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Multiview Semi-Supervised Learning
with Consensus

Guangxia Li, Kuiyu Chang, and Steven C.H. Hoi

Abstract—Obtaining high-quality and up-to-date labeled data can be difficult in many real-world machine learning applications. Semi-

supervised learning aims to improve the performance of a classifier trained with limited number of labeled data by utilizing the

unlabeled ones. This paper demonstrates a way to improve the transductive SVM, which is an existing semi-supervised learning

algorithm, by employing a multiview learning paradigm. Multiview learning is based on the fact that for some problems, there may exist

multiple perspectives, so called views, of each data sample. For example, in text classification, the typical view contains a large

number of raw content features such as term frequency, while a second view may contain a small but highly informative number of

domain specific features. We propose a novel two-view transductive SVM that takes advantage of both the abundant amount of

unlabeled data and their multiple representations to improve classification result. The idea is straightforward: train a classifier on each

of the two views of both labeled and unlabeled data, and impose a global constraint requiring each classifier to assign the same class

label to each labeled and unlabeled sample. We also incorporate manifold regularization, a kind of graph-based semi-supervised

learning method into our framework. The proposed two-view transductive SVM was evaluated on both synthetic and real-life data sets.

Experimental results show that our algorithm performs up to 10 percent better than a single-view learning approach, especially when

the amount of labeled data is small. The other advantage of our two-view semi-supervised learning approach is its significantly

improved stability, which is especially useful when dealing with noisy data in real-world applications.

Index Terms—Artificial intelligence, learning systems, semi-supervised learning, multiview learning, support vector machines

Ç

1 INTRODUCTION

CLASSIFICATION, the task of assigning objects to one of
several predefined categories, is an active research

problem in data mining and machine learning. The classical
classifier is created by building a machine learning model,
e.g., support vector machines (SVM) [2], trained from a
collection of labeled data. Unfortunately, in real-world
applications, labeled training examples are often difficult to
obtain, as they require the efforts of human annotators,
while unlabeled data are always abundant. We attempt to
overcome this limitation with a semi-supervised learning
approach, which aims to improve the performance of a
classifier trained with limited number of labeled data by
utilizing the unlabeled ones. Among various semi-super-
vised learning algorithms, the transductive support vector
machine (TSVM) has drawn a lot of attention since it was
first introduced by Vapnik [2]. An intuitive interpretation
for the success of transductive SVM is the so-called “cluster
assumption” [3]. That is, instead of traversing through high
density regions of the data, the decision boundary should
always be placed in low density regions. One can
incorporate this assumption into the SVM optimization
procedure by exploiting the information of unlabeled data.

To improve the performance of transductive SVM, we
adopt a multiview learning approach. In multiview learning,

a classifier is created for each representation or view of the
same problem, with each classifier optimized to maximize
the overall consensus in their predictions, i.e., multiple views
of a data sample should be classified into the same category.
Where multiple representations of the same problem are
available, a multiview learning approach typically yields
equal or better results than those obtained from either view
alone. Our proposed two-view semi-supervised learning
algorithm, called two-view transductive SVM (Two-view
TSVM), extends the supervised two-view learning frame-
work of Farquhar et al. [4] to take advantage of the
abundance of unlabeled data.

To go a step further, we also apply manifold regulariza-
tion, which is a kind of graph-based semi-supervised
learning approach. Manifold regularization [5], [6] extends
many existing supervised learning algorithms to their semi-
supervised learning settings by adding a geometrically based
regularization term, with the aim of preserving the manifold
smoothness. By incorporating a regularizer that records the
intrinsic manifold structure of training data, we finally obtain
a joint learning framework that combines two types of semi-
supervised learning techniques: 1) learning to maximize
margin, and 2) learning to explore cluster/manifold struc-
ture. The hybrid approach is reasonable since it maximizes
the margin on both labeled and unlabeled data and at the
same time exploits the manifold structure of the data. We
formulate this learning framework into an optimization
problem and develop an efficient way to solve it.

We evaluate the proposed classification technique on both
synthetic and real-life data sets against single-view/multi-
view supervised/semi-supervised approaches, and graph-
based method. Specifically, we apply our algorithm to an
interesting problem—the product review filtering, which

2040 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 11, NOVEMBER 2012

. The authors are with the School of Computer Engineering, Nanyang
Technological University, 50 Nanyang Avenue, Singapore 639798.
E-mail: {ligu0005, askychang, chhoi}@ntu.edu.sg.

Manuscript received 18 Oct. 2010; revised 22 Mar. 2011; accepted 3 May
2011; published online 19 July 2011.
Recommended for acceptance by J. Dix.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2010-10-0555.
Digital Object Identifier no. 10.1109/TKDE.2011.160.

1041-4347/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

Published in IEEE Transactions on Knowledge and Data Engineering, Volume 24, Issue 11, 2012, Pages 2040-2051
https://doi.org/10.1109/TKDE.2011.160
Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.



filters valid product reviews from online forum postings.
This task is a preprocessing step for product review mining,
which aims to extract and summarize user opinions from
product reviews [7]. The vast majority of existing approaches
use machine learning models trained on a set of human
labeled examples to detect spam reviews. As labeled data are
hard to obtain [8], some have come to regard duplicate
reviews as spam for training the model [9]. We thus argue
that in the absence of user ratings (ground truth), a semi-
supervised learning method like our two-view transductive
SVM is a better way to tackle the review filtering problem. In
particular, we defined the two views for product reviews as
1) a classical text representation based on the word vector
model, and 2) a high-level representation based on semantic
analysis of review sentence. Experimental results on product
review filtering and other general classification data sets
justified the utility of our method.

The rest of this paper is organized as follows: Section 2
summarizes related work. Section 3 presents our two-view
transductive SVM algorithm. Section 4 gives experimental
results and discussions. Finally, Section 5 gives conclusions
and discusses future directions.

2 RELATED WORK

We first review existing work on semi-supervised learning,
focusing on transductive SVM and graph-based methods,
followed by the multiview learning algorithms.

2.1 Semi-Supervised Learning

Semi-supervised learning, i.e., learning from both labeled
and unlabeled data, has been extensively studied, leading to
several classical approaches. We first give a brief review on
the transductive support vector machines, followed by
graph-based methods.

2.1.1 Transductive SVM

The transductive SVM can be viewed as a standard SVM

with an extra regularization term defined on unlabeled

data [10]. Suppose a training set contains ‘ labeled

examples fðxi; yiÞg‘i¼1, yi 2 f�1; 1g, and u unlabeled

examples fxig‘þui¼‘þ1, xi 2 IRn. The SVM decision function

has the form

fðxÞ ¼ w � �ðxÞ þ b; ð1Þ

where w 2 IRn, b 2 IR are the parameters of the model, and
�ð�Þ is the feature map. The transductive SVM adds a
regularizer, which is defined over unlabeled data, to the

classical SVM optimization function, leading to the follow-
ing optimization problem:

min
1

2
kwk2 þ C1

X‘
i¼1

LðyifðxiÞÞ þ C2

X‘þu
i¼‘þ1

LðjfðxiÞjÞ;

where Lð�Þ ¼ maxð0; 1� �Þ is the classical hinge loss for
labeled examples as illustrated in Fig. 1a, Lðj � jÞ ¼
maxð0; 1� j � jÞ is the symmetric hinge loss for unlabeled
examples as illustrated in Fig. 1b. Note that its nonconvex
hat shape makes the optimization problem hard to solve.

A suite of algorithms have been proposed to solve the
above optimization problem [3], [11], [12], [13], [14].
Particularly, Collobert et al. [12] employed an approximate
optimization technique known as the concave convex
procedure (CCCP) [15]. It decomposes a nonconvex function
into a convex part and a concave part, which are then solved
iteratively. In each iteration, the concave part is replaced by
its tangential approximation. Then, the sum of the convex
part and the tangential approximation is minimized.

For CCCP transductive SVM [12], the loss function
applied to unlabeled data is called “ramp loss” (Fig. 1c),
which can be expressed as the sum of a hinge loss function
(Fig. 1a) and a concave loss function (Fig. 1d). Specifically,
the ramp loss function Rsð�Þ has the form

Rsð�Þ ¼ minð1� s;maxð0; 1� �ÞÞ ¼ Lð�Þ þ Lsð�Þ;

where L is the hinge loss, Ls is the concave loss with the
form Lsð�Þ ¼ �maxð0; s� �Þ, and s is a predefined parameter
such that �1 < s � 0.

Training a transductive SVM with the CCCP method is
equivalent to training an SVM using the hinge loss for labeled
data, and the ramp loss for unlabeled data [12]. For a binary
classification problem, each unlabeled example is accounted
for twice, each time assuming the role of one class, that is,
fðxi; yi ¼ 1Þg‘þui¼‘þ1, fðxi; yi ¼ �1Þ : xi ¼ xi�ug‘þ2u

i¼‘þuþ1. The cor-
responding optimization problem of CCCP transductive
SVM is given by

min
1

2
kwk2 þ C1

X‘
i¼1

LðyifðxiÞÞ þ C2

X‘þ2u

i¼‘þ1

RsðyifðxiÞÞ:

2.1.2 Graph-Based Methods

Graph-based semi-supervised learning methods assume that
similar examples should be assigned the same class labels. It
first defines a graph where labeled and unlabeled data are
represented as vertices, with edge weights encoding the
similarity between examples. It then estimates a function
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Fig. 1. Four types of loss function. For ramp loss (Fig. 1c) and concave loss (Fig. 1d), the parameter s is set to �0:3.



over the graph by simultaneously satisfying two conditions
[10]: 1) the function should yield assignments similar to the
labeled nodes, and 2) it should be smooth throughout the
graph. These two conditions can be expressed quantitatively
in an optimization framework using a loss function and a
regularizer derived from data features.

Thus, existing graph-based methods differ from one
another largely in the particular choice of loss functions and
regularizers. Blum and Chawla [16] considered semi-
supervised learning as a graph min-cut problem. The
Gaussian random fields and harmonic function methods
[17] introduce a quadratic loss function with infinity weight
for labeled data, and incorporate unlabeled data with a
regularizer based on the graph combinatorial Laplacian.
Zhou et al. [18] proposed the local and global consistency
method with a quadratic loss function and the normalized
Laplacian as the regularizer. The unification of margin-
based and manifold-based regularization has also been
explored in [3], [19].

The generative manifold regularization framework [5],
[20] exploits the geometry of probability distribution that
generates the data and incorporates it as an additional
regularization term. Suppose labeled examples are drawn
from a probability distribution P , and unlabeled examples
are drawn from the marginal distribution PX of P .
Manifold regularization makes a specific assumption that
if two points x1;x2 2 X are close in the intrinsic geometry of
PX, then the conditional distributions Pðyjx1Þ and Pðyjx2Þ
are similar. More specifically, the framework can be
expressed as an optimization problem with an arbitrary
loss function and two regularizers as shown below:

min
1

‘

X‘
i¼1

Lðxi; yi; fÞ þ �Akfk2
K þ �Ikfk

2
I ;

where kfk2
I reflects the complexity of the function in the

intrinsic geometry of PX, and can be approximated on the
basis of labeled and unlabeled data using the graph
Laplacian [21], [22]. That is,

kfk2
I ¼ fTLf ;

where f is the vector of f evaluation on the labeled and
unlabeled data, given by f ¼ ½fðx1Þ; . . . ; fðx‘þuÞ�T, and L is
the graph Laplacian given by L ¼ D�W . The diagonal
matrix D is given by Dii ¼

P‘þu
j¼1 Wij, where Wij are the edge

weights in the data adjacency graph.

2.2 Multiview Learning

Multiview learning utilizes the agreement among learners
trained on different representations of the same problem to
improve the overall classification performance. The basic
idea of using two views with unlabeled data was first
introduced in [23]. The well-known cotraining algorithm
[24] learns two independent classifiers based on indepen-
dent attribute sets. These classifiers then predict the
unlabeled examples. Their most confident predictions are
used to mutually expand the training set. Some theoretical
studies and effective variants of cotraining algorithms
include [25], [26], [27], [28], [29], [30]. In addition to regular
cotraining algorithms, Yu et al. [31] proposed a Bayesian

cotraining approach, which defines an undirected graphical
model based on a Gaussian process with edge potential
functions denoting the internal and external agreement of
the views. Sindhwani et al. [32], [33] proposed a coregular-
ization approach to learning a multiview classifier from
partially labeled data using a view consensus based on
some regularization term. Maillard and Vayatis [34] further
analyzed the complexity of coregularization methods for
multiview semi-supervised learning. A similar approach
has also been adopted for semi-supervised least squares
regression [35]. Farquhar et al. [4] observed that when two
views of the same problem are available, applying the
kernel canonical correlation analysis (KCCA) [36] to the two
feature space can improve the performance of the classifier.
They also proposed a supervised learning algorithm named
SVM-2K, which imposes a similarity constraint between
two distinct SVMs, each trained from one view of the data.
The constraint they employed is��fA

�
xA
i

�
� fB

�
xB
i

�
j � �i þ ";

where fA=Bð�Þ are the SVM decision functions belonging to
each of the two views denoted by superscripts A and B, �i is a
variable that enforces consensus between the two views, and
" is a slack variable for allowing some samples to violate the
constraint. Combining this constraint with the standard SVM
objective functions for each view yields a multiview learning
algorithm, which was shown to perform better than the
single view approach on an image classification task.

Not restricting to labeled data, Szedmák and Shawe-
Taylor [37] went further by exploiting unlabeled data via
multiview learning. They required two classifiers to give
similar solutions on the unlabeled samples. The similarity is
measured by the absolute value of differences between two
real-valued predictions of the unlabeled data, and is
minimized simultaneously with the error occurring in the
estimation of the labeled cases. In their learning framework,
the loss function is only defined over the labeled data. In
contrast, our proposed method also contains loss functions
defined over unlabeled data. The difference between the
work of Szedmák and Shawe-Taylor [37] and ours is that our
method finds a labeling of the unlabeled data, so that a
decision boundary has the maximum margin on both the
original labeled data and the (newly labeled) unlabeled data.

3 TWO-VIEW TRANSDUCTIVE SUPPORT VECTOR

MACHINE

We first use a synthetic data set as an example to illustrate
the motivation for two-view, semi-supervised learning.
Next, we propose the framework of our two-view trans-
ductive support vector machine, followed by the optimiza-
tion technique and algorithm.

3.1 Motivation

We extend the two-view supervised learning algorithm
proposed by Farquhar et al. [4] by incorporating unlabeled
data, turning it into a two-view semi-supervised learning
approach. The basic idea is to construct two transductive
SVM classifiers from both labeled and unlabeled data based
on different representations of the original problem. The

2042 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 11, NOVEMBER 2012



two classifiers are then trained simultaneously by requiring
that they always retain a maximum consensus on their
predictions. By enforcing different classifiers trained from
different views to agree on both labeled and unlabeled
training data, the structure learned from each view can
reinforce one another. Once trained, the outputs of two
classifiers can be used individually. A voting or weighting
scheme can also be applied to combine the classifier outputs
to make predictions.

To illustrate the advantage of two-view transductive
learning, consider a synthetic data set in which samples from
two classes appear as two moons in one view and two lines in
another, as shown in Fig. 2 (crosses and circles are used to
represent the two classes, respectively). Given only two
labeled examples (denoted by a bold cross and circle), the
solid lines in Figs. 2a and 2b turn out to be the maximum
margin hyperplane of the two training instances. They are
clearly suboptimal with respect to the underlying distribu-
tion of unlabeled data (denoted by the small crosses and
circles). Taking unlabeled data into consideration, a trans-
ductive SVM [12] shifts the decision boundary away from
dense regions, but still fails to yield a good result in either
view (Figs. 2c and 2d). On the contrary, once a consensus
between the two views is imposed on both classifiers, a much

better decision boundary is obtained in each view. This is
shown in Figs. 2e and 2f (the result is obtained by applying
our two-view transductive SVM), in which the solid decision
boundary clearly separates the two classes of data.

3.2 Problem Formulation

Consider a multiview semi-supervised learning problem on

a set of ‘ labeled examples fðxA
i ;x

B
i Þ; yig

‘
i¼1, x

A=B
i 2 IRn,

yi 2 f�1; 1g, and a set of u unlabeled examples

fxA
i ;x

B
i g

‘þu
i¼‘þ1. Superscripts A and B denote the two views,

respectively. For each view, we aim to find a decision

function fðxÞ with the form shown in (1).
According to Collobert et al. [12], for each view, the CCCP

transductive SVM has the following objective function:

J ¼ 1

2
kwA=Bk2 þ CA=B

1

X‘
i¼1

�
A=B
i þ CA=B

2

X‘þ2u

i¼‘þ1

�
A=B
i

þ
X‘þ2u

i¼‘þ1

�
A=B
i yif

A=B
�
x

A=B
i

�
;

where �
A=B
i is related to the derivative of the concave loss

function mentioned in Section 2.1.1, written as

�
A=B
i ¼ C

A=B
2 if yif

A=B
�
x

A=B
i

�
< s and i � ‘þ 1

0 otherwise;

�
ð3Þ

where s is the parameter of the loss function.
In our basic approach, we construct two transductive

SVM objective functions based on each of the two views,

respectively. We then add a regularizer to penalize the

decision function of each view if it deviates from the

consensus, and minimize them simultaneously. To go a step

further, we also explore the structure of the data manifold

by adding two regularizers that penalize any “abrupt

changes” of the function values evaluated on neighboring

samples in the Laplacian graph. This leads to the following

optimization problem of our two-view transductive SVM:

min
1

2
kwAk2 þ CA

1

X‘
i¼1

�A
i þ CA

2

X‘þ2u

i¼‘þ1

�A
i

þ 1

2
kwBk2 þ CB

1

X‘
i¼1

�B
i þ CB

2

X‘þ2u

i¼‘þ1

�B
i

þ
X‘þ2u

i¼‘þ1

�A
i yif

AðxA
i Þ þ

X‘þ2u

i¼‘þ1

�B
i yif

BðxB
i Þ

þ CA
3 fATLAfA þ CB

3 fBTLBfB þD
X‘þ2u

i¼1

�i

ð4aÞ

w:r:t: wA=B; ��A=B; ��

s:t: yif
A=B
�
x

A=B
i

�
� 1� �A=B

i

ð4bÞ

�
A=B
i � 0 ð4cÞ

��fA
�
xA
i

�
� fB

�
xB
i

��� � �i ð4dÞ

�i � 0 ð4eÞ
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Fig. 2. Decision boundaries (denoted by the solid line) obtained by the
supervised SVM, CCCP TSVM, and Two-view TSVM. The only two
labeled examples are represented by a bold cross and circle. The
remaining points are unlabeled. Gaussian and linear kernels are used
for views 1 and 2, respectively.



1

u

X‘þu
i¼‘þ1

fA=B
�
x

A=B
i

�
¼ 1

‘

X‘
i¼1

yi; ð4fÞ

where constraints (4b) and (4c) are the standard SVM

constraints, constraints (4d) and (4e) impose the consensus

between the two views, and constraint (4f) is a balancing

constraint, which aims to prevent an extremely skewed

classification result caused by assigning all unlabeled

examples to only one class. It has been previously used

in [3], [12]. The positive parameters C
A=B
2 control the

influence of unlabeled data on the objective function,

while C
A=B
3 control the influence of the graph-based

regularizers. It is clear that setting C
A=B
2 and C

A=B
3 to

zeros leads to a fully supervised two-view SVM; setting

C
A=B
3 alone to zero causes the two-view transductive SVM

to ignore manifold information of the training samples.

3.3 Derivation of Optimization Problem

We use K interchangeably to denote the kernel function or

the Gram matrix. From the Representer theorem, we know

that the solution to the problem above has the form

fðxÞ ¼
X‘þ2u

i¼1

�iKðxi;xÞ:

The optimization problem (4) can be rewritten as

min
1

2
��ATKA��A þ CA

1

X‘
i¼1

�A
i þ CA

2

X‘þ2u

i¼‘þ1

�A
i

þ 1

2
��BTKB��B þ CB

1

X‘
i¼1

�B
i þ CB

2

X‘þ2u

i¼‘þ1

�B
i

þ
X‘þ2u

i¼‘þ1

�A
i yi

X‘þ2u

j¼1

�A
j KA

�
xA
i ;x

A
j

�
þ bA

 !

þ
X‘þ2u

i¼‘þ1

�B
i yi

X‘þ2u

j¼1

�B
j KB

�
xB
i ;x

B
j

�
þ bB

 !
þD

X‘þ2u

i¼1

�i

þ CA
3 ��

ATKATLAKA��A þ CB
3 ��

BTKBTLBKB��B

ð5aÞ

w:r:t: ��A=B; bA=B; ��A=B; ��

s:t: yi
X‘þ2u

j¼1

�A
j KA

�
xA
i ;x

A
j

�
þ bA

 !
� 1� �A

i

ð5bÞ

�A
i � 0 ð5cÞ

yi
X‘þ2u

j¼1

�B
j KB

�
xB
i ;x

B
j

�
þ bB

 !
� 1� �B

i ð5dÞ

�B
i � 0 ð5eÞ

X‘þ2u

j¼1

�A
j KA

�
xA
i ;x

A
j

�
þ bA �

X‘þ2u

j¼1

�B
j KB

�
xB
i ;x

B
j

�
� bB

�����
����� � �i
ð5fÞ

�i � 0 ð5gÞ

1

2u

X‘þ2u

i¼‘þ1

X‘þ2u

j¼1

�A
j KA

�
xA
i ;x

A
j

�
þ bA

 !
¼ 1

‘

X‘
i¼1

yi ð5hÞ

1

2u

X‘þ2u

i¼‘þ1

X‘þ2u

j¼1

�B
j KB

�
xB
i ;x

B
j

�
þ bB

 !
¼ 1

‘

X‘
i¼1

yi: ð5iÞ

We apply the Lagrange multiplier technique to solve the

optimization problem (5). The assignment between the

Lagrange multipliers and the constraints is summarized as

follows:

�A
i : yi

X‘þ2u

j¼1

�A
j KA

�
xA
i ;x

A
j

�
þ bA

 !
� 1� �A

i

�B
i : yi

X‘þ2u

j¼1

�B
j KB

�
xB
i ;x

B
j

�
þ bB

 !
� 1� �B

i

�þi :
X‘þ2u

j¼1

�B
j KB

�
xB
i ;x

B
j

�
þ bB �

X‘þ2u

j¼1

�A
j KA

�
xA
i ;x

A
j

�
� bA � ��i

��i :
X‘þ2u

j¼1

�A
j KA

�
xA
i ;x

A
j

�
þ bA �

X‘þ2u

j¼1

�B
j KB

�
xB
i ;x

B
j

�
� bB � ��i

�A:
1

2u

X‘þ2u

i¼‘þ1

X‘þ2u

j¼1

�A
j KA

�
xA
i ;x

A
j

�
þ bA

 !
¼ 1

‘

X‘
i¼1

yi

�B:
1

2u
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Applying the Lagrange multiplier technique, the

minimization problem (5) is equivalent to the following

problem:

min
1

2
MATKA

�
Iþ 2CA

3 LAKA
��1

MA

þ 1
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MBTKB

�
Iþ 2CB

3 LBKB
��1

MB

�
X‘þ2u
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�e�A
i þ e�B
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�
� �

A þ �B

‘
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yi

ð7aÞ

w:r:t: e��A=B; �A=B; ��

s:t: 0 � e�A
i � CA

1 81 � i � ‘
ð7bÞ

� �A
i � e�A

i � CA
2 � �A
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1 81 � i � ‘ ð7dÞ

� �B
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i 8‘þ 1 � i � ‘þ 2u ð7eÞ
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�D � �i � D 81 � i � ‘þ 2u ð7fÞ

X‘þ2u

i¼1

�e�Ayi � �i
�
þ �A ¼ 0 ð7gÞ

X‘þ2u

i¼1

�e�Byi þ �i
�
þ �B ¼ 0; ð7hÞ

where MA=B ¼ Ye��A=B � �� þ �A=B

2u J, e��A=B ¼ ��A=B � ��A=B, �� ¼
��þ � ���, I is a identity matrix, Y is a diagonal matrix as

Y ¼ diagðy1; . . . ; y‘þ2uÞ, and J is a ð‘þ 2uÞ � 1 column vector

with first ‘ elements equal to zero and last 2u elements

equal to one.

3.4 Augmented Lagrangian Technique

To solve the minimization problem (7), we employ the

augmented Lagrangian [38] technique as Farquhar et al. [4]

did. Augmented Lagrangian is a method for solving

constrained optimization problems. It reformulates a con-

strained optimization problem into an unconstrained one

by adding Lagrange multipliers and an extra penalty term

for each constraint to the original objective function. The

augmented Lagrangian function corresponding to the

minimization problem

min
x

fðxÞ

s:t: ciðxÞ ¼ 0 81 � i � n

can be written as

min
x

fðxÞ �
Xn
i¼1

�iciðxÞ þ
�

2

Xn
i¼1

c2
i ðxÞ; ð9Þ

where the first two terms in (9) correspond to the
Lagrangian and the last term is the penalty for violating
the constraint. The penalty term is positive when the
current point x violates the constraint and zero otherwise. It
is multiplied by a positive coefficient �. By making this
coefficient larger, we penalize constraint violations more
severely, thereby forcing the minimizer to the penalty
function to move closer to a feasible region of the
constrained problem.

The minimization problem (9) can be solved in an

iterative manner. In each iteration, �� is fixed to some

estimate of the optimal Lagrange multiplier and the penalty

parameter � is set to some positive value, then one can

perform minimization with respect to x. In subsequent

iterations, �� and � are updated, and the process is repeated

until some stopping criterion is reached. It has been shown

that convergence of the augmented Lagrangian method is

assured provided that � does not increase indefinitely [38].

3.5 Two-View Transductive SVM Algorithm

Let us denote the equality constraints (7g) and (7h) as h1

and h2, and introduce corresponding Lagrange multipliers

�1 and �2. We can rewrite the minimization problem (7) into

the augmented Lagrangian form as follows:

min
1
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where � > 0 is the penalty parameter.
Once the minimization problem (10) is solved with the

augmented Lagrangian method, the decision functions

corresponding to the two views can be calculated as

follows:

fAðxAÞ ¼
X‘þ2u

i¼1

�
yi e�A

i þ �i
�
KA
�
xA
i ;x

A
�
þ bA ð11aÞ

fBðxBÞ ¼
X‘þ2u

i¼1

�
yi e�B

i � �i
�
KB
�
xB
i ;x

B
�
þ bB: ð11bÞ

A hybrid decision function can be written as a linear

combination of the two classifiers as

fðxÞ ¼ !fAðxAÞ þ ð1� !ÞfBðxBÞ ð12Þ

with 0 � ! � 1.
Algorithm 1 summarizes the two-view transductive SVM

algorithm. The convergence of the CCCP procedure is

described in [12]. A detailed convergence analysis of the

Lagrange multiplier iteration, which corresponds to the

outer loop of Algorithm 1 can be found in [39]. In our

experiments, we set the maximum number of Lagrange

multiplier iterations to five. We observe that the algorithm

converges before reaching the maximum number of

iterations in most cases.

Algorithm 1. Two-view Transductive SVM

Require: Labeled and unlabeled data of two views.

Initialize e��A=B, ��A=B, ��, �� and �.

repeat

Solve the following sub-problem.

repeat

Solve the minimization problem (10) with fixed ��k

and �k.

Compute fAðtþ1Þ and fBðtþ1Þ via (11) using the solution
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to the minimization problem (10).

Compute ��Aðtþ1Þ and ��Bðtþ1Þ via (3) with the value of
fAðtþ1Þ and fBðtþ1Þ.

Update the lower and upper bounds of e��Aðtþ1Þ ande��Bðtþ1Þ with (10c) and (10e).

until ��Aðtþ1Þ ¼ ��AðtÞ and ��Bðtþ1Þ ¼ ��BðtÞ

Update the Lagrange multiplier �� as

��kþ1 ¼ ��k þ �khhk
Update the penalty parameter � as

�kþ1 ¼ 
�k
until khhkk � �
return Decision functions corresponding to the two views

calculated by (11).

4 EXPERIMENTAL RESULTS

4.1 Experimental Testbed

We evaluate the performance of our two-view transductive
SVM on one synthetic data set and three real-life data sets:
the ads data set [40], the WebKB course data set [6], and our
product review data set. The characteristics of the data sets
including the number of dimensions, class distribution, and
portion of labeled examples, are summarized in Table 1.

The synthetic data set contains 200 samples evenly
drawn from two classes, distributed in the silhouette of two
“moons” in one view and two “lines” in the other. Each
view has only two labeled samples (1 positive, 1 negative),
with the remaining 198 unlabeled.

The ads data set was first used by Kushmerick [40] to
study methods that automatically remove advertisement
images from webpages. Each example in the data set
corresponds to an image on the web, and the task is to
predict whether an image is used for advertisement or not.
The ads data set consists of more than two views. We
adopted three views in our experiments, including image
URL view (457 features related to the image server name),
destination URL view (472 features related to the image
URL), and alt view (111 features related to “alternate” words
in the HTML image tag). Among 3,279 examples in the data
set, 459 examples belong to the positive class (ads) and the
remaining examples are negative (non-ads).

The WebKB course data set has been frequently used in
the empirical study of multiview learning. It comprises
1,051 webpages collected from the computer science
departments of four universities. The task is to classify

each page into two classes: course or noncourse. The two

views are the textual content of a webpage (page view) and

the words that occur in the hyperlinks of other webpages

pointing to it (link view), respectively. We used a processed

version of the WebKB course data set [6] in our experiment.
Our product review data set was created by crawling

two popular online Chinese cell-phone forums.1 Redundant

punctuations and stop words were removed and reviews

containing less than four characters were eliminated. We

manually labeled 1,000 true reviews and 1,000 spam

reviews. A product review is regarded as useful or

nonspam if 1) it contains a declarative sentence (all

questions are regarded as spam reviews), and 2) it expresses

opinions on a product or product feature. Opinions include

the reviewer’s personal sentiment (positive or negative)

about a product or product feature, and/or the pros and

cons analysis of a product or product feature.
We treat the product review filtering task as a classifica-

tion problem. To train the classifier, we define two sets of
features: one based on the review content (lexical view) and
the other based on the characteristics of the review
sentences (formal view). For the lexical view, since there
are no space separators between Chinese words, raw
reviews were preprocessed by a Chinese lexical analyzer—
ICTCLAS.2 ICTCLAS performs Chinese word segmentation
and part-of-speech tagging. Each sentence was converted to
a word vector using the standard TF-IDF (term frequency-
inverse document frequency) representation. For the formal
view, five types of features are enumerated as follows:

1. Proportion of opinion-bearing phrases in a review
sentence.

2. Proportion of questioning patterns in a review
sentence.

3. Proportion of numerical digits in a review sentence.
4. Proportion of brand mentions in a review sentence.
5. Length of review sentence.

Fig. 3 shows each of the five features along with some

sample dictionary terms and dictionary size. To evaluate

the discriminative power of the features, we trained a

supervised SVM to classify product reviews based only on

the lexical or formal view. The 10-fold cross-validation

accuracy was 89.90 and 85.29 percent for the lexical and

formal views, respectively. This indicates that each of the
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TABLE 1
Summary of Data Sets in Our Experiments

Fig. 3. The five extracted features and their sample dictionary terms
where applicable.



two views contains sufficient information that is enough to
train a good classifier, individually.

4.2 Experimental Setup

We compare the proposed two-view transductive SVM
against the standard supervised SVM (LIBSVM [41] trained
with a few labeled examples), the two-view supervised
learning algorithm—SVM-2K [4] (trained with only labeled
examples), the two-view semi-supervised learning algor-
ithm—cotraining [24], the graph-based semi-supervised
learning algorithm—Laplacian SVM [6], and the single-
view transductive SVM—CCCP TSVM [12].

For the two single-view baselines (standard SVM and
CCCP-TSVM), besides reporting their performances on two
different views, respectively, we also concatenate the input
feature vectors from each view to form a larger feature set,
and report the results. We denote this alternative approach
as the “Hybrid View” in the following tables. The “Hybrid
view” for Laplacian SVM uses the sum of graph Laplacians
in each view for regularization (see [6] for details), while
the “Hybrid view” for SVM-2K and our Two-view TSVM
uses a linear combination of both view’s outputs. The
weight variable ! in (12) that controls each view’s
influence on the output is set to 0.5 in all experiments.
Note that it is better to set a higher weight for a classifier
that is more accurate. In practice, better results can be
obtained by tuning the mixing weight.

We generated 10 random splits of the ads data set, and
100 random splits of the WebKB course data set and product
review data set. Each split contains a proportion of labeled
and unlabeled examples (as shown in Table 1). For all
algorithms, the unlabeled data were used as the test set. Since
the distribution of some data set is skewed (e.g., 459 of
3,279 examples in the ads data set belong to the positive
class), we report the F1-measure in addition to accuracy. The
F1-measure is the harmonic mean of precision and recall. It is
typically harder for a classifier to achieve a good F1-measure
compared to accuracy on a highly skewed data set.

We manually tuned and found the best parameters for
each algorithm, using the positive class F1-measure on the
unlabeled data set. For simplicity and fairness, we first
tuned the parameters (C1 and C2) for CCCP TSVM and used
the same values for our Two-view TSVM. We only chose
the penalty for disagreement (D) from a small range of
values for the Two-view TSVM. Note that in the following
tables, the notation “Two-view TSVM” denotes the two-
view transductive SVM algorithm without manifold reg-
ularization (i.e., parameters CA

3 and CB
3 are set to zero), and

the notation “Two-view TSVM with Laplacian” includes
manifold regularization. To assess the statistical signifi-
cance of the Two-view TSVM result, we performed an
unpaired t-test at 5 percent significance level with CCCP
TSVM as a baseline. Results shown in bold are considered
statistically significant.

4.3 Performance Evaluation

4.3.1 Synthetic Data Set

Fig. 2 depicts the classification results of supervised SVM
(trained with only two labeled samples), CCCP TSVM, and
our Two-view TSVM on the synthetic data set. The super-
iority of Two-view TSVM is self-evident by comparing the

contours of the various generated decision boundaries. The
failure of supervised SVM is not surprising due to
insufficient labeled training data. The substandard perfor-
mance of CCCP TSVM shown in Fig. 2d may be ascribed to
the fact that the two lines are too close, blurring the boundary
between the two classes. We found experimentally that
unlabeled data can affect the decision boundary of CCCP
TSVM if the gap between the two lines were enlarged.

4.3.2 Ads Data Set

The average accuracy, class-specific F1-measures, and their
standard deviations on the unlabeled test examples for each
algorithm across the 10 random splits of the ads data set are
shown in Table 2 for different combination of views.

From Table 2, we can see that most algorithms achieve
high accuracies, but many of the them score remarkably low
F1-measure for the positive class. Considering the minority of
positive class in the ads data set (14 percent of samples belong
to the positive class), one can conclude that algorithms with
low positive class F1-measure actually fail to make the right
prediction on the test set. The poor performance of plain SVM
is as expected since the model is only trained with a few
labeled data in the traditional supervised sense. The failure of
cotraining is probably because the ads data set violates its key
assumption that the subfeatures are sufficiently good and
conditionally independent.

Compared to other algorithms, our Two-view TSVM
achieves consistently higher accuracy and F1-measures in
most cases. It is also noted that Two-view TSVM with
Laplacian graph regularization yields better results than the
plain Two-view TSVM. The improvement on the positive
class’s F1-measure is significant, e.g., 70.10 percent for Two-
view TSVM with Laplacian graph regularization versus
45.15 percent for CCCP TSVM for Image URL view in
Table 2a. These results show that the proposed two-view
semi-supervised learning algorithm not only performs more
accurately, but also achieves considerably more stable results
than the regular single-view learning approach.

4.3.3 WebKB Course Data Set

All the compared algorithms were run over 100 random
splits of the WebKB course data set. Each split contains
12 labeled and 1,039 unlabeled examples. The test results on
the unlabeled examples are shown in Table 3.

The results for the various methods are similar to those
of the ads data set. Specifically, the positive F1 measure of
Two-view TSVM is about 10 percent better than that of the
runner up (e.g., 83.28 percent for Two-view TSVM versus
73.76 percent for CCCP TSVM on the link view). Further,
the variation (standard deviation shown in brackets) in all
of the results for Two-view TSVM is on average three to
four times lower than that of the CCCP TSVM. These results
show that the proposed Two-view TSVM performs not only
more accurately but also achieves considerably more stable
results than the regular single-view approach.

Fig. 4 depicts the detailed F1-measures of both positive
and negative classes over 100 random splits of the WebKB
course data set for both the CCCP TSVM, Two-view TSVM,
and Laplacian SVM. It can be seen that the performance of
CCCP TSVM and Laplacian SVM is rather unstable,
oscillating between zero and nonzero F1 values. This
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happens when every test example is classified into one class

(despite the balancing constraint (4f) is also imposed on

CCCP TSVM).
On the contrary, by simultaneously training two trans-

ductive SVMs based on two views, the Two-view TSVM

successfully overcomes this problem. In fact, the F1-

measure for Two-view TSVM remains relatively stable,

regardless of changes in the training/test data. Since the

amount of labeled data in semi-supervised learning is

relatively small, there are always variations in the small

training set. The variability among training examples is

considered one of the primary sources of errors in a

classifier. By requiring two classifiers to agree with each

other, the structure learned from each view can reinforce

one another, and the effect of large variations in the training

set can be reduced. Further, the hybrid classifier output is a

weighted sum of the individual classifier outputs, which

effectively reduces the probability of large swings; any

major disagreement between the two view classifiers is

essentially averaged out after the linear combination.
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4.3.4 Product Review Data Set

The experimental results on the product review data set are
summarized in Table 4. From the table, we can observe that
the proposed Two-view TSVM algorithm achieves the best
accuracy among all the compared algorithms. To assess the
importance of unlabeled data in situations where labeled
data are really sparse, we evaluate the performances of
CCCP TSVM versus Two-view TSVM by varying the
number of labeled data instances from 20 to 1,000. Fig. 5
plots accuracy versus number of labeled data for CCCP

TSVM and Two-view TSVM. As expected, both algorithms
improve with increasing number of labeled examples.
Further, we found that when the number of labeled data
is very small, e.g., 20, the performance of the Two-view
TSVM is significantly better (around 5 percent better
accuracy) than the best CCCP TSVM. When the amount of
labeled data increases, both algorithms performed more or
less in the same ballpark. From the figure, we can conclude
that the Two-view TSVM shines when the amount of
labeled data is very small, but it also slightly outperforms
the single-view classifiers as the amount of labeled data
increases. Therefore, it is safe to employ the Two-view
TSVM regardless of the amount of labeled data at hand, as
it always produces comparable or better results than a
classifier trained on a single view.

5 CONCLUSION

In this paper, we investigate the problem of multiview
semi-supervised learning, and propose a two-view trans-
ductive SVM technique, which is able to take advantage of
multiple representations of the same problem to achieve an
improvement in classification performance for problems
lacking labeled data. Our technique was motivated by
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extending the existing two-view supervised learning algo-
rithm into a semi-supervised learning setting. We also
incorporate the idea of graph-based semi-supervised learn-
ing into our algorithm by utilizing the intrinsic manifold
structure of the data. We formulate our learning framework
into an optimization problem and present an effective way
to solve it. Experimental results on both synthetic and real-
life data sets validate the efficacy of the proposed two-view
transductive learning algorithm when comparing with the
state-of-the-art single-view/multiview supervised/semi-
supervised learning approaches. In particular, the proposed
technique always makes the classifier more accurate and
stable by requiring two views to maintain a maximum
consensus on both labeled and unlabeled data. Further,
incorporating additional manifold information can also
help to improve the classification results.

Our two-view transductive SVM was also partially
motivated by the need to detect spam product reviews
from online forums. Experimental results were promising
on the review spam detection task: a model trained with a
few labeled data using our algorithm is comparable to one
trained on a significantly larger amount of labeled data
using the supervised learning approach. The task of
product review mining can be enhanced by applying our
method to detect and filter spam reviews.

Many interesting open questions remain. For example, it
is unknown in what conditions multiview learning ap-
proach is to be preferred to a concatenated hybrid-view
learning approach. Given examples represented by a set of
features, how to split features into two or multiple views so
that multiview learning approach can achieve better result
than single-view learning based on the original feature set.
Lastly, alternative ways to enforce or balance the consensus
between the two views can be further studied.
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[28] Ü. Güz, S. Cuendet, D. Hakkani-Tür, and G. Tür, “Multi-View
Semi-Supervised Learning for Dialog Act Segmentation of
Speech,” IEEE Trans. Audio, Speech and Language Processing,
vol. 18, no. 2, pp. 320-329, Feb. 2010.

[29] C. Christoudias, R. Urtasun, and T. Darrell, “Multi-View Learning
in the Presence of View Disagreement,” Proc. 24th Conf.
Uncertainty in Artificial Intelligence (UAI ’08), pp. 88-96, 2008.

[30] I. Muslea, S. Minton, and C.A. Knoblock, “Active + Semi-
Supervised Learning = Robust Multi-View Learning,” Proc. 19th
Int’l Conf. Machine Learning (ICML ’02), pp. 435-442, 2002.

[31] S. Yu, B. Krishnapuram, R. Rosales, H. Steck, and R.B. Rao,
“Bayesian Co-Training,” Proc. Advances in Neural Information
Processing Systems (NIPS), pp. 1665-1672, 2007.

[32] V. Sindhwani and P. Niyogi, “A Co-Regularized Approach to
Semi-Supervised Learning with Multiple Views,” Proc. ICML
Workshop Learning with Multiple Views, pp. 74-79, 2005.

2050 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 11, NOVEMBER 2012



[33] V. Sindhwani and D.S. Rosenberg, “An Rkhs for Multi-View
Learning and Manifold Co-Regularization,” Proc. 25th Int’l Conf.
Machine Learning (ICML ’08), pp. 976-983, 2008.

[34] O.-A. Maillard and N. Vayatis, “Complexity versus Agreement for
Many Views,” Proc. 20th Int’l Conf. Algorithmic Learning Theory
(ALT ’09), pp. 232-246, 2009.
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