes a set of all possible networks over N . An

allocation rule in a cooperative game can be extended naturally into the network setting as a

function � : G(N)� V (N)! Rn; in which V (N) represents the set of all possible value functions

for a society N . Since allocations depend on the structure of a network, so does the speci�cation

of the core. We say that a pair of a network and an e¢ cient allocation, (g; '), is a member of the

core of (N; v) if
P
i2S
'i(g) � v(gjS) for all S � N; where gjS means a subnetwork of g restricted to

the �rms in S: For example, Figure 2 shows all subnetworks of the network f12; 23g (denote as g0)
shown earlier in Figure 1(c). The requirement of the core is that no subnetworks can deviate and

generate a higher value than what they are being allocated in the initial network g: So, the core

allocation is stable to deviations from the network g.

Given inventory pro�le X and demand pro�le D, the value function v in our model speci�es
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the maximum pro�t that any subnetwork gjS can generate through transshipment. Speci�cally, we
de�ne v as follows:

v(gjS) = max
Y

X
i2S

24ai
0@ X
j2Bi(gjS)

Yji �
X

j2Bi(gjS)
Yij

1A� X
j2Bi(gjS)

Yij(tij + ui � uj)

35 (6)

s:t:
X

j2Bi(gjS)
Yji �

X
j2Bi(gjS)

Yij � Ei 8i 2 S (7)

X
j2Bi(gjS)

Yij �
X

j2Bi(gjS)
Yji � Hi 8i 2 S (8)

Yij � 0 8i; j 2 S; (9)

where Bi(g) denotes the set of nodes that have a link to node i in g; and ai is de�ned as ri� ui for
i 2 S with Ei > 0; and 0 for i 2 S with Ei = 0: In (6), ai(

P
j2Bi(gjS)

Yji �
P

j2Bi(gjS)
Yij) represents the

net revenue from transshipment, and
P

j2Bi(gjS)
Yij(tij +ui�uj) represents the cost of transshipment

which includes transportation costs and di¤erences in salvage values. The constraints given in (7)

(resp., in (8)) ensure that the di¤erence between the number of units shipped to �rm i and that

from �rm i does not exceed the residual demand (resp., supply) of �rm i. Note that v(gjS) depends
on inventory pro�le X and demand pro�le D, but we suppress (X;D) for notational convenience.

In the rest of this paper, we refer to the program (6)-(9) as the transshipment problem within S,

and denote its optimal transshipment pattern by Y gjS .

4.2 Dual Price Allocation in Transshipment Networks

This subsection examines whether or not a pair of a given network g and the dual price allocation

is in the core of our network-based transshipment game. Anupindi et al. (2001) have shown that

the dual price allocation is always in the core when transshipment occurs among members of a

coalition. Because the grand coalition is essentially the same as the complete network, a pair of

the complete network and the dual price allocation is also in the core of our network-based game.

To examine whether or not a pair of an incomplete network and the dual allocation is in the

core, we re�ne the dual price allocation of Anupindi et al. (2001) such that it depends on the

structure of a given network g. Similar to CTP (X;D) given in (1)-(4), we de�ne the centralized

transshipment problem CTP (g;X;D) for a network g as the program (6)-(9) with S = N . Then

the dual price allocation 'DP (g) allocates giEi+ �
g
iHi to �rm i 2 N , where gi and �

g
i are the dual

prices associated with the constraints (7) and (8) with S = N in the network g, respectively. To

illustrate the dual price allocation 'DP (g) in the network-based transshipment game, consider the

following example from Anupindi et al. (2001):

Example 1: Suppose that ri = 10 ($/unit); ui = 5 ($/unit); tij = 1 ($/unit) 8i; j 2 N =

11



Figure 3: Examples of networks when four �rms exist in the market: (a) the complete network

gf1;2;3;4g = f12; 13; 14; 23; 24; 34g; and (b) chain f12; 23; 34; 14g.

f1; 2; 3; 4g; and that H1 = H2 = H3 = 2 (units) and E4 = 10 (units).

When the grand coalition or the complete network is formed as shown in Figure 3(a), the total

pro�t from transshipment is: minfH1+H2+H3; E4g�(ri�ui�tij) = 6 (units) � 4 ($/unit) = $24:
Anupindi et al. (2001) have shown that the dual price allocation based on the program given in (1)-

(4) is f$8; $8; $8; 0g: This allocation assigns all pro�ts from transshipment to �rms 1, 2, and 3 with

residual supplies, and none to �rm 4 with residual demands because the total residual demands of 10

units are much larger than the total residual supplies of 6 units. Next, consider a �chain�network of

f12; 23; 34; 14g as shown in Figure 3(b). In this network, the maximum pro�t from transshipment is
$22 because �rm 2 has to ship its residual supplies of 2 units to �rm 4 via �rm 1 or �rm 3; incurring

an additional transportation cost of $2. Now suppose that �rms 1; 2, and 3 still receive the same

allocation, so that each of these �rms receives $22=3. Then this network is no longer stable because

a subnetwork of �rms 1; 3; and 4 can generate a total pro�t of 4 (units) � 4 ($/unit) = $16; which
is larger than the sum of allocations, $44=3; they receive under the initial network. To prevent �rms

1, 3 and 4 from forming a subnetwork, our dual price allocation based on CTP (g;X;D) decreases

the allocation of �rm 2 by $2; so that 'DP (f12; 23; 34; 14g) = f$8; $6; $8; 0g: It is important to
observe that �rm 2 has a worse position in the network than �rms 1 and 3 because �rm 2 is not

linked directly to �rm 4 which is the only demand node in this example.

The above example highlights that the dual price allocation 'DP (g) takes into account the

position of a �rm in the network g as well as the amount of its residual supply or demand. More

generally, we can establish the following result about the stability of a network under the dual price

allocation. All proofs are provided in Appendix.

Proposition 1 For any given network g; the pair (g; 'DP (g)) is in the core of the network-based

cooperative game (N; v) for any residual supplies and demands.

Proposition 1 demonstrates that the dual price allocation is an ideal allocation for the stability

of incomplete networks as well as the complete network. This result may not be surprising if one
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could note that the dual price allocation based on CTP (X;D) under the coalition-based approach

could yield the same allocation as 'DP based on CTP (g;X;D) under our network-based approach.

To understand this, note the following di¤erence between CTP (X;D) and CTP (g;X;D). Our

network-based approach explicitly models the actual path i1; i2; :::; i� with i1 = i and i� = j over

which inventories are transshipped between any two �rms i and j in a network. As a result, the

solution of CTP (g;X;D) provides us with the optimal path for transshipment between any two

�rms i and j among a number of potential paths between those two �rms. In contrast, the coalition-

based approach speci�es one transportation cost tij of transshipment between any two �rms i and

j; this means that a decision-maker needs to choose one path a priori among a number of potential

paths between �rms i and j. If we rede�ne transportation costs under the coalition-based approach

such that they re�ect actual transshipment paths (i.e., set tij equal to a minimum transportation

cost among all paths between every pair of nodes i and j in a network), then this approach yields the

same allocation as 'DP under our network-based approach.3 Therefore, the dual price allocation

is in the core of our cooperative game for any network g.

The implication of Proposition 1 is as follows: If the goal of an allocation mechanism is to

maximize the cooperation of independent �rms, thereby maximizing the total value generated

from transshipment, then the dual price allocation can achieve this goal. For example, in a blood

management system, the transshipment of unused units of blood can potentially save the lives of

people who urgently need those units. For a non-pro�t association of local blood banks, the dual

price allocation can incentivize independent blood banks to participate in this cooperative network.

Despite the core property of the dual price allocation, the dual price allocation may not be

intuitively appealing. For instance, in Example 1, �rm 4 is the only demand node in the network

(without which no subnetwork can generate any pro�t from transshipment), but receives zero

allocation. In fact, by the de�nition of dual prices, if the constraints (7) and (8) associated with a

�rm are not binding, then the �rm receives zero under the dual price allocation. Thus, as shown

by Granot and So�íc (2003), if �rms can choose how much residual demand or supply to share,

then they may not share all of their residuals under the dual price allocation; on the other hand,

the allocation based on the Shapley value induces �rms to share all of their residuals because �rms

can receive a larger allocation by doing so when the allocation is determined according to �rms�

marginal contributions. (We can easily show that this result continues to hold in our network

setting.) For this reason, the allocation based on �rms�marginal contributions is more commonly

3For instance, if we set t13 = t24 = t31 = t42 = 2 ($/unit) in Example 1, the coalition-based approach yields the

same dual price allocation as the network-based approach. However, the computation of minimum transportation

costs may become complicated as the number of �rms and the complexity of a network structure increase because

one needs to solve an optimization problem for every pair of nodes in the network.
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used in the literature (see §2). We next examine the stability of a network under the allocation

based on the marginal contribution of each �rm to its network, i.e., the MJW value.

4.3 Allocation Based on Marginal Contributions in Transshipment Networks

In this subsection, we examine whether or not the pair of a given network g and the MJW value

is in the core of our network-based transshipment game. In the rest of this paper, we say that a

network g is MJW-stable if the pair of g and the MJW value is in the core of the transshipment

game. The allocation rule based on the MJW value for a given network g is de�ned as follows:

�MJW
i (v; g) =

X
S�Nnfig

�
v(gjS[fig)� v(gjS)

	�#S!(n�#S � 1)!
n!

�
for i 2 N: (10)

Similar to the Shapley value, the MJW value captures �rms�marginal contributions to the network

g, and preserves many desirable properties of the Shapley value (Jackson and Wolinsky 1996). The

MJW value can be computed using the procedure similar to the Shapley value calculation, but it

is based on how the value changes as �rm i is added to the network comprising �rms in S; i.e.,

v(gjS[fig) � v(gjS). To illustrate how the MJW value di¤ers from the Shapley value, we consider

the following example of three �rms from So�íc (2006):

Example 2: Suppose that ri = 1 ($/unit); ui = 0 ($/unit); and tij = 0 ($/unit) for i; j 2 N =

f1; 2; 3g; and that �rm 1 and �rm 2 have residual demands E1 and E2, respectively, with E1 � E2;
while �rm 3 has the residual supply H3.

In this example, there are four possible scenarios: (1) H3 � E1 + E2; (2) E2 � H3 < E1 + E2; (3)
E1 � H3 < E2; and (4) H3 < E1: For these scenarios, Table 1 presents the allocations based on the
Shapley value as well as the allocations based on the MJW value with the network g0 = f12; 23g
shown earlier in Figure 1(c). (See Appendix for the procedure of computing the MJW value.)

Table 1: Allocations based on the Shapley value and the MJW value

Shapley value (= MJW value in gf1;2;3g) MJW value in g0 = f12; 23g
Scenario Firm 1 Firm 2 Firm 3 Firm 1 Firm 2 Firm 3

(1) H3 � E1 + E2 E1
2

E2
2

E1+E2
2

E1
3

2E1+3E2
6

2E1+3E2
6

(2) E2 � H3 < E1 + E2 E1+2H3�2E2
6

E2+2H3�2E1
6

E1+E2+2H3
6

H3�E2
3

2H3+E2
6

2H3+E2
6

(3) E1 � H3 < E2 E1
6

3H3�2E1
6

E1+3H3
6 0 H3

2
H3
2

(4) H3 < E1 H3
6

H3
6

4H3
6 0 H3

2
H3
2

Observe from Table 1 that the allocations based on the MJW value in g0 are di¤erent from those

based on the Shapley value under all four scenarios. With the Shapley value, the allocation to �rm

3 is strictly larger than the allocation to �rm 1 or �rm 2 in all four scenarios. This is because there
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exists only one supply node (�rm 3) while there are two demand nodes (�rm 1 and �rm 2), and thus

the marginal contribution of the supply node is more signi�cant. However, under the MJW value,

�rms 2 and 3 in the network g0 receive the same allocations in all four scenarios. The intuition is

that both �rms play equally important roles in the transshipment network in the following sense:

without �rm 2, no transshipment can occur because �rm 1 and �rm 3 are not connected to each

other, and without �rm 3; there is no residual supply to transship. As shown in this example, the

MJW value takes into account the structure of a network as well as the residual amounts of �rms.

In the following, we examine whether or not the pair (g; 'MJW (g)) is in the core: (1) when g

is the complete network in §4.3.1, and (2) when g is an incomplete network in §4.3.2.

4.3.1 Complete Network

In the complete network, any two �rms can transship inventory directly between each other. Thus

one can expect that our network-based approach yields the same result as the coalition-based

approach. For Example 2, So�íc (2006) has shown that the Shapley value is in the core in Scenario

1, whereas it is not in the core in Scenarios 2, 3, and 4. Thus the Shapley value is not always in

the core. Because the allocations under the MJW value in the complete network are the same as

those under the Shapley value, in general, the pair (gN ; 'MJW (gN )) is not always in the core of

our network-based transshipment game.

However, we can show that the pair (gN ; 'MJW (gN )) is in the core under a certain condition

on the residual supplies and demands. To establish this result, we use the notion of convexity in

cooperative game theory. Let the cooperative game (N; v) be convex if v(gjS00[fig) � v(gjS00) �
v(gjS0[fig) � v(gjS0) for any subsets S0 and S00 of N that satisfy S00 � S0 and any �rm i =2 S0.
Convexity refers to the property that, as the number of �rms in the subnetwork the �rm joins

increases, the marginal contribution of a �rm (hence its allocation under the MJW value) weakly

increases. Thus, if (N; v) is convex, then no subnetworks have incentives to secede from the grand

coalition, and therefore the pair (gN ; 'MJW (gN )) is in the core of (N; v) (Jackson 2006). In our

transshipment game, suppose there exist only one demand node and multiple supply nodes. The

marginal contribution of the demand node is non-decreasing with the number of �rms in any

subnetwork because there are more residual supplies within the subnetwork having more �rms. For

the marginal contribution of a supply node to be non-decreasing with the number of �rms in a

subnetwork, the subnetwork should have su¢ cient residual demands to generate additional pro�ts

from the supply of the node. The next proposition bears this intuition.

Proposition 2 The pair (gN ; 'MJW (gN )) is in the core if there is one supply (resp., demand)

node i and its residual supply Hi (resp., demand Ei) is greater than or equal to the sum of all
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residual demands (resp., supplies), i.e. Hi �
P

j2Nnfig
Ej (resp., Ei �

P
j2Nnfig

Hj).

In Example 2, Scenario 1 satis�es the condition given in Proposition 2, whereas Scenarios 2, 3, and

4 do not satisfy this condition because there is only one supply node in the network but its residual

supply (H3) is not su¢ cient to satisfy all residual demands (E1 +E2). In those scenarios, a subset

of �rms will form a subnetwork to earn more pro�t than the allocations they would receive in the

initial network gf1;2;3g under the MJW value. For example, in Scenario 3, �rms 2 and 3 will form a

subnetwork to earn the total pro�t of H3 which is greater than the sum of their allocations under

the MJW value in gN , H3�E1=6. For the case where multiple demand nodes and multiple supply
nodes exist in gN , we show in the proof that the game is no longer convex.

By noting that the condition given in Proposition 2 is very restrictive, we can conclude that the

complete network is not MJW-stable in most scenarios. The primary reason for such instability is

that any two �rms can transship inventory directly between each other in the complete network,

and �rms often �nd it more pro�table to secede from the complete network. In a regional blood

management system, for example, there is often a designated blood center through which other

blood banks transship their unused units of blood. One might temp to think that a complete

network, which allows direct transshipment between blood banks without going through a regional

blood center, may facilitate transshipment further because such direct shipment can potentially

save the costs of transportation and coordination. However, our result shows that such a complete

network may not be MJW-stable because a subset of blood centers may form their own subnetwork.

Because direct transshipment between every pair of �rms is not possible in an incomplete

network, we may expect that incomplete networks could be more stable for transshipment among

independent �rms. We examine this issue formally next.

4.3.2 Incomplete Networks

When a network g is incomplete, the contribution of each �rm to transshipment depends on the

links associated with the �rm as well as the amount of its residual supply or demand. As the

allocations based on the MJW value vary across di¤erent network structures, so do the stability

results. We �rst consider examine the MJW-stability of various incomplete network structures that

appear in the literature: (1) a hub-spoke network, (2) a line network, and (3) a chain. Then we

demonstrate in (4) how a MJW-stable network with a general network structure can be derived

from another (known) MJW-stable network.

(1) Hub-spoke network To illustrate this network, let us �rst consider Example 2 in the

incomplete network g00 = f13; 23g shown in Figure 4(a) in which �rm 3 can be viewed as the hub.

Observe that even if the link 12 existed in this network, it would not change the pro�ts from
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Figure 4: Examples of incomplete networks: (a)-(b) hub-spoke networks, (c)-(d) line networks, and

(e)-(f) chain networks.

transshipment among any subset of �rms. This is because transportation costs are zero in this

example and both �rms 1 and 2 are demand nodes. This suggests that the allocations under g00 are

the same as those under the complete network. Therefore, from the result of the complete network

in §4.3.1, the pair (g00; 'MJW (g00)) is in the core in Scenario 1, but not in Scenarios 2, 3, and 4.

For a general hub-spoke network gH with n �rms as shown in Figure 4(b), the following propo-

sition presents a su¢ cient condition under which (gH ; 'MJW (gH)) is in the core.

Proposition 3 Consider a hub-spoke network gH = fi1i2; i1i3; :::; i1ing where i1 is the hub. The
pair (gH ; 'MJW (gH)) is in the core if Hi1 �

P
j2Nnfi1g

Ej or Ei1 �
P

j2Nnfi1g
Hj.

Di¤erent from Proposition 2 for the complete network, Proposition 3 shows that the number of

supply nodes or demand nodes in a hub-spoke network need not be one in order for (gH ; 'MJW (gH))

to be in the core. This di¤erence arises due to the special role of the hub in this network; i.e., any

subnetwork that does not include the hub generates no value. Recall from §1 that a regional blood

management system with one large blood center and multiple smaller blood banks forms a hub-

spoke network. Proposition 3 suggests that the regional blood center as the hub needs to have

su¢ cient residual supplies to satisfy all residual demands of blood banks in the spokes in order for

this network to be MJW-stable. This is because a subnetwork having the hub should receive at

least as large allocation in its initial network as the pro�t it can generate alone.

(2) Line network To illustrate this network, let us �rst consider Example 2 in g0 = f12; 23g
shown in Figure 4(c). We refer to such a network as g0 in which all demand nodes are placed on

one side and all supply nodes are placed on the other side as a �line.�Table 1 (earlier) shows the

allocations based on the MJW value for g0. Apparently, subnetworks g0jf1;3g and g0jf1;2g have no
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incentives to secede from g0 because they cannot generate any pro�t from transshipment. Thus,

to determine whether the pair (g0; 'MJW (g0)) is in the core under each scenario, we only need to

examine whether a subnetwork g0jf2;3g has an incentive to secede from g0: If the subnetwork g0jf2;3g
is formed, then it can generate a pro�t of E2 in Scenarios 1 and 2, and a pro�t of H3 in Scenarios 3

and 4. On the other hand, when �rms 2 and 3 stay in g0, Table 1 shows that the sum of allocations

to both �rms is 2E1+3E23 ; 2H3+E23 ; H3; or H3 in Scenario 1, 2, 3, or 4, respectively. By comparing

these pro�ts under each scenario, we �nd that �rms 2 and 3 do not earn more by forming the

subnetwork g0jf2;3g: Therefore, the pair (g0; 'MJW (g0)) is in the core under all four scenarios.

By comparing the stability result of g0 with those of the complete network gN and the hub-spoke

network g00, we can generate the following insight. In gN or g00, we have shown that some demand

node is excluded from transshipment (e.g., demand node 2 in Scenario 4) when the residual supply

is not su¢ cient to satisfy total residual demands in Scenarios 2, 3, and 4. In contrast, in g0, such a

demand node is valuable to the network by providing a path without which indirect transshipment

between the other nodes is not possible. For example, demand node 2 in g0 provides a path for

transshipment between demand node 1 and supply node 3. In this case, we say that the node

provides �useful links�to the network.

Building on the intuition from three-�rm networks above, we can establish a necessary and

su¢ cient condition for the pair (g; 'MJW (g)) to be in the core for any residual amounts. As shown

in Proposition 4, this condition requires that every node in the network g provides useful links to

the network, hence contributing to the connectivity of the entire network. Furthermore, the only

network structure that satis�es this condition is the line, denoted by gL, as shown in Figure 4(d).

Proposition 4 The only network structure, under which any two �rms are connected and the

pair (g; 'MJW (g)) is in the core for any residual supply Hi, residual demand Ei; and (ri; tij ; ui)

(i; j 2 N), is the line gL = fi1i2; i2i3; :::; ikik+1; :::; in�1ing where Eij = 0 for j 2 f1; :::; kg and
Hij = 0 for j 2 fk + 1; :::; ng with 1 � k � n� 1:

(3) Chain For a network g having a structure other than the line, Proposition 4 suggests that

there always exist some amounts of residual supplies and demands with which some subnetwork

has an incentive to secede from the initial network g under the MJW value. Let us illustrate this

result using chain networks that were studied previously under a centralized system (e.g., Lien et al.

2011). For example, in the chain network g000 � f12; 23; 34; 14g shown in Figure 4(e), transshipment
between �rm 2 and �rm 4 can occur either through �rm 1 or �rm 3. Thus, there are situations

in which �rm 1 (resp., �rm 3) does not provide useful links to the network and a subnetwork

g000jf2;3;4g (resp., g000jf1;2;4g) deviates from its initial network. As a result, additional conditions
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on the residual supplies and demands are required for this chain to be MJW-stable. Speci�cally,

the following corollary shows such conditions when link ini1 is added to the line gL described in

Proposition 4 so that the network becomes the chain gC ; see Figure 4(f).

Corollary 1 Consider the chain network gC = fi1i2; i2i3; :::; ikik+1; :::; in�1in; ini1g where Eij = 0
for j 2 f1; :::; kg and Hij = 0 for j 2 fk + 1; :::; ng with 1 � k � n � 1: The pair (gC ; 'MJW (gC))

is in the core if
P
i2N
Hi =

P
i2N
Ei and 'MJW

i (gC) � v(gC)� v(gC jNnfig) 8i 2 N:

Corollary 1 shows that two conditions are required for the pair (gC ; 'MJW (gC)) to be in the core.

The �rst condition requires that the total residual supplies equal the total residual demands. Sup-

pose the total residual supplies are greater than the total residual demands. Unlike the line, there

are two paths between any two �rms in this chain. Thus, some supply nodes are excluded from

transshipment because neither their residual supplies nor their links are valuable to the network.

The second condition requires the allocation to each �rm is lower than the �rm�s marginal contri-

bution when the �rm joins the subnetwork of (n� 1) �rms. This condition ensures that �rms have
no incentives to cut one path for transshipment by excluding one �rm.

(4) Other networks Although the line network presented in Proposition 4 guarantees the MJW

value to be in the core for any residual amounts, it is not very likely to observe such a network in

practice �especially when a large number of �rms exist. Then what other connected networks could

be stable under the MJW value? In the following proposition, we demonstrate how a MJW-stable

network with an arbitrary network structure can be derived from another MJW-stable network

(e.g., a line network).

Proposition 5 Suppose the pair (g; 'MJW (g)) is in the core. Then the pair (g+ ij; 'MJW (g+ ij))

is in the core if v(g + ijjS)� v(gjS) �
P
k2S
f'MJW

k (g + ij)� 'MJW
k (g)g for all S � N:

We illustrate the result stated in Proposition 5 using an example shown in Figure 5. There are

four �rms in the market: �rms 1, 2 and 3 have residual demands E1 = E2 = E3 = 1 (unit), while

�rm 4 has residual supply H4 = 3 (units). Suppose that ri = 1 ($/unit) and ui = 0 ($/unit)

for i 2 f1; 2; 3; 4g; and tij = 0 ($/unit) for i; j 2 f1; 2; 3; 4g except that t34 = t43 = 0:9 ($/unit).

The line network g = f12; 23; 34g in Figure 5(a) is MJW-stable according to Proposition 4. By
adding link 24 to this network g, we construct another network g + 24 = f12; 23; 34; 24g shown in
Figure 5(b). In the following, we show that the initial network g and link 24 satisfy the condition

given in Proposition 5, so that the new network g + 24 is MJW-stable as well. To begin, consider

S = f1; 2; 4g: This subset contains both �rms 2 and 4 that are connected through the new link

24. The initial network gjS generates no pro�ts from transshipment because �rms 1 and 2 are
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Figure 5: Examples of networks when four �rms exist in the market: (a) line f12; 23; 34g; (b)
network f12; 23; 34; 24g obtained by adding link 24 to line f12; 23; 34g.

not connected to �rm 4 without �rm 3, whereas the new network g + 24jS generates a pro�t of
2 (units) � 1 ($/unit) = $2; hence, v(g + 24jS) � v(gjS) = $2: On the other hand, we can show
that the total allocation to S under gjS is $23=120, while that under g + 24jS is $151=60; hence,P
k2f1;2;4g

f'MJW
k (g + 24) � 'MJW

k (g)g = $279=120 (> v(g + 24jS) � v(gjS)): This means that link

24 increases the total allocation to S more than the additional pro�t it generates for S. This

happens because link 24 bene�ts �rms 1, 2, and 4 in subsets other than S, and the total allocation

to S re�ects the overall impact of link 24 across all subsets of f1; 2; 3; 4g. Similarly, we can show
that the condition given in Proposition 5 is satis�ed for S = f2; 3; 4g or f2; 4g. For any subset S
that does not contain �rm 2, �rm 4 or both, link 24 does not generate any additional pro�t from

transshipment (i.e., v(g + 24jS) � v(gjS) = 0), nor does it decrease the total allocation to S (i.e.,P
k2S
f'MJW

k (g + 24) � 'MJW
k (g)g � 0); hence, satisfying the condition given in Proposition 5 as

well. Therefore, by Proposition 5, we can conclude that the network g + 24 shown in Figure 5(b)

is MJW-stable.

Let us summarize our main �ndings in this subsection. Under the MJW value, the line network

is the only network structure that is MJW-stable for any residual amounts. For other networks,

MJW-stability requires certain conditions on residual amounts. Interestingly, the complete network

requires more stringent conditions than some incomplete networks. Therefore, the complete network

is not only more expensive in establishing all the links among �rms, but can also be less stable in a

decentralized transshipment system. This result bears important implication because the previous

coalition-based approach examines only the complete network. Finally, note that this section has

examined the stability of an existing network g, assuming that the cost of building a link is a sunk

cost. In the next section, we examine the endogenous formation of networks, in which the cost of

building a link counts.

5 Endogenous Formation of Transshipment Networks
Suppose that a network g is formed endogenously through a partnership announcement subgame.

This subgame happens between the �rst stage of inventory decisions and the second stage of trans-
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shipment in the model described in §4.1. After observing the realized demand, each �rm simul-

taneously announces a set of �rms to which it wants to set up a link. In making this decision,

a �rm takes into account subsequent transshipment based on its network. When both �rm i and

�rm j have announced each other, a link ij is established in the network g, incurring a link cost

lij to �rm i and lji to �rm j. In the example of car dealers discussed in §1, dealers with residual

demand or supply contact other dealers, and transshipment can occur between two dealers who

are mutually interested in sharing their residuals. This process usually involves costs for labor and

administrative arrangements (i.e., link costs).

Our objective is to �nd equilibrium network structures in this subgame. As for the equilibrium

concept for this subgame, we use pairwise Nash stability that re�nes Nash equilibrium (Jackson

and Wolinsky 1996). Given an allocation ' and link costs, a transshipment network g is pairwise

Nash stable if the following two conditions are satis�ed:

'i(g) � 'i(g � ij) + lij and 'j(g) � 'j(g � ij) + lji for all ij 2 g; (11)

if 'i(g + ij) > 'i(g) + lij ; then 'j(g + ij) < 'j(g) + lji for all ij =2 g: (12)

A network is pairwise Nash stable if no �rm wants to sever a link (ensured by (11)) and no two

�rms want to add a link between them (ensured by (12)). For ease of exposition, we �rst consider

a special case of zero link costs in §5.1, and then analyze a general case of arbitrary link costs in

§5.2. In both cases, we assume that the pro�t generated from transshipment is allocated according

to the MJW value, 'MJW (g).4

5.1 Zero Link Costs

In order to �nd a pairwise Nash stable network, we choose the complete network as an initial

network (which is created when every �rm announces all the other �rms), and examine if some

�rms have incentives to deviate. Alternatively, one can start from any network other than the

complete network, and analyze whether any �rm has an incentive to sever a link or any two �rms

have an incentive to establish a link between them.

To begin, we use Example 2 to illustrate some properties of a pairwise Nash stable network

under the MJW value. We compare the allocations to �rms 1 and 3 in the complete network

gf1;2;3g (shown in the left column of Table 1) with those in the incomplete network g0 = f12; 23g
without link 13 (shown in the right column of Table 1). Table 1 reveals that the allocations to

both �rms 1 and 3 in gf1;2;3g with link 13 are greater than or equal to those in g0 without link 13

4The MJW value has also been used in establishing pairwise Nash stability of networks in various other applications

because it not only has several desirable properties mentioned earlier but also guarantees the existence of a pairwise

Nash stable network (Jackson 2006).
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in all four scenarios. This is because link 13 increases the marginal contributions of �rms 1 and

3 to the network. Similarly, we can show that the allocations to �rms 2 and 3 with link 23 are

greater than or equal to those without link 23. When both links 13 and 23 exist as in gf1;2;3g and

g00 = f13; 23g, whether or not link 12 exists has no impact on the allocations because transshipment
between two demand nodes 1 and 2 does not add value to the network (when transportation cost

is zero). Therefore, both complete network gf1;2;3g and incomplete network g00 are pairwise Nash

stable under the MJW value.

We can generalize the above procedure developed for a three-�rm network (n = 3) to a network

with any size (n � 3). De�ne the networks derived from the complete network as follows: A

network g is derived from the complete network gN if there exists a sequence of networks g1; :::; g�

with g1 = gN and g� = g such that gk+1 = gk � ij for each k 2 f1; :::; �� 1g; where link ij satis�es
'MJW
i (gk+1) � 'MJW

i (gk)� lij or 'MJW
j (gk+1) � 'MJW

j (gk)� lji: The existence of this sequence
of networks implies that, starting from the complete network, there exists a sequence of �rms that

�nd it weakly pro�table to sever their links. As illustrated above, multiple pairwise Nash stable

networks may exist (e.g., gf1;2;3g and g00 in Example 2). Using this procedure, we can obtain the

following proposition which describes a set of pairwise Nash stable networks for N = f1; 2; :::; ng.

Proposition 6 Suppose that a transshipment network is formed by n �rms endogenously with no

link costs. Then the complete network gN is always pairwise Nash stable under the allocation based

on the MJW value. Furthermore, any pairwise Nash stable network g derived from the complete

network gN contains any link ij with Y g
N jS

ij > 0 for some S � N; where Y gN jS is the unique optimal
transshipment pattern of the transshipment problem within S given in (6)-(9).

Proposition 6 states that �rms have no incentives to sever any link ij which is useful for transship-

ment within some S � N (i.e., Y g
N jS

ij > 0). For example, in our discussion of Example 2 above,

link 13 is useful for transshipment within S = f1; 3g; and link 23 is useful within S = f2; 3g; con-
sequently, g00 = f13; 23g is pairwise Nash stable under the MJW value. Furthermore, Proposition

6 implies that there is over-connection in the pairwise Nash stable networks under the MJW value

relative to an optimal transshipment pattern of the centralized transshipment problem. Firms have

no incentives to sever any link ij which is useful for some S (i.e., Y g
N jS

ij > 0) even if that link is

not utilized in the optimal transshipment pattern of the centralized transshipment problem for N

(i.e., Y g
N

ij = 0 and Y g
N

ji = 0). For example, one optimal transshipment pattern of the centralized

transshipment problem in Example 2 under Scenario 1 is that Y32 = E1 + E2 and Y21 = E1; i.e.,

�rm 3 transships its residual supply of E1 + E2 (� H3) to �rm 2; and then �rm 2 transships the

supply of E1 to �rm 1 after satisfying its residual demand E2: In this transshipment pattern, link
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Figure 6: Pairwise Nash stable networks under the MJW value in Example 3.

13 is not utilized. However, the complete network gf1;2;3g; which is pairwise Nash stable under the

MJW value, includes link 13. From a bargaining perspective, �rms 1 and 3 have stronger bargaining

powers with link 13 when negotiating how to allocate pro�ts from transshipment with �rm 2: This

is because �rms 1 and 3 can still transship E1 without �rm 2; in other words, they have a better

outside option with link 13. In the example of car dealers above, link costs may be negligible when

a web-based inventory system as well as an industry protocol for transshipment is established well.

In this case, a dealer may attempt to build connections with many other dealers so as to increase

his bargaining power against others even though he may need only few partners for transshipment

eventually. Because there is no cost to improve one�s bargaining power in this case, the complete

network is always pairwise Nash stable under the MJW value.

5.2 Positive Link Costs

Suppose that link cost lij or lji is positive for at least one pair of �rms i and j. Following the

procedure developed in §5.1, we can identify a set of pairwise Nash stable networks. For example,

Figure 6 shows all pairwise Nash stable networks in the following example under the MJW value:

Example 3: Suppose that ri = 1 ($/unit); ui = 0 ($/unit); tij = 0 ($/unit) 8i; j 2 N; and that
E1 = 5 (units); E2 = 3 (units); H3 = 5 (units), H4 = 3 (units) and lij = lji = 1 ($/link) 8ij 2 g.

As shown in Figure 6, unlike the case with zero link costs, the complete network is not always

pairwise Nash stable under the MJW value because �rms face trade-o¤s between better network

positions and additional link costs.

For the case with zero link costs, Proposition 6 in §5.1 has shown that �rms tend to be over-

connected in pairwise Nash stable networks under the MJW value. Since a positive link cost dis-

courages �rms from establishing unnecessary links, one may wonder if �rms are still over-connected

in this case. To examine this question, we introduce the notion of e¢ ciency. We say that a network

g is e¢ cient if it maximizes the pro�t from transshipment less the total link cost, v(g)�
P
ij2g

(lij+lji):

Proposition 7 below shows that pairwise Nash stable networks are not, in general, e¢ cient in trans-
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shipment under the MJW value. This demonstrates the tension between the stability and e¢ ciency

of a network.5

Proposition 7 Suppose that there exist some S � N and a link ij with lij > 0 or lji > 0 such

that: (i) v(gN jS) has a unique optimal transshipment pattern Y g
N jS with Y g

N jS
ij > 0; and (ii) v(gN )

has a unique optimal transshipment pattern Y g
N
with Y g

N

ij = 0 and Y g
N

ji = 0. Then there exists

l > 0 such that, if lij < l and lji < l 8ij 2 g, every pairwise Nash stable network g derived from the

complete network gN is not e¢ cient under the allocation based on the MJW value because there is

a subnetwork g� of g which satis�es v(g)�
P
ij2g

(lij + lji) < v(g
�)�

P
ij2g�

(lij + lji).

Proposition 7 suggests that a pairwise Nash stable transshipment network under the MJW value

is still over-connected with positive link costs. The ine¢ ciency of a pairwise Nash stable network

arises because individual �rms try to maximize their own allocations instead of maximizing the

aggregate pro�t of the entire network. The condition under which a stable network is ine¢ cient

requires the existence of a link with a positive link cost, which is utilized for transshipment within

at least one subset S � N (i.e., Y g
N jS

ij > 0); but is not utilized in the optimal transshipment pattern

of the centralized problem among all �rms (i.e., Y g
N

ij = 0 and Y g
N

ji = 0): In the example of a car

dealer network, this result means that, even if the cost of establishing an connection is not negligible,

dealers still build connections with a larger number of other dealers than necessary so as to improve

their positions. Such excess connections hurt the e¢ ciency of a decentralized transshipment system.

To improve the e¢ ciency, a third-party organization such as a local automobile dealers association

or an auto manufacturer may intervene a decentralized dealer network to coordinate the incentives

of independent dealers.

6 Inventory Decisions
In this section, we analyze �rms� inventory decisions in the �rst stage of the game. Following

Anupindi et al. (2001) and Granot and So�íc (2003), we focus our analysis on whether a certain

allocation rule used in the second transshipment stage would lead to inventory decisions in the �rst

stage which are optimal for the centralized system (i.e., achieve the �rst-best). We will �rst discuss

the case when a network g is given as in §4, and then discuss the case when a network g is formed

endogenously as in §5.

5This tension is �rst discovered by Jackson (2006) in the setting where any link in the network generates a positive

value; i.e., v(fijg) > 0 for any i; j 2 N . In that case, the complete network is the only pairwise Nash stable network
with a small link cost. Our model is di¤erent in that v(fijg) = 0 is possible when Ei = Ej = 0 or Hi = Hj = 0 for

any i; j 2 N , so that incomplete networks can also be pairwise Nash stable.
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Given a network g, each �rm determines its inventory level independently by considering un-

certain demands and ex-post transshipment of its residual demand or supply with other �rms in

the network g. The ex-post total pro�t of �rm i can be expressed as follows: given the network g,

demand pro�le D, its own inventory level Xi; and a vector of other �rms�inventory levels X�i,

�i(g;Xi; X�i; D) = [riminfXi;Dig+ uiHi � ciXi] + 'i(g;Xi; X�i; D);

where the �rst term in the bracket represents the pro�t from satisfying its local demand Di; and

the second term 'i represents the allocation it receives from subsequent transshipment. A Nash

equilibrium inventory pro�le XNE satis�es: XNE
i (g) = argmax

Xi

ED[�i(g;Xi; X
NE
�i ; D)] for all i.

In the coalition-based transshipment game, Anupindi et al. (2001) and Granot and So�íc (2003)

have shown that the dual price allocation and the Shapley value do not always lead to the �rst-best

inventory levels, respectively. Because coalitions are special cases of networks, the same results

apply to our network-based transshipment game, so that our dual price allocation 'DP (g) and the

MJW value 'MJW (g) do not lead to the �rst-best inventory levels.

Following the lead of Anupindi et al. (2001) and Granot and So�íc (2003), however, we can

construct a new allocation 'FB(g) that leads to the �rst-best inventory levels. While 'DP (g) and

'MJW (g) determine allocations of �rms based on the ex-post pro�t generated from the second

transshipment stage, 'FB(g) uses the ex-post pro�t generated from both stages. Let �(g;X;D)

denote the sum of ex-post pro�ts of all �rms from both stages. We can express � as follows:

�(g;X;D) =
X
i2N
[riminfXi;Dig+ uiHi � ciXi] + CTP (g;X;D): (13)

Corollary 2 Let �i 2 (0; 1) such that
P
i2N
�i = 1: When a network g is given, the allocation de�ned

by 'FBi (g) = �i�(g;X;D) � [riminfXi;Dig + uiHi � ciXi] for i 2 N induces the inventory levels

in a �rst-best solution to be a Nash equilibrium pro�le XNE.

The intuition from Corollary 2 is straightforward as follows. The allocation 'FB(g) gives each �rm

i a �xed fraction �i of the total pro�t �(g;X;D) of all �rms in both stages less the �rm�s own

pro�t from the �rst stage of the game. Then the total pro�t of a �rm from both stages is simply

a �xed fraction �i of the total pro�t �(g;X;D) generated by all �rms in the network g: Since �i

is independent of a �rm�s inventory decision, the �rm chooses the inventory level to maximize the

total pro�t �(g;X;D) under this allocation.

When a network g is formed endogenously as in §5, a �rm needs to consider the strategic

formation of transshipment networks in determining its optimal inventory level, in addition to

uncertain demands and ex-post transshipment based on the network g. The total pro�t �(g;X;D)
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in this case can be written as

�(g;X;D) =
X
i2N
[riminfXi;Dig+ uiHi � ciXi �

X
j2Bi(g)

lij ] + CTP (g;X;D): (14)

Compared with (13), �(g;X;D) in (14) contains the total link cost
P
i2N

P
j2Bi(g)

lij . Similar to the

allocation presented in Corollary 2, we can construct an allocation 'FB(g) that induces �rms to

choose their �rst-best inventory levels. Furthermore, under 'FB(g), there always exists a pairwise

Nash stable network that is also e¢ cient. Corollary 3 summarizes the results.

Corollary 3 Let �i 2 (0; 1) such that
P
i2N
�i = 1: When a network g is formed endogenously,

there exists an e¢ cient network g� that is pairwise Nash stable under the allocation de�ned by

'FBi (g) = �i�(g;X;D)+
P

j2Bi(g)
lij� [riminfXi;Dig+uiHi�ciXi] for i 2 N: Furthermore, 'FBi (g�)

induces the inventory levels in a �rst-best solution to be a Nash equilibrium pro�le XNE.

Corollary 3 shows that, unlike the MJW value, there is no tension between stability and e¢ ciency

under 'FBi (g): However, 'FBi (g) may violate some desired properties of the MJW value such as

symmetry when �i is not chosen properly.

7 Conclusion
This paper studies a cooperative game of inventory transshipment among multiple �rms. As �rms

try to maximize their own pro�ts, the value generated through transshipment needs to be allocated

properly to coordinate the incentives of �rms to participate in transshipment. To analyze this

problem, the extant literature uses the concept of coalitions in cooperative game theory, while

we use networks of �rms as the primitive. Our network-based approach explicitly models the

actual paths over which inventories are transshipped, and provides a richer form of representing

relationships among �rms than the previous coalition-based approach. This enables us to analyze

partial cooperation structures based on networks in which partnership may exist between some but

not among all �rms. Our results provide the following managerial insights.

First, if the primary objective of a decentralized transshipment network is to make all �rms

participate in transshipment, then the dual price allocation can achieve this goal by providing

�rms with proper incentives. This might be the case for a non-pro�t association of local blood

banks, since the transshipment of unused units of blood can potentially save the lives of people

who urgently need those units. The dual price allocation we construct in the network setting takes

into account the positions of �rms in their networks as well as the amounts of their residual supplies

or demands. By doing so, this allocation prevents a subset of �rms from forming their subnetwork,

and thus maximizes the value of pooling all residuals.
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Second, compared to the dual price allocation, the MJW value provides a more intuitive way of

allocating pro�ts from transshipment to individual �rms by considering their marginal contributions

to a network. However, one should be cautious in implementing this allocation rule because it may

induce some �rms to form their own subnetwork, hurting the total value that can be generated

from transshipment of all residuals. For example, in a regional blood management system, there is

often a designated blood center through which other blood banks transship their unused units of

blood. If the MJW value is implemented in this hub-spoke network, then the regional blood center

as the hub needs to have su¢ cient residual supplies to satisfy all residual demands of blood banks

in the spokes in order for this transshipment system to be stable.

Third, when the pro�ts from transshipment are allocated according to the MJW value, �rms�

incentives to participate in transshipment depend crucially on how they are connected in a network.

For example, one might temp to think that the complete network, which allows direct transshipment

between blood banks without going through a regional blood center, may facilitate transshipment

further because direct shipments can potentially save the costs of transportation and coordination.

However, our result shows that such a transshipment system can be less stable than a hub-spoke

network having a regional blood center as the hub. Thus, �rms should consider building an incom-

plete network for their transshipment network because it is not only cheaper to institute than the

complete network, but can also lead to a more stable cooperative transshipment system.

Fourth, an e¢ cient network in a centralized system may not be stable in a decentralized system

of independent �rms. For example, a chain of retail stores or warehouses is known to be e¢ cient

in a centralized system by allowing all members to share their residual supplies and demands with

a small number of links (e.g., Gerchak and Kalikhman 2011, Lien et al. 2011). However, our

result shows that a chain of independent �rms can incentivize �rms to participate in transshipment

only under some restrictive conditions. Thus, managers should be careful in applying the insights

obtained for a centralized system to a decentralized system.

Finally, when �rms are able to establish connections with each other, they tend to build con-

nections with a large number of other �rms even though they may need only few partners for actual

transshipments. Such over-connection in a network exists because �rms try to increase their bar-

gaining powers against other �rms, leading to an ine¢ cient transshipment system. For example,

when car dealers search for their partners to share their residual demand or supply, they may at-

tempt to negotiate with many other dealers so as to increase their bargaining positions. This may

happen even when the cost of search and negotiation is not negligible. To improve the e¢ ciency of

a transshipment network, a third-party organization such as a local automobile dealers association

or an auto manufacturer may intervene a decentralized transshipment system to coordinate the
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incentives of independent �rms.

There are several future research avenues. In our model of endogenous network formation, �rms

announce their partners simultaneously. One may consider sequential announcements. Modeling

repeated interactions and negotiations between �rms is an interesting dimension to investigate.

In addition to the concept of pairwise Nash stability we used in this paper, there also exist other

stability concepts such as stochastic or farsighted stability. Such concepts can be applied to analyze

the inventory transshipment problem in a richer setting. Besides the inventory transshipment

networks studied in this paper, one can potentially apply the theory of economic and social networks

to analyze the stability and formation of networks in various other operational problems. For

example, in a supply chain with disruption risks, over-connection in a network might be bene�cial

for �rms in terms of risk-hedging. This paper may serve as the �rst step to many such analyses.
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Appendix
Proof of Proposition 1: For a given network g, the value function v given in (6)-(9) is obtained

by solving a linear program. So, the cooperative transshipment game given a network g can be

viewed as the linear production game considered by Owen (1975). Moreover, this game can be

modeled as the market game of Shapley and Shubik (1975) in which players trade products with

each other. Then the result follows from Shapley and Shubik (1975) who have shown that the dual

price allocation is in the core of a market game. Q.E.D.

Remark: Essentially, this proof is the same as the proof of Theorem 4.1 in Anupindi et al. (2001)

because the linearity in (6)-(9) is preserved in our network setting.

Proof of Proposition 2: Consider the case when only one supply node exists in the network. The

proof for the case when only one demand node exists follows the same procedure. To prove that

the pair (gN ; 'MJW (gN )) is in the core of (N; v); it su¢ ces to show that (N; v) is convex (Jackson

2006). We prove that (N; v) is convex by showing that v(gjS00[fig)� v(gjS00) � v(gjS0[fig)� v(gjS0)
for any subsets S0 and S00 of N that satisfy S00 � S0 and any node i =2 S0 in each of the following
two cases: (Case 1) node i is the supply node, and (Case 2) node i is not the supply node.

(Case 1): If i is the supply node, then neither S0 nor S00 contains any supply nodes, so v(gN jS00) =
v(gN jS0) = 0: Thus, if v(gN jS0[fig) � v(gN jS00[fig); then v(gN jS0[fig) � v(gN jS0) � v(gN jS00[fig) �
v(gN jS00). To prove that v(gN jS0[fig) � v(gN jS00[fig), we de�ne f(gjS ; Y ) �

P
i2S
fai(

P
j2Bi(gjS)

Yji �P
j2Bi(gjS)

Yij)�
P

j2Bi(gjS)
Yij(tij+ui�uj)g; which is the objective function of the program given in (6).

Then, v(gN jS0[fig) = f(gN jS0[fig; Y g
N jS0[fig) � f(gN jS0[fig; Y g

N jS00[fig) = f(gN jS00[fig; Y g
N jS00[fig) =

v(gN jS00[fig) because:
- By the de�nition of optimal transshipment patterns; v(gN jS0[fig) = f(gN jS0[fig; Y g

N jS0[fig) and

v(gN jS00[fig) = f(gN jS00[fig; Y g
N jS00[fig);

- Since S00 � S0, the transshipment pattern Y g
N jS00[fig is feasible to the program (6)-(9) with g = gN

and S = S0 [ fig, so that f(gN jS0[fig; Y g
N jS00[fig) = f(gN jS00[fig; Y g

N jS00[fig);

- Because Y g
N jS0[fig is the optimal transshipment pattern among all the feasible transshipment

patterns given the network gN jS0[fig, f(gN jS0[fig; Y g
N jS0[fig) � f(gN jS0[fig; Y g

N jS00[fig).

(Case 2): Suppose j (6= i) is the supply node. There are three possibilities:
(a) If j =2 S0 (hence j =2 S00), then v(gN jS00[fig) = v(gN jS00) = v(gN jS0[fig) = v(gN jS0) = 0 because
S0 [ fig, S0, S00 [ fig, and S00 have no supply nodes.
(b) If j 2 S0 and j =2 S00, then v(gN jS0[fig) � v(gN jS0) � 0 = v(gN jS00[fig) � v(gN jS00), where the
inequality is due to the fact that S0[fig and S0 include the supply node j and

P
k2S0[fig

Ek �
P
k2S0

Ek,

and the equality is because S00 [ fig and S00 have no supply nodes.
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(c) If j 2 S00 (hence j 2 S0), v(gN jS0[fig)� v(gN jS0) = v(gN jS00[fig)� v(gN jS00) = (ri�uj � tminji )Ei;

where tminji is the minimum of the transportation costs from j to i among all possible paths. The

equations hold because S0[fig, S0, S00[fig, and S00 include the supply node j with Hj �
P

k2Nnfjg
Ek.

Q.E.D.

Remark: Suppose direct shipment incurs a minimum transportation cost among all paths between

every pair of two �rms and transshipment is always pro�table (i.e., r��u��t�� > 0 for all �; � 2 N).
Then, the necessary and su¢ cient condition for the convexity to hold is that there is only one supply

(resp., demand) node j with Hj �
P

k2Nnfjg
Ek (resp., Ej �

P
k2Nnfjg

Hk). Su¢ ciency is shown in the

proof of Proposition 2. In the following, we show the necessity in two steps.

First, we show that the convexity does not hold when multiple demand nodes and multiple

supply nodes exist in the complete network. We prove this by contradiction. Consider the complete

network gN with multiple demand nodes and multiple supply nodes. Without loss of generality,

suppose E1; E2; H3; and H4 are all positive. If the convexity holds, then v(gN jf1;2;3g[f4g) �
v(gN jf1;2;3g) � v(gN jf1;2g[f4g)�v(gN jf1;2g): This indicates that E1+E2 � H3+H4 because otherwise
there are more residual demands available within f1; 2g than within f1; 2; 3g (i.e., E1 + E2 >
E1 + E2 �H3) and v(gN jf1;2;3g[f4g)� v(gN jf1;2;3g) < v(gN jf1;2g[f4g)� v(gN jf1;2g): Similarly, since
v(gN jf2;3;4g[f1g)� v(gN jf2;3;4g) � v(gN jf3;4g[f1g)� v(gN jf3;4g), E1+E2 � H3+H4: To satisfy these
two inequalities simultaneously, E1 +E2 = H3 +H4. Further, since v(gN jf2;3g[f4g)� v(gN jf2;3g) �
v(gN jf2g[f4g) � v(gN jf2g), E2 � H3 + H4: Because E2 = H3 + H4 � E1 � H3 + H4 and E1 � 0;

E1 = 0; which contradicts our premise that E1 > 0.

Second, we show that, given there exists only one supply node j, the convexity does not hold

when Hj <
P

k2Nnfjg
Ek. (The case when only one demand node exists follows the same procedure,

and hence omitted.) We prove this by �nding S0 and S00 (� S0) that do not satisfy v(gjS00[fig) �
v(gjS00) � v(gjS0[fig) � v(gjS0). Since Hj <

P
k2Nnfjg

Ek; there exist S0 and S00 such that Hj �P
k2S0

Ek < Ei and Hj �
P
k2S00

Ek > 0 (S00 can be the empty set) for i =2 S0. Then, v(gN jS0[fig) �

v(gN jS0) = (ri�uj�tji)max(Hj�
P
k2S0

Ek; 0) and v(gN jS00[fig)�v(gN jS00) = (ri�uj�tji)min(Hj�P
k2S00

Ek; Ei) because direct shipment incurs a minimum transportation cost and transshipment is

always pro�table. Therefore, v(gN jS0[fig) � v(gN jS0) < v(gN jS00[fig) � v(gN jS00) because Hj �P
k2S0

Ek < Hj �
P
k2S00

Ek; Hj �
P
k2S0

Ek < Ei; Hj �
P
k2S00

Ek > 0 and Ei > 0:

Proof of Proposition 3: Consider the case when the hub is a supply node. (The proof for the case

when the hub is a demand node follows the same procedure.) Similar to the proof of Proposition 2,

we prove that the pair (gH ; 'MJW (gH)) is in the core by showing that v(gH jS00[fig)� v(gH jS00) �
v(gH jS0[fig)�v(gH jS0) for any subsets S0 and S00 of N that satisfy S00 � S0; and for any node i =2 S0.
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Figure 7: Line gL and its subnetwork gLjfik�e+1;:::;ik+hg:

We consider the following three cases: (Case 1) node i is the hub, (Case 2) node i is a supply node

but not the hub, and (Case 3) node i is a demand node.

(Case 1): The proof is similar to that in (Case 1) of Proposition 2 because, given i =2 S0; we have
Bk(g

H jS0) = ; 8k 2 S0 and Bk(gH jS00) = ; 8k 2 S00 so that v(gN jS00) = v(gN jS0) = 0.
(Case 2): Suppose j (6= i) is the hub. There are three possibilities:
(a) If j =2 S0 (hence j =2 S00), then v(gH jS00[fig) = v(gH jS00) = v(gH jS0[fig) = v(gH jS0) = 0 because
Bk(g

H jS0[fig) = ; 8k 2 S0 [ fig and Bk(gH jS00[fig) = ; 8k 2 S00 [ fig without the hub.
(b) If j 2 S0 and j =2 S00, then v(gH jS0[fig) � v(gH jS0) � 0 = v(gH jS00[fig) = v(gH jS00) where the
inequality is due to the fact that S0[fig and S0 include the hub, and the equality is because S00[fig
and S00 do not include the hub.

(c) If j 2 S00 (hence j 2 S0), v(gN jS0[fig) � v(gN jS0) = v(gN jS00[fig) � v(gN jS00) = 0 because Hi

generates zero value given Hj �
P

k2Nnfjg
Ek:

(Case 3): The proof is similar to the proof of (Case 2) of Proposition 2, in which the hub acts as

the supply node j which ships inventory to node i. Q.E.D.

Proof of Proposition 4: For su¢ ciency, we show that the pair (gL; 'MJW (gL)) is always in the

core, so any subnetwork of gL has no incentive to secede from gL under the MJW value. Clearly,

any subnetwork with no supply nodes or no demand nodes has no incentive to secede because

they generate no pro�t. Thus, in the rest of the proof, we consider subnetworks that contain at

least one supply node and one demand node. Without loss of generality, consider the subnetwork

gLjfik�e+1;:::;ik+hg of the line gL shown in Figure 7. Note that gL contains k �rms with Eij = 0 for
j = 1; 2; :::; k, and (n � k) �rms with Hij = 0 for j = k + 1; k + 2; :::; n, while gLjfik�e+1;:::;ik+hg
contains e (� k) �rms with Eij = 0 for j = k � e+ 1; :::; k; and h (� n� k) �rms with Hij = 0 for
j = k + 1; :::; k + h; where e = 1; 2; :::; k; and h = 1; 2; :::; n� k:

To prove that gLjfik�e+1;:::;ik+hg has no incentive to secede from gL; we show that the allocations
to the �rms in gLjfik�e+1;:::;ik+hg are non-decreasing when an outside �rm is added to this subnet-

work. Consider adding �rm ik�e with no residual demand to this subnetwork. (The proof for
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adding a �rm with no residual supply is similar, and hence omitted.) If Hik�e = 0; the allocations

are unchanged, so we focus on the case when Hik�e > 0. First, consider the allocations to �rm

ij for j = k � e + 1; :::; k. We shall show that, when ik�e is added, the marginal contributions of
�rm ij are non-decreasing in all the orderings of the �rms in gLjfik�e;ik�e+1;:::;ik+hg. Without loss
of generality, consider two orderings before and after �rm ik�e is added: (1) ordering fi

0
1; :::; i

0
e+hg,

and (2) ordering fi001 ; :::; i00�; :::; i
00
e+h+1g with i

00
� = ik�e; i

00
j = i

0
j for j < �; and i

00
j = i

0
j�1 for j >

�; i.e., � (� e + h + 1) is the position of �rm ik�e in the second ordering and the two orderings

have the same sequence of �rms except ik�e. Suppose the positions of �rm ij ; whose allocations

are under consideration, in the two orderings are �1 and �2; respectively. We can de�ne the sets of

�rms before �rm ij in the two orderings, respectively, S
0
= fi01; :::; i

0
�1�1g and S

00
= fi001 ; :::; i

00
�2�1g.

If ik�e =2 S
00
; then we have S

0
= S

00
; so v(gLjS0[fijg) � v(gLjS0) = v(gLjS00[fijg) � v(gLjS00): If

ik�e 2 S
00
; it can be shown that v(gLjS0) = v(gLjS00) because �rm ik�e is not connected to any

demand node without ij : Furthermore, we have v(gLjS00[fijg) � v(gLjS0[fijg) because more resid-
ual supplies are available within the subnetwork after �rm ik�e is added. Therefore, we obtain

v(gLjS00[fijg)� v(gLjS00) � v(gLjS0[fijg)� v(gLjS0): Second, it can be shown in a similar way that,
when ik�e is added, the allocations to ij for j = k + 1; :::; k + h are non-decreasing as well. As a

result, no subnetwork in gL has an incentive to secede.

For necessity, we show that if the pair (g; 'MJW (g)) is in the core for any residual amounts

(and thus for any numbers of supply and demand nodes), network g must be the line gL. We

conduct the proof by showing the following two properties must hold for the network g such that

the pair (g; 'MJW (g)) is in the core for any residual amounts: (Property 1) every demand (resp.,

supply) node has at most one link to supply (resp., demand) nodes, and (Property 2) every �rm

has at most two links. Then, the only network structure that satis�es these two properties for any

residual amounts and any numbers of supply and demand nodes is the line.

First, we show that if g does not satisfy Property 1, then (g; 'MJW (g)) is not always in the core

for any residual amounts. For this proof, it su¢ ces to �nd a network g having a demand node with

more than one link to supply nodes, and show that a subnetwork of g has an incentive to secede

from g for certain quantities of residual supplies and demands. Consider g that contains �rm 1

with E1 = 1 and B1(g) > 1, and (n� 1) �rms with residual supplies. Let �rm 2 denote a �rm with

the minimum value of ui + ti1 among all i 2 B1(g), and assume H2 = 1: The pro�t generated by
transshipment is v(g) = r1�u2� t21: If there exists any other �rm i 2 B1(g) such that Hi > 0 and
r1�ui� ti1 > 0; it receives a strictly positive allocation based on the MJW value according to (10)

because �rm i makes a positive marginal contribution to g. Then the sum of allocations to �rms 1

and 2 is strictly less than r1 � u2 � t21 because the presence of another supply node i reduces the
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Figure 8: Subnetworks that have incentives to secede from the network g.

marginal contribution of �rm 2. On the other hand, if �rms 1 and 2 secede, they can generate a

pro�t of r1 � u2 � t21 which is larger than the allocations they receive in the initial network g.
Second, similarly to Property 1, we show that if g does not satisfy Property 2, then (g; 'MJW (g))

is not always in the core for any residual amounts. As in the proof for Property 1, consider �rm

1 with E1 = 1 and (n � 1) �rms with residual supplies. Given �rm 1 is only linked to �rm 2 to

prevent any subnetwork from seceding from g; we show that there exists at most one �rm i with

Hi > 0 linked to �rm 2; otherwise, there exists a subnetwork which has an incentive to secede.

As shown in Figure 8(a), denote the �rm i 2 B2(g) in the network g with the minimum value

of ui + ti2 as �rm 3. Set H2 = 0:5 and H3 = 0:5. Then the pro�t generated by transshipment

is v(g) = r1 � 0:5u2 � t21 � 0:5u3 � 0:5t32: If there exists any other �rm i 2 B2(g) such that

Hi > 0 and r1 � ui � ti2 � t21 > 0; it receives strictly positive allocation based on the MJW value,

e.g. �rm 4. On the other hand, if �rms 1; 2 and 3 secede, they can still generate a pro�t of

r1 � 0:5u2 � t21 � 0:5u3 � 0:5t32 which is greater than the allocations they receive in the initial
network g. Next, we consider the subnetwork in Figure 8(b) to show that, other than �rm 2; there

exists at most one �rm i with Hi > 0 which is linked to �rm 3. We denote �rm 4 as the �rm

with the minimum value of ui + ti3 for i 2 B3(g) in the network g. Set H2 = 0:5, H3 = 0:25 and
H4 = 0:25. By the same argument as above, we know �rms 1; 2; 3 and 4 have an incentive to secede

if �rm 5 is also linked to �rm 3. Repeating the same procedure for �rms 4; :::; n, we can show that

network g must be a line if the pair (g; 'MJW (g)) is always in the core. Q.E.D.

Remark: The chain does not satisfy Property 1 while it satis�es Property 2, because, in the case

with only one demand (resp., supply) node, the demand (resp., supply) node is linked to two supply

(resp., demand) nodes in the chain.

Proof of Corollary 1: First, since 'MJW
i (gC) � v(gC) � v(gC jNnfig) 8i 2 N; we know that any

subnetworks with n�1 �rms have no incentive to secede from gC . Next, similar to the proof of the

su¢ ciency of Proposition 4, we consider a subnetwork of gC with less than n�1 �rms and show that
the allocations to the �rms in this subnetwork are non-decreasing when an outside �rm is added.
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Figure 9: Chain gC and its subnetwork gC jfi1;:::;ik+h1 ;in�h2+1;:::;ing:

For the subnetworks in which all the demand nodes are on one side and all the supply nodes are on

the other side, the proof is the same as that for the line. Without loss of generality, we consider the

subnetwork gC jfi1;:::;ik+h1 ;in�h2+1;:::;ing of the chain g
C shown in Figure 9. Note that gC contains k

�rms with Eij = 0 for j = 1; 2; :::; k, and (n� k) �rms with Hij = 0 for j = k+1; k+2; :::; n, while
gC jfi1;:::;ik+h1 ;in�h2+1;:::;ing contains k �rms with Eij = 0 for j = 1; 2; :::; k; and h1+h2 (� n� k� 2)
�rms with Hij = 0 for j = k+1; :::; k+h1 and j = n�h2+1; :::; n where h1+h2 = 2; 3; :::; n�k�2:

Consider adding �rm in�h2 to this subnetwork. If Ein�h2 = 0; the allocations are unchanged, so

we focus on the case when Ein�h2 > 0. Adding residual demands does not reduce the marginal values

of residual supplies and in�h2 is not connected to any supply node without ij for j = n�h2+1; :::; n:
Thus, it can be shown in the same way as the proof of Proposition 4 that the allocations to �rm ij for

j = 1; :::; k and j = n�h2+1; :::; n are non-decreasing when in�h2 is added. In the rest of this proof,
we show that the marginal contributions of �rm ij for j = k + 1; :::; k + h1 are also non-decreasing

in all the orderings of the �rms in gC jfi1;:::;ik+h1 ;in�h2+1;:::;ing. Without loss of generality, consider
two orderings before and after �rm in�h2 is added with the sequence of other �rms being the same:

(1) ordering fi01; :::; i
0
k+h1+h2

g, and (2) ordering fi001 ; :::; i00�; :::; i
00
k+h1+h2+1

g with i00� = in�h2 ; i
00
j = i

0
j

for j < �; and i
00
j = i

0
j�1 for j > �. Suppose the positions of �rm ij ; whose allocations are under

consideration, in the two orderings are �1 and �2; respectively:We can de�ne the sets of �rms before

�rm ij in the two orderings, respectively, S
0
= fi01; :::; i

0
�1�1g and S

00
= fi001 ; :::; i

00
�2�1g. If in�h2 =2 S

00
;

then we have S
0
= S

00
; so v(gC jS0[fijg) � v(gC jS0) = v(gC jS00[fijg) � v(gC jS00): If in�h2 2 S00 and

there exists im =2 S00 for m = 1; :::; k; then v(gC jS0[fijg) � v(gC jS0) = v(gC jAij[fijg) � v(g
C jAij ) =

v(gC jS00[fijg) � v(gC jS00) where Aij is the set of �rms that are directly or indirectly connected
to ij in gC jS0[fijg: The �rst equality holds because the marginal value of ij depends only on the
�rms it is connected to. The second equality holds because ij and in�h2 are not connected in

gC jS00[fijg: Finally, if in�h2 2 S
00
and im 2 S00 8 m = 1; :::; k; then v(gC jS00[fijg) � v(gC jS00) =
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v(gC jS0[fijg) � v(gC jS0) because
P
i2N
Hi =

P
i2N
Ei: Therefore, no subnetwork of gC has an incentive

to secede from gC . Q.E.D.

Proof of Proposition 5: Similar to the proof of Proposition 2, we can show that v(g + ijjS) �
v(gjS) � 0 for all S � N:When v(g+ijjS)�v(gjS) = 0 for all S � N; 'MJW

k (g+ij)�'MJW
k (g) = 0

for all k 2 N due to (10). Therefore,
P
k2S
'MJW
k (g+ij) =

P
k2S
'MJW
k (g) � v(gjS) = v(g+ijjS); where

the inequality holds because the pair (g; 'MJW (g)) is in the core. When v(g + ijjS) � v(gjS) >
0,
P
k2S
'MJW
k (g + ij) � v(g + ijjS) �

P
k2S
'MJW
k (g) � v(gjS) � 0 because v(g + ijjS) � v(gjS) �P

k2S
f'MJW

k (g + ij)� 'MJW
k (g)g: Therefore, the pair (g + ij; 'MJW (g + ij)) is in the core. Q.E.D.

Proof of Proposition 6: First, we prove that the complete network is pairwise Nash stable

under the MJW value by showing that any �rms i and j have no incentives to sever link ij in the

complete network. Consider ordering fi1; i2; :::; i�; :::; ing used to calculate the MJW value with

i� = i and �rm j can be anywhere in this ordering. De�ne set S0 = fi1; i2; :::; i��1g, i.e. the
set of �rms before �rm i in this ordering. Then we have v(gN jS0) � v(gN � ijjS0) = 0 because

S0 does not contain �rm i: Also, v(gN jS0[fig) � v(gN � ijjS0[fig) � 0 because gN jS0[fig has one
more link than gN � ijjS0[fig. With di¤erent orderings, S0 can be any subset of Nnfig. Therefore,
from the de�nition of the MJW value given in (10), we obtain 'MJW

i (gN ) � 'MJW
i (gN � ij) =P

S0�Nnfig
�
v(gN jS0[fig)� v(gN � ijjS0[fig)

	n#S0!(n�#S0�1)!
n!

o
� 0: The same argument holds for

�rm j, so the complete network is pairwise Nash stable under the MJW value.

Second, we show that no �rm would �nd it weakly pro�table to sever link ij in the com-

plete network if there exists S � N such that the transshipment problem within S given in

(6)-(9) has a unique optimal transshipment pattern Y g
N jS with Y g

N jS
ij > 0. Consider the or-

dering fi1; i2; :::; i�; :::; ing with i� = i and the set S0 = fi1; :::; i��1g. When S0 = S; we have

v(gN jS0[fig) � v(gN � ijjS0[fig) > 0 because Y
gN jS
ij > 0 implies that link ij is used for transship-

ment in gN but cannot be used in gN � ij: Thus, we obtain the following inequalities 'MJW
i (gN )�

'MJW
i (gN�ij) �

�
v(gN jS[fig)� v(gN � ijjS[fig)

	n#S!(n�#S�1)!
n!

o
> 0, in which the �rst inequal-

ity follows from the �rst part of the proof that shows v(gN jS0[fig) � v(gN � ijjS0[fig) � 0 for any
S0 � Nnfig: The same argument holds for �rm j:

Finally, we show that no �rm would �nd it weakly pro�table to sever such link ij in any network

derived from the complete network. Consider the network gN � i0j0 derived from the complete

network gN by removing link i0j0 such that 'MJW
i0 (gN ) � 'MJW

i0 (gN � i0j0) and 'MJW
j0 (gN ) �

'MJW
j0 (gN � i0j0) according to the de�nition of the networks derived from the complete network.

From the second part of the proof, we know Y g
N�i0j0jS = Y g

N jS for any S � N because otherwise

'MJW
i0 (gN ) > 'MJW

i0 (gN � i0j0) and 'MJW
j0 (gN ) > 'MJW

j0 (gN � i0j0). Using the same argument
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as in the second part of the proof, we can prove that no �rm would �nd it weakly pro�table to

sever link ij in the network gN � i0j0 if the transshipment problem within S given in (6)-(9) has a

unique optimal transshipment pattern Y g
N jS with Y g

N jS
ij > 0 for some S � N . We can repeat this

procedure (for example, consider the network derived from the complete network gN � i0j0 � i00j00

with 'MJW
i00 (gN � i0j0) � 'MJW

i00 (gN � i0j0� i00j00) and 'MJW
j00 (gN � i0j0) � 'MJW

j00 (gN � i0j0� i00j00)),
and show that any pairwise Nash stable network g derived from the complete network contains

such ij. Q.E.D.

Proof of Proposition 7: First, we prove that, with small link cost, any pairwise Nash stable

network derived from the complete network contains link ij such that the transshipment problem

within S given in (6)-(9) has a unique optimal transshipment pattern Y g
N jS with Y g

N jS
ij > 0. For

such ij, we know from the proof of Proposition 6 that 'MJW
i (gN ) � 'MJW

i (gN � ij) > 0. Let l

(> 0) denote the minimum of 'MJW
i (gN )�'MJW

i (gN � ij) > 0 among all such ij: Then, for any ij
that satis�es the above condition and lij < l, we have 'MJW

i (gN )�'MJW
i (gN � ij)� lij > 0. Next,

we show that no �rm would �nd it weakly pro�table to sever such link ij in any network derived

from the complete network. Consider the network gN � i0j0 derived from the complete network

gN by removing link i0j0 such that 'MJW
i0 (gN ) � li0j0 � 'MJW

i0 (gN � i0j0) and 'MJW
j0 (gN ) � lj0i0 �

'MJW
j0 (gN � i0j0): By the same argument as in the proof of Proposition 6: Y gN�i0j0jS = Y g

N jS

for any S � N; and we can obtain 'MJW
i (gN � i0j0) � 'MJW

i (gN � i0j0 � ij) � lij > 0 and

'MJW
j (gN�i0j0)�'MJW

j (gN�i0j0�ij)�lji > 0:We can repeat this procedure (for example, consider
the network derived from the complete network gN � i0j0 � i00j00 with 'MJW

i00 (gN � i0j0) � li00j00 �
'MJW
i00 (gN � i0j0 � i00j00) and 'MJW

j00 (gN � i0j0) � lj00i00 � 'MJW
j00 (gN � i0j0 � i00j00)), and show that

'MJW
i (g)� 'MJW

i (g � ij)� lij > 0 for any network g derived from the complete network.

Second, we show the existence of the subnetwork g� stated in the proposition. From the premise

of the proposition, the centralized transshipment problem has a unique optimal transshipment

pattern Y g
N
with Y g

N

ij = 0 and Y g
N

ji = 0: Suppose that there is no link cost. Since link ij is not

used in this problem, there exists an e¢ cient network g� such that ij =2 g� and v(g�) = v(gN ).

This network g� is a subnetwork of the pairwise Nash stable networks derived from the complete

network because any pairwise Nash stable network derived from the complete network contains

the links that are used in the centralized transshipment problem. Because lij > 0 or lji > 0, any

pairwise Nash stable networks under the MJW value that contain ij are dominated by g�. Q.E.D.

Proof of Corollary 2: Under 'FB(g); the expected pro�t of �rm i from both stages is �i �
ED[�(g;X;D)]. Since �i is a constant, the best-response functions of all the �rms coincide with

the �rst-order conditions in the centralized system. Q.E.D.
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Proof of Corollary 3: Under 'FB(g); the ex-post pro�t of �rm i generated from both stages is

�i � �(g;X;D) = �if
P
i2N
(riminfXi;Dig + uiHi � ciXi �

P
j2Bi(g)

lij) + CTP (g;X;D)g. Since �i is a

constant, for given inventory pro�le X and demand pro�le D; the objective of �rm i is to maximize

CTP (g;X;D) +
P
i2N
(�

P
j2Bi(g)

lij) = v(g)�
P
ij2g

(lij + lji) in the partnership announcement subgame.

Therefore, the e¢ cient network g�; which maximizes v(g) �
P
ij2g

(lij + lji); is pairwise Nash stable

because there is no pro�table deviation for any �rm. The rest of the proof is similar to the proof

of Corollary 2. Q.E.D.

Computing the MJW value in Table 1: In the following, we show how we have obtained the

allocation to �rm 1 in Table 1 based on the MJW value in g0 = f12; 23g under Scenario 1. The
rest of the allocations presented in Table 1 can be calculated by following the same procedure.

Consider the following 6 orderings of the three �rms: (1) f1; 2; 3g, (2) f1; 3; 2g, (3) f2; 1; 3g, (4)
f3; 1; 2g, (5) f2; 3; 1g, and (6) f3; 2; 1g. The marginal values of �rm 1 are all zero in the orderings

(1)-(3), i.e., v(g0jS[f1g) � v(g0jS) = 0; where S is the set of �rms before �rm 1 in the orderings.

This is because there exists no �rm with residual supplies in S, so E1 generates no value. In the

ordering (4), the marginal value of �rm 1 is also zero because �rms 1 and 3 are not connected

with each other without �rm 2. In the ordering (5), v(g0jf2;3g[f1g) = E1 + E2 and v(g0jf2;3g) = E2
because H3 � E1 + E2: So the marginal value of �rm 1 is E1: Similarly, in the ordering (6), the

marginal value of �rm 1 is E1: Therefore, the allocation to �rm 1 under the MJW value is the

average marginal value, (E1 + E1)=6 = E1=3:
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Abstract: Counterfeit goods are becoming more sophisticated from shoes to infant milk powder and

aircraft parts, creating problems for consumers, �rms, and governments. By comparing two types

of counterfeiters - deceptive, so in�ltrating a licit (but complicit) distributor, or non-deceptive in an

illicit channel, we provide insights into the impact of anti-counterfeiting strategies on a brand-name

company, a counterfeiter, and consumers. Our analysis highlights that the e¤ectiveness of these

strategies depends critically on whether a brand-name company faces a non-deceptive or decep-

tive counterfeiter. For example, by improving quality, the brand-name company can improve her

expected pro�t against a non-deceptive counterfeiter when the counterfeiter steals an insigni�cant

amount of brand value. However, the same strategy does not work against the deceptive counter-

feiter who can get a free ride on the improved quality. Reducing price works well in combating the

non-deceptive counterfeiter, but it could be ine¤ective against the deceptive counterfeiter. More-

over, the strategies that improve the pro�t of the brand-name company may bene�t the counterfeiter

inadvertently and even hurt consumer welfare. Therefore, �rms and governments should carefully

consider a trade-o¤ among di¤erent objectives in implementing an anti-counterfeiting strategy.

Key words: intellectual property, illegal operations, supply chain management

1 Introduction

Trademarks, also called brands, represent the most valuable assets of many �rms, requiring signi�-

cant investment in research and development as well as years of e¤orts in maintaining high product

quality and careful brand management. Famous global brands such as GE, Nike and Nestlé are

popular because they o¤er a guarantee of quality, which is vital to consumers when they make

purchasing decisions. For those goods for which the mere display of a particular brand confers

prestige on their owners, such as luxury watches and fashion apparel, many consumers purchase

branded goods to demonstrate that they are consumers of the particular good. These intrinsic

values of trademarks create incentives for counterfeiting.

Nowadays counterfeits have developed into a substantial threat to many industries. The OECD

estimates that international trade in counterfeit could amount to up to $250 billion or 1.95%

of world trade in 2007, up from $105 billion in 2001 (OECD 2009). If including domestically

produced and consumed products, the total magnitude could be several hundred billion dollars

more (OECD 2008). The problem is no longer limited to prestigious and easy-to-manufacture

products, such as designer clothing, branded sportswear, and fashion accessories. It a¤ects nearly
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all product categories including items that have an impact on personal health and safety such as

pharmaceuticals, food, drink, toys, medical equipment, and automotive parts (OECD 2008).

Counterfeits are broadly categorized into two types: non-deceptive and deceptive (Grossman

and Shapiro 1988a). A non-deceptive counterfeit is the counterfeit a consumer can distinguish

from the brand-name product at time of purchase. This type of counterfeits tends to be sold at

a substantial discount through an unauthorized sales channel. For example, consumers can easily

tell that $10 luxury watches sold by street vendors are counterfeit. On the contrary, a deceptive

counterfeit is the counterfeit a consumer believes to be authentic at time of purchase even if it is,

in fact, counterfeit. In order to deceive consumers, this type of counterfeit goods has to in�ltrate

licit supply chains; for example, fake auto parts were found in legitimate repair shops, counterfeit

pharmaceutical products at chemists, food products on supermarket shelves (OECD 2008), and

pirated software products sold by one of the largest re-sellers (Bass 2010). Solomon (2009) notes

that counterfeit drugs make their way through the licit supply chain via a distributor who moves a

product from a low-cost channel to a high-cost channel. Collusion between counterfeiters and licit

supply chain members occurs due to a higher pro�t from selling counterfeits (Green and Smith 2002,

Bass 2010). A deceptive counterfeit is usually sold at the price that is the same as or close to that of

its branded product so as to deceive consumers. Although it appears to function properly at time

of purchase, it lacks durability and often involves health and safety risks of consumers. Examples

of deceptive counterfeits abound in both developing and developed countries. In China, after the

luxury furniture sold by the licit retailer turned out to be deceptive counterfeits, customers (who

were previously deceived) have posted details of how their products were shoddily made or reeking

of foul-smelling lacquers (Barboza 2011). In the U.S., a licit distributor who bought counterfeit

networking cards for $25 each sold them to the Marine Corps for $625 each after repackaging the

cards to make them appear to be Cisco products (McKinley 2010); and a number of physicians

bought a fake version of cancer drug Avastin for $1,995 per 400-milligram vial from a Canadian

company (cheaper than $2,400 of authentic Avastin), and billed patients the full list price (Weaver

2012, Weaver et al. 2012).

Brand-name companies are spending millions of dollars in order to stop or at least to reduce the

incidence of counterfeits. They hire full-time employees, invest in new technologies, and redesign

their products to make counterfeiting more di¢ cult (Balfour 2005). However, the anti-counterfeiting

strategies found to be useful to one product may not work for another or can even unintentionally

make counterfeits �ourish more in the market. For example, Chinese shoe manufacturers success-

fully addressed their counterfeiting issues by improving the quality of their products (Qian 2008).

This is the outcome of the competition in which high-quality authentic products defeat low-quality
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non-deceptive counterfeits. However, the same strategy back�red against a Scotch whisky company

in the Thailand market (Green and Smith 2002). At the peak of the company�s sales in 1988, 42%

of its premium Scotch whisky sales was counterfeit; high quality made the products more popular

and attracted more counterfeits. In this case, the counterfeits were sold as the genuine products

and commanding the same price, i.e., sold as deceptive counterfeits. After the initial attempt to

�ght counterfeits by improving quality had failed, the company eventually succeeded in radically

reducing the incidence of counterfeiting by establishing a system that monitors supply chains: the

company focused on identifying members in its supply chain who were selling the counterfeits,

facilitating seizure of counterfeits and punishing counterfeiters.

These contrasting results illustrate a need for anti-counterfeiting strategies that are tailored

to speci�c products. Yet, due to the limited understanding of relations among the types of coun-

terfeits and the e¤ectiveness of anti-counterfeiting strategies, OECD (2008) calls for research that

strengthens the analysis of counterfeiting and says:

�Assessing the factors driving production and consumption of counterfeit and pirated products can

generate insights into the types of products that are most likely to be infringed, . . . , and lead to

more e¢ cient and e¤ective [anti-counterfeiting] strategies.�

This paper attempts to provide such an analysis by providing insights to the following questions:

(Q1) What anti-counterfeiting strategies should a brand-name company use to improve her own

pro�t? (Q2) What is the impact of anti-counterfeiting strategies on the pro�t of a counterfeiter?

(Q3) What is the impact of counterfeits on consumer welfare? Do consumers also bene�t from the

strategies that are e¤ective in combating counterfeits?

To answer these questions, we develop a normative model of licit and illicit supply chains, in

which a brand-name company competes with her potential counterfeiter. The counterfeiter in our

model is either non-deceptive or deceptive, and decides the level of functional quality and wholesale

price of his goods after observing the quality and price of the brand-name product. Depending on

his type, the counterfeiter faces di¤erent opportunities and risks. The non-deceptive counterfeiter

competes directly with a brand-name company for price and quality. Thus the counterfeiter may

have to invest in improving the quality of his goods, which will increase the risk of losing the

investment in case of getting caught by the authorities. Conversely, the deceptive counterfeiter may

not need to invest as much in improving the quality as non-deceptive counterfeits (as long as he

can deceive consumers successfully at time of purchase), but he has to in�ltrate a licit supply chain

via a legitimate distributor who sources both brand-name and counterfeit products. The legitimate

distributor then faces a trade-o¤ between a greater pro�t margin and a risk of getting punished for

selling counterfeits.
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After �nding the equilibrium decisions of the counterfeiter and the distributor, we evaluate

the following anti-counterfeiting strategies of which the e¤ectiveness depends on the subsequent

reaction of the strategic counterfeiter: (i) quality strategy that alters the quality of brand-name

products against a counterfeiter, (ii) pricing strategy that alters the price of brand-name products

against a counterfeiter, (iii) marketing campaign that educates consumers about the dangers of

counterfeits, and (iv) enforcement strategy that increases the chances to seize the production of

counterfeits. Our analysis highlights that the optimal strategy of the brand-name company di¤ers

depending on whether she faces the non-deceptive or deceptive counterfeiter. Although it is ideal to

see the strategies that increase the pro�t of the brand-name company be also e¤ective in reducing

the pro�t of the counterfeiter and bene�t consumers, our analysis shows that this is not the case

for most strategies. It is therefore imperative for industries and governments to understand the

type of potential counterfeiters and to carefully consider a trade-o¤ among di¤erent objectives in

implementing an anti-counterfeiting strategy.

2 Literature Review

Traditional supply chain management research is focused on licit supply chains in which members

of supply chains interact with each other by exchanging goods and services legally. In this era of

globalization, supply chains are no longer con�ned within one country as more and more companies

o¤shore and outsource their operations to less developed countries. However, this has created a

frightening phenomenon: an ever-rising �ood of counterfeit items coming into markets (Business

Week 2005). This paper is intended to shed light on counterfeit problems in both licit and illicit

supply chains and to analyze the e¤ectiveness of anti-counterfeiting strategies.

The majority of studies on counterfeits are conceptual and descriptive. They provide frame-

works for �ghting counterfeiting usually based on case studies. For example, Olsen and Granzin

(1992) emphasize the importance of dealers�cooperation for a manufacturer to implement a pro-

gram to combat counterfeits. Jacobs et al. (2001) investigate a number of counterfeiting incidences,

and propose various measures of �ghting these illegal activities. Staake and Fleisch (2008) provide

an extensive review of this literature.

Marketing researchers have conducted empirical studies on counterfeits. They mainly focus

on the demand side of counterfeits, and try to answer questions such as why consumers purchase

counterfeits and how to educate consumers not to purchase counterfeits. Eisend and Schuchert-

Guler (2006) review this literature and conclude that further investigation is needed to develop

a general framework that integrates the existing results consistently. Recently, using data from
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Chinese shoe companies, Qian (2008) �nds that brand-name companies tend to improve their

product quality after the entry of non-deceptive counterfeiters.

There are only a handful of analytical studies that present prescriptive models of counterfeits.

Grossman and Shapiro (1988a, 1988b) develop equilibrium models of trades between brand-name

�rms in a home country and low-quality producers in a foreign country. To sell their goods as

counterfeits in the home market, foreign producers must pass the goods through the home-country

border, hence facing the risk of con�scation. Grossman and Shapiro (1988a) analyze the conse-

quences of deceptive counterfeits in a market where consumers cannot observe the quality of a

product, and provide a welfare analysis of border inspection policy. Grossman and Shapiro (1988b)

present a Cournot competition model between brand-name products and non-deceptive counterfeits

given their exogenous quality levels. Because non-deceptive counterfeits can contribute positively

to consumer welfare due to their lower price, the authors conclude that policies that discourage

foreign counterfeiting need not improve welfare, which is consistent with our �nding. Scandizzo

(2001) views competition between brand-name �rms and non-deceptive counterfeiters as a patent

race over time. The author �nds that counterfeits improve consumer welfare while reducing �rms�

pro�ts, and that the more skewed the income distribution within the economy is towards the poor,

the greater the welfare e¤ect and the smaller the pro�t e¤ect.

There have been growing interests in counterfeit research among operations researchers. Liu et

al. (2005) study the decision of an inventory manager who can source both genuine and deceptive

counterfeit products and sell them to consumers at one price. Sun et al. (2010) study a global

�rm�s decision of outsourcing the production of its components to a foreign country. The �rm faces

a trade-o¤ between lower labor cost and increased risk of imitation by a foreign �rm. The authors

�nd an optimal strategy in choosing the range of components to transfer. Zhang et al. (2012)

analyze the case when a brand-name �rm faces non-deceptive counterfeits. They show that a non-

deceptive counterfeit lowers the price and pro�t of the brand-name product, and a brand-name �rm

has more incentive to improve her own quality rather than reducing that of a counterfeit. They

also analyze a situation in which two brand-name products compete, which we do not consider in

this paper.

We draw on and contribute to this stream of research by addressing the following important

issues in counterfeiting problems:

(1) Strategic counterfeiters: The common assumption used in the literature is that the quality is

�xed a priori. For example, Grossman and Shapiro (1988a, 1988b) assume that foreign producers

always choose the lowest quality because they lack capital, resource, and technology for quality

improvement and that there are no entry costs of counterfeiters. Today, thanks to outsourcing
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and o¤shoring of numerous global �rms, counterfeiters bene�t greatly from increasingly easy access

to modern production facilities (Staake and Fleisch 2008). Schmidle (2010) notes that today�s

counterfeiters come in varying levels of quality depending on their intended markets, and diversify

their products and distribution channels to manage the risks involved in their criminal activities.

In our model, a counterfeiter decides functional quality and wholesale price of his products by

considering a trade-o¤ between the bene�t from stealing brand value and the risk of con�scation.

Our analysis shows that the e¤ectiveness of anti-counterfeiting strategies depends critically on the

strategic response of a counterfeiter to those strategies.

(2) Licit and illicit supply chains: The previous analytical papers assume that a counterfeiter

is capable of selling his counterfeits directly to consumers regardless of his type. Although this

is quite possible for non-deceptive counterfeits, a deceptive counterfeiter has to in�ltrate a licit

supply chain; today, very few consumers would be deceived by the counterfeits sold by street

vendors or unknown websites. We take into account this fundamental di¤erence in supply chains

of non-deceptive and deceptive counterfeits, and demonstrate that an e¤ective strategy against a

non-deceptive counterfeiter may not be e¤ective against a deceptive counterfeiter.

(3) Consumer characteristics: As consumers learn more about counterfeit problems from the media,

they become more aware of the presence of counterfeits, and some even become more proactive

by taking into account the likelihood of receiving deceptive counterfeits unknowingly when they

purchase branded products from licit distributors. Our survey (of which the details are presented

in §3) indicates that the proportion of proactive consumers in the U.S. is substantially lower than

that in China. Our analysis provides insights into how this characteristic of consumers a¤ects the

e¤ectiveness of anti-counterfeiting strategies.

(4) Evaluation of anti-counterfeiting strategies: We evaluate the aforementioned strategies by ex-

amining their impacts on a brand-name company, a counterfeiter, and consumers. Our analysis

complements the previous �ndings (discussed above) of Grossman and Shapiro (1988a, 1988b) and

Zhang et al. (2012). Grossman and Shapiro (1988a, 1988b) provide welfare analyses of border

inspection policies, which are similar to the enforcement policies we study. Today, however, the

con�scation of counterfeits not only occurs on the border when trading goods between countries but

also occurs within each country due to the growing demand within its domestic market; in addition,

the seizure of equipment is another threat to counterfeiters (Staake and Fleisch 2008). For exam-

ple, the Chinese authorities, long unconcerned about counterfeiting, have begun to take actions

as Chinese companies create their own intellectual properties (Business Week 2005). Zhang et al.

(2012) focus on analyzing the e¤ect of altering the quality of a brand-name good or a non-deceptive

counterfeit on the pro�t of a brand-name �rm. In doing so, they consider neither potential seizure
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of counterfeits and equipment, nor welfare implication of those strategies.

Finally, we note that a counterfeiter�s decision of his distribution channel is analogous to that of

a legitimate �rm (e.g., Xu et al. 2010), although the bene�t and risk associated with each channel of

counterfeits are unique as described above. Also, a research question similar to counterfeiting arises

in the literature of parallel importing (or gray market) and software piracy. Parallel importing is the

practice of purchasing products in a lower-priced region and shipping them to a higher priced region

(e.g., Ahmadi and Yang 2000, Hu et al. 2011). While the parallel imported goods are authentic

but sold at a lower price, counterfeits are not authentic, possess lower quality, and are sold at a

lower price for non-deceptive counterfeits or at the same price for deceptive counterfeits. Piracy

di¤ers from counterfeiting in that piracy refers to infringement of copyright. In our model, software

piracy can be viewed as a special case of counterfeiting, in which counterfeit products have almost

the same functional quality as authentic ones but their cost of development and production is very

low. Some of our results can be extended to software piracy problems; for example, consumers

could be better o¤ without piracy protection, which is consistent with Conner and Rumelt (1991).

In summary, the literature considers only one type of counterfeits with �xed quality that are sold

directly to consumers. In contrast, our model captures recent changes in counterfeiting supply and

demand by noting the fundamental di¤erences between non-deceptive and deceptive counterfeits

in consumers� awareness and distribution channels, and by considering counterfeiters� strategic

decisions regarding price and functional quality in a market with di¤erent consumer characteristics.

Our analysis provides novel insights into the e¤ectiveness of several anti-counterfeiting strategies.

3 Model

We consider a market served by a brand-name company (�she�) and her potential counterfeiter

(�he�). The type of the counterfeiter is either non-deceptive or deceptive. We use subscript i = B

to denote the brand-name product, i = N to denote the non-deceptive counterfeit, and i = D

to denote the deceptive counterfeit. A consumer in this market purchases at most one unit of a

product. In making a purchasing decision of product i, a consumer considers his/her utility ui =

��i � pi, where � represents his/her taste, �i represents the quality of the product a consumer
perceives at time of purchase, and pi represents the retail price of the product. All consumers

prefer high quality for a given price, but a consumer with a higher � is more willing to pay to

obtain a high-quality product. We assume that � is uniformly distributed over [0; 1] and that the

size of the market is one. A consumer purchases a product only if the utility from purchasing the

product is nonnegative in which case he/she selects a product that provides the highest utility. This
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is the standard vertical di¤erentiation model, which is also used by Qian (2008) and Zhang et al.

(2012). We next present our model components that capture the unique aspects of counterfeiting.

Depending on the counterfeit type, the quality of product i a consumer perceives at time of pur-

chase, �i, may di¤er from its real quality qi. (Throughout this paper, unless mentioned speci�cally

as the perceived quality, quality refers to real quality.) For the non-deceptive counterfeit as well

as the brand-name product, consumers know what product they are purchasing, so the perceived

quality of either product is the same as its real quality; i.e., �B = qB and �N = qN . However, for

the deceptive counterfeit, consumers cannot distinguish it from the brand-name product at time of

purchase. There are two types of consumers. First, some consumers are not aware of counterfeits,

or even if they are aware, they may consider the likelihood of purchasing counterfeits negligible at

legitimate stores. They perceive the quality of any product in the market as qB; i.e., �B = �D = qB.

On the other hand, other consumers may be �proactive� in the sense that they take into account

the likelihood of receiving deceptive counterfeits unknowingly even when purchasing products from

legitimate stores. Let �s 2 [0; 1] denote their expectation about the fraction of deceptive counter-
feits in the market. Then proactive consumers perceive the quality of a product in the market as

a weighted average of the quality of the brand-name product and that of the deceptive counterfeit;

i.e., �B = �D = (1 � �s)qB + �sqD. Let � (2 [0; 1]) denote the fraction of proactive consumers in
the market. In practice, � may vary depending on the characteristic of the market. For example, in

our survey of 166 consumers over 4 popular product categories for deceptive counterfeits (see Table

1), we have found that 51% of consumers in China are proactive, whereas only 4 % of consumers

in the U.S. are proactive. The low value of � in the U.S. re�ects the view of Rocko¤ and Weaver

(2012), who say: �Most Americans don�t question the integrity of the drugs they rely on. They

view drug counterfeiting, if they are aware of it at all, as a problem for developing countries.�

Table 1. Consumer Survey Results in the U.S. and China
U.S. China

Aware Proactive Aware Proactive

Alcohol 14% 4% 94% 56%

Car Parts 25% 4% 54% 34%

Medical Drugs 41% 5% 86% 51%

Food, Drinks 22% 5% 90% 63%

Average 26% 4% 81% 51%

(Note) Respondents are college students and faculty with ages from 18 to 50. The number of respondents is 86

in the U.S., and it is 80 in China. Two questions were asked in the questionnaire: (1) Are you aware of the sale

of counterfeits in each of the above product categories; and (2) For each product category in which you are aware

of the sale of counterfeits, do you take into account the risk of getting a counterfeit and therefore discount the

value of the product when you purchase a brand-name product at a full price in a legal store? Those customers who
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answered yes to (1) are considered �Aware�, and those customers who answered yes to both (1) and (2) are considered

�proactive.� The absolute numbers may be escalated because respondents may be reminded of counterfeits by the

questionnaire. Our survey indicates that being �aware�of the existence of counterfeits di¤ers from being �proactive.�

One may explain such di¤erence from cognitive psychology (e.g., Bendoly et al. 2010, Goldsmith and Amir 2010,

and references therein); for example, it may be due to a positive-outcome �bias� or �wishful thinking� caused by

overestimating the probability of good things happening.

Since the counterfeit bears the trademark of the brand-name product, a consumer enjoys the

brand image even when he/she purchases the counterfeit. Thus we may represent the quality of

the counterfeit as qi = fi + �qB (i = N or D), where fi (> 0) is the functional quality of the

counterfeit i and �qB (where � > 0) is the brand value that the counterfeit steals from the brand-

name product. Essentially, we assume that a product has two attributes: functionality and brand

value as in multi-attribute models in marketing (e.g., see Lilien et al. 1992). Brand value re�ects

advertising investments on which a counterfeiter may get a free ride. The parameter � captures

the following two factors. First, � captures a fraction of the brand value in the quality of the

brand-name product, qB. For example, this fraction may be high for luxury goods because a brand

plays a signi�cant role when consumers purchase such products, whereas it may be low for fast

moving consumer goods (which are sold quickly at relatively low cost) because a brand is less of a

concern to consumers for such goods. Second, � captures a discount factor of the original brand

value for the counterfeit because the counterfeit draws only a part of the brand value from the

brand-name product.1 Following the literature, we assume that the quality of the brand-name

product is superior to that of the counterfeit; i.e., qB > qN and qB > qD.

Either type of counterfeiter i (= N or D) makes two decisions sequentially to maximize his

expected pro�t: functional quality fi and wholesale price wi to a distributor. We assume that

the counterfeiter makes these decisions after observing the quality qB and price pB of a brand-

name product because counterfeiters always enter a market following a brand-name company, often

after the brand-name product becomes popular. Di¤erent types of counterfeiters use di¤erent

distribution channels to sell their goods. The non-deceptive counterfeiter (i = N) distributes his

goods through an illicit distributor, who then decides the retail price of the non-deceptive counterfeit

to consumers, pN . On the other hand, the deceptive counterfeiter (i = D) has to break into a licit

supply chain by distributing his goods through a licit distributor, who then sells both brand-name

products and deceptive counterfeits to consumers at the same price pB: In this case, the licit

distributor determines a proportion s 2 [0; 1] of the deceptive counterfeit among all products he
1For some counterfeits, as their functional quality increases, they might look more similar to branded products so

that they can steal a higher fraction of the brand quality. This can be modeled by setting � = �1 + �2fi; where �1
captures the characteristic of a product category (like � in our base model), and �2 captures the property mentioned

above. All our subsequent results hold under this alternative model.
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sells to consumers. We next describe the details of our model for non-deceptive and deceptive

counterfeits, respectively.

When a non-deceptive counterfeiter exists in the market and sells his products through the

illicit distributor, consumers will choose between the brand-name product and the counterfeit.

Both products carry the same brand, but have di¤erent qualities and prices. The competition

between the non-deceptive counterfeiter and the brand-name company is analogous to duopoly

in a vertically di¤erentiated market, but it is not the same because the members of the illicit

supply chain bear the risks associated with counterfeiting. The non-deceptive counterfeiter and

the illicit distributor make their decisions in three sequential stages as follows. In stage 1, the

non-deceptive counterfeiter chooses his functional quality fN 2 [f; f ], where f > f � 0, and makes
initial investment to develop and produce goods having fN . The upper bound f may represent

the functional quality of the brand-name product. We assume f < (1 � �)qB such that qB > qN :
The lower bound f may represent the minimum level of quality at which a product functions or

appears to function properly. To produce counterfeits having fN , the counterfeiter needs to invest

tNf
2
N in acquiring technology and setting up production facilities, where tN > 0: This implies that

the development of a product with higher quality requires increasingly more investment. The unit

production cost of the counterfeit is normalized to zero. After the investment takes place, however,

there are some chances that the investment will be con�scated because it is illegal to produce

counterfeits. Suppose this occurs with a probability  2 (0; 1): The parameter  captures the

monitoring e¤orts of the government and the brand-name company on counterfeit production. The

potential loss of the investment is a major risk to the counterfeiter that deters him from making large

investments to improve the functional quality of his products (OECD 2008). If the counterfeiter�s

investment is con�scated, the counterfeiter cannot sell his goods to the market. Otherwise, the

game proceeds to stage 2 in which the non-deceptive counterfeiter decides his wholesale price wN

to the illicit distributor. For simplicity, we represent all distributors/retailers in the illicit supply

chain as one illicit distributor. In stage 3, the illicit distributor decides the retail price of the non-

deceptive counterfeit to consumers, pN . The illicit distributor has to pay a penalty of lN if getting

caught by the authorities with probability �N .

When a deceptive counterfeiter exists in the market and sells his products through the licit

distributor, consumers cannot distinguish deceptive counterfeits from brand-name products. Like

the non-deceptive counterfeiter, the deceptive counterfeiter determines his functional quality fD 2
[f; f ] in stage 1, while facing the risk of getting his investment tDf2D con�scated. In stage 2, the

deceptive counterfeiter decides his wholesale price wD to the licit distributor, who later sells the

counterfeits to consumers at the same price pB as the brand-name products. In stage 3, the licit
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distributor determines a proportion s of the deceptive counterfeit among all products he sells to

consumers. We model the risk of the licit distributor selling deceptive counterfeits with a likelihood

�D of getting caught and a penalty lD. Since �D tends to increase with more counterfeits in the

market, we set �D equal to the fraction of deceptive counterfeits, s. In §7, we consider a more

general case in which �D is a function of fD as well as s.

We make the following assumptions to simplify our analysis. First, we assume that the licit

distributor does not make a pro�t from selling brand-name products, while it makes a positive

pro�t from selling deceptive counterfeits. Our results continue to hold for any �xed margin of the

licit distributor from selling brand-name products. In online appendix C, we also analyze the case

where the licit distributor decides its pro�t margins endogenously. Second, we normalize lN = 0;

while having lD = l > 0: In practice, a loss of an illicit distributor from potential seizure is much

smaller than that of a licit distributor. Illicit distributors are usually street vendors or internet sites.

Since their potential loss from seizure is small, they tend to close their stores temporarily when they

get caught and then reopen the same stores or open new ones later. For example, vendors in the

Xiang Yang market in Shanghai, China, which were once famous for their high-quality counterfeits

but closed due to the government�s massive campaigns in 2006, relocated to the Yatai Xinyang

market that is now famous among tourists (Naumann 2009). In contrast, the punishment on the

licit distributor for illegal distribution of deceptive counterfeits is very severe. For example, the

Chinese court sentenced the distributor of fake pills to 17 years in prison, the nation�s longest

term for the crime (Bennett 2010) and the U.S. court sentenced a distributor who sold counterfeit

networking cards to the military to 51 months in prison, the maximum term recommended by

federal prosecutors (McKinley 2010). Third, for both types of counterfeits, we assume that the

probability of counterfeits getting con�scated at the production level () is independent of that at

the distribution level (�N or �D). In practice, it is extremely di¢ cult to trace back the source of

counterfeits even after discovering their distributors. For example, counterfeit versions of cancer

drugs Faslodex and Avastin were detected at the distribution level in the U.S., but their sources

have not been determined while suspecting o¤shore production (Rocko¤ et al. 2012, Weaver et al.

2012). Table 2 summarizes the notation of major variables and parameters.

4 Equilibrium Analysis

In this section, we present our model formulation and equilibrium analysis. We use backward

induction to derive subgame-perfect Nash equilibrium. In §4.1 we present equilibrium (denoted

by superscript �) in a market with a non-deceptive counterfeiter. In §4.2 we present equilibrium
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(denoted by superscript ��) in a market with a deceptive counterfeiter. All proofs are provided in

online appendix A.

Table 2. Summary of Key Notation
Symbol De�nition
i Brand-name product (= B), non-deceptive counterfeit (= N); deceptive counterfeit (= D)
� Taste of consumers; �~U [0; 1]
pi Retail price of product i to consumers
qi (Real) Quality of product i
fi Functional quality of counterfeit product i; fi 2 [f; f ]
�i Expected pro�t from selling product i
wi Wholesale price of product i to a distributor
ti Cost parameter used in the cost of developing functional quality

� Fraction of the quality of brand-name products that counterfeits steal; � 2
�
0; 1� f

qB

�
 Probability that a counterfeiter�s investment will be con�scated;  2 (0; 1)
l Loss of the licit distributor if getting caught for selling deceptive counterfeits; l > 0
� Fraction of proactive consumers in the market; � 2 [0; 1]
s Fraction of deceptive counterfeits among all products the licit distributor sells; s 2 [0; 1]

4.1 Non-Deceptive Counterfeits

Suppose the brand-name product and the non-deceptive counterfeit exist in the market. There are

three segments of consumers: (i) consumers who value the quality of a product highly and purchase

the brand-name product, (ii) consumers who value the quality less and purchase the non-deceptive

counterfeit, and (iii) consumers who value the quality the least and do not purchase any product.

The consumer who is indi¤erent between purchasing the brand-name product and the non-deceptive

counterfeit has the taste e� = pB�pN
qB�qN = pB�pN

(1��)qB�fN , which solves
e�qN�pN = e�qB�pB: Similarly, the

consumer who is indi¤erent between purchasing the non-deceptive counterfeit and not purchasing

any product has the taste b� = pN
qN
= pN

fN+�qB
: Let mi (2 [0; 1]) denote the market share of product

i (= B or N), and let m0 denote the proportion of consumers who do not purchase any product,

so that mB +mN +m0 = 1. Then:

mB = 1� e� = 1� pB � pN
(1� �)qB � fN

and mN = e� � b� = pB � pN
(1� �)qB � fN

� pN
fN + �qB

: (1)

In stage 3, the illicit distributor determines the retail price to consumers, pN , by solving:

max
pN
(pN � wN )mN = (pN � wN )

�
pB � pN

(1� �)qB � fN
� pN
fN + �qB

�
: (2)

By noting that the pro�t of the illicit distributor in (2) is concave in pN , one can easily obtain her

optimal retail price p�N (wN ; fN ) =
(�qB+fN )pB+qBwN

2qB
:

In stage 2, the non-deceptive counterfeiter determines his wholesale price wN . By anticipating

the best response of the illicit distributor, the non-deceptive counterfeiter chooses his optimal
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wholesale price that maximizes his expected pro�t given by:

�N (wN ; fN ) = (1� )
�
wN

�
pB � p�N
qB � qN

� p
�
N

qN

�
� tNf2N

�
� tNf2N : (3)

In (3), (1�) represents the likelihood that the counterfeiter is able to sell his goods without being
con�scated, and the next term in the bracket represents the pro�t of the counterfeiter in that case.

The initial investment tNf2N is considered a sunk cost in (3). Note that whether the con�scation of

investment occurs after stage 1 or stage 2 does not a¤ect the counterfeiter�s decisions. If con�scation

occurs after some units are sold, (1� ) can be interpreted as the fraction of sales the counterfeiter
has generated before con�scation. Since �N is concave in wN , we can easily obtain the optimal

wholesale price w�N and the corresponding expected pro�t of the non-deceptive counterfeiter ��N ,

respectively, as follows:

w�N (fN ) =
pB(fN + �qB)

2qB
and ��N (fN ) =

p2B(1� )(fN + �qB)
8qB f(1� �)qB � fNg

� tNf2N : (4)

By substituting w�N into p�N , one can verify that the illicit distributor charges a lower price than

that of the brand-name product; i.e., p�N < pB.

In stage 1, the non-deceptive counterfeiter decides the functional quality fN by considering

his optimal wholesale price in stage 2 and the best response of the illicit distributor in stage 3.

The counterfeiter solves max
fN2[f;f]

��N (fN ) by considering the following trade-o¤: a higher level of

functional quality will draw more consumers, but it requires more investment, hence increasing a

potential loss from seizure.

Lemma 1 For any given (pB; qB), the optimal functional quality of non-deceptive counterfeits, f�N ,

is as follows: if tN <
(1�)p2B

4f(1��)qB�fg3
and ��N (f) � ��N (f), then f�N = f , and otherwise f�N can be f

or f�N 2 (f; f) that satis�es
@��N
@fN

jfN=f�N = 0:

Lemma 1 shows that the non-deceptive counterfeiter may not always choose the lowest quality in

contrast to the common assumption used in the literature (e.g., Grossman and Shapiro 1988a,b).

In the past, non-deceptive counterfeits with low functional quality such as brand-name costumes,

footwear and accessories dominated a counterfeit market. Their functional quality is just enough

for consumers to use them, but their durability and performance are substandard. Consumers who

purchase such counterfeits are those who want to enjoy the snob appeal of brands, but do not want

to pay the high price of genuine goods. However, in today�s counterfeit markets, counterfeiters come

in varying levels of quality depending on their intended markets (Schmidle 2010). For example,

some counterfeit electronic devices such as cell phones include appealing features which are not

included even in authentic products. This is called Shan-Zhai phenomenon in China. According
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to Gartner, Shan-Zhai phones account for more than 20 percent of sales in China (Barboza 2009).

These counterfeiters usually face the least pressure from local enforcement agencies and some are

likely to turn into licit competitors once intellectual property rights become more strictly enforced

(Staake and Fleisch 2008). Our result stated in Lemma 1 is consistent with this observation of

today�s counterfeit markets.

4.2 Deceptive Counterfeits

Suppose the brand-name product and the deceptive counterfeit exist in the market. In this case,

both brand-name products and deceptive counterfeits are sold at price pB: While proactive con-

sumers with proportion � perceive the quality of a product in the market as (1 � �s)qB + �sqD,
the rest of consumers perceive the quality of a product in the market as qB. Similar to Grossman

and Shapiro (1988a), we assume that the expectation of proactive consumers about the fraction

of deceptive counterfeits in the market is rational and hence is equal, in equilibrium, to the actual

fraction of counterfeits; i.e., �s = s. This notion of rational expectations equilibrium is also used in

the recent operations management literature (e.g., Su and Zhang 2008, Cachon and Swinney 2009).

Similar to §4.1, we can obtain the market share of the brand-name product and that of the

deceptive counterfeit, respectively, as follows:

mB = (1� s)(1� ��) and mD = s(1� ��); (5)

where 1� �� � 1� �pB
(1�s)qB+s(fD+�qB) �

(1��)pB
qB

represents the �aggregate demand�for both brand-

name and counterfeit products at price pB. Among those consumers who purchase products for

pB, a fraction s of them receives deceptive counterfeits unknowingly.

In stage 3, the licit distributor solves the following problem to determine s:

max
s2[0;1]

s(1� s)(pB � wD)
�
1� �pB

(1� s)qB + s(fD + �qB)
� (1� �)pB

qB

�
� sl: (6)

In (6), (1� s) represents the likelihood that the distributor will not be detected for selling counter-
feits and s(pB � wD)

n
1� �pB

(1�s)qB+s(fD+�qB) �
(1��)pB
qB

o
represents the distributor�s pro�t in that

case. Recall that the distributor�s pro�t margin from selling brand-name products is assumed zero

(see §3). The term ��sl�in (6) represents the expected loss from potential seizure. From (6), we

can show that the pro�t of the distributor is strictly decreasing in s for s 2 [12 � �; 1]; where � is
a small and positive constant. Moreover, the pro�t given in (6) is concave in s for s < 1

2 : Thus,

s�� is 0 or it satis�es the �rst order condition in (0; 0:5). In the remainder of this paper, we only

consider the latter case (i.e., s�� 2 (0; 0:5)) because there will be no deceptive counterfeits in the
market when the counterfeiter fails to break into the licit supply chain (i.e., s�� = 0).
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In stage 2, the deceptive counterfeiter decides his wholesale price wD to maximize his expected

pro�t given by:

�D(wD; fD) = (1� )
�
wDs

��
�
1� �pB

(1� s��)qB + s��(fD + �qB)
� (1� �)pB

qB

�
� tDf2D

�
� tDf2D:

(7)

By noting that �D is continuous in wD 2 [0; pB]; we know that the optimal wholesale price w��D
always exists in [0; pB]: In the case when � > 0; the closed-form expressions for s�� and w��D

do not exist. In the case when � = 0, we can obtain from the �rst-order condition of (6) that

s��(wD; fD) =
1
2 �

lqB
2(pB�wD)(qB�pB) . By substituting s

�� into (7) and solving max
wD2[0;pB ]

�D(wD; fD),

we obtain w��D and the corresponding expected pro�t of the deceptive counterfeiter ���D as follows:

w��D (fD) = pB �
s

lpB
1� pB

qB

and ���D (fD) =
1

2
(1� )

(s
pB

�
1� pB

qB

�
�
p
l

)2
� tDf2D: (8)

From (8), we can generate the following insights. First, as the risk of the licit distributor selling

counterfeits increases with l, the deceptive counterfeiter has to reduce his price w��D to compensate

for the increased risk, resulting in a decrease in his expected pro�t ���D . Second, �
��
D increases

with pB
�
1� pB

qB

�
; which is the revenue of the brand-name company without counterfeits. This is

because the deceptive counterfeit gets a free ride on the brand name of the genuine product.

In stage 1, the counterfeiter decides the functional quality fD by considering his optimal whole-

sale price in stage 2 and the best response of the licit distributor in stage 3. The following lemma

shows that the deceptive counterfeiter may choose a di¤erent level of functional quality depending

on the fraction of proactive consumers in the market, �.

Lemma 2 For any given (pB; qB), when � = 0, the optimal functional quality of deceptive coun-

terfeits f��D is f . When � > 0; there exists tD (> 0) such that if tD � tD; f��D = f; and otherwise

f��D can be f or f�D 2 (f; f) that satis�es
@���D
@fD

jfD=f�D = 0:

In the market with no proactive consumers (i.e., � = 0); as one would expect, the deceptive coun-

terfeiter always chooses the lower bound f for his functional quality because improving quality

does not increase counterfeit sales. In this case, although a counterfeit is visually identical to

its brand-name product, its low quality may result in a substantial �nancial loss to consumers

or even endanger their health and safety. Consequently, both counterfeiter and distributor often

face considerable punishments if they get caught. Typical examples are food, beverage, agricul-

tural products, pharmaceuticals, and automotive spare parts (OECD 2008, Staake and Fleisch

2008). In the market with proactive consumers (i.e., � > 0), although consumers cannot distin-

guish the deceptive counterfeit from the brand-name product, the deceptive counterfeiter can still
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�nd it optimal to improve his functional quality above the minimum level f . The reason is as

follows. When fD is improved, both aggregate demand for brand-name and counterfeit products,

1 � �pB
(1�s��)qB+s��(fD+�qB) �

(1��)pB
qB

; and the fraction of deceptive counterfeits, s��; are increased.

Thus the marginal bene�t of functional quality is positive. If the marginal bene�t exceeds the

marginal cost, then the deceptive counterfeiter will choose his functional quality f��D above f . In

practice, some deceptive counterfeits reveal di¤erent levels of functional quality; for example, fake

gasoline with di¤erent levels of adulteration has been reported (Lee et al. 2011).

5 Anti-Counterfeiting Strategies: Quality and Price

Having analyzed the equilibrium decisions of counterfeiters and distributors in licit and illicit supply

chains, we examine the e¤ectiveness of anti-counterfeiting strategies: quality and pricing strategies

in §5, and marketing and enforcement strategies in §6. We analyze each strategy separately in

order to isolate its e¤ect on �rms�pro�ts and consumer welfare. When a �rm implements multiple

strategies simultaneously, one needs to aggregate the e¤ect of each strategy to evaluate the overall

e¤ect.

We examine the e¤ectiveness of quality and pricing strategies against the non-deceptive coun-

terfeiter in §5.1, and against the deceptive counterfeiter in §5.2; then, we compare them in §5.3. In

each of §5.1 and §5.2, we proceed our analysis as follows. First, we examine whether the brand-name

company should choose higher/lower quality or price than the case with no counterfeiter in order to

maximize her expected pro�t against the counterfeiter. Let qmB and pmB denote the optimal quality

and price of the brand-name product with no counterfeiter in the market, respectively. Similarly,

let q�B and p
�
B (resp., q

��
B and p��B ) denote the optimal quality and price of the brand-name product

in the presence of the non-deceptive (resp., deceptive) counterfeiter, respectively. Second, knowing

that such strategies of choosing q�B and p
�
B (resp., q

��
B and p��B ) instead of q

m
B and pmB improve the

expected pro�t of the brand-name company, we examine how those strategies a¤ect the expected

pro�t of the non-deceptive (resp., deceptive) counterfeiter. Finally, we investigate how those strate-

gies a¤ect expected consumer welfare, which is de�ned as follows. When only brand-name products

exist in the market, we can de�ne consumer welfare as CSB =
R 1
pB
qB

(�qB � pB)d�. Similarly, using
(1) and (5), we can de�ne CSN or CSD as consumer welfare in the market where non-deceptive or

deceptive counterfeits co-exist with brand-name products, respectively, as follows:

CSN =

Z e�
b� (�qN � pN ) d� +

Z 1

e� (�qB � pB)d�; (9)

CSD = s

Z 1

��
(�qD � pB) d� + (1� s)

Z 1

��
(�qB � pB) d�: (10)
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In (9), the �rst term represents the surplus of those consumers who purchase the non-deceptive

counterfeit and the second term represents the surplus of those consumers who purchase the brand-

name product. In (10), the �rst term represents the surplus of those consumers who are cheated

and receive the deceptive counterfeit although they pay the price of the brand-name product, and

the second term represents the surplus of those consumers who purchase and receive the brand-

name product. Considering the chances that counterfeits do not reach the market due to seizure,

we can further de�ne ECSN or ECSD as the expected consumer welfare when the counterfeiter is

non-deceptive or deceptive, respectively, as follows:

ECSN = (1� )CSN + CSB and ECSD = (1� )CSD + CSB: (11)

Let ECS�N or ECS
��
D denote the corresponding expected consumer welfare in equilibrium. We can

show that ECS��D < CSB < ECS
�
N . Intuition from this result is as follows. When non-deceptive

counterfeits exist in the market, a consumer has a cheap alternative to the brand-name product. In

equilibrium, the non-deceptive counterfeiter sets his price and functional quality such that he o¤ers

a higher utility to those consumers who enjoy the brand value of the brand-name product but do not

appreciate its high quality or cannot a¤ord its high price. Therefore, non-deceptive counterfeits

improve consumer welfare. In contrast, when deceptive counterfeits exist, some consumers are

cheated to receive low-quality deceptive counterfeits, resulting in a welfare loss.2

5.1 Non-Deceptive Counterfeits

This subsection examines the brand-name company�s anti-counterfeiting strategies against the non-

deceptive counterfeiter. We �rst examine the brand-name company�s quality strategy to combat

the non-deceptive counterfeiter. In the following proposition, we present the results for the case

when f�N = f or f , since the exposition of our results is much simpler in this case, while presenting

the results for the case when f�N 2 (f; f) in online appendix A (which involve complex conditions
for parts (a) and (c)).

Proposition 1 Suppose f�N = f or f: Then:

(a) q�B > q
m
B if and only if � < 1�

n
qmB�q�N (qmB )

qmB

o2
.

2We do not consider the socio-economic e¤ects of counterfeiting on corruption, criminal activities, employment,

environment, innovation, tax revenues, and so on. If taking into account these indirect or long-term e¤ects into

account, then non-deceptive counterfeits may also decrease consumer welfare. Moreover, the anti-counterfeiting

strategies that reduce the incidence of counterfeits (e.g., marketing campaigns that reduce �) can have more positive

bene�ts by lessening these harmful e¤ects. We can also examine the aggregate e¤ect of anti-counterfeiting strategies

on social welfare, which may be de�ned as SWi = ECSi+�B��i for i = N or D, by combining the results of pro�ts

and consumer welfare.
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(b) Suppose q�B > qmB (resp:; q�B < qmB ). Then �
�
N is lower (resp., higher) at qB = q�B than at

qB = q
m
B :

(c) Suppose q�B > q
m
B (resp:; q�B < q

m
B ). Then ECS

�
N is higher (resp., lower) at qB = q�B than at

qB = q
m
B unless f�N is decreased from f at qB = qmB to f at qB = q�B:

First, consider the case when the non-deceptive counterfeit draws an insigni�cant amount of brand

value from the brand-name product (i.e., � < 1�fqmB �q�N (qmB )g2=(qmB )2). In this case, Proposition
1(a) shows that the brand-name company should set her product quality higher than qmB . This

strategy not only improves the expected pro�t of the brand-name company (as compared to choosing

qB = qmB ), but also decreases the expected pro�t of the non-deceptive counterfeiter (Proposition

1(b)). In this case, even though the improved quality of the brand-name product also improves the

quality of the non-deceptive counterfeit, the di¤erence in quality between two competing products

becomes larger because the counterfeit steals only a small part of the brand value (i.e., low �).

Consequently, the non-deceptive counterfeiter will lose its quality competition against the brand-

name company. This result may explain how the shoe manufacturers mentioned in §1 successfully

addressed their counterfeiting issues by improving the quality of their products (Qian 2008). Finally,

Proposition 1(c) shows that, although this strategy improves the expected pro�t of the brand-name

company and reduces the expected pro�t of the non-deceptive counterfeiter, it does not always

bene�t consumers. The reason is as follows. This strategy can lead the non-deceptive counterfeiter

to lower his functional quality as well as his wholesale price in order to compete better against

brand-name products with improved quality. Although this reduces the market share of non-

deceptive counterfeits, those consumers who purchase non-deceptive counterfeits can su¤er from

lower quality, resulting a welfare loss. For example, Figure 1 illustrates that ECS�N falls when qB

is increased from qmB = 3:37 to q
�
B = 3:4:

Next, consider the case when the non-deceptive counterfeit draws a signi�cant amount of brand

value from the brand-name product (i.e., � > 1�fqmB �q�N (qmB )g2=(qmB )2). In this case, Proposition
1(a) shows that it is not cost-e¤ective for the brand-name company to improve her product quality

because the non-deceptive counterfeiter gets a free ride on the improved quality of the brand-name

product. While this strategy improves the expected pro�t of the brand-name company, it can also

help the non-deceptive counterfeiter earn higher expected pro�t inadvertently (Proposition 1(b)),

and make consumers su¤er from the poor quality of the product (Proposition 1(c)). Therefore,

in this case, the brand-name company may not use this strategy to combat the non-deceptive

counterfeiter, and if she does, she must take special case to curb counterfeits in the market.

The following proposition shows how the brand-name company can combat the non-deceptive

counterfeiter through her pricing strategy.
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Figure 1: Expected consumer welfare as a function of qB when non-deceptive counterfeits are in the

market (Base parameters: t = 0:01, pB = 0:9, � = 0:1,  = 0:58; c = 0:05; f = 0:1; and �f = 2:5)

Proposition 2 (a) p�B < p
m
B for all �.

(b) ��N is lower at pB = p�B than at pB = p
m
B for all �:

(c) ECS�N is higher at pB = p�B than at pB = p
m
B unless f�N is decreased from f at pB = pmB to f

at pB = p�B or
@f�N
@pB

> � (where the expression of � (> 0) is presented in the proof).

In contrast to the earlier quality strategy, Proposition 2(a) shows that for any �, it is always

bene�cial for the brand-name company to set her price p�B lower than p
m
B . This is because a lower

price enables the brand-name company to compete better against non-deceptive counterfeits which

are cheap alternatives of brand-name products. This strategy helps the brand-name company to

gain more market share by inducing some consumers to switch from non-deceptive counterfeits to

brand-name goods. As a result, this strategy also reduces the expected pro�t of the non-deceptive

counterfeiter (Proposition 2(b)). We further �nd that the larger � is, the faster the expected pro�t of

the non-deceptive counterfeiter will decrease. This is because the brand-name company relies more

on price to compete with the non-deceptive counterfeiter when the quality levels of two products

are not so distinguished due to the larger �. However, similar to the quality strategy, Proposition

2(c) shows that reducing pB can hurt consumers by inducing the non-deceptive counterfeiter to

reduce his quality level. This strategy has been used in practice; for example, the distributors of

Hollywood �lms cut their DVD prices in Malaysia and Russia to combat rampant piracy (Whang

2001, Arvedlung 2004).

5.2 Deceptive Counterfeits

This subsection examines the brand-name company�s anti-counterfeiting strategies against the de-

ceptive counterfeiter. As we will show below, most e¤ects of these strategies are monotonic when
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no proactive consumers exist in the market (i.e, � = 0), whereas all e¤ects of these strategies are

non-monotonic when proactive consumers exist in the market (i.e., � > 0). Thus, we �rst examine

the former case analytically to establish monotonic results, and then conduct a numerical study for

the latter case to show non-monotonicity. This approach will enable us to isolate the e¤ect of �, and

explore dominant e¤ects of anti-counterfeiting strategies when positive � creates non-monotonic ef-

fects. Note that the results under � = 0 also bear some practical relevance (asymptotically) because

only a small fraction of consumers may be proactive in developed countries; for example, � = 0:04

in the U.S. in our survey results shown in Table 1.

Let us �rst analyze the case when � = 0: The following proposition shows, counter-intuitively,

that by setting the quality level lower than the quality level with no counterfeiter in the market, the

brand-name company can improve her expected pro�t, reduce the expected pro�t of the deceptive

counterfeiter, and even improve expected consumer welfare.

Proposition 3 Consider the market with � = 0. In this market, the following results hold:

(a) q��B < qmB :

(b) ���D is lower at qB = q��B than at qB = qmB .

(c) ECS��D is higher at qB = q��B than at qB = qmB if q��D < qB �
(1�p2Bq

�2
B )f1�(1�)s��g
2(1�) fp

2
B

q3B
s�� +

1
2

�
1� p2B

q2B

�
@s��

@qB
g�1 for qB 2 [q��B ; qmB ].

Proposition 3(a) states that it is optimal for the brand-name company to set her quality q��B lower

than qmB . Since consumers cannot distinguish deceptive counterfeits from brand-name products,

this strategy reduces the perceived quality of any product in the market, and thus reduces the

aggregate demand for both brand-name and counterfeit goods. However, the reduced aggregate

demand discourages the licit distributor from taking the risk of selling deceptive counterfeits, hence

resulting in a lower s��. The result stated in Proposition 3(a) suggests that the latter (positive)

e¤ect dominates the former (negative) e¤ect, so this strategy improves the expected pro�t of the

brand-name company. This result highlights the importance of modeling the incentive of the licit

distributor in this supply chain: Without the licit distributor, the positive e¤ect of this strategy

(i.e., lower s��) would not exist and therefore the result opposite to Proposition 3(a) would be

obtained. Since this strategy reduces both the aggregate demand and the proportion of deceptive

counterfeits sold by the licit distributor, it will also reduce the expected pro�t of the deceptive

counterfeiter (Proposition 3(b)). (More generally, we show in the proof that ���D is increasing

in qB for any �.) Finally, contrary to our �rst intuition that lower quality will hurt consumers,

Proposition 3(c) suggests that this strategy can improve consumer welfare. To understand this

result, note that there are two opposing e¤ects of having lower quality of brand-name products
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on consumer welfare: Consumers su¤er from lower quality and fewer consumers buy products, but

at the same time fewer consumers are deceived to buy low-quality counterfeits. Proposition 3(c)

shows that when the quality of deceptive counterfeits is su¢ ciently low, the latter e¤ect outweighs

the former e¤ect, bene�ting consumers.

We next examine the e¤ectiveness of the pricing strategy against the deceptive counterfeiter in

the market with � = 0:

Proposition 4 Consider the market with � = 0. In this market, the following results hold:

(a) p��B > pmB :

(b) ���D can be higher or lower when pB = p��B than when pB = pmB .

(c) ECS��D is higher at pB = p��B than at pB = pmB if q
��
D < qB� qB�pB

1� fpBqB s
���1

2

�
1 + pB

qB

�
(qB � pB) @s

��

@pB
g�1

for pB 2 [pmB ; p��B ]:

With no proactive consumers in the market, Proposition 4(a) states that the brand-name company

can improve her expected pro�t by setting her price p��B higher than pmB (due to the reason similar

to Proposition 3(a)). Unlike the earlier quality strategy, however, this pricing strategy has non-

monotonic impact on the expected pro�t of the deceptive counterfeiter (Proposition 4(b)). To

understand this result, note that there are two e¤ects of raising pB : (i) it reduces the aggregate

demand for brand-name and counterfeit goods (i.e., @
@pB

�
1� pB

qB

�
< 0); and (ii) it increases the

distributor�s margin from selling deceptive counterfeits (i.e., @
@pB

(pB � w��D ) = @
@pB

r
lpB
1� pB

qB

> 0 from

(8)). Because of the latter e¤ect, the strategy of raising pB does not always reduce the proportion

s�� of deceptive counterfeits the licit distributor sells, nor does it always reduce the deceptive

counterfeiter�s market share m��
D and her expected pro�t ���D . Therefore, in implementing this

pricing strategy, a �rm or the government should carefully consider these two counterbalancing

e¤ects of raising/reducing price. In practice, we observe both instances of raising or reducing

prices: Newton et al. (2002) propose reducing drug prices to make counterfeiting less attractive by

reducing the pro�t margins of fake drugs (i.e., opposite e¤ect of (ii)), and Russia will raise vodka

prices to put out of business makers of counterfeit alcohol (via e¤ect (i)) although it will also a¤ect

licit companies (Reuters 2012). Finally, Proposition 4(c) suggests that this strategy can improve

consumer welfare when the quality of deceptive counterfeits is su¢ ciently low. We can interpret

this result similarly to Proposition 3(c).

Next, we analyze the case in which proactive consumers exist in the market (i.e., � > 0).

As we have mentioned at the beginning of this subsection, this additional factor causes all the

e¤ects of the anti-counterfeiting strategies to become non-monotonic. Speci�cally, the brand-name

company�s optimal quality q��B (resp., p��B ), can be higher or lower than her quality q
m
B with no

21



counterfeiter (resp., pmB ); furthermore, the deceptive counterfeiter�s expected pro�t �
��
D and the

expected consumer welfare ECS��D are non-monotonic with a change of qB or pB. Because the

closed-form expressions of s��; w��D and f��D do not exist when � > 0, no simple conditions can be

derived analytically for monotonic results (see remarks on the proofs of Propositions 3 and 4 in

online appendix A). For this reason, we conduct a numerical study to compare the results under

� = 0 with those under � > 0, and explore dominant e¤ects. The numerical experiments are

conducted with the following settings: for � = 0; 0:25 or 0:5, we constructed 1024 scenarios using

the parameter values shown at the bottom of Table 3, so that they cover various possible scenarios

and also satisfy positive s�� in equilibrium. We present a summary of the results in Table 3, which

reads as follows: for example, when � = 0:5, q��B < qmB was observed in 97.3% of 1024 scenarios, and

choosing q��B reduced ���D in 97.3% of 1024 scenarios and increased ECS��D in 5.3% as compared to

choosing qmB .

Table 3. E¤ects of Quality and Pricing Strategies against Deceptive Counterfeits
E¤ects of Choosing q��B vs. qmB E¤ects of Choosing p��B vs. pmB
q��B < qmB ���D # ECS��D " p��B > pmB ���D # ECS��D "

� = 0 1 1 0.032 1 0.097 0.016

� = 0:25 0.961 0.961 0.052 0.989 0.398 0.048

� = 0:5 0.973 0.973 0.053 0.984 0.454 0.039

(Note) Each number in the table indicates a percent of scenarios for the corresponding e¤ect. We used the fol-

lowing parameters: t 2{0.005,0.01,0.015,0.02}, � 2{0.1,0.2,0.3,0.4},  2{0.1,0.2,0.3,0.4}, l 2{0.005,0.01,0.015,0.02},
c 2{0.1,0.2,0.3,0.4}, f = 0:1; and f = (1� �) � qB � 0:1.

From Table 3, we can observe the following:

(1) The results obtained under � = 0 continue to hold in most scenarios under � > 0. However,

in some scenarios, the brand-name company �nds it optimal to set q��B > qmB or p��B < pmB . We

can explain this result as follows. First, recall from our discussions above that setting lower q��B

or higher p��B reduces the aggregate demand for brand-name and counterfeit goods, and that the

reduced aggregate demand discourages the licit distributor from taking the risk of selling counter-

feits. Propositions 3(a) and 4(a) suggest that the latter (positive) e¤ect always dominates the former

(negative) e¤ect when � = 0: However, with proactive consumers in the market (i.e., � > 0), the

deceptive counterfeiter may improve his functional quality f��D in response to the reduced demand

(see Lemma 2). This additional factor makes the licit distributor more willing to sell counterfeits,

so that the positive e¤ect does not always dominate the negative e¤ect.

(2) In those scenarios where q��B > qmB , the strategy of setting higher q
��
B will increase the decep-

tive counterfeiter�s expected pro�t ���D by making counterfeits �ourish more in the market. This

happens because the improved quality of the brand-name product results in an increase of the
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aggregate demand of brand-name and counterfeit goods, which in turn incentivizes the licit dis-

tributor to procure more deceptive counterfeits. This may be the cause of the initial failure of

the Scotch whisky company which improved her quality to combat deceptive counterfeits in the

Thailand market (see §1). Also, from the table, we con�rm that the expected pro�t of the deceptive

counterfeiter is non-monotonic in pB for any � � 0; which can be explained similarly to Proposition
4(b).

(3) The expected consumer welfare ECS��D has increased in more scenarios in the market with

� > 0 than in the market with � = 0. Similar to our explanation given in (1) above, this is because

the counterfeiter may improve his functional quality f��D with proactive consumers. In general, for

any � 2 [0; 1]; we show in online appendix A that if an anti-counterfeiting strategy improves the

average product quality in the market, then it improves the expected consumer welfare.

(4) The number of scenarios in which ���D is decreased or ECS��D is increased is not necessarily

monotonic in �: For example, a change to q��B from qmB decreases ���D in all scenarios when � = 0;

in 96.1% of scenarios when � = 0:25; and in 97.3% when � = 0:5: This result indicates that

anti-counterfeiting strategies are not necessarily more e¤ective as more consumers are proactive.

Similarly, we can show that more proactive consumers in the market does not necessarily bene�t

the brand-name company (i.e., ���B is non-monotonic in �). The reason is as follows. Proactive

consumers purchase products only when their expected utility is non-negative, considering the like-

lihood of receiving deceptive counterfeits unknowingly. As more consumers are proactive, therefore,

a smaller number of consumers will purchase products. This reduced aggregate demand for prod-

ucts discourages the licit distributor from taking the risk of selling deceptive counterfeits. Thus,

depending on which of the two e¤ects (i.e., reduced aggregate demand and reduced s��) dominates,

the expected pro�t of the brand-name company as well as her market share may increase or decrease

with �.

5.3 Comparison: Non-Deceptive vs. Deceptive

We now compare the e¤ect of each strategy against the non-deceptive counterfeiter with that against

the deceptive counterfeiter. Using the results presented in §5.1 and §5.2, we summarize in Table 4

whether the brand-name company should choose higher/lower quality or price than the case with no

counterfeiter in order to maximize her expected pro�t, and how such anti-counterfeiting strategies

a¤ect the expected pro�t of the counterfeiter and the expected consumer welfare. (If a dominant

e¤ect exists for a non-monotonic case, Table 4 reports only the dominant e¤ect.)
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Table 4. E¤ects of Anti-Counterfeiting Strategies: Non-Deceptive vs. Deceptive
Non-Deceptive Counterfeits Deceptive Counterfeits

Optimal Strategy ��N ECS�N Optimal Strategy ���D ECS��D
q�B > q

m
B (low �) # " q��B < qmB # " (low q��D ) or # (high q��D )

q�B < q
m
B (high �) " #

p�B < p
m
B # " p��B > pmB l " (low q��D ) or # (high q��D )

From Table 4, we can draw the following insights:

(1) The optimal strategy of the brand-name company (that maximizes her expected pro�t) di¤ers

depending on whether she faces the non-deceptive or deceptive counterfeiter. For example, reducing

price is optimal against the non-deceptive counterfeiter, whereas raising price is optimal against

the deceptive counterfeiter.

(2) Even when the optimal strategy of the brand-name company is the same against both non-

deceptive and deceptive counterfeiters, its impact on the counterfeiter�s expected pro�t and the

expected consumer welfare may not be the same. For example, when � is high, setting a lower

quality level than the case with no counterfeiter improves the brand-name company�s expected

pro�t against either type of the counterfeiter. While this strategy is e¤ective against the deceptive

counterfeiter (i.e., reduces ���D ), it does not work well against the non-deceptive counterfeiter (i.e.,

increases ��N ). Moreover, its impact on the expected consumer welfare may not be the same across

the two types of the counterfeiter, either.

(3) An ideal anti-counterfeiting strategy should improve the brand-name company�s expected pro�t,

reduce the counterfeiter�s expected pro�t, and improve the expected consumer welfare. The pricing

strategy is such an ideal strategy against the non-deceptive counterfeiter. For the other cases, a

brand-name company or the government should carefully consider a trade-o¤ among those three

objectives in implementing an anti-counterfeiting strategy.

6 Anti-Counterfeiting Strategies: Marketing and Enforcement

In this section, we consider two other anti-counterfeiting strategies that are commonly used in

practice. The �rst strategy we will consider is the marketing campaign that educates consumers

about the adversity of counterfeit goods. For example, an electronic manufacturer may emphasize

the fact that counterfeit electronics lack in safety features. This strategy helps reduce the brand

value the counterfeit steals from the brand-name product, i.e., reduce �: The second strategy we will

consider is the direct enforcement e¤orts to increase the chances to seize counterfeit products, .

In executing these strategies, the brand-name company often collaborates with other organizations

or the government. For example, French luxury goods association Comite Colbert launched a
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campaign (using playful slogans such as �real ladies don�t like fake�) in response to the threat of

the counterfeit, and the French police raided the clandestine workshops making Hermes counterfeit

accessories, of which the surveillance was part of an investigation into the international crime ring

that robs many brands (Wellman 2012). Since the brand-name company does not have a full control

of these parameters � and , we do not consider the brand-name company�s optimal choices of these

parameters; instead, we examine how reducing � or increasing  will a¤ect �rms�expected pro�ts

and expected consumer welfare.

First, let us consider the market in which the brand-name company faces the non-deceptive

counterfeiter. It is intuitive that both the marketing campaign and the enforcement strategy will

improve the expected pro�t of the brand-name company and reduce the expected pro�t of the

non-deceptive counterfeiter. However, we can show that both strategies hurt expected consumer

welfare for the following reasons. The market campaign makes those consumers who purchase non-

deceptive counterfeits enjoy the counterfeit brand less, resulting in a welfare loss. The enforcement

strategy makes counterfeits less likely to reach the market, and hence it makes the non-deceptive

counterfeiter more reluctant to invest in quality improvement. Therefore, consumers will su¤er

from less availability of non-deceptive counterfeits (which are cheaper substitutes for brand-name

goods) as well as from their lower quality.

Next, we examine the e¤ectiveness of two anti-counterfeiting strategies against the deceptive

counterfeiter. The following proposition shows that the e¤ectiveness of these strategies di¤ers

signi�cantly from that against the non-deceptive counterfeiter.

Proposition 5 For any given qB and pB;

(a) (Marketing) When � = 0; reducing � has no impact on ���B and ���D , whereas it reduces ECS
��
D .

When � > 0, reducing � decreases ���D , but it can increase or reduce �
��
B and ECS��D .

(b) (Enforcement) When � = 0; increasing  improves ���B , reduces �
��
D , and improves ECS

��
D :

When � > 0, increasing  reduces ���D , but it can increase or reduce �
��
B and ECS��D .

Proposition 5(a) suggests that special care must be taken when implementing the marketing cam-

paign against the deceptive counterfeiter. For the case when no consumers are proactive (i.e.,

� = 0), the marketing campaign has no impact on the �rms�expected pro�ts because consumers

do not take into account the possibility of receiving counterfeits unknowingly. This result is ex-

pected. On the other hand, proactive consumers correctly expect that they will derive less utilities

when receiving deceptive counterfeits unknowingly. Thus, when � > 0, the marketing campaign

can reduce the expected pro�t of the deceptive counterfeiter by discouraging proactive consumers

from purchasing products. However, it could back�re the brand-name company because proactive
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consumers reduce their consumption of brand-name products as well. For example, a large bever-

age company in Korea su¤ered from a sales drop of 15% after their counterfeiting problems were

broadcasted in a TV program (Choi 2009). Finally, unlike the case when � = 0, this strategy could

improve expected consumer welfare when � > 0 because a smaller number of proactive consumers

purchase products and hence receive low-quality deceptive counterfeits.

Proposition 5(b) shows that when no proactive consumers exist in the market (i.e., � = 0),

the enforcement strategy works well against the deceptive counterfeiter. However, contrary to a

common belief, this strategy may reduce the expected pro�t of the brand-name company and also

hurt expected consumer welfare in the market where proactive consumers exist (i.e., � > 0). This

result can be explained as follows. Similar to the impact of this strategy on the non-deceptive

counterfeiter (discussed above), by increasing the risk of counterfeiting, this strategy makes the

deceptive counterfeiter reluctant to invest in quality improvement. While the lower quality of non-

deceptive counterfeits helps the brand-name company regain its market share in quality competition,

the lower quality of deceptive counterfeits reduces the perceived quality of products in the market

with proactive consumers, hence reducing the aggregate demand for both brand-name goods and

deceptive counterfeits. In this case, consumers also su¤er from the lower quality of deceptive

counterfeits although fewer consumers will receive deceptive counterfeits unknowingly. In online

appendix B, we further study how di¤erent values of � a¤ect the e¤ectiveness of these strategies.

7 Extension: Risk of Counterfeiting

In this section, we extend our base model to the case where the probability of counterfeits getting

con�scated is a decreasing function of their functional quality. This is plausible in some situations

because those consumers who have su¤ered due to the low quality of counterfeits can report them

to the authorities, which may lead to the raid of counterfeit factories or distributors. For example,

if the fake furniture mentioned in Barboza (2011) had functioned as well as its genuine furniture, a

consumer might have not discovered that the furniture he/she has purchased is, in fact, counterfeit.

Speci�cally, suppose that a counterfeiter will get caught by the authorities with the probability of

��1fi for i = N or D, and that a licit distributor will get caught with the probability of s��2fD:
We assume �1 > 0 and �2 > 0, so that the lower the quality of counterfeit goods, the higher the

detection probabilities become.3

3We do not consider the case where the probability of the illicit distributor getting caught for selling non-deceptive

counterfeits is decreasing with the quality of non-deceptive counterfeits. Such a case is unlikely in practice because

consumers already know what they purchase. For example, a street vendor who sells $10 fake watches is not more

likely to get caught, as the quality of those watches gets worse. Furthermore, this probability does not a¤ect our
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When the non-deceptive counterfeiter exists in the market, it is easy to see that the price

decisions of the illicit distributor and the counterfeiter in stages 3 and 2, respectively, are unchanged.

In stage 1, the counterfeiter chooses his optimal functional quality f�N to maximize his expected

pro�t, which is modi�ed from (4) as follows:

��N (fN ) =
p2B(1�  + �1fN )(fN + �qB)

8qB f(1� �)qB � fNg
� tNf2N :

Similar to Lemma 1, we can show that f�N = f , f or f�N 2 (f; f) that satis�es @��N
@fN

jfN=f�N = 0;

depending on the value of tN and whether ��N (f) � ��N (f).
When the deceptive counterfeiter exists in the market, in stage 3, the licit distributor chooses

its optimal fraction s�� of counterfeits by solving the following problem (which is modi�ed from

(6)):

max
s2[0;1]

sf1� s+ �2fDg(pB � wD)
�
1� �pB

(1� s)qB + sqD
� (1� �)pB

qB

�
� (s� �2fD)l: (12)

In stages 2 and 1, the counterfeiter decides wD and fD, respectively, to maximize his expected

pro�t given by:

�D(wD; fD) = wDs
��(1�  + �1fD)

�
1� �pB

(1� s��)qB + s��(fD + �qB)
� (1� �)pB

qB

�
� tDf2D:

When � = 0; by following the procedure similar to that in the base model, we obtain the closed-

form expressions of s�� and w�� as follows: s�� = 1+�2fD
2 � lqB

2(pB�wD)(qB�pB) and w
��
D = pB �r

lpB
(1� pB

qB
)(1+�2fD)

: In this case, unlike the base model (c.f. Lemma 2), f��D > f is possible even

without proactive consumers. This is because high-quality counterfeits can induce the licit distrib-

utor to procure more counterfeits (i.e., increase s��) by reducing the probability of the distributor

getting caught. When � > 0; similar to the base model, we can show the existence of s��, w�� and

f��D ; but their closed-form expressions are not available.

Using the equilibrium analysis above, we show in the following corollary that the main results

in the base model continue to hold in this extended model.

Corollary 1 Suppose the probability of a counterfeiter getting caught is  � �1fi for i = N or D,

and the probability of a licit distributor getting caught is s� �2fD; where �1 > 0 and �2 > 0. Then:
(a) Proposition 1 continues to hold.

(b) Propositions 2, 3 and 4 continue to hold except that the conditions in part (c) are di¤erent.

(c) Proposition 5 continues to hold except that increasing  can increase or reduce ���B and ECS��D

when � = 0.

results due to our assumption that lN = 0 (see §3).
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Corollary 1 shows that a more general risk model in this section a¤ects only the impact of enforce-

ment strategy (that increases ) on ���B and ECS��D . In the base model, Proposition 5 has shown

that this strategy always improves ���B and ECS��D when � = 0. However, Corollary 1(c) shows

that this strategy can either increase or decrease ���B and ECS��D even when � = 0. The intuition

is as follows. In the base model, when � = 0; the optimal functional quality f��D of the deceptive

counterfeiter is always f . However, as we have discussed above, f��D > f is possible in the extended

model. In this case, as the investment for quality improvement becomes more risky with higher

, the deceptive counterfeiter may �nd it optimal to reduce f��D . This in turn increases the risk

of the licit distributor selling counterfeits (through �2fD) as well as his own risk of getting caught

(through �1fD). As a result of these two opposing e¤ects, we �nd that increasing  can increase or

decrease f��D . When f
��
D is increased, it will reduce the risk of the licit distributor selling deceptive

counterfeits, hence increasing the fraction s�� of deceptive counterfeits; consequently, it could hurt

the expected pro�t of the brand-name company, ���B : On the other hand, when f
��
D is decreased,

consumers will su¤er from the lower quality of deceptive counterfeits; thus, it could reduce ECS��D :

8 Concluding Remarks

Today counterfeit products are being produced and consumed in virtually all economies (OECD

2008). While easy-to-manufacture goods had dominated counterfeit supply until a decade ago, there

has been an alarming expansion of product categories being infringed. As a result of outsourcing

and o¤shoring, counterfeiters have easy access to modern technology and equipment, and they

are capable of producing high-quality replicas. Consumers are not easily deceived by fake goods

that are sold by vendors in open markets and unknown internet sites. These changing business

conditions require industry and governments to enhance their understanding of the current and

potential counterfeiters they may face and to develop strategies to limit their activities.

To aid the e¤orts of industry and governments to combat counterfeiting, we have developed

a normative model of counterfeiting. Our model captures the recent changes in counterfeiting

supply and demand that are not addressed in the previous literature. For example, the previous

literature focuses on the pricing decision of a counterfeiter, assuming that the quality level of his

goods is �xed, and he is capable of selling his goods, even deceptive ones, directly to consumers.

In contrast, our model takes into account the strategic decisions of a counterfeiter regarding his

price and functional quality; and the fundamental di¤erence between non-deceptive and deceptive

counterfeits in consumers� awareness, distribution channels, and penalty on illegal distribution.

We have also considered the case when a fraction of consumers are proactive. Modeling these
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factors explicitly enables us to evaluate several anti-counterfeiting strategies against both types of

counterfeiters, and to draw novel managerial insights.

Our analysis highlights that the strategies which are e¤ective in combating the non-deceptive

counterfeiter may not work well against the deceptive counterfeiter. Moreover, even if strategies

help the brand-name company improve her expected pro�t, they may not be e¤ective in limiting

counterfeit activities, and they can even hurt consumers. For example:

- The strategy of improving the quality of brand-name products is e¤ective in combating the non-

deceptive counterfeiter only when the non-deceptive counterfeit steals an insigni�cant amount of

brand value. This strategy may not be used in combating the non-deceptive counterfeiter in other

situations or in combating the deceptive counterfeiter.

- The strategy of reducing the price of brand-name products is an ideal strategy against the non-

deceptive counterfeiter. In contrast, when facing the deceptive counterfeiter, it can hurt the brand-

name company�s pro�t as well as consumer welfare, and also bene�t the deceptive counterfeiter

inadvertently.

- The marketing campaign and the enforcement strategy are e¤ective in combating the non-deceptive

counterfeiter, but they may not bene�t the brand-name company or consumers when consumers

are proactive toward deceptive counterfeits.

Therefore, industries and governments should understand the type of potential counterfeiters and

the characteristics of consumers in order to design e¤ective strategies to combat counterfeits. With-

out such understanding, anti-counterfeiting strategies could be ine¤ective and hurt consumer wel-

fare.

Although our model captures the salient features of counterfeiting, we make several assump-

tions to maintain tractability. First, we do not consider the e¤ect of positive or negative externality

of counterfeits on brand-name products. For some product categories, counterfeits help to increase

the size of user base of brand-name products, which refers to positive externality. A typical example

is software piracy (Conner and Rumelt 1991). The negative externality of counterfeits refers to the

negative impact of counterfeits on the value of a brand. More counterfeits in the market, less pres-

tigious the brand becomes. Second, we assume that consumers are risk-neutral. In some situations,

consumers show risk-prone or irrational behavior. For example, fraudsters use their phony pharma-

ceutical websites to take advantage of the recent swine-�u fears. Some consumers who are anxious

for their children take risks of buying fake vaccines and bogus remedies from unknown websites

(Taylor 2009). Behavioral research would help enrich our understanding of the risk attitudes of

consumers. Third, our model does not capture the details of speci�c anti-counterfeiting technolo-

gies; e.g., technologies to authenticate products such as NanoInk (http://www.nanoink.net) and
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technologies to track and trace the movement of products through supply chains such as RFID.

Yet, their broad use and success has been limited by a variety of factors, including the ability of

counterfeiters to adopt or copy the technologies (OECD 2008). Our current model captures the role

of these technologies to some degree: the former type of technologies is captured by the marginal

cost of developing functional quality of a counterfeit product (i.e., with such technologies installed,

a counterfeiter needs to spend more e¤ort to copy authentic goods) and the latter type of tech-

nologies is captured by seizure rate (i.e., with RFID installed, the likelihood of seizing counterfeits

increases). More detailed cost-bene�t analysis of these technologies in speci�c industrial settings

would be interesting future research.
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Online Appendix

Appendix A. Proofs of Analytical Results

We use (A1) and (A2) to indicate the following assumptions we have made earlier: (A1) qB > qN =

fN + �qB and qB > qD = fD + �qB; (A2) 1� pB
qB
> 0 and 1� pB�pN

qB�qN > 0 so that mB > 0.

Proof of Lemma 1: From (4), we obtain @2��N
@f2N

=
(1�)p2B

4f(1��)qB�fNg3
� 2tN ; which is positive if

tN <
(1�)p2B

8f(1��)qB�fNg3
. Thus, if tN <

(1�)p2B
8f(1��)qB�fg3

; ��N is convex in fN 2 [f; f ], so f�N = f when

��N (f) � ��N (f): Otherwise, f
�
N can be f or f�N 2 (f; f) that satis�es the �rst order condition

@��N
@fN

jfN=f�N = 0. �
Remark A su¢ cient condition for f�N > f is tN <

(1�)p2B
16ff(1��)qB�fg2

; which can be obtained from

@��N
@fN

jfN=f =
(1�)p2B

8f(1��)qB�fg2
� 2tNf > 0:

Proof of Lemma 2: When � = 0; from (8), @�
��
D

@fD
= �2tDfD < 0; so f��D = f . When � > 0;

we next show that f��D = f if tD � tD: For any fD 2 (f; f ]; ���D (w��D (fD); f) � ���D (w
��
D (fD); fD)

if tD � (1 � )w��D (fD)fm��
D (w

��
D (fD); fD) � m��

D (w
��
D (fD); f)g(f2D � f2)�1: Suppose tD � tD �

max
fD2(f;f ]

(1�)w��D (fD)fm��
D (w

��
D (fD); fD)�m��

D (w
��
D (fD); f)g(f2D�f2)�1. Then, for any fD 2 (f; f ];
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���D (w
��
D (f); f) � ���D (w

��
D (fD); f) � ���D (w

��
D (fD); fD), where the �rst inequality is due to the

optimality of w��D (f) given f; and the second inequality follows from tD � tD: Therefore, f��D = f:

In the rest of the proof, we show tD > 0 in two steps: we �rst show that s�� is increasing

in fD for given wD; and then show that the market share of the deceptive counterfeiter, m��
D =

s��
�
1� ��(s��)

	
; is increasing in fD for any given wD. Then from the de�nition of tD, tD > 0: Let

�LD denote the expected pro�t of the licit distributor given in (6). Then
@�LD
@s = (1� 2s)(pB � wD)

�
1� ��

	
� s(1� s)(pB � wD)@

��
@s � l; and

@2�LD
@s@fD

= (2� 3s)(pB � wD) �pBs

f(1�s)qB+s(fD+�qB)g2
+ 2s(1� s)(pB � wD) �pBs(qB�fD��qB)

f(1�s)qB+s(fD+�qB)g3
;

where the �rst term is positive because we know from §4.2 that s�� < 0:5 and wD � pB; and the
second term is also positive according to (A1). Therefore, @�LD@s is increasing in fD. Since s��

satis�es @�LD@s js=s�� = 0 due to the concavity of �LD with respect to s, s
�� is increasing in fD.

Next, we show that m��
D increases as fD increases from fDL to fDH for given wD: Suppose this

does not hold. Then, �LD satis�es the following:

�LD(s
��(fDH); fDH) = s

��(fDH)(1� s��(fDH))(pB �wD)
�
1� ��(s��(fDH); fDH)

	
� s��(fDH)l

� s��(fDL)(1� s��(fDH))(pB � wD)
�
1� ��(s��(fDL); fDL)

	
� s��(fDH)l

< s��(fDL)(1� s��(fDH))(pB � wD)
�
1� ��(s��(fDL); fDH)

	
� s��(fDH)l

< s��(fDL)(1�s��(fDL))(pB�wD)
�
1� ��(s��(fDL); fDH)

	
�s��(fDL)l = �LD(s��(fDL); fDH);

where the �rst inequality follows from our premise, the second inequality follows from @��
@fD

=

� �pBs

f(1�s)qB+s(fD+�qB)g2
< 0 for �xed s, and the last inequality follows from @s��

@fD
> 0. However, this

contradicts the condition that s��(fDH) maximizes the licit distributor�s pro�t �LD given fDH .

Therefore, m��
D is increasing in fD for given wD; and tD > 0. �

Remark A su¢ cient condition for f��D > f is tD < tD � max
fD2(f;f ]

(1� )w��D (f)fm��
D (w

��
D (f); fD)�

m��
D (w

��
D (f); f)g(f2D � f2)�1: We show this by contradiction. Suppose f��D = f and de�ne fmax =

argmax
fD2(f;f ]

(1�)w��D (f)fm��
D (w

��
D (f); fD)�m��

D (w
��
D (f); f)g(f2D�f2)�1. Then ���D (w��D (fmax); fmax) �

���D (w
��
D (f); fmax) > �

��
D (w

��
D (f); f); where the �rst inequality is due to the optimality of w

��
D (fmax)

given fmax, and the second inequality follows from tD < tD. However, this contradicts our premise

that f��D = f . Therefore, f��D > f if tD < tD.

Proof of Proposition 1: (a) The proof proceeds as follows: We �rst obtain qmB and q�B, and

then derive the condition for q�B > q
m
B . When there is no counterfeiter, the expected pro�t of the

brand-name company is given as follows:

�mB = (pB � c)
�
1� pB

qB

�
� tBq2B; (13)

where c (> 0) is the marginal cost of the brand-name product. From (13), @
2�mB
@q2B

= �2(pB�c)pB
q3B

�
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2tB < 0; so we obtain qmB = (pB�c)pB
2tBq

m2
B

from the �rst order condition. When the non-deceptive

counterfeiter exists in the market, we obtain ��B after substituting p
�
N and w�N into mB in (1) as

follows:

��B = (pB � c)mB � tBq2B = (pB � c)
�
1� (1� )pB

4f(1� �)qB � f�Ng
� (3 + )pB

4qB

�
� tBq2B: (14)

From (14), when f�N = f or f ,
@2��B
@q2B

= �pB�c
2 (pB(1�)(1��)

2

(qB�qN )3 + pB(3+)
q3B

)� 2tB < 0 due to (A1). In

this case, from the �rst order condition of (14), q�B =
pB�c
2tB

n
(1�)(1��)pB

4f(1��)q�B�f�N (q�B)g2
+ (3+)pB

4q�2B

o
:

We next show by contradiction that q�B > qmB when � < 1 � ( q
m
B�q�N (qmB )

qmB
)2: Suppose � <

1 � ( q
m
B�q�N (qmB )

qmB
)2 and q�B � qmB : For fNH > fNL; from (4), we obtain @��N (fNH)

@qB
� @��N (fNL)

@qB
=

(�1)p2B(fNH�fNL)(1��)f(1��)qB�(fNH+fNL)=2g
4f(1��)qB�fNHg2f(1��)qB�fNLg2

< 0 due to (A1); so f�N is decreasing in qB: Then

q�B =
pB�c
2tB

n
(1�)(1��)pB

4f(1��)q�B�f�N (q�B)g2
+ (3+)pB

4q�2B

o
� pB�c

2tB
f (1�)(1��)pB
4f(1��)qmB�f�N (qmB )g2

+ (3+)pB
4qm2B

g > (pB�c)pB
2tBq

m2
B

= qmB ;

where the �rst inequality follows from q�B � qmB and f�N (q
�
B) � f�N (qmB ); and the second inequality

follows from � < 1 � ( q
m
B�q�N (qmB )

qmB
)2: Thus, there is a contradiction, so q�B > qmB when � < 1 �

(
qmB�q�N (qmB )

qmB
)2. The case in which � � 1 � ( q

m
B�q�N (qmB )

qmB
)2 can be shown similarly and is hence

omitted.

(b) To establish the result in the proposition, it su¢ ces to show that ��N is decreasing in qB: The

proof proceeds in two steps: We �rst show that ��N decreases in qB for any given fN ; and then

show that this result holds even when f�N changes with qB. First, from (4), we obtain @��N
@qB

=

(1�)p2Bf�q2B(��1)+2qBfN (��1)+f2Ng
4q2Bf(1��)qB�fNg

2 ; which is negative by (A1) for any given fN . Next, we consider

the case in which f�N changes from fN1 to fN2 when qB is increased from qBL to qBH . In this case,

��N (fN1; qBL) � ��N (fN2; qBL) > ��N (fN2; qBH); where the �rst inequality follows from f�N (qBL) =

fN1 and the second inequality is due to
@��N
@qB

< 0 8fN .
(c) We �rst prove that ECS�N is increasing in qB for given fN ; and then prove that ECS

�
N decreases

when f�N is decreased from fNH to fNL for any given qB.

To prove that ECS�N is increasing in qB; it su¢ ces to show that
@CSN
@qB

> 0 for any given fN

because @CSB
@qB

> 0 from the de�nition of CSB. Now suppose that qB is increased from qBL to

qBH . Then qN is also increased from qNL to qNH given fN ; b� is decreased from b�L to b�H ; ande� is decreased from e�L to e�H . Using p�N = 3pBqN
4qB

, we can rewrite (9) and �nd CSN (qBH) >R e�Hb�L �
� � 3pB

4qBH

�
qNHd� +

R 1e�H (�qBH � pB)d� > R e�Hb�L �
� � 3pB

4qBH

�
qNHd� +

R e�Le�H �� � 3pB
4qBH

�
qNHd� +R 1e�L(�qBH�pB)d� > CSN (qBL): The �rst inequality holds because b�L > b�H and �� � 3pB

4qBH

�
qNH >

0 for � 2 (b�H ;b�L): The second inequality holds because �qBH � pB > �qNH � p�N for � 2 (e�H ;e�L).
The third inequality follows from the fact that qBH > qBL and qNH > qNL:

Next, suppose f�N is decreased from fNH to fNL for �xed qB: Then b� remains the same, wherease� is decreased from e�0 � pB
4f(1��)qB�fNHg +

3pB
4qB

to e�00 � pB
4f(1��)qB�fNLg +

3pB
4qB
. Then,
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ECS�N (fNH) = (1� )
�R e�0b� �

� � 3pB
4qB

�
(fNH + �qB)d� +

R 1e�0(�qB � pB)d��+  R 1pBqB (�qB � pB)d�
> (1� )

�R e�00b�
�
� � 3pB

4qB

�
(fNH + �qB)d� +

R e�0e�00(�qB � pB)d� + R 1e�0(�qB � pB)d��+  R 1pBqB (�qB � pB)d�
> (1� )

�R e�00b�
�
� � 3pB

4qB

�
(fNL + �qB)d� +

R 1e�00(�qB � pB)d��+  R 1pBqB (�qB � pB)d� = ECS�N (fNL):
In the above, the �rst inequality holds because

�
� � 3pB

4qB

�
(fNH + �qB) > �qB � pB for � 2 (e�00;e�0),

and the second inequality follows from fNH > fNL: �
Remark When f�N 2 (f; f); assuming

@2f�N
@q2B

� 0; we can still obtain @2��B
@q2B

< 0: From the �rst order

condition of (14), q�B = pB�c
2tB

f (1�)(1���@f
�
N=@qB)pB

4f(1��)q�B�f�N (q�B)g2
+ (3+)pB

4q�2B
g: The condition for q�B > qmB then

becomes (1�)(1���@f�N=@qB)
4f(1��)q�B�f�N (q�B)g2

+ 3+
4q�2B

� 1
qm2B

> 0: Unfortunately, this condition cannot be simpli�ed

further to the form like � < 1 � ( q
m
B�q�N (qmB )

qmB
)2 because the closed-form expressions for f�N and

@f�N
@qB

are not available. The proof for (b) does not require f�N = f or f; so it also holds for

f�N 2 (f; f). For (c), suppose q�B > qmB . From (11), @ECS
�
N

@qB
= [q2B(1� �)f16(1� �)q2B + p2B(�(15 +

)� 16)g+ f�Nfp2B(15+)� 16q2Bgf2(1��)qB � f�Ng+ p2Bq2B(1�)@f�N=@qB] f(1� �)qB � f�Ng
�2 :

Then ECS�N is decreasing in qB 2 [qmB ; q�B] so that ECS�N is lower at q�B than at qmB if @f
�
N

@qB
<

� q2B(1��)f16(1��)q2B+p2B(�(15+)�16)g+f�Nfp2B(15+)�16q2Bgf2(1��)qB�f�Ng
p2Bq

2
B(1�)f(1��)qB�f�Ng

2 :

Proof of Proposition 2: (a) From (13), @
2�mB
@p2B

= � 2
qB
< 0; so we obtain pmB =

qB+c
2 from the �rst

order condition. Next, consider the market in which the non-deceptive counterfeiter exists. When

f�N = f or f , from (14),
@2��B
@p2B

= � 1�
2(qB�qN )�

3+
2qB

< 0 and p�B =
qBq

�
D(1�)

2(�4qB+3q�D+q�D)
+ qB+c

2 ; in this case,

p�B < p
m
B due to (A1). When f

�
N 2 (f; f); we show

@��B
@pB

j
pB=

qB+c

2

< 0, which then results in p�B < p
m
B .

From (14), we obtain @��B
@pB

j
pB=

qB+c

2

=
(1�)f4f�2N +4(2��1)f�N qB+4(��1)�q2B+(c�qB)(c+qB)@f�N=@pBg

16f(1��)qB�f�Ng
2 ; which

is negative because: 4f�2N � 4(1� 2�)f�NqB � 4(1� �)�q2B �
@f�N
@pB

(qB � c)(qB + c) < 4f�2N � 4(f�N �
�qB)f

�
N � 4f�N�qB �

@f�N
@pB

(qB � c)(qB + c) = �
@f�N
@pB

(qB � c)(qB + c) � 0; where the �rst inequality is
based on (A1) and the second inequality holds because @f�N

@pB
� 0 and qB > pB � c by (A2).

(b) The proof is similar to that of Proposition 1(b), and is hence omitted.

(c) The proof for the case in which f�N = f or f is similar to that of Proposition 1(c). When f
�
N 2

(f; f); from (11), @ECS
�
N

@pB
= [�2 f(1� �)qB � f�Ng f16(1��)q2B+pBqB(�(15+)�16)+(pB(15+)�

16qB)f
�
Ng+p2BqB(1�)@f�N=@pB] f(1� �)qB � f�Ng

�2 :De�ne � = max
pB2[p�B ;pmB ]

2 f(1� �)qB � f�Ng f16(1�

�)q2B + pBqB(�(15+ )� 16)+ (pB(15+ )� 16qB)f�Ngp
�2
B q

�1
B (1� )�1 f(1� �)qB � f�Ng

�2 : Then

ECS�N is increasing in pB 2 [p�B; pmB ] so that ECS�N is lower at p�B than at pmB if
@f�N
@pB

> �: �

Proof of Proposition 3: (a) When the deceptive counterfeiter exists in the market with � = 0,
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we obtain ��B after substituting s
�� and w�D into mB in (5) as follows:

���B = (pB�c)mB�tBq2B = (pB�c)

24(1� )
8<:12(1� pBqB ) + 12

s
l(1� pB

qB
)

pB

9=;+ (1� pBqB )
35�tBq2B:

(15)

From (15), @2���B
@q2B

= (pB � c)f�pB(1+)
q3B

� (4qB�3pB)(1�)
8(qB�pB)q3B

q
lqBpB
qB�pB g � 2tB < 0 due to (A2), and

q��B = pB�c
2tB

n
(1� )( pB

2q��2B
+ 1

4q��2B

q
lpBq

��
B

q��B �pB
) + pB

q��2B

o
from the �rst order condition. By the same

procedure in the proof of Proposition 1(a), we can prove by contradiction that q��B < qmB if and only

if l < 4pB(1� pB
qmB
): Since s�� = 1

2 �
1
2

r
l

pB(1�
pB
qB
)
> 0; we �nd that l < pB(1� pB

qmB
) < 4pB(1� pB

qmB
),

so we always have q��B < qmB :

(b) To establish the result in the proposition, it su¢ ces to show that ���D is increasing in qB:When

� = 0; it is easy to see @���D
@qB

=
@���D

@(1� pB
qB
)

pB
q2B
> 0 8fD from (8). Since f��D =f 8qB, the result follows.

(c) When � = 0; from (11), @ECS
��
D

@qB
= �(1�)

n
p2B
q3B
s�� + 1

2

�
1� p2B

q2B

�
@s��

@qB

o
(qB � q��D )+1

2

�
1� p2B

q2B

�
f1�

(1� )s��g: Using @s��

@qB
> 0 and (A2), we obtain the condition given in Proposition 3(c). �

Remark When � > 0; both q��B < qmB and q��B > qmB are possible as shown in Table 3. The condi-

tion for q��B < qmB is tB >
(pB�c)
2qmB

[pB
qm2B

�(1�)f1� (1��)pB
qmB

� �pB
(1�s��(qmB ))qmB+s��(qmB )(�qmB+f��D (qmB ))

g@s��@qB
+

(1 � )(1 � s��(qmB ))f
(1��)pB
qm2B

+ �pB(1 + s
��(qmB )(� � 1 +

@f��D
@qB

) + (f��D (q
m
B ) + �q

m
B � qmB )@s

��

@qB
)((1 �

s��(qmB ))q
m
B + s

��(qmB )(�q
m
B + f

��
D (q

m
B )))

�2g]; which can be obtained from @���B
@qB

jqB=qmB < 0: In this

case, ���D is increasing in qB as in the case when � = 0 shown in the proof of Proposition 3(b). The

proof follows the same procedure as in that of Lemma 2, so we provide a sketch of the proof here.

For given wD and fD; we can show that s�� andm��
D are increasing in qB. Then when qB is increased

from qBL to qBH ; the following inequalities hold in equilibrium: ���D (w
��
D (qBH); f

��
D (qBH); qBH) �

���D (w
��
D (qBL); f

��
D (qBL); qBH) > ���D (w

��
D (qBL); f

��
D (qBL); qBL): Finally, when � > 0; the condition

for @ECS
��
D

@qB
< 0 given in Proposition 3(c) is modi�ed to the following: q��D

n
2�s�� @�@qB + (1� �

2
)@s

��

@qB

o
<


1�

�
1� p2B

q2B

�
+2

�
pB � �qB(1� s��)

	
@�
@qB

+ (1� �2)
n
1�

�
1� � � @f��D

@qB

�
s�� � qB @s

��

@qB

o
: Unfortu-

nately, this condition cannot be simpli�ed further since the closed-form expressions of s�� and

f��D do not exist. The non-monotonicity of ECS��D is shown in Table 3.

Proof of Proposition 4: (a) From (15), @
2���B
@p2B

= �1+
qB
� 1�
2p2B

q
lqB

(qB�pB)pB

n
c+ qB(pB�c)

4(qB�pB)

o
< 0; and

@���B
@pB

j
pB=

qB+c

2

= c(1�)
2(c+qB)

q
l(qB�c)
qB(c+qB)

> 0 due to qB > pB � c by (A2). Therefore, by the concavity of
���B , p

��
B > pmB :

(b) The non-monotonicity of ���D with respect to pB is shown in Table 3.

(c) When � = 0; from (11), @ECS
��
D

@pB
= (1 � )[ s

��pB
qB

�
1� q��D

qB

�
+
�
1� pB

qB

�
f12
�
1 + pB

qB

�
@s��

@pB
(q��D �

qB)� 1g] + (pBqB � 1): Using
@s��

@pB
< 0 and (A2), we obtain the condition given in Proposition 4(c).

�
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Remark When � > 0; both p��B > pmB and p��B < pmB are possible as shown in Table 3. The

condition for p��B > pmB is (1 � pmB
qB
) + (1 � )(1 � s��(pmB ))Y + (pB � c)[�


qB
� (1 � )Y @s��

@pB
+

(1� )(1� s��(pmB ))fY�1pmB
+

�pmB fs��(pmB )
@f��D
@pB

+(f��D (pmB )+�qB�qB)
@s��
@pB

g
f(1�s��(pmB ))qB+s��(pmB )(�qB+f��D (pmB ))g2

g] > 0; where Y = 1� (1��)pmB
qB

�
�pmB

(1�s��(pmB ))qB+s��(pmB )(�qB+f��D (pmB ))
: This can be obtained from @���B

@pB
jpB=pmB > 0: The condition for

@ECS��D
@pB

> 0 given in Proposition 4(c) is modi�ed to the following: q��D
n
�s�� @�

@pB
� 1��2

2
@s��

@pB

o
<


1�

�
pB
qB
� 1
�
+
�
pB � �qB(1� s��)

	
@�
@pB

+ 1��2
2

n
s��

@q��D
@pB

� qB @s
��

@pB

o
� 1 + �: Unfortunately, this

condition cannot be simpli�ed further since the closed-form expressions of s�� and f��D do not exist.

The non-monotonicity of ECS��D is established in Table 3.

Proof of Proposition 5: When � = 0, we observe from (15) that ���B does not change with �;

and that ���B is increasing in . When � > 0; similar to the proof of Lemma 2, we can show that the

aggregate demand, (1� ��); for the brand-name product and the deceptive counterfeit is increasing
in � and decreasing in ; and that the fraction of the brand-name product, (1� s��); is decreasing
in � and increasing in . The non-monotonicity of ���B is shown in our numerical experiments

presented in online appendix B. The proofs for ���D and ECS��D are similar to those of Proposition

3(b)-(c), and hence are omitted. �

Proposition 6 For any � 2 [0; 1]; if any anti-counterfeiting strategy improves the average product
quality in the market, (1� s��)qB + s��(f��D + �qB), then ECS��D increases.

Proof of Proposition 6: Let us examine @ECS��D
@qB

: From the de�nition of CSD,
@CSD
@qB

> 0 if and

only if @
@qB
f(1 � s��)qB + s��qDg > 0: Since @CSB

@qB
> 0, @ECS

��
D

@qB
= (1 � )@CSD@qB

+  @CSB@qB
> 0 if

@
@qB
f(1� s��)qB + s��qDg > 0: The results for the other parameters can be shown similarly. �

Proof of Corollary 1: (a) Suppose f�N = f or f: We can obtain
@��B
@qB

by replacing  in the base

model with  � �1f�N : To show that Proposition 1(a) continues to hold, we need to prove that f�N
is decreasing in qB:For fNH > fNL;

@��N (fNH)
@qB

� @��N (fNL)
@qB

can be expressed as follows:

�p2B(1�+�1fNH)fqB(�qB+fNH)(1��)+fNH(qB��qB�fNH)g
8q2Bf(1��)qB�fNHg

2 +
p2B(1�+�1fNL)fqB(�qB+fNL)(1��)+fNL(qB��qB�fNL)g

8q2Bf(1��)qB�fNLg
2

< (1�+�1fNH)
h
�p2BfqB(�qB+fNH)(1��)+fNH(qB��qB�fNH)g

8q2Bf(1��)qB�fNHg
2 +

p2BfqB(�qB+fNL)(1��)+fNL(qB��qB�fNL)g
8q2Bf(1��)qB�fNLg

2

i
= � (1�+�1fNH)p2B(fNH�fNL)(1��)f(1��)qB�(fNH+fNL)=2g

4f(1��)qB�fNHg2f(1��)qB�fNLg2
;

which is negative due to (A1). Then, following the same procedure as in the proof of Proposition

1(a), we can show q�B > q
m
B if and only if � < 1�

n
qmB�q�N (qmB )

qmB

o2
: For Proposition 1(b), when fN is

given, @�
�
N

@qB
=

(1�+�1fN )p2Bf�q2B(��1)+2qBfN (��1)+f2Ng
4q2Bf(1��)qB�fNg

2 < 0 due to (A1). When f�N changes from fN1

to fN2 as qB is increased from qBL to qBH , ��N (fN1; qBL) � ��N (fN2; qBL) > ��N (fN2; qBH); where
the �rst inequality follows from f�N (qBL) = fN1 and the second inequality is due to

@��N
@qB

< 0 8fN .
For Proposition 1(c), to prove that ECS�N is increasing in qB; it su¢ ces to show that

@CSN
@qB

> 0:
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Since @CSN
@qB

does not depend on  when fN is given, Proposition 1(c) continues to hold.

(b) We can show that the proof for Proposition 2 also applies to the case with ��1fN similarly to
Proposition 1, except part (c) when f�N 2 (f; f):With the extension,

@ECS�N
@pB

= f(1� �)qB � f�Ng
�2

[p2B
@f�N
@pB

f��1f�N (2�qB�2qB+f�N )�qB((��1)��1qB+�1)g�2((��1)qB+f�N )ff�NpB(��1qB��
15+ �1f

�
N +

16qB
pB
)+ qB(16(��1)qB�pB�(+15)+16pB)g]: De�ne � = max

pB2[p�B ;pmB ]
2p�2B ((��1)qB+

f�N )ff�NpB(��1qB��15+ �1f�N +
16qB
pB
)+ qB(16(��1)qB�pB�(+15)+16pB)gf��1f�N (2�qB�

2qB+f
�
N )�qB((��1)��1qB+�1)g�1: Then ECS�N is increasing in pB 2 [p�B; pmB ] so that ECS�N

is lower at p�B than at p
m
B if

@f�N
@pB

> �:

To show that Proposition 3(a) continues to hold, when � = 0; we can prove by contradiction that

q��B < qmB if and only if (1+�2fD)l < 4pB(1�
pB
qmB
) by the same procedure as in the proof of Proposition

1(a). Since s�� = 1+�2fD
2 � 1

2

r
l(1+�2fD)

pB(1�
pB
qB
)
> 0; we obtain l < pB(1� pB

qmB
)(1+�2fD) <

4pB
1+�2fD

(1� pB
qmB
);

so q��B < qmB always holds. For Proposition 4(a), @�
��
B

@pB
j
pB=

qB+c

2

= c(1�+�1fD)
2(c+qB)

q
l(qB�c)(1+�2fD)

qB(c+qB)
> 0,

so p��B > pmB . For Propositions 3(b) and 4(b), we can show that, with the extension, s�� and

m��
D are increasing in qB and decreasing in pB for given wD and fD. Then, when qB is increased

from qBL to qBH ; the following inequalities hold in equilibrium: ���D (w
��
D (qBH); f

��
D (qBH); qBH) �

���D (w
��
D (qBL); f

��
D (qBL); qBH) > �

��
D (w

��
D (qBL); f

��
D (qBL); qBL): Similarly, when pB is decreased from

pBH to pBL; the following inequalities hold in equilibrium: ���D (w
��
D (pBL); f

��
D (pBL); pBL) �

���D (w
��
D (pBH); f

��
D (pBH); pBL) > �

��
D (w

��
D (pBH); f

��
D (pBH); pBH). Propositions 3(c) and 4(c) can be

shown similarly to Proposition 2(c).

(c) The proofs of ���D and ECS��D are similar to those of Proposition 3(b)-(c). When � = 0; the

non-monotonicity of ���B or ECS��D with respect to  can be shown numerically as follows. Set

qB = 1; pB = 0:5; tB = tD = 0:01; c = 0:01; � = 0:1; l = 0:02; and �1 = �2 = 0:1: As  increases

from 0:2 to 0:3, ���B increases from 0:174 to 0:181 and ECS��D increases from 0:070 to 0:076: As 

increases from 0:3 to 0:4; ���B decreases from 0:181 to 0:173 and ECS��D decreases from 0:070 to

0:069: �

Appendix B. Numerical Experiments

This section contains our numerical study that examines the e¤ectiveness of the marketing campaign

and the enforcement strategy against the deceptive counterfeiter. Similar to the numerical study

presented in §5.2, we have constructed 1024 scenarios for � = 0; 0:25 or 0:5; using the parameter

values shown in the bottom of Table 5, so that they cover various possible scenarios and also satisfy

positive s�� in equilibrium. We computed the di¤erence in �rms�expected pro�ts and expected

consumer welfare associated with the adjacent values of � or  for a �xed set of other parameter
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values. There are 3 increments of � or  for a set of 256 possible values of (ti; c; ; l); so there are

768 scenarios for which we can examine the direction of changes with a decrease of � or an increase

of . The results are summarized in Table 5, which reads as follows: for example, when � = 0:5;

reducing � increased ���B in 33.1% of 768 scenarios, decreased ���D in all scenarios, and increased

ECS��D in 13.9% of 768 scenarios.

Table 5. E¤ects of Marketing Campaigns and Enforcement against Deceptive Counterfeits
E¤ects of Reducing � E¤ects of Increasing 

���B " ���D # ECS��D " ���B " ���D # ECS��D "
� = 0 no change no change 0 1 1 1

� = 0:25 0.374 1 0.260 1 1 0.952

� = 0:5 0.331 1 0.139 0.990 1 0.927

(Note) Each number in the table indicates a percent of scenarios for the corresponding e¤ect. We used the fol-

lowing parameters: t 2{0.005,0.01,0.015,0.02}, � 2{0.1,0.2,0.3,0.4},  2{0.1,0.2,0.3,0.4}, l 2{0.005,0.01,0.015,0.02},
c 2{0.005,0.01,0.015,0.02}, f = 0:1; and f = (1� �) � qB � 0:01. (qB ; pB) is �xed at (qmB ; pmB ).

Table 5 con�rms the results stated in Proposition 5. In addition, similar to the quality and pricing

strategies discussed in §5.2, these strategies are not necessarily more e¤ective as more consumers

are proactive with higher �.

Appendix C. Extension: Price Decision of Licit Distributor

Suppose, instead of the brand-name company, the licit distributor decides the retail price of the

brand-name product, pB, when combating the deceptive counterfeiter. The brand-name company

instead decides the wholesale price, wB; to the licit distributor. The rest of the decisions remain

the same as in the base model. The sequence of decisions is as follows: After observing the quality

qB and wholesale price wB of the brand-name product, the deceptive counterfeiter decides his

functional quality fD and wholesale price wD in stages 1 and 2, respectively. In stage 3, the licit

distributor decides a fraction of deceptive counterfeits s; and then decides the retail price pB. Note

that the licit distributor can source products from the brand-name company at the wholesale price

wB; and/or from the deceptive counterfeiter at the wholesale price wD; should counterfeit goods

reach the market.

We analyze this model backwards. In stage 3, the licit distributor �rst solves the following

problem to determine pB:

max
pB

(1� s) fpB � swD � (1� s)wBg
�
1� �pB

(1� s)qB + s(fD + �qB)
� (1� �)pB

qB

�
� sl: (16)

One can verify from (16) that the pro�t of the licit distributor is concave in pB:We obtain from the

�rst-order condition the optimal retail price: p��B = swD+(1�s)wB
2 + 1

2(
�

(1�s)qB+s(fD+�qB) +
1��
qB
)�1.
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Since wD < wB and fD + �qB < qB; the distributor charges a lower retail price p��B when the

fraction of counterfeits s is larger or the fraction of proactive consumers � is larger.

Next, to �nd the optimal fraction s��, the licit distributor solves the following problem which

is obtained by substituting p��B into (16):

max
s

1

4
(1� s)

�
�

(1� s)qB + s(fD + �qB)
+
1� �
qB

�
�
"
swD + (1� s)wB �

�
�

(1� s)qB + s(fD + �qB)
+
1� �
qB

��1#2
� sl (17)

Due to complexity, however, it is not possible to �nd the closed-form expression of s�� from (17).

Although the part of our analysis in the base model does not rely on its closed-form expression,

the impact of any anti-counterfeiting strategy on s�� becomes prohibitively complex to obtain any

analytical result. Thus, we conduct extensive numerical experiments to examine the e¤ects of the

anti-counterfeiting strategies. We use the same set of parameters as in online appendix B. For

each case with � = 0 and � = 0:5, there are 1024 scenarios in which we can investigate the anti-

counterfeiting strategies that change quality or price from the case with no counterfeiter to the

optimal levels. On the other hand, similar to Table 5, there are 768 scenarios for which we can

examine the anti-counterfeiting strategies that reduce � or increase . We present a summary of

the results in Table 6, which reads similarly to Table 5.

Table 6. E¤ects of Quality and Pricing Strategies in the Extended Model
� = 0 � = 0:5

���B " ���D # ECS��D " ���B " ���D # ECS��D "
qmB ! q��B 1 0.320 0.672 1 0.998 0.647
wmB ! w��B 1 0.508 0.805 1 0.998 0.647

� # no change no change 0 0.135 1 0.135
 " 1 1 1 0.779 1 0.798

Table 6 shows that the e¤ects of anti-counterfeiting strategies remain directionally true in this

extended model. For example, as the price changes from wmB to w��B , �
��
D and ECS��D can increase

or decrease; this is consistent with Proposition 4. Also, as stated in Proposition 5, when � = 0,

reducing � has no impact on ���B and ���D ; but reduces ECS
��
D , whereas increasing  reduces �

��
D

and increases ���B as well as ECS��D ; when � > 0, reducing � or increasing  reduces ���D , but it

can increase or reduce ���B and ECS��D . One notable exception is that when � = 0; changing qmB

to q��B can increase ���D although it always reduces ���D in the base model. This happens because

of the additional lever (i.e., determining pB as well as s) the licit distributor has in this extended

model. In response to the change of qB; the distributor can increase the aggregate demand for both

brand-name and counterfeit goods by reducing the retail price pB: As a result, we �nd that the
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distributor may increase or decrease the fraction of counterfeits, s��; in response to this strategy,

which thus creates a non-monotonic e¤ect on ���D .
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