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1 Introduction

Portfolio Selection (PS) is a practical financial engineering problem that requires determin-
ing a strategy of investing wealth among a set of assets in order to achieve certain objectives,
such as maximizing cumulative wealth or risk-adjusted return, in the long run. In this article,
we investigatesequential portfolio selection(also termedonline portfolio selection) strate-
gies, which sequentially determine portfolios based on publicly available information.

Traditionally in finance, portfolios are often selected according tomean-variancethe-
ory (Markowitz 1952, 1959) or its variants, to trade off between return and risk. In re-
cent years, this problem has also been actively studied froma learning to select portfo-
lio perspective, with roots in the fields of machine learning, data mining, information the-
ory and statistics. Rather than trading with a single stock using computational intelligence
techniques, learning to select portfolio approach focuseson a portfolio, which consists of
multiple assets/stocks. Several approaches for online portfolio selection, often character-
ized by machine learning formulations and effective optimization solutions, have been pro-
posed in literature (Kelly 1956; Breiman 1961; Cover 1991; Ordentlich and Cover 1996;
Helmbold et al. 1996; Borodin and El-Yaniv 1998; Borodin et al. 2000, 2004; Stoltz and Lugosi
2005; Hazan 2006; Györfi et al. 2006; Blum and Mansour 2007; Levina and Shafer 2008;
Györfi et al. 2008). Despite being studied extensively, most approaches are limited in some
aspects or the other.

Our goal of this work is to investigate a new online portfolioselection strategy that em-
ploys online learning techniques to exploit the financial markets. Some existing strategies
adopt thetrend followingapproach, that is, they assume that price relative will follow its
historical trading days. However, this philosophy fails when price relatives do not go in any
particular direction, but rather actively move within a range. So in this study, we exploit
another well-known principle in finance, viz., mean reversion (Jegadeesh 1990), through
an online machine learning framework. To this end, we propose a novel portfolio selection
strategy named “Passive Aggressive Mean Reversion” (PAMR), which exploits the mean re-
version property of financial markets by online passive aggressive learning (Crammer et al.
2006). PAMR’s key idea is to formulate a new loss function that can effectively exploit the
mean reversion property, and then adopt passive aggressiveonline learning to search for
optimal portfolio among the asset pool to maximize the cumulative return.

Under different scenarios, the proposed PAMR strategy either passively keeps last port-
folio or aggressively approaches a new portfolio by following the mean reversion principle.
By solving three well formulated optimization problems, wearrive at three simple portfolio
update rules. It is interesting to find that the final portfolio update scheme reaches certain
trade-offs between portfolio return and volatility risk, and explicitly reflects the mean re-
version trading rule. Moreover, we propose a mixture algorithm, which mixes PAMR and
other strategies, and show that the mixture can be universalif one universal strategy is in-
cluded. The key advantages of PAMR are its highly competitive performance and fairly
attractive computation time efficiency. Our extensive numerical experiments on various real
datasets show that in most cases the proposed PAMR strategy is quite performance efficient
in comparison to a number of state-of-the-art portfolio selection strategies under a variety of
performance metrics. At the same time, the proposed strategy costs linear time with respect
to the product of the number of stocks and trading days, and its computational time in back
tests is orders of magnitude less than its competitors, showing its applicability to real-world
large scale online applications.

As a summary, our contributions in this article include:
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1. We propose a new algorithm for online portfolio selection, named “Passive Aggressive
Mean Reversion” (PAMR). To the best of our knowledge, it is the first portfolio selection
strategy that exploits both the mean reversion property in finance and the powerful online
passive aggressive learning technique in machine learning.

2. We propose a mixture algorithm to mix the proposed PAMR algorithms and other uni-
versal strategies, resulting in a theoretically guaranteed universal mixture strategy.

3. We analyze the final portfolio update scheme of PAMR and show that it is essentially
related to certain trade-offs between portfolio return andvolatility risk.

4. We conduct an extensive set of numerical experiments on a number of up-to-date datasets
from various markets. The results show that in most cases theproposed PAMR strategy
not only outperforms the benchmarks (including market index, best stock and challeng-
ing best constant rebalanced portfolio (Cover 1991) in hindsight), but also outperforms
various state-of-the-art strategies under various performance metrics tested.

5. We also extend the proposed strategy to handle some practical issues for a real-life
portfolio selection task, viz., transaction cost and margin buying, and show its practical
viability through the extensive empirical study.

6. We show that the time complexity of the proposed algorithmis linear with respect to the
number of stocks per trading day, and its empirical computational time in the back tests
is quite competitive compared with the state of the arts, indicating the proposed strategy
is suitable for online large-scale real applications.
The rest of the article is organized as follows. Section 2 formally states online portfolio

selection problem. Section 3 reviews existing state-of-the-art approaches tackling this prob-
lem, and highlights their limitations. Section 4 presents our proposed PAMR strategy and
analyzes the algorithm. Section 5 validates the effectiveness of PAMR by extensive empir-
ical studies on historical financial markets. Finally, Section 6 summarizes this article and
indicates future directions.

2 Problem Setting

Let us consider a financial market withm assets, over which we wish to invest. The changes
of asset prices forn trading periods are represented by a sequence of non-negative, non-zero
price relative vectorsx1, . . . ,xn ∈ R

m
+ . Let us usexn to denote such a sequence of vectors.

The ith component of thetth vectorxti denotes the ratio of closing price to last closing
price of theith asset on thetth trading day, thus an investment in asseti on thetth trading
day increases by a factor ofxti.

An investment in the market is specified by aportfolio vectorbt = (bt1, . . . , btm), where
bti represents the proportion of wealth invested in theith asset. Typically, we assume portfo-
lio is self-financed and no margin/short is allowed, therefore each entry of a portfolio is non-
negative and adds up to one, that is,bt ∈ △m, where△m =

{

b : b ∈ R
m
+ ,
∑m

i=1 bi = 1
}

.
The investment procedure is represented by aportfolio strategy, that is, a sequence of map-
pingsb1 =

(

1
m , . . . , 1

m

)

,bt : R
m(t−1)
+ → △m, t = 2, 3, . . ., wherebt = bt (x1, . . . ,xt−1)

is the portfolio used on thetth trading period given past market price relativesx
t−1 =

{x1, . . . ,xt−1}. Let us denote bybn the portfolio strategy forn trading periods.
For thetth trading day, an investment according to portfoliobt results in aportfolio

daily return st, that is, the wealth increases by a factor ofst = b
⊤
t xt =

∑m
i=1 btixti.

Since we use price relative, the investment results in multiplicative cumulative return. Thus,
aftern trading days, the investment according to a portfolio strategybn results inportfolio
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cumulative wealthSn, which is increased by a factor of
∏n

t=1 b
⊤
t xt, that is,

Sn

(

b
n
,x

n
)

= S0

n
∏

t=1

b
⊤
t xt,

whereS0 denotes the initial wealth, and is set to$1 in this article for convenience.
Finally, we formulate the online portfolio selection problem as a sequential decision

problem. The portfolio manager is a decision maker whose goal is to make a portfolio
strategy on financial markets to satisfy certain requirements. In this study, his target is to
maximize the portfolio cumulative wealth. He computes his portfolios in a sequential fash-
ion. On each trading dayt, the portfolio manager has access to all previous sequencesof
price relative vectorsxt−1 = {x1, . . . ,xt−1}, and previous sequences of portfolio vectors
b
t−1 = {b1, . . . ,bt−1}. On the basis of these historical information, the portfolio manager

computes a new portfolio vectorbt for coming price relative vectorxt. Note that without
historical information, the initial portfolio is set to uniform. The resulting portfolio is evalu-
ated by its portfolio daily return. This procedure is repeated until the end of a trading period,
and the portfolio is finally evaluated according to the portfolio cumulative wealth achieved.
Figure 1 models the portfolio selection problem as a sequential decision problem.

Initialize S0 = 1,b0 =
(

1

m
, . . . , 1

m

)

for each trading dayt = 1, 2, . . . , n do
(1) Portfolio manager learns the portfoliobt based on historical information (bt−1,xt−1)
(2) Market reveals the market price relativext

(3) Portfolio incurs a portfolio daily returnst = b
⊤
t
xt

end for

Fig. 1: Portfolio Selection as a Sequential Decision problem.

In the above portfolio selection model, we make several general assumptions:
1. Transaction cost: we assume no transaction cost or taxes exists in this portfolio selection

model;
2. Market liquidity: we assume that one can buy and sell required quantities at last closing

price of any given trading period;
3. Impact cost: we assume that market behavior is not affected by a portfolio selection

strategy in our study.

3 Related work

In this section, we review some popular portfolio selectionapproaches, and some machine
learning and trading philosophies that inspire the proposed approach.

3.1 Benchmark Approaches

The most common baseline isBuy-And-Hold(BAH) strategy, that is, one invests his/her
wealth among a pool of assets with an initial portfolio and holds the portfolio all the time.
The BAH strategy with auniform initial portfolio is referred to as uniform BAH strategy,
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which is adopted as market strategy producing the market index in our study. Contrary to
the static BAH strategy, active trading strategies usuallychange portfolios regularly dur-
ing the entire trading periods. A classical active strategyis Constant Rebalanced Portfolios
(CRP) (Cover and Gluss 1986), which keeps a fixed fraction of ainvestor’s wealth in each
underlying asset every trading day. The best possible CRP strategy is often calledBest CRP
(BCRP), which apparently is only a hindsight strategy. The CRP strategy can take advan-
tage of market fluctuations for active trading, and its underlying idea is based on the mean
reversion principle, or known as “Buy Low, Sell High”. To handle transaction cost issue for
CRP strategy, Blum and Kalai (1999) proposedsemi-CRPthat partially balances between
potential return and potential transaction cost and rebalances to initial portfolio at the end of
any subset of the trading periods rather than every trading day.

3.2 Online Learning

In this section, we briefly introduce the related work on online machine learning (Rosenblatt
1958; Crammer and Singer 2003; Cesa-Bianchi et al. 2004; Crammer et al. 2006; Fink et al.
2006) to have the learning inspiration for our work.Perceptronalgorithm (Rosenblatt 1958;
Freund and Schapire 1999) is one important online approach which updates the learning
function by adding a new example with a constant weight when it is misclassified. Recently
a number of online learning algorithms have been proposed based on the criterion of max-
imum margin (Li and Long 1999; Gentile 2001; Kivinen et al. 2001; Crammer and Singer
2003; Crammer et al. 2006; Zhao et al. 2011). For example,Relaxed Online Maximum Mar-
gin (ROMMA) (Li and Long 1999) algorithm repeatedly chooses thehyper-planes that cor-
rectly classify the existing training example with the maximum margin.Passive Aggressive
(PA) (Crammer et al. 2006) algorithm updates the classification function when a new exam-
ple is misclassified or its classification score does not exceed some predefined thresholds. As
empirical studies show, the maximum margin based online learning algorithms are generally
more effectively than the Perceptron algorithm. In this article, we mainly adopt the idea of
Passive Aggressive learning since it is suitable for our motivations as further illustrated in
Section 4.1.

3.3 Learning to Select Portfolio

Learning to select portfolio has been extensively studied in information theory and machine
learning. Generally, a strategy selects one optimal strategy (it can be market strategy, chal-
lenging BCRP strategy, or even Oracle strategy which chooses the best stock every trading
day) and tries to obtain the same cumulative return. Theregretof a strategy is defined as the
gap between its logarithmic cumulative wealth achieved andthat of the optimal strategy.

One important type of learning to select portfolio is regretminimization approach, which
chooses BCRP strategy as the optimal strategy. Cover (1991)proposedUniversal Portfolio
(UP) strategy, where the portfolio is historical performance weighted average of all constant
rebalanced portfolio experts. The regret achieved by Cover’s UP is O(m log n), and its run
time complexity is O(nm), wherem denotes the number of stocks andn denotes the num-
ber of trading days. The implementation is exponential in the number of stocks and thus
restricts the number of assets used in experiments and real applications. Kalai and Vempala
(2002) presented a time-efficient implementation of Cover’s UP based on non-uniform ran-
dom walks that are rapidly mixing, which requires poly running time O(m7n8). Following
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their work, Cover and Ordentlich (1996) developed universal procedures when side informa-
tion1 is taken into account as a finite number of values. Cross and Barron (2003) proposed
a new universal portfolio strategy tracking the best in-hindsight wealth achievable within
target classes of linearly parameterized portfolio sequences, which are more general than
the standard CRP class and permit the portfolio to display a continuous form of dependence
on past prices or other side information. Belentepe (2005) presented a statistical view of
Cover’s UP, showing that it is approximately equivalent to aconstrained sequential portfolio
optimization, which connects Cover’s UP with traditional mean-variance portfolio theory.

Another famous strategy isExponential Gradient(EG) strategy (Helmbold et al. 1997,
1996) for online portfolio selection using multiplicativeupdates. In general, EG strategy
tries to maximize the expected logarithmic portfolio dailyreturn (approximated using the
last price relative), and minimize the deviation between next portfolio and last portfolio.
The regret achieved by EG is O(

√
n logm) with O(mn) running time. While its regret is not

as tight as Cover’s UP, its linear time complexity is substantially less than the latter.
Recently, convex optimization has been applied to resolve the portfolio selection prob-

lem (Agarwal et al. 2006; Agarwal and Hazan 2005; Hazan 2006;Hazan et al. 2007). Ex-
amples includeOnline Newton Step(ONS) strategy (Agarwal et al. 2006), which aims to
maximize the expected logarithmic cumulative wealth (approximated using historical price
relatives) and to minimize the variation of the expected portfolio. ONS exploits the second
order information of the log wealth function and applies it to the online scenario. It theoreti-
cally achieves a regret of O(m log n) which is the same as Cover’s UP, and has running time
complexity of O(m3n). Following ONS, Hazan and Seshadhri (2009) recently proposed a
new adaptive-regret approach with more decent theoreticalresults, which essentially is an
ONS based strategy.

Another promising direction for portfolio selection is wealth maximization approach,
which is based on the notion of approaching the Oracle as the optimal strategy. This idea
was followed by Borodin et al. (2004) in their proposal of a non-universal portfolio strat-
egy namedAnti-Correlation(Anticor). Unlike the regret minimization approaches, Anticor
strategy takes advantage of the statistical properties of financial market. The underlying
motivation is to bet on the consistency of positive lagged cross-correlation and negative au-
tocorrelation. It exploits the statistical information from the historical stock price relatives
and adopts the classical mean reversion trading idea to transfer the wealth in the portfolio.
Although it does not provide any theoretical guarantee, itsempirical results (Borodin et al.
2004) showed that Anticor can outperform all existing strategies in most cases. Unlike the
greedy algorithm by the Anticor strategy, Li, Hoi, Zhao and Gopalkrishnan (2011) very re-
cently proposedConfidence Weighted Mean Reversion(CWMR) strategy to actively exploit
the mean reversion property and the second order information of a portfolio, which produces
better performance than Anticor.

In addition, Györfi et al. (2006) recently introduced a framework of Nonparametric
Kernel-based Moving Window(BK) learning strategies for portfolio selection based on non-
parametric prediction techniques (Györfi and Schäfer 2003). Their algorithm first identifies
a list of similar historical price relative sequences whoseEuclidean distances with recent
market windows are smaller than a threshold, then optimizesthe portfolio with respect to the
list of similar sequences. Under the same framework, Györfiet al. (2007) proposed another
variant calledNonparametric Kernel-based Semi-log-optimalstrategy, which is actually an
approximation of theBK strategy, mainly to improve the computational efficiency. Re-
placing log utility function by Markowitz-type utility function, Ottucsák and Vajda (2007)

1 Side information includes interest rates, consumer confidence figures, etc.
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proposedNonparametric Kernel-based Markowitz-typestrategy, which connects return and
risk (or mean and variance) with the online portfolio selection strategy. Following the same
framework asBK strategy,Nonparametric Nearest Neighbor learning(BNN) strategy pro-
posed in Györfi et al. (2008) aims to search for theℓ nearest neighbors in historical price
relative sequences rather than search price relatives within a specified Euclidean ball. This
method has been empirically shown to be a robust trading strategy. Along this direction,
Li, Hoi and Gopalkrishnan (2011) recently proposedCorrelation-driven Nonparametric learn-
ing (CORN) strategy to search for similar price relatives via correlation coefficient and con-
siderably boosted the empirical performance of nonparametric learning approach.

Besides the main stream of learning to selection portfolio,another type of trading strat-
egy is based on switching between various strategies, that is, maintaining a probability dis-
tribution among the strategies. Singer (1997) proposedSwitching Portfolios(SP), which
aims to deal with changing markets by taking into account thepossibility that the market
changes its behavior after each trading day. It switches among a set of basic investment
strategies and assumes the a priori duration of using one basic strategy is geometrically dis-
tributed. Levina and Shafer (2008) proposedGaussian Random Walk(GRW) strategy, which
is a Markov switching strategy. GRW switches among the basicinvestment strategies as a
Gaussian random walk in the simplex of portfolios.

Last, we note that our work is very different from another great body of existing work
in literature (Kimoto et al. 1993; Tay and Cao 2001; Cao and Tay 2003; Tsang et al. 2004;
Lu et al. 2009), which attempted to make financial time seriesforecasting and stock price
predictions by applying machine learning techniques, suchas neural networks (Kimoto et al.
1993), decision trees (Tsang et al. 2004), and support vector machines (SVM) (Tay and Cao
2001; Cao and Tay 2003; Lu et al. 2009), etc. The key difference between these work and
ours is that their learning goal is to make explicit predictions of future prices/trends while
our learning goal is to directly optimize portfolio withoutpredicting prices explicitly.

3.4 Analysis of Existing Work

One popular trading idea in reality istrend followingor momentumstrategy, which assumes
that historically better-performing stocks would still perform better than others in future.
Some existing algorithms, such as EG and ONS, approximate the expected logarithmic
daily return and logarithmic cumulative return respectively using historical price relatives.
Though this idea is easy to understand and makes fortunes to many of the best traders and
investors in the world, trend following is very hard to implement effectively. In addition,
in the short-term, the stock price relatives may not follow previous trends as empirically
evidenced by Jegadeesh (1990) and Lo and MacKinlay (1990).

Besides the trend following approach, another widely adopted approach in the learning
community ismean reversion(Cover and Gluss 1986; Cover 1991; Borodin et al. 2004),
which is also termed ascontrarian approach. This approach stems from the CRP strat-
egy (Cover and Gluss 1986), which rebalances to the initial portfolio every trading day. The
idea behind this approach is that if one stock performs worsethan others, it tends to perform
better than others in the next trading day. As a result, the defining characteristic of a contrar-
ian strategy is the purchase of securities that have performed poorly in the past and the sale
of securities that have performed well, or quite simply, “Sell the Winner, Buy the Loser”. Ac-
cording to Lo and MacKinlay (1990), the effectiveness of mean reversion is a consequence
of positive cross-autocovariances across securities. Among existing algorithms, CRP, UP,
and Anticor adopt this trading idea. However, CRP and UP passively reverse to the mean,
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while empirical evidence from Anticor algorithm (Borodin et al. 2004) shows that active
reversion to the mean may better exploit the fluctuation of financial markets and is likely
to obtain a much higher profit. On the other hand, although Anticor actively reverses to the
mean, it is a heuristic method based on statistical correlations to transfer the wealth within
the portfolio. In other words, it may not effectively exploit the mean reversion property.

In between, pattern matching based nonparametric learningalgorithms (BK andBNN,
etc.) can identify many market conditions including both mean reversion and trend follow-
ing. However, when locating similar price relatives, the nonparametric learning approaches
may locate both mean reversion and trend following price relatives, whose patterns are es-
sentially opposite, thus weakening the maximization of theexpected cumulative wealth.

In a word, both trend following and mean reversion can generate profit in the financial
markets, if appropriately used. In the following, we will propose an active mean reversion
based portfolio selection method. Though simple in update rules, it empirically outperforms
the above existing portfolio selection strategies in most cases. The success of the proposed
portfolio selection strategy indicates that it appropriately takes advantage of the mean rever-
sion trading idea and generates significantly high profits inthe back tests with real market
data.

4 Passive Aggressive Mean Reversion Approach for Portfolio Selection

4.1 Intuition and Overview

The proposed approach is motivated by Constant Rebalanced Portfolios (Cover and Gluss
1986), which adopts the mean reversion trading idea. A simple but convincing example
showing the mean reversion idea is illustrated in Table 1. Consider a fluctuating market with
two stocks (A,B), and the stock price relative sequence is

(

1
2 , 2
)

,
(

2, 12
)

, . . ., where each
stock is not going anywhere but actively moving within a range. Obviously, in a long-term
period, market strategy cannot achieve any abnormal returnfrom this sequence since the
cumulative wealth of each stock remains the same after2n trading days. However, Best CRP
in hindsight can achieve a growth rate of

(

5
4

)n
for an-trading period. Now let us analyze the

BCRP strategy on the stock price relative sequence to show the underlying mean reversion
trading idea. Suppose the initial portfolio is

(

1
2 ,

1
2

)

and at the end of the1st trading day, the
closing price adjusted wealth distribution becomes

(

1
5 ,

4
5

)

with corresponding cumulative
wealth increasing by a factor of54 . At the beginning of the2nd trading day, portfolio manager
rebalances the portfolio to initial portfolio

(

1
2 ,

1
2

)

by transferring the wealth from better-
performing stock (B) to worse-performing stock (A) in the previous trading day. At the
beginning of the3rd trading day, the wealth transfer with the mean reversion trading idea
continues. Although the market strategy gains nothing, BCRP can achieve a growth rate of
5
4 per trading day using the mean reversion trading idea, whichassumes that if one stock
price performs worse, it tends to perform better in the subsequent trading day.

Another motivation of the proposed PAMR algorithm is inspired by the fact that in
financial crisis, all stocks drop synchronously or certain stocks drop significantly. Under
these situations, actively rebalancing may not be appropriate since it puts too much wealth
on “mine” stocks, such as Bear Stearns during the recent financial crisis. To avoid the poten-
tial risk concerning such “mine” stocks, it is a good choice to stick to the previous portfolio,
which constitutes the CRP strategy. Here, the reason to choose the passive CRP strategy is
that identifying these “mine” stocks a priori is almost impossible, which are usually known
in hindsight. Thus, to avoid suffering too much from such situations, PAMR alternates the
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# day Relative (A,B) BCRP BCRP Return Wealth Proportion Notes
1 ( 1

2
, 2) ( 1

2
, 1

2
) 5

4
( 1
5
, 4

5
) B −→ A

2 (2, 1

2
) ( 1

2
, 1

2
) 5

4
( 4
5
, 1

5
) A −→ B

3 ( 1
2
, 2) ( 1

2
, 1

2
) 5

4
( 1
5
, 4

5
) B −→ A

...
...

...
...

...
...

Table 1: Motivating example of CRP to show the mean reversiontrading idea.

strategy between “aggressive” and “passive” reversion depending on the market conditions.
The passive mean reversion strategy avoids the high risk of the aggressive approach that
would put almost all wealth on these “mine” stocks when they drop significantly.

In this article, we propose a novel trading strategy named “Passive Aggressive Mean
Reversion”, or PAMR for short. On the one hand, the underlying assumption of our approach
is that better-performing stocks would perform worse than others in the next trading day.
On the other hand, if the market drops too much, we would stop actively rebalancing the
portfolio to avoid certain “mine” stocks and their associated risk. In order to exploit these
intuitions, we suggest to adopt Passive Aggressive (PA) online learning (Crammer et al.
2006), which was originally proposed for classification tasks. Loosely speaking, the basic
idea of PA for classification is that itpassivelykeeps previous solution if loss is zero, while
it aggressivelyupdates the solution whenever the suffering loss is nonzero.

Let us now describe the basic idea of the proposed strategy indetail. Firstly, if the
portfolio daily return is below a certain threshold, we willtry to keep the previous portfolio
such that itpassivelyreverses to the mean to avoid the potential “mine” stocks. Secondly,
if the portfolio daily return is above the threshold, we willactively rebalance the portfolio
to ensure that theexpectedportfolio daily return is below the threshold in the belief that the
stock price relatives will reverse in the next trading day. This sounds a bit counter-intuitive,
but it is indeed reasonable, because if the stock price relative reverses, keeping the expected
portfolio daily return below the threshold is able to maintain a high portfolio daily return
in the next trading day. Here, the expected portfolio returnis calculated with respect to the
historical price relatives, for example, in our study, the last price relative, which is consistent
with EG algorithm (Helmbold et al. 1997, 1996).

To further illustrate why aggressive reversion to the mean can be more effective than a
passive one, let us continue the example in Table 1 that has a market going to nowhere but
actively fluctuating. We show that in such markets, the proposed strategy is much more pow-
erful than BCRP in hindsight, a passive mean reversion trading strategy. Table 2 compares
the two trading strategies. As the motivating example shows, the growth rate of BCRP is
( 54 )

n for an-trading period, while at the same time, the growth rate of the proposed PAMR
strategy is54 × ( 32 )

n−1 (The details of the calculation/algorithm will be presented later). We
intuitively explain the success of PAMR below.

Assume the threshold for PAMR update is set to1, that is, if portfolio daily return is
below1, we do nothing but keep the existing portfolio. Our strategybegins with a portfolio
(

1
2 ,

1
2

)

. For the1st trading day, the return is54 > 1. Then at the beginning of the2nd

trading day, we rebalance the portfolio to satisfy the condition thatapproximateportfolio
daily return based on last price relatives is below the threshold 1, and the resulting portfolio
is
(

2
3 ,

1
3

)

. Although it seems that we build a portfolio such that the approximate portfolio
return is below the threshold, in practice, as the reversionto the mean suggests, we are
maximizing the portfolio return in the next trading day. As we can observe, the return for
the2nd trading day is32 > 1. Then following the same rule, we will rebalance the portfolio to
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(

1
3 ,

2
3

)

. As a result, in such a market, the growth rate of the proposedstrategy is54 ×
(

3
2

)n−1

for an-trading period, which is much more superior to that of BCRP,that is,
(

5
4

)n
.

# day Relatives BCRP BCRP Return PAMR PAMR Return Notes
1 ( 1

2
, 2) ( 1

2
, 1

2
) 5

4
( 1
2
, 1

2
) 5

4
rebalance to( 2

3
, 1

3
)

2 (2, 1

2
) ( 1

2
, 1

2
) 5

4
( 2
3
, 1

3
) 3

2
rebalance to( 1

3
, 2

3
)

3 ( 1
2
, 2) ( 1

2
, 1

2
) 5

4
( 1
3
, 2

3
) 3

2
rebalance to( 2

3
, 1

3
)

4 (2, 1

2
) ( 1

2
, 1

2
) 5

4
( 2
3
, 1

3
) 3

2
rebalance to( 1

3
, 2

3
)

...
...

...
...

...
...

...

Table 2: Motivating example of comparison between BCRP and PAMR strategy.

4.2 Formulations

Now we shall formally devise the proposed Passive Aggressive Mean Reversion (PAMR)
strategy for portfolio selection problem. The PAMR strategy is based on the mean rever-
sion idea as described in Section 4.1, and is equipped with Passive Aggressive (PA) online
learning technique (Crammer et al. 2006).

First of all, given a portfolio vectorb and a price relative vectorxt, we define aǫ-
insensitive loss function for thetth trading day as

ℓǫ (b;xt) =

{

0 b · xt ≤ ǫ

b · xt − ǫ otherwise
, (1)

whereǫ ≥ 0 is the sensitivity parameter which controls the mean reversion threshold. Since
typically portfolio daily return fluctuates around1, we often empirically chooseǫ ≤ 1 in
order to buy worse performing stocks. Theǫ-insensitive loss is zero when return is less than
the reversion thresholdǫ, and otherwise grows linearly with respect to the daily return. For
conciseness, let us useℓtǫ to denoteℓǫ (b;xt), that is, theǫ-insensitive loss of thetth trading
day. By defining this loss function, we can distinguish the two motivating cases described in
Section 4.1.

In the following parts, we will formulate three variants of the proposed strategy, and
will propose specific algorithms to solve them in the subsequent section. Recalling thatbt

denotes the portfolio vector on thetth trading day, the first proposed method for Passive
Aggressive Mean Reversion (PAMR) is formulated as the constrained optimization below:
Optimization Problem 1 (PAMR):

bt+1 = argmin
b∈△m

1

2
‖b− bt‖2 s. t. ℓǫ (b;xt) = 0. (2)

The above formulation attempts to find an optimal portfolio by minimizing the deviation
from last portfoliobt under the condition of satisfying the constraint of zero loss. On the
one hand, the above approachpassivelykeeps the last portfolio, that is,bt+1 = bt whenever
ℓtǫ = 0 that means the portfolio daily return is below the thresholdǫ. On the other hand,
whenever the loss is nonzero, itaggressivelyupdates the solution by forcing it to strictly
satisfy the constraintℓǫ (bt+1;xt) = 0. It is clear that this formulation is able to address the
two motivations.
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Although the above formulation is reasonable to address ourconcerns, it may have some
undesirable properties in situations with noisy price relatives, which are common in real-
word financial markets. For example, a noisy price relative appearing in some trending
sequences may suddenly change the portfolio in a wrong direction due to the aggressive
update. To avoid such problems, we propose two variants of PAMR that are able to trade off
between aggressiveness and passiveness. The idea of formulating the two PAMR variants is
similar to soft margin support vector machines by introducing some non-negative slack vari-
ables into optimization. Specifically, for the first variant, we modify the objective function
by introducing a term that scales linearly with respect toξ, which results in the following
optimization:
Optimization Problem 2 (PAMR-1):

bt+1 = argmin
b∈△m

1

2
‖b− bt‖2 + Cξ s. t. ℓǫ (b;xt) ≤ ξ andξ ≥ 0, (3)

whereC is a positive parameter to control the influence of the slack variable term on the
objective function. We refer to this parameter as the aggressiveness parameter similar to PA
learning (Crammer et al. 2006) and call this variant “PAMR-1”.

Instead of using a linear term of slack variable, in the second variant, we modify the
objective function by introducing a slack variable term that scales quadratically with respect
to ξ, which results in the following optimization problem:
Optimization Problem 3 (PAMR-2):

bt+1 = argmin
b∈△m

1

2
‖b− bt‖2 + Cξ

2 s. t. ℓǫ (b;xt) ≤ ξ. (4)

Note that in the above formulation we do not need to enforce the constraintξ ≥ 0 asξ2 is
always non-negative. We refer to this variant as “PAMR-2”.

4.3 Algorithms

We now derive the approximate solutions for the above three PAMR formulations using
standard techniques from convex analysis (Boyd and Vandenberghe 2004), and present the
proposed PAMR algorithms for portfolio selection task. Specifically, the following three
propositions summarize the solutions to the PAMR methods.

Proposition 1 The solution to the optimization problem 1 (PAMR) without considering the
non-negativity constraint (b � 0) is expressed as:

b = bt − τt (xt − x̄t1) , (5)

wherex̄t = xt·1
m denotes the market return, andτt is computed as:

τt = max

{

0,
bt · xt − ǫ

‖xt − x̄t1‖2
}

. (6)

Proof The proof can be found in Appendix A.
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Proposition 2 The solution to the optimization problem 2 (PAMR-1) withoutconsidering
the non-negativity constraint (b � 0) is expressed as:

b = bt − τt (xt − x̄t1) ,

wherex̄t = xt·1
m denotes the market return, andτt is computed as:

τt = max

{

0,min

{

C,
bt · xt − ǫ

‖xt − x̄t1‖2
}}

. (7)

Proof The proof can be found in Appendix B.

Proposition 3 The solution to the optimization problem 3 (PAMR-2) withoutconsidering
the non-negativity constraint (b � 0) is expressed as:

b = bt − τt (xt − x̄t1) ,

wherex̄t = xt·1
m denotes the market return, andτt is computed as:

τt = max

{

0,
bt · xt − ǫ

‖xt − x̄t1‖2 + 1
2C

}

. (8)

Proof The proof can be found in Appendix C.

Figure 2 summarizes the details of the proposed PAMR algorithms. Firstly, with no
historical information, the initial portfolio is set to uniform portfoliob1 =

(

1
m , . . . , 1

m

)

. At
the beginning oftth trading day, we rebalance according to the portfolio determined at the
end of last trading day. At the end oftth trading day, the market reveals a stock price relative
vector, which represents the stock price movements. Since both the portfolio and the stock
price relatives are already known, portfolio manager is able to measure the portfolio daily
returnbt · xt and the suffering lossℓǫ (bt;xt) as defined in Eq. (1). Then, we calculate an
optimal step sizeτt based on last portfolio and stock price relatives. Given theoptimal step
sizeτt, we can update the portfolio for next trading day. Finally, we perform a normalization
step to obtain the final portfolio by projecting the updated portfolio into the simplex domain.

4.4 Analysis and Interpretation

To reflect the mean reversion trading idea, we are interestedin analyzing the resulting update
rules of the proposed PAMR algorithms, which mainly involvethe portfoliobt+1 and the
step sizeτt. In particular, we want to examine how the update rules are related to return and
risk – the two most important concerns in a portfolio selection task.

First of all, we analyze the resulting portfolio update rulein Eq. (5) for the three PAMR
algorithms, that is,bt+1 = bt − τt (xt − x̄t1). In the update rule, the step sizeτt is non-
negative, and̄xt is the mean return or market return. For termxt − x̄t1, we can see it rep-
resents stock abnormal returns with respect to the market onthetth trading day. More pre-
cisely, we can interpret it as the directional vector for theweight transfer. The negative sign
before the term indicates that the resulting update scheme is consistent with the motivation,
that is, the weights shall be transferred from better performing stocks (with positive abnor-
mal returns) to worse performing stocks (with negative abnormal returns) at the beginning
of next day.
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Algorithm 1: Passive Aggressive Mean Reversion (PAMR)
INPUT: ǫ: sensitivity parameter; C: aggressiveness parameter
PROCEDURE

1: Initialize b1 =
(

1

m
, . . . , 1

m

)

2: for t = 1, 2, . . . , n do
3: Receive stock price relatives:xt = (xt1, . . . , xtm)
4: Suffer loss:ℓtǫ = max {0,bt · xt − ǫ}
5: Set parameters:

τt =























ℓ
t
ǫ

‖xt−x̄t1‖
2

(PAMR)

min

{

C,
ℓ
t
ǫ

‖xt−x̄t1‖
2

}

(PAMR-1)

ℓ
t
ǫ

‖xt−x̄t1‖
2+ 1

2C

(PAMR-2)

6: Update portfolio:

bt+1 = bt − τt (xt − x̄t1)

7: Normalize portfolio:

bt+1 = argmin
b∈∆m

‖b− bt+1‖
2

8: end for
END

Fig. 2: The proposed Passive Aggressive Mean Reversion (PAMR) strategies.

Besides, another important update is the step sizeτt calculated as Eq. (6), Eq. (7), and
Eq. (8), for three PAMR methods, respectively. The step sizeτt adaptively controls the
weights to be transferred by taking effect on the directional vector. One interesting term in

common for the three updates ofτt is ℓtǫ
‖xt−x̄t1‖

2 . The numerator of the term equals to the

tth portfolio daily return minus the mean reversion threshold.Assuming other variables are
constant, if the return is high (low), it leads to a large (small) value ofτt, which would more
(less) aggressively transfer the wealth from better performing stocks to worse performing
stocks. The denominator is essentially the market quadratic variability, that is, the number
of stocks times the market variance of thetth trading day. In modern portfolio theory, vari-
ance of stock return is typically regarded as a volatility risk term for a portfolio (Markowitz
1952). As indicated by the denominator, if the risk is high (low), the step sizeτt would
become small (large). As a result of small (large) step size,the weight transfer made by
the update scheme will be weakened (strengthened), which isconsistent with our intuition
that prediction would be not accurate in drastically dropping markets, and we opt to make
relatively less transfer in order to reduce risk. Moreover,PAMR-1 caps the step size by a
constantC, while PAMR-2 decreases the step size by adding a constant1

2C to its denomina-
tor. Both measures can prevent drastic weight transfer in case of noisy price relatives, which
is consistent with their motivations.

From the above analysis on the updates of direction and step size, we can conclude
that PAMR nicely balances between return and risk and clearly reflects the mean reversion
trading idea. To the best of our knowledge, this important trade-off between return and risk
has been considered by only one existing approach, that is, nonparametric kernel-based
Markowitz-type strategy (Ottucsák and Vajda 2007). Whilethe kernel-based Markowitz-
type strategy trades off the return and risk with respect to similar historical price relatives,
the proposed PAMR explicitly trades off the return and risk with respect to last price rela-
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tives. This nice property distinguishes the proposed approach from most existing approaches
that often cater to return, but ignore the risk concern, and are therefore undesirable according
to modern portfolio theory (Markowitz 1952).

Now let us briefly analyze the time complexity of the proposedPAMR algorithms. From
Figure 2, we can see that besides the normalization step, PAMR strategy takes O(m) per trad-
ing day, wherem denotes the number of assets. Moreover, the normalization or projection
step (Step7 in Figure 2) can be efficiently implemented (Michelot 1986; Duchi et al. 2008).
In our implementation, we adopt the projection2 according to Duchi et al. (2008), which
takes linear time with respect tom. Thus, the total time complexity is O(mn), wheren is
the total number of trading days. Such time complexity is thesame as that of EG algorithm
and is much superior to other existing methods. Linear time complexity enables the pro-
posed algorithm to handle transactions in certain scenarios where low latency is of crucial
importance, such as high frequency trading (Aldridge 2009).

4.5 Discussions

4.5.1 Discussion on Intuitions

Although the motivating example in Section 4.1 demonstrates the effectiveness of PAMR
over BCRP strategy, PAMR may not always outperform BCRP. In general, PAMR is an
online algorithm while BCRP is offline optimal for an i.i.d. market (see Cover and Thomas
(1991), Theorem 15.3.1). Next, we discuss some possible situations where PAMR may fail
to outperform BCRP.

Consider a special case where one stock crashes and the otherexplodes, e.g., a market
sequence of two stocks as

(

1
2 , 2
)

,
(

1
2 , 2
)

, . . .. Assuming the same parameter settings as the
motivating example, BCRP will increase at an exponential rate2n as it wholly invests in the
2nd asset, while PAMR will keep a fixed wealth on54 over the trading period. Obviously,
in such a situation, PAMR performs much worse than BCRP does,i.e., PAMR produces
a cumulative wealth of54 against2n achieved by BCRP over an trading period. Though
not shiny in such situations, PAMR still bounds its losses. Moreover, such a market, which
violates the mean reversion assumption, is occasional, at least from the view point of our
empirical studies.

4.5.2 Discussion on Loss Function

In our definition of loss function, that is, Eq. (1), we use theoriginal portfolio expected
returnb · xt, while it is possible to uselog utility (Latané 1959) on the return, that is,
log (b · xt). With this log utility, the optimization problems Eq. (2), Eq. (3), and Eq.(4)
are all non-convex and nonlinear, and thus difficult to solve. One way to solve these non-
convex optimization problems is to uselog’s first-order Taylor expansion at last portfolio
and ignore the higher order terms, that is,log (b · xt) ≈ log (bt · xt)+

xt

bt·xt
(b− bt). After

linear approximation, the optimization problems can be solved using the same techniques
used in our derivation. However, such linear approximationof loss function may have some
drawbacks. First of all, linear approximation yields a upper bound on regret in terms of a
log utility loss function. There is no way to justify the goodness of the linear approximation.

2 The precise matlab routineProjectOntoSimplexcan be found on
http://www.cs.berkeley.edu/ ˜ jduchi/projects/DuchiShSiCh08/ .

http://www.cs.berkeley.edu/~jduchi/projects/DuchiShSiCh08/
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Moreover, if we uselog utility, then the loss function is flat, then sharply rises and finally
flattens out. While linear approximation is good in the two flat regimes, it is typically terrible
at the point of non-differentiability and sub-par in the sharply rising region.

On the other hand, for the loss function in form of Eq. (1) without log utility or with
linear approximation oflog utility, the best possible regret in a minimax sense is at most
O(

√
n) (Abernethy et al. 2009), while truelog loss minimization algorithm can routinely

achieve O(log n). However, although our loss function is non-differentiable and it would
achieve a potential regret of O(

√
n), it is not a traditional loss function maximizing return

(like traditional loss function,− log (b · xt)), but only a tool to realize mean reversion. Thus
the regret achieved using our loss function does not represent a regret about return, which
may not be meaningful as traditional regret bound is.

Anyway, the potential worse bound may have unknown weaknesses, which may not be
elicited by the following empirical evaluations. Though onour experiments PAMR works
well, anyone who cares about its theoretical aspects shouldbe notified about the possible
worse bound.

4.5.3 Discussion on Formulation

Although our formulations mainly focus on the portfolio daily return without explicitly deal-
ing with risk (e.g., volatility of daily returns), the final derived algorithms can be nicely
interpreted as certain trade-offs between risk and return,as discussed in Section 4.4. Such
interesting observation is further verified by our empirical evaluation in Section 5.4.2, which
shows that the proposed PAMR algorithms achieve good risk-adjusted return in terms of two
risk-related metrics (i.e., volatility risk and drawdown risk, respectively).

Similar to previous studies, we avoid incorporating transaction cost in the original for-
mulations, which simplifies the formulations and clearly highlights PAMR’s key ingredi-
ents. To further show the impact of transaction costs, it is not difficult to evaluate the effect
of transaction costs, as shown in Section 5.2.2. In the following empirical study, we present
results on both cases: with and without transaction costs. From the empirical results in Sec-
tion 5.4.5, we find that in most markets, the proposed PAMR algorithms work well without
or even with moderate transaction costs.

Besides, it is important to note that there are two key parameters in the proposed PAMR
algorithm and its variants, viz., the sensitivity parameter ǫ and the aggressiveness parameter
C. In practice, the choice of these parameters could affect the performance of the proposed
algorithms. To achieve a good performance in a specific market, these parameters have to
be finely tuned. We will thoroughly examine the effects of thetwo parameters on real-life
datasets in Section 5.4.4, and make suggestions for the empirical selection of their values.

4.5.4 Discussion on PAMR Variants

In this section, we will show an example to illustrate different behaviors of the three update
rules, viz., PAMR, PAMR-1, and PAMR-2. As discussed in Section 4.2, one objective for
PAMR-1 and PAMR-2 is to prevent the portfolio being affectedtoo much from noisy price
relatives, which might drastically change the portfolio. Let us assume the environments and
parameter settings as follows. Let thetth price relativext = (1.00, 0.01), which represents
the situations that the2nd price relative is a noise, and thetth portfolio bt = (1, 0). Setting
the parametersǫ = 0.30 andC = 1.00, let us calculate next portfoliobt+1. This market
environment describes the situations where certain price relatives drop significantly, which
is similar to some stocks during recent financial crisis. Without tuning, the original PAMR
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algorithm would transfer a large proportion of wealth to the2nd asset in the next trading day.
This can be verified by examining the portfolio calculated byPAMR, viz., PAMR calculates
the update step sizeτt = 1.43 and obtains the subsequent portfoliobt+1 = (0.29, 0.71).
However, a natural choice of avoiding such noisy price relatives is to put less proportion
of wealth to the second asset. Now, when calculating the nextportfolios by PAMR-1 and
PAMR-2, we obtain the update step sizeτt = 1.00 andτt = 0.71, respectively, which are
smaller than the update step size of the original PAMR, that is,τt = 1.43. Accordingly, we
obtain the next portfoliosbt+1 = (0.50, 0.50) andbt+1 = (0.65, 0.35) for PAMR-1 and
PAMR-2, respectively. Clearly, PAMR-1 and PAMR-2 transferless wealth to the2nd asset
than the original PAMR does. Thus, PAMR-1 and PAMR-2 in general suffer relatively less
from noisy price relatives, though we cannot completely avoid such suffering situation.

4.6 Mixture Algorithm

One theoretical result desired by existing online portfolio selection algorithms isuniversal
property (Cover 1991). Since mean reversion trading idea iscounter-intuitive (Borodin et al.
2004), we find it is hard to prove the universality of PAMR. Alternatively, we present a
general mixture algorithm, which guarantees worst-case performance, not for PAMR itself
but for the mixture algorithm.

Briefly speaking, the proposed mixture algorithm frames PAMR as one “expert” in a
mixture-of-experts setting, while at least one universal algorithm serves as other “experts”.
Then, the proposed mixture adopts no-regret expert learning (Cesa-Bianchi and Lugosi 2006)
to bound the regret of the overall system with respect to the best of these experts. If the
mixture algorithm contains at least one universal algorithm3, then the universality of the
mixture algorithm can be straightforwardly proved according to Cesa-Bianchi and Lugosi
(2006) (see example 10.3 and Theorem 10.3 for rigorous proofs). In our implementation,
we adopt uniform buy and hold (BAH) mixture strategy, that is, we give equal proportion
of portfolio wealth to each expert, let them run, and finally pool them again. We denote
the BAH mixture algorithm as “MIX”. Other expert learning methods, such as exponential
weighted, can also replace the buy and hold strategy, and they can also provide provable
guarantees and get potentially stronger empirical performance. Though MIX seems trivial
since it has a more involved mixing rule, one can make it nontrivial by extending the set-
ting in a more general setting, such as the framework proposed by Akcoglu et al. (2002)
and Das and Banerjee (2011). Obviously, such a mixture algorithm can be applied to any
portfolio selection algorithm, either universal or not.

Though it is convenient to propose a mixture model consisting of PAMR such that the
mixture model can achieve universality, PAMR’s universal consistency is still an open ques-
tion and deserves further exploration.

5 Numerical Experiments

To examine the empirical efficacy of the proposed PAMR strategy, we conduct an extensive
set of numerical experiments on a variety of real datasets. In our experiments, we adopt six
real datasets, which were collected from several diverse financial markets. The performance
metrics include cumulative wealth and risk-adjusted returns (volatility risk and drawdown

3 Such statement is also appeared in footnote 1 of Borodin et al. (2004).
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risk). We also compare the proposed PAMR algorithms with allexisting algorithms stated
in the related work section.

5.1 Experimental Testbed on Real Data

In this study, we focus on historical daily prices in stock markets which are easy to obtain
from public domains (such as Yahoo Finance and Google Finance), and thus publicly avail-
able to other researchers. Data from other types of market, such as high frequency intra-day
quotes and Forex markets, are either too expensive or hard toobtain and process, and thus
may reduce the experimental reproducibility. In general, we employ six real and diverse
datasets from several types of financial markets4, which are summarized in Table 3.

Dataset Market Region Time frame # Trading days # Assets
NYSE (O) Stock US Jul.3rd 1962 - Dec.31st 1984 5651 36
NYSE (N) Stock US Jan.1st 1985 - Jun.30th 2010 6431 23
TSE Stock CA Jan.4th 1994 - Dec.31st 1998 1259 88
SP500 Stocks US Jan.2nd 1998 - Jan.31st 2003 1276 25
MSCI Index Global Apr. 1st 2006 - Mar. 31st 2010 1043 24
DJIA Stocks US Jan.14th 2001 - Jan.14th 2003 507 30

Table 3: Summary of the six real datasets in our numerical experiments.

The first one is NYSE dataset, one “standard” dataset pioneered by Cover (1991) and
followed by several other researchers (Singer 1997; Helmbold et al. 1996; Borodin et al.
2004; Agarwal et al. 2006; Györfi et al. 2006, 2008). This dataset contains5651 daily price
relatives of36 stocks5 in New York Stock Exchange (NYSE) for a22-year period from Jul.
3rd 1962 to Dec.31st 1984. We denote this dataset by “NYSE (O)” for short.

The second dataset is the extended version of the above NYSE dataset. For consistency,
we collected the latest data in New York Stock Exchange (NYSE) from Jan.1st 1985 to Jun.
30th 2010, which consists of6431 trading days. We denote this new dataset as “NYSE (N)”6.
It is worth noting that this new dataset consists of23 stocks rather than the previous36 stocks
owing to amalgamations and bankruptcies. All self-collected price relatives are adjusted for
splits and dividends, which is consistent with the previous“NYSE (O)” dataset.

The third dataset “TSE” is collected by Borodin et al. (2004), which consists of88
stocks from Toronto Stock Exchange (TSE) containing price relatives of1259 trading days,
ranging from Jan.4th 1994 to Dec.31st 1998. The fourth dataset “SP500” is collected
by Borodin et al. (2004), which consists of25 stocks with the largest market capitalizations
in the500 SP500 components. It ranges from Jan. 2nd, 1998 to Jan. 31st 2003, containing
1276 trading days.

4 All the datasets and their compositions can be downloaded from
http://www.cais.ntu.edu.sg/ ˜ libin/portfolios . Borodin et al. (2004)’s datasets can
also be downloaded fromhttp://www.cs.technion.ac.il/ ˜ rani/portfolios/ .

5 According to Helmbold et al. (1996), the dataset was originally collected by Hal Stern. The stocks are
mainly large cap stocks in NYSE, however, we do no know the criteria of choosing these36 stocks.

6 The dataset before 2007 was collected by Gábor Gelencsér
(http://www.cs.bme.hu/ ˜ oti/portfolio ), we collected the remaining data from2007 to
2010 via Yahoo Finance.

http://www.cais.ntu.edu.sg/~libin/portfolios
http://www.cs.technion.ac.il/~rani/portfolios/
http://www.cs.bme.hu/~oti/portfolio
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The fifth dataset is “MSCI”, a collection of global equity indices which are the con-
stituents of MSCI World Index7. It contains24 indices which represent the equity markets of
24 countries around the world, and consists of a total of1043 trading days, ranging from Apr.
1st 2006 to Mar.31st 2010. The final dataset is the “DJIA” dataset collected by Borodinet al.
(2004), which consists of Dow Jones30 composite stocks. DJIA contains507 trading days,
ranging from Jan. 14th 2001 to Jan. 14th 2003.

Besides the above six real market data, in the experiments, we also ran each dataset in
their reverses (Borodin et al. 2004). For each dataset, we created a reversed dataset, which
reverses the original order and inverts the price relatives. We denote these reverse datasets
using a ‘-1’ superscript on the original dataset names. In nature, these reverse datasets are
quite different from the original datasets, and we are interested in the behaviors of the pro-
posed algorithm on these artificial datasets.

Unlike the previous studies, the above testbed covers much longer trading periods from
1962 to 2010 and much more diversified markets, which enables us to examine how the
proposed PAMR strategy performs under different events andcrises. For example, it cov-
ers several well-known events in the stock markets, such as dot-com bubble from1995 to
2000 and subprime mortgage crisis from2007 to 2009. The five stocks datasets are mainly
chosen to test the capability of the proposed PAMR on regional stock markets, while the
“MSCI” dataset aims to test PAMR’s capability on global indices, which may be potentially
applicable to “Fund on Fund” (FOF)8. As a remark, although we numerically test the PAMR
algorithm on stock markets, we note that the proposed strategy could be generally applied
to any type of financial markets.

5.2 Experimental Setup and Metrics

Regarding the parameter settings, there are two key parameters in the proposed PAMR al-
gorithms. One is the sensitivity parameterǫ and the other is the aggressiveness parameter
C. Roughly speaking, the best values for these parameters areoften dataset dependent. In
the experiments, we simply set these parameters empirically without tuning for each dataset
separately. Specifically, for all datasets and experiments, we set the sensitivity parameterǫ to
0.5 in the three algorithms, and set the aggressiveness parameterC to 500 in both PAMR-1
and PAMR-2, with which the cumulative wealth achieved tendsto be stable for the pro-
posed PAMR on most datasets. It is worth noting that these choices for parameters are not
always the best. Our experiments on the parameter sensitivity in Section 5.4.4 show that the
proposed PAMR algorithms are quite robust with respect to different parameter settings.

For the proposed mixture algorithm (MIX), we set the expert pool9 as initial uniform
combination of PAMR, ONS, Anticor, andBNN, and individual experts are set according to
their respective studies.

We adopt the most common metric,cumulative wealth, to primarily compare different
trading strategies. In addition to the cumulative wealth, we also adoptannualized Sharpe Ra-
tio (SR) to compare the performance of different trading algorithms. In general, the higher
the values of the cumulative wealth, and the annualized Sharpe Ratio, the better the per-
formance of the compared algorithm. Besides, we also adoptMaximum Drawdown(MDD)

7 The constituents of MSCI World Index can be found from MSCI Barra
(http://www.mscibarra.com ), accessed on 28 May 2010.

8 It is worth noting that not every index is tradable through exchange traded funds (ETFs).
9 One can arbitrarily select experts, however, at least one universal algorithm should be included in order

to guarantee the worst-case performance of the mixture algorithm.

http://www.mscibarra.com
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andCalmar Ratio(CR) for analyzing the downside risk of the PAMR strategy. The lower
the MDD value, the more preferable the trading algorithm concerning the downside risk.
The higher the CR value, the more performance efficient the trading algorithm concerning
the downside risk. The performance criteria are detailed inthe following section.

5.2.1 Performance Criteria

One of the standard criteria to evaluate the performance of astrategy isportfolio cumulative
wealthachieved by the strategy until the end of the whole trading period. In our study, we
simply set the initial wealthS0 = 1 and thus the notationSn also denotesportfolio cumu-
lative returnat the end of thenth trading day, which is the ratio of the portfolio cumulative
wealth divided by the initial wealth. Another equivalent criterion isannualized percentage
yield (APY) which takes the compounding effect into account, thatis, APY = y

√
Sn − 1,

wherey is the number of years corresponding ton trading days. APY measures the aver-
age wealth increment that one strategy could achieve compounded in a year. Typically, the
higher the value of portfolio cumulative wealth or annualized percentage yield, the more
performance preferable the trading strategy is.

For some process-dependent investors (Moody et al. 1998), it is important to evaluate
risk andrisk-adjusted returnof portfolios (Sharpe 1963, 1994). One common way to achieve
this is to useannualized standard deviationof daily returns to measure the volatility risk
andannualized Sharpe Ratio(SR) to evaluate the risk-adjusted return. For portfolio risk,
we calculate the standard deviation of daily returns, and multiply by

√
252 (here252 is the

average number of annual trading days) to obtain annualizedstandard deviation. For risk-

adjusted return, we calculateannualized Sharpe Ratioaccording to, SR= APY−Rf

σp
, where

Rf is the risk-free return (typically the return of Treasury bills, fixed at4% in this work), and
σp is the annualized standard deviation of daily returns. Basically, higher annualized Sharpe
Ratios indicate better performance of a trading strategy concerning the volatility risk.

The investment community often analyzesDrawDown(DD) (Magdon-Ismail and Atiya
2004) to measure the decline from a historical peak in the cumulative wealth achieved by a fi-
nancial trading strategy. Formally, letS (·) denote the process of cumulative wealth achieved
by a trading strategy, that is,{S1, . . . ,St, . . . ,Sn}. TheDrawDownat any timet, is defined
as DD(t) = max

[

0,maxi∈(0,t) S (i) − S (t)
]

. TheMaximum DrawDownfor a horizonn,
MDD (n) is defined as, MDD(n) = maxt∈(0,n) [DD (t)], which is an excellent way to mea-
sure the downside risk of different strategies. Moreover, we also adoptCalmar Ratio(CR) to
measure the return relative of the drawdown risk of a portfolio, calculated as CR= APY

MDD .
Generally speaking, the smaller the Maximum DrawDown, the more downside risk tolerable
the financial trading strategy. Higher Calmar Ratios indicate better performance of a trading
strategy concerning the drawdown risk.

To test whether simple luck can generate the return of the proposed strategy, we can also
conduct a statistical test to measure the probability of this situation, as is popularly done
in the fund management industry (Grinold and Kahn 1999). First, we separate the portfolio
daily returns into two components: one benchmark-related and the other non-benchmark-
related by regressing the portfolio excess returns10 against the benchmark excess returns.
Formally, st − st (F) = α + β (st (B)− st (F)) + ǫ (t), wherest stands for the portfolio
daily returns,st (B) denotes the daily returns of the benchmark (market index) and st (F)
is the daily returns of the risk-free assets (here we simply choose Treasury bill and set it

10 Excess return is daily return less risk-free return.
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to 1.000156, or equivalently, annual interest of4%). This regression estimates the portfo-
lio’s alpha (α), which indicates the performance of the investment after accounting for the
involved risk. Then we conduct a statistical-t test to evaluate whether alpha is significantly
different from zero, by using thet statistic α

SE(α) , whereSE (α) is the standard error for

the estimated alpha. Thus, by assuming the alpha is normallydistributed, we can obtain the
probability that the returns of the proposed strategy are generated by simple luck. Generally
speaking, the smaller the probability, the higher confidence the trading strategy.

5.2.2 Practical Issues

While our model described in Section 2 is concise and not complicate to understand, it
omits some practical issues in the portfolio management industry. We shall now relax some
constraints in our model to address these issues.

In reality, an important and unavoidable issue istransaction cost. Generally, there are
two ways to handle the transaction costs. The first, commonlyadopted by learning to se-
lect portfolio strategies, is that the portfolio selectionprocess doesn’t take into account the
transaction cost while the following rebalancing incurs transaction costs. The second is that
the transaction cost is directly involved in the portfolio selection process (Györfi and Vajda
2008). In this work, we take the first way and adoptproportional transaction costmodel pro-
posed in Blum and Kalai (1999) and Borodin et al. (2004). To bespecific, rebalancing the
portfolio incurs a transaction cost on every buy and sell operation, based upon a transaction
cost rateγ ∈ (0, 1). At the beginning of thetth trading day, the portfolio manager rebalances
the portfolio from the previous closing price adjusted portfolio b̂t−1 to a new portfoliobt,

incurring a transaction cost ofγ2 ×
∑

i

∣

∣

∣
b(t,i) − b̂(t−1,i)

∣

∣

∣
, where the initial portfolio is set to

(0, . . . , 0). Thus, the cumulative wealth achieved by the end of thenth trading day can be
expressed as:

S
c(γ)
n = S0

n
∏

t=1

[

(bt · xt)×
(

1− γ

2
×
∑

i

∣

∣

∣
b(t,i) − b̂(t−1,i)

∣

∣

∣

)]

.

Another practical issue in portfolio selection ismargin buying, which allows the portfo-
lio managers to buy securities with cash borrowed from security brokers. Following previous
studies (Cover 1991; Helmbold et al. 1996; Agarwal et al. 2006), we relax this constraint in
the model and evaluate it empirically in Section 5.4.5. In this study, the margin setting is
assumed to be50% down and50% loan, at an annual interest rate of6%, so the interest rate
of the borrowed money,c is set to0.000238. Thus, for each security in the asset pool, a new
asset named “Margin Component” is generated. Following thedown and loan percentage,
the price relative for the “Margin Component” of asseti would be2 ∗ xti − 1− c, wherexti
is the price relative of theith asset for thetth trading day. In cases ofxti ≤ 1+c

2 , that is,
certain stocks drop more than half, we simply set “Margin Component” to0. By adding this
“Margin Component”, we magnify both the potential profit andloss of the trading strategy
on theith asset.

5.3 Comparison Approaches

In our experiments, we implement the proposed PAMR strategyand its two variants, viz.,
PAMR-1 and PAMR-2. We compare them with a number of benchmarks and existing strate-
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gies as described in Section 3. Below we summarize the list ofcompared algorithms, whose
parameters are set according to the recommendations from their respective studies.

1. Market: Market strategy, that is, uniform Buy-And-Hold (BAH) strategy;
2. Best-Stock: Best stock in the market, which is a strategy in hindsight;
3. BCRP: Best Constant Rebalanced Portfolios strategy in hindsight;
4. UP: Cover’s Universal Portfolios implemented accordingto Kalai and Vempala (2002),

where the parameters are set asδ0 = 0.004, δ = 0.005, m = 100, andS = 500;
5. EG: Exponential Gradient (EG) algorithm with the best parameterη = 0.05 as suggested

by Helmbold et al. (1996);
6. ONS: Online Newton Step (ONS) with the parameters suggested by Agarwal et al. (2006),

that is,η = 0, β = 1, γ = 1
8 ;

7. SP: Switching Portfolios with parameterγ = 1
4 as suggested by Singer (1997);

8. GRW: Gaussian Random Walk strategy with parameterσ = 0.00005 recommended
by Levina and Shafer (2008);

9. M0: Prediction based algorithm M0 with parameterβ = 0.5 as suggested by Borodin et al.
(2000);

10. Anticor:BAH30(Anticor(Anticor)) as a variant of Anticor to smooth the performance,
which achieves the best performance among the three solutions proposed by Borodin et al.
(2004);

11. BK: Nonparametric kernel-based moving window (BK) strategy withW = 5, L = 10

and thresholdc = 1.0 which has the best empirical performance according to Györfi et al.
(2006);

12. BNN: Nonparametric nearest neighbor based strategy (BNN) with parametersW = 5,
L = 10 andpℓ = 0.02 + 0.5 ℓ−1

L−1 as the authors suggested (Györfi et al. 2008).

5.4 Experimental Results

5.4.1 Experiment 1: Evaluation of Cumulative Wealth

We first compare the performance of the competing approachesbased on their cumulative
wealth. From the experimental results shown in Table 4, we can draw several observations
below.

First of all, we observe that learning to select portfolio strategies generally perform
better than three common benchmarks, which shows that it is promising to investigate learn-
ing algorithms for portfolio selection. Second, we find thatalthough the cumulative wealth
achieved by the regret minimization approaches (UP, EG and ONS) is higher than market
strategy, their performance is significantly lower than that achieved by the wealth maxi-
mization approaches (Anticor,BK andBNN). This shows that to achieve better investment
return, it is more powerful and promising to exploit the wealth maximization approaches for
portfolio selection. Third, from the top two results indicated on each original dataset, it is
clear that the proposed PAMR strategy (PAMR, PAMR-1, and PAMR-2) significantly out-
performs most (except DJIA datasets) competitors including Anticor,BK andBNN, which
are the state of the arts. The encouraging results in cumulative wealth validate the impor-
tance of exploiting the mean reversion property in the financial markets by an effective
online learning strategy. On the other hand, though MIX beats the benchmarks on the DJIA
dataset, PAMR algorithms perform bad on the DJIA dataset. This may be attributed to the
reason that the motivating mean reversion does not exist in this dataset. This raises an im-
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Methods NYSE(O) NYSE(N) TSE SP500 MSCI DJIA
Market 14.50 18.06 1.61 1.34 0.91 0.76
Best-stock 54.14 83.51 6.28 3.78 1.50 1.19
BCRP 250.60 120.32 6.78 4.07 1.51 1.24
UP 26.68 31.49 1.60 1.62 0.92 0.81
EG 27.09 31.00 1.59 1.63 0.93 0.81
ONS 109.19 21.59 1.62 3.34 0.86 1.53
SP 27.08 31.55 1.60 1.65 0.93 0.81
GRW 27.73 30.45 1.61 1.64 0.93 0.81
M0 113.50 40.94 1.26 1.74 0.92 0.77
Anticor 2.41E+08 6.21E+06 39.36 5.89 3.22 2.29
BK 1.08E+09 4.64E+03 1.62 2.24 2.64 0.68
BNN 3.35E+11 6.80E+04 2.27 3.07 13.47 0.88

PAMR 5.14E+15 1.25E+06 264.86 5.09 15.23 0.68
PAMR-1 5.13E+15 1.26E+06 260.26 5.08 15.51 0.69
PAMR-2 4.88E+15 1.36E+06 249.95 5.00 16.87 0.71
MIX 1.28E+15 1.84E+06 78.58 4.36 8.16 1.35

Methods NYSE(O)−1 NYSE(N)−1 TSE−1 SP500−1 MSCI−1 DJIA−1

Market 0.12 1.27 1.67 0.88 1.26 1.44
Best-stock 0.33 24.59 37.65 1.65 3.45 2.77
BCRP 2.86 56.60 58.61 1.91 3.45 2.98
UP 0.23 0.3 1.18 1.10 1.26 1.54
EG 0.22 0.38 1.21 1.08 1.27 1.53
ONS 0.84 1.01 1.62 2.97 1.73 2.35
SP 0.23 0.35 1.19 1.10 1.27 1.54
GRW 0.24 0.34 1.18 1.09 1.26 1.55
M0 0.88 2.16 4.80 1.17 1.56 1.83
Anticor 1.38E+03 4.26E+04 7.24 9.64 6.31 4.58
BK 2.77E+07 162.74 8.81 1.01 4.47 1.43
BNN 4.60E+09 3.57E+04 66.09 1.89 30.06 1.85

PAMR 2.03E+04 3.07E+04 2.67 7.42 40.33 6.61
PAMR-1 2.02E+04 3.09E+04 2.68 7.43 39.82 6.62
PAMR-2 2.11E+04 3.21E+04 2.75 7.32 39.83 6.65
MIX 1.18E+09 2.70E+04 19.40 5.50 19.62 3.85

Table 4: Cumulative wealth achieved by various trading strategies on the six datasets and
their reversed datasets. The top two best results in each dataset are highlighted in bold font.

portant question, “How to select the portfolio pool such that the motivating mean reversion
exists on target portfolio?” Section 5.5.2 provides some discussions on this question.

Further examining the details, we find that the most impressive performance is achieved
by PAMR on the standard NYSE (O) dataset, where its initial wealth grows by a factor
of more than5 quadrillion at the end of the22-year period. We note that the main reason
PAMR achieved such exceptional results is that it is powerful to exploit highly volatile
price relatives. To verify this, we examine the detailed performance of PAMR in Table 4 by
looking into individual stocks, and we find that it relies considerably on one single stock
(“Kin Ark”) which has the highest volatility in terms of standard deviation. After removing
this stock from the portfolio, we find that the cumulative wealth significantly reduces to
1.27E+08. We will investigate the volatility issue in more details byanother experiment on
dataset sensitivity in Section 5.4.3.

On the reverse datasets, though not performing as shiny as the original datasets, PAMR
also performs well. Though some algorithms fail badly, in all cases, PAMR beats the bench-
marks, including the market and BCRP strategies. In certaincases, it beats all competitors.
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It is worth noting these reverse datasets are artificial datasets, which never exist in real mar-
kets. PAMR’s performance on these datasets provides strongevidences that mean reversion
does exist in even reverse market datasets and PAMR can successfully exploit it.

In addition to the final cumulative wealth, we are also interested in examining how the
cumulative wealth changes over different trading periods.Figure 3 shows the trends of the
cumulative wealth by the proposed PAMR algorithm and four algorithms (two benchmarks
and two state-of-the-art algorithms). From the results, wecan see that the proposed PAMR
strategy consistently surpasses the benchmarks and the competing strategies over the entire
trading period on most datasets (except DJIA datasets), which again validates the efficacy
of the proposed technique.
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(a) NYSE (O) dataset
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(b) NYSE (N) dataset
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(c) MSCI dataset
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(d) TSE dataset
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(f) DJIA dataset

Fig. 3: Trends of cumulative wealth achieved by various strategies during the entire trading
period on the stock datasets.

Finally, to measure whether the excess return can be simply obtained by luck, we con-
duct a statisticalt-test as described in Section 5.2.1. Table 5 shows the statistical results,
which clearly show that the observed excess return is impossible to obtain by simple luck in
most datasets. To be specific, the probabilities for achieving the excess returns by luck are
almost0 on datasets except DJIA. However, the statistics on DJIA dataset show that in this
dataset, the assumption of mean reversion may not exist. Nevertheless, the results show that
the PAMR strategy is a promising and reliable portfolio selection technique to achieve high
return with high confidence.

5.4.2 Experiment 2: Evaluation of Risk and Risk-adjusted Return

We now evaluate the risk in terms of volatility risk and drawdown risk, and the risk-adjusted
return in terms of annualized Sharpe ratio and Calmar ratio.Figure 4 shows the evaluation
results on the six datasets. In addition to the proposed PAMR, we also plot two benchmarks
(Market and BCRP) and two state-of-the-art algorithms (Anticor andBNN) for comparison.
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Statistics NYSE (O) NYSE (N) TSE SP500 MSCI DJIA

Size 5651 6431 1259 1276 1043 507
Mean Excess Return (PAMR) 0.0069 0.0026 0.0054 0.0017 0.0029 -0.0003
Mean Excess Return (Market) 0.0005 0.0005 0.0004 0.0003 0.0000 -0.0004
Winning Ratio 0.5587 0.5175 0.5687 0.5337 0.5925 0.5187
α 0.0063 0.0021 0.0049 0.0013 0.0029 0.0002
β 1.2095 1.1241 1.4982 1.2375 1.1177 1.2393
t-statistics 15.7829 5.9979 3.9241 2.0020 6.1358 0.2195
p-value 0.0000 0.0000 0.0000 0.0227 0.0000 0.4132

Table 5: Statisticalt-test of the performance of the PAMR on the stock datasets.

As shown in Figure 4, Figure 4a and 4b depict the volatility risk (standard deviation of daily
returns) and the drawdown risk (maximum drawdown) on the sixstock datasets. Figure 4c
and Figure 4d compare the corresponding Sharpe ratio and Calmar ratio.

In previous cumulative wealth results, we find that PAMR achieved the highest cumu-
lative return on most original datasets. Of course, high return is associated with high risk,
which is commonly acceptable in finance, as no real financial instrument can guarantee a
high return without risk. The volatility risk in Figure 4a shows that PAMR almost achieves
the highest risk in terms of volatility risk. On the other hand, the drawdown risk in Figure 4b
shows that PAMR achieves modest drawdown risk in most datasets. These results validate
the above notion that high return is often associated with high risk.

To further evaluate the return and risk, we examine the risk-adjusted return in terms
of annualized Sharpe ratio and Calmar ratio. The results shown in Figure 4c and Figure 4d
clearly show that PAMR achieves excellent performance in most cases, except DJIA dataset.
These encouraging results show that PAMR is able to reach a good trade-off between return
and risk, even though we do not explicitly consider risk in our problem formulation.

5.4.3 Experiment 3: Dataset Sensitivity

As observed in Section 5.4.1, it is interesting that PAMR gained the excess return from the
stock markets. In this section, we aim to examine how the dataset sensitivity affects the
proposed PAMR strategy by evaluating performance on datasets of different volatilities.

To examine the effect of the dataset volatility, we create two datasets each consisting of
5 stocks , chosen from NYSE (N) dataset according to their volatility values. To be specific,
we ranked the23 stocks based on their daily volatility values measured by standard deviation
of the logarithm of the price relatives (Hull 2008). Then we created two datasets of different
volatility: NYSE (H) and NYSE (L), each consisting of5 stocks of the highest and lowest
volatility values, respectively. Table 6 shows the resultsachieved by various strategies on
these two datasets.

From the results, we find that different strategies perform diversely on these two datasets.
The regret minimization approaches (UP, EG and ONS), perform well regardless of the mar-
ket volatilities as the theoretical universal property shows, while the wealth maximization
approaches (Anticor,BK andBNN) and the proposed PAMR strategy achieved significantly
higher cumulative wealth on NYSE (H), the high-volatility dataset. These results show that
the volatility of datasets does considerably affect some algorithms, including the wealth
maximization approaches and the proposed PAMR strategy. Specifically, we find that the
proposed PAMR strategy could benefit much from a high-volatility dataset. For example,
on the NYSE (L) dataset, the cumulative wealth achieved by PAMR algorithm is about132,
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Fig. 4: Risk and risk-adjusted performance of various strategies on the six different datasets.
In each diagram, the rightmost bars represent the results achieved by PAMR.

which is significantly boosted to1.35E+05 on the NYSE (H) dataset. To further examine
which algorithm can benefit most from high-volatility dataset, we calculate the “H/L ratio”
value, which is the ratio of cumulative wealth achieved on the high-volatility dataset over
that achieved on the low-volatility dataset. From the ratios, we can observe that the PAMR
strategy obtained the highest H/L ratio, indicating that PAMR can benefit most from the
high-volatility dataset among all the competing methods.

Portfolio NYSE (L) NYSE (H) H/L ratio

Market 24.69 9.15 0.37
Best-stock 43.87 17.46 0.40
BCRP 48.16 62.52 1.30
UP 32.89 26.12 0.79
EG 32.33 25.84 0.80
ONS 38.96 30.67 0.53
Anticor 1.79E+03 1.43E+05 79.89
BK 19.49 3.82E+03 196.00
BNN 180.85 1.99E+05 1.10E+03
PAMR 132.25 1.39E+05 1.05+03
PAMR-1 132.23 1.66E+05 1.26E+03
PAMR-2 142.53 2.05E+05 1.44E+03

Table 6: Cumulative wealth achieved by various strategies on portfolios of extreme volatil-
ities. The “H/L ratio” column shows the ratio between the cumulative wealth achieved on
the high-volatility dataset and that achieved on the low-volatility dataset.
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5.4.4 Experiment 4: Parameter Sensitivity

We now evaluate how different choices of parameters affect the performance of the proposed
PAMR strategy. All three PAMR algorithms require to set sensitivity parameterǫ, while
aggressiveness parameterC is needed for PAMR-1 and PAMR-2.

First, we examine the effect of the sensitivity parameterǫ on the cumulative wealth
achieved by PAMR. Asǫ becomes greater than1, PAMR degrades to uniform CRP strategy
and the wealth stabilizes at the wealth achieved by uniform CRP. Thus, we evaluate the
effect ofǫ in the range of[0, 1.5]. Figure 5 shows the cumulative wealth achieved by PAMR
with varyingǫ and those of the two benchmarks, that is, Market and BCRP strategies. Most
results, besides DJIA dataset, show that the cumulative wealth achieved by PAMR grows
as ǫ approaches0, that is, the more sensitive the higher the wealth, which validates that
the motivating mean reversion does exist on the stock markets. Moreover, in most cases,
the cumulative wealth achieved by PAMR tends to stabilize asǫ crosses certain dataset
dependent thresholds. As stated before, we chooseǫ = 0.5 in the experiments, with which
the cumulative wealth becomes stabilized in most cases. We also note that on some datasets
PAMR with ǫ = 0 achieves the best. Thoughǫ = 0 means moving more weights to the worse
performing stocks, it may not mean moving everything to the worst stock. On the one hand,
the objectives in the formulations would prevent next portfolio far from last portfolio. On the
other hand, PAMR-1 and PAMR-2 are designed to alleviate the huge changes. In a word, this
experimental results clearly show that the proposed algorithm is robust with respect to the
mean reversion sensitivity parameter. On the other side, for the failing case, DJIA, the mean
reversion effect is different. Asǫ approaches0, the cumulative wealth achieved by PAMR
drops. This phenomena can be interpreted as that the motivating mean reversion does not
exist in the DJIA dataset, at least in the sense of our motivation.

Second, we evaluate the other important parameter for both PAMR-1 and PAMR-2 al-
gorithms, that is, aggressiveness parameterC. Figure 6 and Figure 7 show the effects on
the cumulative wealth with varying sensitivity parameterǫ from 0 to 1.5 and aggressiveness
parameterC from 50 to 5000, on PAMR-1 and PAMR-2, respectively. Each heat map in-
dicates the cumulative wealth achieved by PAMR with different C andǫ combination. The
indication bar on the right side of each heat map illustratesthat each color represents a level
of cumulative wealth achieved. It is clear that in most cases, except DJIA, we observe that
asǫ decreases andC increases, the cumulative wealth increases and then stabilizes asǫ and
C cross certain data-dependent thresholds. Moreover, we findC does not have a significant
effect on the cumulative wealth achieved. We also find that the proposed PAMR algorithms
are not so parameter sensitive, since a wide range of values correspond to the highest cumu-
lative wealth. This again exhibits that the proposed PAMR strategy is robust with respect to
its parameters. Similarly, the heat map on DJIA again shows that the mean reversion effect
does not exist on the dataset, in the sense of our motivation.

5.4.5 Experiment 5: Evaluation of Practical Issues

For a real-world application, there are some important practical issues for portfolio selection,
including the issues of transaction cost and margin buying.This experiment aims to examine
how these practical issues affect the proposed PAMR strategy.

First, transaction cost is an important and unavoidable issue that should be addressed
in practice. In our experiment, we adoptproportional transaction costmodel stated in Sec-
tion 5.2.2 to test the effect of the transaction cost on the proposed PAMR strategy. Figure 8
depicts the effect of proportional transaction cost when PAMR is applied on the six datasets,
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Fig. 5: Parameter sensitivity of the cumulative wealth achieved by PAMR with respect to
sensitivity parameterǫ.
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Fig. 6: Parameter sensitivity of the cumulative wealth achieved by PAMR-1 with respect to
sensitivity parameterǫ and aggressive parameterC.

where the transaction cost rateγ varies from0 to1%. We only present the results achieved by
PAMR since the effect of its variants, that is, PAMR-1 and PAMR-2, is quite similar to that
of PAMR. For comparison, we also plot the results achieved bytwo state-of-the-art strate-
gies (Anticor andBNN) and the cumulative wealth achieved by the two benchmarks (BCRP
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Fig. 7: Parameter sensitivity of the cumulative wealth achieved by PAMR-2 with respect to
sensitivity parameterǫ and aggressive parameterC.

and Market). Since BCRP is the target strategy for regret minimization approaches (UP, EG
and ONS) and for consistency, we do not plot the results achieved by these approaches.

From the results shown in the figure, we can observe that PAMR can withstand reason-
able transaction cost rates. For example, with a transaction cost rate of0.2%, PAMR can beat
the BCRP strategy on the four datasets. The break-even transaction cost rates with respect
to the market index ranges from0.1% to 0.7% on the datasets, except DJIA. Since PAMR
more actively reverses to the mean and thus results in more drastic portfolio changes, it sur-
passes Anticor with low or medium transaction costs while itunderperforms Anticor with
high transaction costs, On the other hand, it outperformsBNN in most cases. Note that the
transaction cost rate in real market is low11. This experiment clearly shows the practical ap-
plicability of the proposed PAMR strategy when we take transaction cost into consideration.

Second, margin buying is another practical concern for a real-world portfolio selection
task. In the following, we evaluate the performance of the approaches when margin buying
is allowed with the model described in Section 5.2.2. Table 7presents the cumulative wealth
achieved by the competing approaches without/with margin loans on the six stock datasets.
As we can observe, when margin buying is allowed, the profitability of PAMR increases,
and in most cases, it achieves higher cumulative wealth thanother competing approaches.
These results clearly demonstrate that the proposed PAMR strategy can be extended to han-
dle margin buying issue and benefit from margin buying, and thus has a better practical
applicability.

11 For example, without consideration taxes and bid-ask, Interactive Broker charges 0.005$ per share
traded. Considering the average price of Dow Jones Composite is around 50$ (Accessed on June 2011),
the percentage is about0.01%.
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Fig. 8: Scalability of the cumulative wealth achieved by PAMR with respect to transaction
cost rate (γ). The break-even transaction cost rates to the market indexare about0.7%, 0.4%,
0.1%, 0.3% and0% on the six datasets, respectively.

Algorithm
NYSE(O) NYSE(N) TSE

No ML with ML No ML with ML No ML with ML

Market 14.5 15.75 18.06 17.68 1.61 1.71
Best-stock 54.14 54.14 83.51 173.18 6.28 10.53
BCRP 250.6 3755.09 120.32 893.63 6.78 21.23
UP 27.41 62.99 31.49 57.03 1.60 1.69
EG 27.09 63.28 31.00 55.55 1.59 1.68
ONS 109.19 517.21 21.59 228.37 1.62 0.88
Anticor 2.41E+08 1.05E+15 6.21E+06 5.41E+09 39.36 18.69
BK 1.08E+09 6.29E+15 4.64E+03 3.72E+06 1.62 1.53
BNN 3.35E+11 3.17E+20 6.80E+04 5.58E+07 2.27 2.17
PAMR 5.14+15 5.57E+25 1.25E+06 1.12E+09 264.86 720.42
PAMR-1 5.13+15 5.55E+25 1.26E+06 1.13E+09 260.26 720.96
PAMR-2 4.88E+15 5.10E+25 1.36E+06 1.27E+09 249.95 711.90

Algorithm
SP500 MSCI DJA

No ML with ML No ML with ML No ML with ML

Market 1.34 1.03 0.91 0.69 0.76 0.59
Best-stock 3.78 3.78 1.50 1.50 1.19 1.19
BCRP 4.07 6.48 1.51 1.54 1.24 1.24
UP 1.62 1.75 0.92 0.71 0.81 0.66
EG 1.63 1.70 0.93 0.72 0.81 0.65
ONS 3.34 7.76 0.86 0.33 1.53 2.21
Anticor 5.89 10.73 3.22 3.40 2.29 2.89
BK 2.24 1.88 2.64 6.56 0.68 0.56
BNN 3.07 3.29 14.47 150.49 0.88 0.67
PAMR 5.09 15.91 15.23 68.83 0.68 0.84
PAMR-1 5.08 15.90 15.51 68.62 0.69 0.83
PAMR-2 5.00 16.26 16.87 70.08 0.71 0.86

Table 7: Cumulative wealth achieved by various strategies on the stock datasets with/without
margin loans (ML). Top two achievements on each dataset are highlighted.
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5.4.6 Experiment 6: Evaluation of Computational Time Cost

Our last experiment is to evaluate the computational time costs of different approaches,
which is also an important issue in developing a practical online trading strategy. As stated
in Section 4.3, the proposed PAMR algorithm enjoys linear time complexity per iteration,
which is comparable to EG algorithm. Table 8 presents the computational time cost (in
seconds) of the performance comparable approaches (Anticor,BK andBNN) on the six stock
datasets. All the experiments were conducted on an Intel Core 2 Quad2.66GHz processor
with 4GB RAM, using Matlab2009b on Windows XP.

From the results, we can clearly see that in all cases the proposed PAMR takes signifi-
cant less computational time than the three performance comparable strategies. Even though
the computational time in the back tests, especially per trading day, is small, it is important
in certain scenarios such as high frequency trading (Aldridge 2009), where transactions may
occur in a fraction of a second. Nevertheless, the results clearly demonstrate the computa-
tional efficiency of the proposed PAMR strategy, which is also an important concern for
real-world large-scale applications.

Methods NYSE (O) NYSE (N) TSE SP500 MSCI DJIA
Anticor 2.57E+03 1.93E+03 2.15E+03 387 306 175
BK 7.89E+04 5.78E+04 6.35E+03 1.95E+03 2.60E+03 802
BNN 4.93E+04 3.39E+04 1.32E+03 2.91E+03 2.55E+03 1.28E+03
PAMR 8 7 2 1 1 0.3

Table 8: Computational time cost on the real datasets (in seconds).

5.5 Discussions and Threads to Validity

5.5.1 Discussion on Model Assumption

Any statement about such encouraging empirical results would be incomplete without ac-
knowledging the simplified assumptions made in Section 2. Torecall, we had made several
assumptions regarding transaction cost, market liquidityand market impact, which would
affect the practical deployment of the proposed algorithm.

The first assumption is that no transaction cost exists. In Section 5.4.5 we have already
examined the effect of varying transaction costs, and the results show that the proposed al-
gorithm can withstand moderate transaction costs. Currently, with the wide-spread adoption
of electronic communication networks (ECNs) and multilateral trading facilities (MTFs) on
financial markets, various online trading brokers charge very small transaction cost rates,
especially for large institutional investors. They also use a flat-rate12, based on the volume
threshold one reaches. Such measures can facilitate the portfolio managers to lower their
transaction cost rates.

The second assumption is that the market is liquid and one canbuy and sell any quantity
at the quoted price. In practice, low market liquidity results in a largebid-ask spread–
the gap between prices quoted for an immediate bid and an immediate ask. As a result, the

12 For example, for US equities and options, E*Trade (https://global.etrade.com/gl/home ,
accessed on 16 March 2011.) charges only$9.99 for $50000+ or 30+ stocks per quarter.

https://global.etrade.com/gl/home
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execution of orders may incur a discrepancy between the prices sent by the algorithm and the
prices actually executed. Moreover, stocks are often traded in multiples oflot, which is the
standard trading unit containing certain number of stock shares. In this situation, the quantity
of the stocks may not be arbitrary divisible. In the experiments, we have tried to minimize
the effect of market liquidity by choosing the stocks that have large market capitalization,
which usually have small bid-ask spreads and discrepancy, and thus have a high market
liquidity.

The other assumption is that the portfolio strategy would have no impact on the market,
that is, the stock market will not be affected by the trading algorithm. In practice, the impact
can be neglected if the market capitalization of the portfolio is not too large. However, as
the experimental results show, the portfolio wealth generated by PAMR increases astronom-
ically, which would inevitably impact the market. One simple way to handle this issue is to
scale down the portfolio, as done by many quantitative funds. Moreover, the development
of algorithmic trading, which slices a big order into multiple smaller orders and schedules
these orders to minimize the market impact, can significantly decrease the potential market
impact of the proposed algorithm.

Here, we emphasize again that this study assumes a “perfect market”, which is consistent
with previous studies in literature. It is important to notethat even in such a perfect financial
market, no algorithm has ever claimed such high performance, especially on the standard
NYSE (O) dataset. Though it is common investment knowledge that past performance may
not be reliable indicator of future performance, such high performance does provide us
confidence that the proposed PAMR algorithm may work well in future unseen markets.

5.5.2 Discussion on PAMR Assumption

Though the proposed algorithm performs well on most datasets, we can not claim that
PAMR can perform well on arbitrary portfolio pools. It is worth noting that PAMR re-
lies on the assumption that mean reversion exists in a portfolio pool, that is, buying worse
performing stocks is profitable. Preceding experiments seem to show that in most cases
mean reversion does exist in the market. However, it is stillpossible that this assumption
fails to exist in certain cases, especially when portfolio components are wrongly selected.
PAMR’s performance on DJIA dataset indicates that mean reversion may not exist in its
portfolio components. Though both based on mean reversion,PAMR and Anticor are for-
mulated with different time periods of mean reversion, which may interpret why Anticor
achieves a good performance on DJIA. Thus before investing in real market, it is of cru-
cial importance to ensure that the motivating mean reversion does exist among the portfo-
lio pools. In academic, mean reversion property in single stock has been extensively stud-
ied (Poterba and Summers 1988; Hillebrand 2003; Exley et al.2004), one natural way is
to calculate the sign of auto-correlation (Poterba and Summers 1988). On the contrary, the
mean reversion property among a portfolio lacks academic attention. Compared with mean
reversion in single stock, for a portfolio, not only the meanreversion of single stock matters,
but rather the interaction among stocks matters.

On the other hand, the mixture algorithm, that is, MIX, performs well on the DJIA
dataset, beating three benchmarks. As we discussed in Section 4.6, the mixture algorithm
can provide a worst-case guarantee, which is lacked for the original PAMR algorithms. This
can somehow solve the problem that PAMR itself does not have aworst-case guarantee.
Moreover, it is worth noting that even with worst-case guarantee, some existing universal
algorithms also perform poorly on the dataset.
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Now let us briefly analyze the reason that PAMR failed on DJIA.To test whether mean
reversion exists in the DJIA dataset, we propose a naı̈ve trading strategy to test our mo-
tivating mean reversion in the dataset. The test strategy sets the weights proportional to
differences between assets’ returns and that of last best stock, that is, last best stock will
be given zero weight, while the worst performing stock will be given a maximum weight.
We are interested in whether this simple algorithm producespositive return among existing
datasets. If it produces positive daily return, then the assumption that buying worse stocks
may work well. Otherwise, our motivating assumption fails.The test is conducted on all six
datasets. We calculated their arithmetic average daily returns and their standard deviations
of daily returns. Since we are interested in absolution return, we compare their average val-
ues with1. From the statistics in Table 9, we can find that the five successful datasets release
average profit (> 1.0), while DJIA releases average loss (< 1.0). Thus, on DJIA dataset, it is
expected to produce losses by purchasing worse performing stocks in the portfolio. Though
expected daily loss is small, it would produce huge cumulative loss with a long trading
period.

Statistics NYSE (O) NYSE (N) TSE SP500 MSCI DJIA
Mean 1.000940 1.000835 1.000431 1.000544 1.000819 0.999848
Std. dev. 0.008920 0.013162 0.008562 0.014879 0.016423 0.016682

Table 9: Average daily return and standard deviation of the test strategy.

It is interesting to observe above results, however, we cannot claim that this method
can definitely identify successful portfolio pools. Analyzing the mean reversion property in
portfolio scenario and selecting portfolio components such that the portfolio satisfies mean
reversion deserve further attention.

5.5.3 Discussion on Back Tests

Back tests in historical markets may suffer from “data-snooping bias” issue. One common
“data-snooping bias” is dataset selection issue. On the onehand, we selected four datasets,
that is, NYSE (O), TSE, SP500, and DJIA datasets, based on previous studies without con-
sideration to the proposed approach. On the other hand, we developed the PAMR algorithm
based solely on NYSE (O) dataset, while other five datasets (NYSE (N), TSE, SP500, MSCI
and DJIA datasets) were obtained after the algorithm was fully developed. However, even
we are cautious about the dataset selection issue, it may still appear in the experiments, es-
pecially for the datasets with relatively long history, that is, NYSE (O) and NYSE (N). The
NYSE (O) dataset, pioneered by Cover (1991) and followed by other researchers, becomes
one “standard” dataset in the learning community. Since it contains36 large cap NYSE
stocks that survived in hindsight for22 years, thus it suffers from extreme survival bias.
Nevertheless, it still has the merit to compare the performance among algorithms as done
in all previous work. The NYSE (N) dataset, as a continuationof NYSE (O), contains23
assets survived from previous36 stocks for another25 years. Therefore, it becomes even
worse than the previous NYSE (O) dataset in terms of survivalbias. In a word, even the
experiment results on these datasets clearly show the effectiveness of the proposed PAMR
algorithm, one can not make claims without noticing the deficiencies of these datasets.

Another common bias is asset selection issue. Four of the sixdatasets (NYSE (O), TSE,
SP500, and DJIA) are collected by others, and to the best of our knowledge, their assets
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are mainly the largest blue chip stocks in their respective markets. As a continuation of
NYSE (O) dataset, we self-collected NYSE (N) , which again contains several largest sur-
vival stocks in NYSE (O). The remaining dataset (MSCI) is chosen according to the world
indices. In a word, we try to avoid the asset selection bias via arbitrarily choosing the rep-
resentative stocks in their respective markets, which usually have large capitalization and
thus high liquidity. Moreover, investing in these largest assets may reduce the market im-
pact caused by the proposed portfolio strategy. Finally, following existing model assumption
and experimental setting, we do not consider the assets of low quality, such as the bankrupt
stocks and penny stocks. On the one hand, the bankrupt stock data is difficult to acquire,
thus we cannot observe their behaviors and predict the behaviors of PAMR on datasets with
bankrupt stocks. In reality, the bankruptcy situation happens rarely for the blue chip stocks
as typically a bankrupt stock would be removed from the list of blue chip stocks before it
actually goes bankruptcy. On the other hand, the penny stocks lack the required liquidity
to support the trading frequency in current research. Besides, one could also explore many
practical strategies to exclude the low quality stocks fromthe asset pool at some early stage,
such as some financial methods via either technical or fundamental analysis.

6 Conclusion

In this article, we proposed a novel portfolio selection strategy, “Passive Aggressive Mean
Reversion” (PAMR). Motivated by the idea of mean reversion and passive aggressive learn-
ing, PAMR outperforms all benchmarks and various existing strategies on a number of real
datasets from different markets. PAMR can also be easily extended to handle certain prac-
tical issues, e.g., transaction cost and margin buying. At the same time, PAMR executes
in much less time than existing approaches, making it suitable for online applications. We
also find that the update scheme of PAMR is based on the trade-off between the return and
volatility risk, which is ignored by most existing learningstrategies. This interesting prop-
erty connects the PAMR strategy with modern portfolio theory, which may provide further
explanation from the aspect of finance.

Although in most cases the proposed PAMR strategy achieves encouraging empirical
results, it is still far from perfect for a real investment task, and may be improved in the
following aspects. First of all, though universality may not be required in real investment,
PAMR’s universality is still an open question. Second, noneof existing algorithms considers
the bankrupt assets, which may happen in real investment. Itis thus interesting to study the
behaviors and bankrupt assets and design strategies to exploit them. Besides, we note that
PAMR sometimes fails when the mean reversion property does not exist in the portfolio
components. Then it is crucial to propose efficient methods to test mean reversion. Finally,
though PAMR handles the issue of transaction costs well, it is not formally addressed in our
problem formulation. It would be interesting to incorporate the transaction cost issue when
formulating the problem in order to improve the performancein case of high transaction
costs and gain higher break-even ratios with respect to the market index.

Acknowledgements

This paper was fully supported by Singapore MOE Tier-1 Research Grant (RG67/07).



34

Appendix

Appendix A: Proof ofProposition 1

Proof First, if ℓtǫ = 0 thenbt satisfies the constraint in Eq. (2) and is clearly the optimal
solution.

Now let us focus on the case whereℓtǫ 6= 0. To solve the problem, we define the La-
grangian of the optimization problem in Eq. (2) to be,

L (b, τ, λ) =
1

2
‖b− bt‖2 + τ (xt · b− ǫ) + λ (1 · b− 1) , (9)

whereτ ≥ 0 is a Lagrange multiplier related to the loss function,λ is the Lagrange multiplier
associated with the simplex constraint, and1 denotes the column vector ofm 1s. Note that
the non-negativity of portfoliob is not considered here since introducing this term causes
too much complexity, and alternatively we project the resulting portfolio into a simplex to
enforce the non-negativity constraint.

Setting the partial derivatives ofL with respect to the elements ofb to zero gives,

0 =
∂L
∂b

= (b− bt) + τxt + λ1.

Multiplying both sides with1⊤, andb⊤
1 = 1, we can getλ = − τ

mxt · 1. Moreover, since
x̄t =

xt·1
m , wherex̄t is the mean of thetth asset price relative, or the market return, we can

rewriteλ in the following form,
λ = −τ x̄t. (10)

And the solution forL is,
b = bt − τ (xt − x̄t1) . (11)

Plugging Eq. (10) and Eq. (11) to Eq. (9), we get,

L (τ ) =
1

2
τ
2 ‖xt − x̄t1‖2 − τ

2
xt · (xt − x̄t1) + τ (bt · xt − ǫ)

= −1

2
τ
2 ‖xt − x̄t1‖2 + τ (bt · xt − ǫ) .

Note that in the derivation of the above formula, we used the following formula, that is,

‖xt − x̄t1‖2 = xt · xt − 2x̄t (xt · 1) + x̄
2
t (1 · 1) = xt · xt − x̄t (xt · 1) = xt · (xt − x̄t1) .

Setting the derivative ofL(τ ) with respect toτ to 0, we get,

0 =
∂L
∂τ

= −τ‖xt − x̄t1‖2 + bt · xt − ǫ.

Thenτ can be set to the following formula,

τ =
bt · xt − ǫ

‖xt − x̄t1‖2
.

Sinceτ ≥ 0, we projectτ to [0,∞), thus,

τ = max

{

0,
bt · xt − ǫ

‖xt − x̄t1‖2
}

=
ℓtǫ

‖xt − x̄t1‖2
.

Note that in case of zero market volatility, that is,‖xt − x̄t1‖2 = 0, we just setτ = 0. And
we can state the update scheme for the case whereℓtǫ = 0 and the case whereℓtǫ > 0 by
settingτ . Thus, we simplify the notation according to Eq. (1) and showthe unified update
scheme.
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Appendix B: Proof ofProposition 2

Proof We derive the solution of PAMR-1 following the same procedure as the derivation of
PAMR. Let us consider the situation when the loss is not0 and we get the Lagrangian,

L (b, ξ, τ, µ, λ) =
1

2
‖b− bt‖2 + τ (xt · b− ǫ) + ξ (C − τ − µ) + λ (1 · b− 1) .

Setting the partial derivatives ofL with respect to the elements ofb to zero gives,

0 =
∂L
∂b

= (b− bt) + τxt + λ1,

Multiply both side with1⊤, andb⊤
1 = 1, we can get,λ = −τ xt·1

m = −τ x̄t. And the
approximation solution is

b = bt − τ (xt − x̄t1) .

Next, note that the minimum of the termξ(C − τ − µ) with respect toξ is zero whenever
C− τ −µ = 0. If C− τ −µ 6= 0 then the minimum can be made to approach−∞. Since we
need to maximize the dual we can rule out the latter case and pose the following constraint
on the dual variables,C − τ − µ = 0. The KKT conditions confineµ to be non-negative so
we conclude thatτ ≤ C. We can projectτ to the interval[0, C] and get,

τ = max

{

0,min

{

C,
bt · xt − ǫ

‖xt − x̄t1‖2
}}

= min

{

C,
ℓtǫ

‖xt − x̄t1‖2
}

.

Also note that we simplify the notation according to Eq. (1) and show the unified update
scheme.

Appendix C: Proof ofProposition 3

Proof We derive the solution following the derivations of the PAMRand PAMR-1. Let us
focus on the situation when the loss is not0 and we can get the Lagrangian,

L (b, ξ, τ, µ, λ) =
1

2
‖b− bt‖2 + τ (b · xt − ǫ) + Cξ

2 − τξ + λ (1 · b− 1) .

Setting the partial derivatives ofL with respect to the elements ofb to zero gives,

0 =
∂L
∂b

= (b− bt) + τxt + λ1,

Multiply both side with1⊤, andb
⊤
1 = 1, we can get,λ = −τ xt·1

m = −τ x̄. And the
approximation solution is,

b = bt − τ (xt − x̄1) .

Setting the partial derivatives ofL with respect to the elements ofξ to zero gives,

0 =
∂L
∂ξ

= 2Cξ − τ =⇒ ξ =
τ

2C
.

Expressingξ as above and replacingb, we rewrite the Lagrangian as

L̃(τ ) = − τ2

2

(

‖xt − x̄t1‖2 +
1

2C

)

+ τ (bt · xt − ǫ) .
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Take the derivative with respect toτ and set it to zero, we can get,

0 =
∂L̃
∂τ

= −τ
(

‖xt − x̄t1‖2 +
1

2C

)

+ (bt · xt − ǫ) .

Then we get the update scheme ofτ , and project it to[0,∞)

τ = max

{

0,
bt · xt − ǫ

‖xt − x̄t1‖2 + 1
2C

}

=
ℓtǫ

‖xt − x̄t1‖2 + 1
2C

.
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