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The limits of the market-wide limits of arbitrage:

Insights from the dynamics of 100 anomalies

Heiko Jacobs∗

Abstract

Are anomalies strongest when limits of arbitrage are widely considered to be greatest? We em-

pirically explore this theoretically deducted prediction. We first identify, categorize, and replicate

100 anomalies in the cross-section of expected equity returns. We then comprehensively study their

dynamic interaction with popular proxies for time-varying market-level arbitrage conditions. Our

findings reveal a surprisingly weak role of commonly employed measures of market-wide arbitrage

risks and constraints. Even though this “big picture” evidence is by no means conclusive, our find-

ings might potentially be best interpreted as supporting the growing literature which uncovers some

shortcomings of the limits to arbitrage argument.
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1. Introduction

The behavioral finance view on the existence of asset pricing anomalies in the cross-

section of expected equity returns is based on two building blocks (e.g. Barberis and

Thaler (2003)): Investor psychology, which allows mispricings to arise, and limits to ar-

bitrage, which prevent sophisticated market participants from quickly exploiting these

inefficiencies. A testable prediction of this theoretically deducted mechanism is that ab-

normal returns should ceteris paribus be stronger in settings where arbitrageurs are less

capable of or willing to aggressively bet against irrationality-induced mispricings (see e.g.

the discussions in Brav et al. (2010) or Hanson and Sunderan (2013)). Empirical tests

might help academics to enrich or challenge our understanding of the price discovery

process and offer practitioners insights into ways to optimize their investment process.

However, recent work reveals that the evidence is in fact far from conclusive. We aim

to revisit this controversial debate. What separates this paper from previous work is the

breadth of anomalies taken into account as well as the focus on time-series (as opposed

to cross-sectional) variation in market-level (as opposed to anomaly-level or stock-level)

arbitrage constraints. This approach enables us to yield some novel insights into the

following questions: When considered jointly, which type of phenomena yields the highest

seemingly abnormal returns in which situations? To what extent do widely employed

proxies for time-varying market-level limits to arbitrage have explanatory power for the

magnitude of anomalous returns in the time-series?

More precisely, our contribution is twofold. First, we synthesize information from a very

broad range of potential inefficiencies. We identify, categorize, and replicate 100 well-

known or recently discovered anomalies related to violations of the law of one price,

momentum, technical analysis, short-term reversal, long-term reversal, calendar effects,

lead-lag effects among economically linked firms, pairs trading, beta, financial distress,

skewness, differences of opinion, industry effects, fundamental analysis, net stock and

financing decisions, capital investment and firm growth, innovation, accruals, dividend

payments, or earnings surprises. We believe that these phenomena cover a reasonably

representative universe of cross-sectional stock anomalies discussed in the literature.

Considering all these anomalies simultaneously in a unified framework offers a number
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of advantages. Most asset pricing studies concentrate on only one or few anomalies, and

methodological or other differences can have a massive impact on inferences (e.g. Fama and

French (2008)), making comparisons often difficult. In his literature review of predictors

of cross-sectional stock returns, Subrahmanyam (2010) thus concludes that the “picture

remains murky and suggests a need for clarifying studies” (p. 28). Similarly, Richardson

et al. (2010) criticize the “haphazard nature” of this line of research and argue that “to

date very few papers have made a serious attempt to bring some structure to the anomaly

literature”(p. 422). Our approach aims at progressing on this front.

One of the most critical issues in this context appears to be the treatment of micro

caps and small caps. As Fama and French (2008) highlight: “From a general economic

perspective, it is important to know whether anomalous patters in returns are marketwide

or limited to illiquid stocks that represent a small portion of market wealth” (p. 1655).

Importantly, these stocks might also obstruct the view on the economic importance of

arbitrage constraints. As the literature review in section 2 shows, several recent cross-

sectional studies provide at best little support for the limits to arbitrage rationale once

small stocks are controlled for. In light of these concerns, we apply the same filter rules on

size and liquidity as e.g. Jegadeesh and Titman (2001). This results in excluding about

50% of the firm months of common stocks in the CRSP database, which however account

for a maximum of a few percent of the total market capitalization. Our approach thus

enables us to rely on a stock universe which is comparable across anomalies and which

moreover represents the economically meaningful fraction of the market only. By using

this common basis for a broad set of financial market phenomena, we also add to a lively

debate about the real-life relevance of limits to arbitrage (see section 2).

Our second contribution is that we take a time-series perspective and focus on market-wide

arbitrage constraints. In contrast, most existing tests have focused on the cross-section

of specific anomalies and on stock-level constraints. In other words, this work typically

compares the strength of return predictability in portfolios sorted on measures such as

idiosyncratic risk, analyst coverage, firm age, or firm size. As we will show, these studies

have partly arrived at conflicting findings. Alternative research designs such as ours might

help to paint a more comprehensive picture.

Building on a literature review, we start by constructing a set of widely employed proxies
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for time-varying market-level arbitrage constraints. In our baseline analysis, these com-

prise the Vix, average idiosyncratic volatility, the Ted spread, the Moody’s credit spread,

average bid-ask spreads, and market illiquidity. We then test to what extent these popular

proxies can indeed explain the magnitude of return anomalies over time.

Our main insights can be summarized as follows. From an unconditional perspective, most

anomalies produce economically large abnormal returns relative to a Fama and French

(1993) model. As a rough estimate, and averaged across time and anomalies, abnormal

monthly returns are about 70 to 80 basis points (bp). This is noteworthy as, compared to

many original studies, our data screens are often stricter. Moreover, our sample period is

often longer or more recent, and thus partly out-of-sample. These findings suggest that

most anomalous returns uncovered in the literature are unlikely to be primarily driven by

statistical biases (see also McLean and Pontiff (2013) and Green et al. (2013)).

In line with theoretical predictions and previous empirical work (e.g. Mitchell and Pulvino

(2012)), we indeed find that the few relatively unambiguous deviations from the law one

price exhibit a strong positive link to market-level variables widely thought to proxy for

time-varying limits of arbitrage. Strikingly, these variables turn out to be, at best, loosely

related to the large time-variation of most other anomalies. In fact, anomaly returns only

load sporadically on market-wide arbitrage risk factors in a statistically and economically

significant matter in the direction suggested by theory. In many cases, abnormal returns on

long-short anomalies are about as large in (or following) periods often argued to represent

phases of high market-level limits to arbitrage as they are in (or following) periods widely

considered to be characterized by only few impediments to arbitrage.

This has important implications. First, it seems that the factors that cause time-varying

deviations from theoretical price parity are not necessarily the same factors that cause time

variation in many cross-sectional anomalies. Thus, it appears that one cannot infer from

these special cases alone to which extent market-level limits to arbitrage generally matter

in stock markets. Second, our results reveal that anomalies constructed from relatively

large and liquid stocks often generate highly significant abnormal returns of roughly 30 to

100 bp per month even in phases when popular proxies indicate low market frictions. This

arguably presents a challenge to widely employed behavioral or rational theories aimed

at explaining the existence and survival of these return patterns in the data. Behavioral
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theories need to explain why an economically large part of many anomaly returns does

not seem to be directly related to widely used proxies for market-wide limits to arbitrage.

Rational theories need to identify systematic risk factors which have a strong impact on

expected returns even when overall market conditions appear calm, stocks are large and

liquid, and the spectrum of return premiums appears conceptually very diverse.

Essentially, the main finding of this paper is a non-result. This raises concerns about

errors-in-variables, sample selection issues, and related aspects. However, our findings

survive a number of robustness checks. Among others, we use changes instead of levels, run

regressions quarterly instead of monthly, use alternative proxies, and control for general

time effects and outliers. Moreover, aggregate market-level arbitrage conditions also lack

explanatory power for time-varying anomaly-level arbitrage popularity. We thereby draw

on recent studies which propose that time-series shocks in the amount of capital and effort

allocated to specific quantitative anomalies can be measured using time-series shocks in

the cross-section of short interest (e.g. Hanson and Sunderan (2013), Hwang and Liu

(2012)) or trading activity (e.g. McLean and Pontiff (2013)). The underlying rationale

is that unobservable changes in arbitrage activity are likely to manifest themselves in

observable changes in the behavior or characteristics of stocks which a specific quantitative

trading strategy would typically speculate on.

It is important to put our findings into perspective and to highlight some limitations

of our study. Clearly, due to the aggregate nature of our study, we are limited in our

ability to consider the economic stories and arbitrage forces behind all 100 anomalies in

detail. However, it is exactly the lack of comparability, consensus, or even existence of

previous work regarding the impact of limits to arbitrage on individual anomalies which

has motivated our large-scale analysis. We hope that our insights on the “big picture”

might serve as a fruitful starting point for future research, which could explore the precise

mechanism of selected issues (see e.g. the discussion below) in more depth.

We are far from claiming that limits to arbitrage in general do not matter. For instance,

arbitrage constraints have extensively and convincingly been shown to be often binding

for small, illiquid firms. However, these stocks are less meaningful from an economic

perspective and thus less relevant for our purpose. It might also be the case that anomaly-

level or stock-level arbitrage constraints are more important than market-level constraints.
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Alternatively, market-level constraints might matter, but the proxies we rely on might not

adequately capture impediments to arbitrage. Both arguments might be justified, even

though the literature so far seems to offer little insights in this matter. However, the proxies

we rely on mostly have a solid theoretical foundation, they have already been extensively

employed in previous empirical studies, and they are able to explain deviations of the law

of one price. On the other hand, if one assumes that the many other return phenomena

covered in this study (also) represent true mispricings, then clearly some (other) forms of

powerful frictions are required in order to convincingly explain their survival and time-

variation in the data. Validating this assumption and identifying the precise nature of

these (potentially anomaly-specific) frictions is beyond the scope of this study.

However, we do show that one often cited source of such frictions, market-wide arbitrage

barriers, has, taken as a whole, surprisingly little power to explain the dynamics of a

very large set of return phenomena which are often referred to as puzzling anomalies

in the literature. Even though this “big picture” evidence is by no means conclusive,

our findings might potentially be best interpreted as supporting the small, but growing

empirical literature which uncovers some shortcomings of the limits to arbitrage argument.

2. Existing Evidence For And Against Limits To Arbitrage

There appear to be two major streams of empirical literature which document limits to

arbitrage in the stock market. The first stream analyzes a set of anomalies concerned

with the relative prices of assets with very similar payoffs. These settings are often re-

ferred to as (reasonably accurate) tests of the law of one price, and the literature argues

that impediments to arbitrage are the major reason for the persistence of deviations from

theoretical price parity. Arguably among the best documented cases are price parity de-

viations of dual-listed companies (“Siamese Twins”) (e.g. Rosenthal and Young (1990),

Froot and Dabora (1999), Scruggs (2007), Jong et al. (2009), Baker et al. (2012)). Another

well documented setting is the relationship of the prices of closed-end fund shares and

the per share market value of the assets held by the funds (e.g. Lee et al. (1991), Pontiff

(1996), Chay and Trzcinka (1999), and Cherkes et al. (2009)). Recent evidence comes from

cross-listed stocks (Gagnon and Karolyi (2010), Seasholes and Liu (2011)) and dual-class
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shares (Schultz and Shive (2010)). We later consider all these anomalies in our empirical

tests. A drawback of these settings is that they are, by definition, special. Due to the

scarcity of asset pairs with closely related payoffs, this literature typically can build only

on a limited number of observations, both in the cross-section and in the time-series.

The second stream analyzes selected anomalies and thereby mostly takes a cross-sectional

perspective. These studies typically argue that abnormal returns related to a specific

anomaly are most pronounced for firms that are most difficult to arbitrage, proxied by e.g.

firm-level idiosyncratic risk.1 While this literature is quite large, some of its implications

have recently been put into question from two sides.

First, there seem to be methodological issues. For instance, in a cross-sectional study

with several anomalies, Brav et al. (2010) conclude that several previous studies which

identify a positive correlation between limits to arbitrage and abnormal returns primarily

do so because they rely on “research designs with non-implementable trading strategies

(high frequency trading of very small cap securities and event-time analysis)” (p. 161).

In their more conservative research setting, many of their tests “fail to support the limits

of arbitrage argument” (p. 157). With regard to the asset growth anomaly, Lam and

Wei (2011) show that value-weighted results provide only limited support for limits to

arbitrage. Similarly, and “in sharp contrast” (p. 531) to previous U.S. studies, Watanabe

et al. (2012) find only a very weak link to cross-country measures of limits to arbitrage.

Second, practitioners do not always seem to behave in the way predicted by academia.

Influential academic work on limits to arbitrage in the cross-section is build on the long-

standing, theoretically deducted argument that arbitrageurs will allocate less capital to

stocks with higher idiosyncratic return volatility (e.g. Shleifer and Vishny (1997), Pontiff

(2006)). However, Ben-David et al. (2010) find that hedge funds ceteris paribus actually

invest more capital in these stocks, leading them to conclude: “Our results show that

diversification concerns of arbitrageurs are not the primary reason why pricing anomalies

are more pronounced among high idiosyncratic risk stocks” (p. 3). Similarly, Green et al.

(2011) study hedge fund behavior and conclude with regard to the limits of arbitrage ar-

1Selected papers and anomalies include the book-to-market effect (Ali et al. (2003)), momentum (Arena et al. (2008),

Zhang (2006)), accounting anomalies such as asset growth or accruals (Mashruwala et al. (2006)), Lipson et al. (2012), Li

and Sullivan (2011)), or the post-earnings-announcement drift (Mendenhall (2004)).
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gument: The results “substantiate statements made by key practitioners that run counter

to predictions made by some academics” (p. 813).

Moreover, there is little consensus on to what extent the rapid growth of the arbitrage

industry has affected anomaly returns, which to some extent might also allow to draw

inferences about the impact of limits to arbitrage. For instance, Hanson and Sunderan

(2013) analyze value and momentum strategies and arrive at the following conclusion:

“We provide evidence that this increase in capital has resulted in lower strategy returns”

(p. 29, see also Schwert (2003)). In contrast, Israel and Moskowitz (2012) conclude that

there is “little evidence that size, value, or momentum premia have changed over time or

are affected by changes in institutional or hedge fund participation in markets” (p. 26).

Similarly, Chordia et al. (2013) show that abnormal returns for their twelve anomalies are

much lower in their second subperiod, whereas Haugen and Baker (1996) do not find a

pronounced time trend. Somewhere in the middle are the intriguing findings of McLean

and Pontiff (2013) who analyze 72 anomalies and report on average a 35% post-publication

decline in anomalous returns. We later control for time and publication effects.

In summary, one can say that the evidence is mixed. Recent work shows that the literature

on limits to arbitrage does have its shortcomings, suggesting the need for clarifying studies.

3. Empirical Analysis

3.1 Anomalies

Our approach involves identifying, categorizing, and replicating stock market anomalies.2

We consider papers published in major finance, accounting, and economics journals as well

as selected working papers. Not all studies explicitly refer to their findings as anomalies.

We principally take papers into account which report excess returns relative to (at least)

a standard Fama and French (1993) three-factor model or comparable benchmarks, and

2Note that, due to e.g. our data screens, partly missing details about precise calculations in the original work, different

methodologies, our own modifications, or database changes over time, we do not intend to and cannot perfectly replicate

studies on specific anomalies. We can, however, at least closely follow the economic intuition, and thereby also most likely

preserve the basic risk-return characteristics of the original anomaly.
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which do not prominently advocate an explanation based on rational risk factors. In the

following, we implicitly assume that the consensus view of quantitative arbitrageurs is

that these excess returns indeed represent potentially exploitable alpha.

To keep the analysis manageable, meaningful, and of practical relevance, we impose several

screens. First, the anomaly can be computed using standard databases (mostly CRSP,

Compustat, and I/B/E/S). Second, the anomaly is existent at a monthly frequency in real-

time. Third, the anomaly needs to yield seemingly abnormal returns when the universe of

eligible stocks is restricted to firms whose market capitalization at the point of portfolio

formation is larger than the first NYSE decile and whose stock price is at least 5 USD (see

e.g. Jegadeesh and Titman (2001). This also implies that anomalies which historically are

primarily existent among small or highly illiquid stocks do not enter our analysis.

For each anomaly, we compute the traditional long-short zero-cost portfolio approach

based on some form of percentile placement. We construct a long portfolio with the seem-

ingly most undervalued securities (in most cases decile 1 or 10, see the online appendix for

details) and a corresponding short portfolio with the most overvalued stocks. Depending

on the anomaly, portfolios are rebalanced every one to twelve months. We compute both

equally weighted and value weighted returns for the stocks in the extreme portfolios.

Group 1: law of one price As outlined in section 2., we start with deviations of the

law of one price. Specifically, we consider return phenomena related to twin stocks (1),

cross-listed shares (2), dual-class shares (3), and closed-end funds (4).

Group 2: momentum Many studies have argued that the traditional momentum effect

(Jegadeesh and Titman (1993), (5)) can be enhanced once one considers the interaction

of formation period returns with certain stock-level variables. These characteristics are

typically argued to amplify behavioral biases or information uncertainty. We thus also

consider enhanced momentum strategies relying on the following variables: (6) firm age

(e.g. Zhang (2006)), (7) turnover (e.g. Lee and Swaminathan (2000)), (8) market-to-book

ratio (e.g. Asness (1997), Daniel and Titman (1999)), (9) credit rating (e.g. Avramov

et al. (2007)), (10) market capitalization (e.g. Jegadeesh and Titman (1993), Hong et al.

(2000), Zhang (2006)), (11) residual analyst coverage (e.g. Hong et al. (2000)), (12) ana-

lyst forecast dispersion (e.g. Zhang (2006)), (13) R2 (Hou et al. (2006)), (14) formation
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period return consistency (Grinblatt and Moskowitz (2004)), (15) (idiosyncratic) volatil-

ity (Zhang (2006), Jiang et al. (2005)), (16) nearness to 52 week high (George and Hwang

(2004)), (17) extremity of formation period returns (e.g. Bandarchuk and Hilscher (2013)),

(18) weighted signed volume (Byun et al. (2013)), (19) change in mutual fund breadth of

ownership (Chen et al. (2002)), (20) continuous information arrival (Da et al. (2013a)),

and (21) intermediate horizon past performance (Novy-Marx (2012)).

Group 3: technical analysis Faced with the large number of potential technical trading

rules, we focus on selected moving average strategies which appear to have been among

the most successful historically (e.g. Huddart et al. (2009), Lo and Wang (2000), Sullivan

et al. (1999)). We form portfolios based on the ratio of the current price to the moving

250 (200) day average price (22, 23). We also run trading strategies based on a dummy

variable indicating whether the stock trades above or below the 250 (200) day average

(24, 25). We also introduce a 25% band around the moving average to reduce the number

of noisy signals (e.g. Brock et al. (1992), 26, 27).

Group 4: short-term return reversal In contrast to the aforementioned anomalies, the

following phenomena are based on negative return autocorrelations. Classical studies such

as Lehmann (1990) or Jegadeesh (1990) demonstrate that the previous month’s return

tends to reverse (28). Da et al. (2013b) show that this effect can be enhanced by relying

on industry-adjusted residual returns (29).

Group 5: long-term return reversal In contrast, DeBondt and Thaler (1985) doc-

ument a long-term reversal phenomenon based on a stock’s past three to five year cu-

mulative return (30). Among others, McLean (2010) shows that the effect is particularly

strong among stocks with high idiosyncratic volatility (31).

Group 6: calender-based anomalies Another class of anomalies documents return

predictability for recurring, calendar-based events. Heston and Sadka (2008) show that

stocks tend to have relatively high (or low) returns every year in the same calendar month

(32). Frazzini and Lamont (2007) uncover that firms outperform in months when they

are expected to announce earnings (33). Hartzmark and Solomon (2013) show a similar

phenomenon for months with expected dividend payments (34).

Group 7: lead-lag effects A small literature explores lead-lag effects between economi-
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cally linked stocks. Cohen and Frazzini (2008) document return predictability across well-

defined customer-supplier links (35). Cohen and Lou (2012) uncover that easy-to-analyze

stand-alone firms lead the returns of more complex conglomerates (36).

Group 8: pairs trading Pairs trading (e.g. Gatev et al. (2006), Engelberg et al. (2009))

uses statistical methods to identify pairs of fundamentally linked stocks with no systematic

lead-lag relationship. In essence, pairs trading bets on the future relative performance of

stocks with very similar past performance. We implement four strategies (37-40) which

differ in the maximum holding period of a given pairs trade and the return computation

scheme. In total, we compute over 200 million possible pair combinations and, in each

month, select the top 100 pairs with minimum distance between historical price paths.

Group 9: beta anomalies High-beta stocks underperform low-beta stocks (Baker et al.

(2011), Frazzini and Pedersen (2013), and Hong and Sraer (2012)). We follow Frazzini and

Pedersen (2013) in computing rolling pre-ranking Dimson (1979)-Betas either (41) based

on daily data over one year or (42) based on monthly data over three years. Baker et al.

(2011) extend the findings also to the use of volatility as a measure of risk. Consequently,

we compute two similar long-short strategies (43, 44).

Group 10: distress risk anomalies Another facet of “the high risk, low return” phe-

nomenon is related to financial distress. Campbell et al. (2008) (45) use a dynamic logit

model based on a broad set of accounting and market variables to empirically quantify a

firm’s failure probability, and show that stocks with high (low) risk of failure underper-

form (outperform). We also consider the static approach of Ohlson (1980) (46) and take

the bankruptcy hazard rate of Shumway (2001) into account (47). Finally, we consider the

insights of e.g. Avramov et al. (2009) or Dichev and Piotroski (2001) who show that the

quality of credit rating levels (48) or changes (49) positively predicts abnormal returns.

Group 11: skewness anomalies A recent, vibrant literature argues that stocks with

lottery-type features tend to underperform. We follow Kumar (2009) in defining (non)-

lottery stocks (50). We also replicate the related findings of Bali et al. (2011) who show that

stocks with the highest daily return in the previous month underperform (51). Finally, we

consider the regression-based methodology of expected idiosyncratic stock return skewness

as proposed in Boyer et al. (2010) (52).
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Group 12: differences of opinion Several approaches arrive at the conclusion that

stocks for which differences of opinion are likely to be high tend to underperform. For

instance, Diether et al. (2002) uncover that dispersion in analysts’ earnings forecasts

negatively predicts returns (53). Datar et al. (1998) show that turnover negatively predicts

returns, which Lee and Swaminathan (2000) argue to be at least partially related to

behavioral factors (54). Several studies, starting with Ang et al. (2006), suggest that

idiosyncratic risk negatively predicts abnormal returns. As timing has been shown to

matter, we consider three specifications: (55) monthly regressions over the preceding 36

months, (56) daily regressions over the preceding 12 months, and (57) daily regressions

over the previous month.

Group 13: anomalies related to industry effects Goetzmann et al. (2012) find that

procyclical stocks earn higher returns than stocks which comove less with business cycles

(58). Hong and Kacperczyk (2009) uncover that stocks of firms involved in “sin” indus-

tries (alcohol, tobacco, gaming) outperform (59). We also use an alternative classification

scheme based on social ratings provided by KLD (e.g. Statman and Glushkov (2009), 60).

Group 14: fundamental analysisWe compute the composite measures of firm strength

developed in Piotroski (2000) (“F-Score”, 61) and Abarbanell and Bushee (1998) (62).

Moreover, we consider some classical fundamental signals (e.g. Ou and Penman (1989),

Lev and Thiagarajan (1993), Abarbanell and Bushee (1997)): the difference between the

change in sales and inventories (63), the difference between the change in gross margin

and sales (64), the difference between the change in selling & administrative expenses

and sales (65), changes in leverage (66), and changes in the gross profit margin (67). We

also consider related recent approaches. Fama and French (2006) find that more profitable

firms have higher expected returns (68) and Novy-Marx (2013) argues that gross profit is

the cleanest accounting measure of true economic profitability (69).

Group 15: net stock and financing anomalies A common behavioral interpretation of

many of the following anomalies is that managers time equity markets by taking advantage

of investor sentiment (e.g. Greenwood and Hanson (2012)) in their corporate finance

decisions (successfully). We replicate the approach of Daniel and Titman (2006) (70),

which synthesizes earlier work (e.g. Ikenberry et al. (1995), Loughran and Ritter (1995)) .

Following Fama and French (2008) and Pontiff and Woodgate (2008), we use an approach
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based on the yearly change in split-adjusted shares outstanding (71). We also consider the

net external finance measures of Richardson and Sloan (2004) (72) and Bradshaw et al.

(2006) (73), which combine finance activities across different capital markets.

Group 16: capital investment and growth anomalies The common theme of a

related set of anomalies is a negative correlation between various forms of firm growth

or capital investment and future stock returns. Fairfield (2003) show that growth in net

operating assets is negatively related to future stock returns (74). Similarly, Hirshleifer

et al. (2004) uncover that the level of normalized net operating assets negatively predicts

returns (75). Titman et al. (2004) show that capital investments scaled by total assets

negatively predicts returns (76). Similarly, Anderson and Garcia-Feijoo (2006) focus on

growth in capital expenditures (77), Cooper et al. (2008) on growth of total assets (78).

Finally, Chemmanur and Yan (2009) and Lou (2013) find that changes in advertising

expenditures negatively predict returns (79).

Group 17: anomalies related to innovation Several phenomena suggest that investors

underreact to or misvalue innovation activities. Chan et al. (2001) show that firms with

a high ratio of r&d to equity market value outperform (80). Similar insights are found

for unexpected increases of r&d activity (Eberhardt et al. (2004), (81)). Gu (2005) shows

that changes in patent citations predicts stock price behavior (82). Finally, innovative

efficiency (Hirshleifer et al. (2013), (83)) and the r&d track record (Cohen et al. (2013),

(84)) appear to have predictive power for abnormal returns.

Group 18: accruals anomalies Sloan (1996) finds that higher accruals predict lower

returns (85). Modifications include using a broader definition of accruals (Richardson et al.

(2005), 86), relying on abnormal accruals (Xie (2001), 87), or focussing on industries

in which accruals are likely to be more important (Chan and Jegadeesh (2006), (88)).

Thomas and Zhang (2002) argue that inventory changes scaled by total assets drive the

accruals anomaly (89), whereares Belo and Lin (2012) rely on the real net growth rate of

inventories (90).

Group 19: dividend anomalies Michaely et al. (1995) show that firms that initiate

dividend payments for the first time tend to outperform (91). Boehme and Sorescu (2002)

uncover a similar behavior after dividend resumptions (92). Moreover, Benartzi et al.
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(1997) find that firms that increase dividend payments in absolute terms outperform

(93). A similar result is found for changes of the dividend yield (e.g. Abarbanell and

Bushee (1998), (94)).

Group 20: earnings surprisesMany studies analyzing the post-earnings announcement

drift (e.g. Bernard and Thomas (1989)) rely on time-series forecast of expected earnings.

The resulting measure of unexpected earnings is often scaled by its historical standard

deviation (e.g. Chordia and Shivakumar (2006), (95)), or by the stock price (e.g. Livnat

and Mendenhall (2006), (96)). Other papers (e.g. Doyle et al. (2006), Hirshleifer et al.

(2009)) base their measurement of expected earnings on consensus analysts forecasts (97).

Still another approach of computing earnings surprises is the cumulative return around

the day of the announcement (e.g. Chan et al. (1996), (98)). Loh and Warachka (2012)

show that the market particularly underreacts to streaks of consecutive earnings surprises

of the same sign (99). Finally, Balakrishnan et al. (2010) document a loss/profit post-

announcement drift (100).

Table 1 displays the sample period and (where applicable) abnormal returns relative to

a Fama and French (1993) model for each of the 100 computed return anomalies. More

details on the construction of the anomalies are provided in the online appendix. In line

with the original studies, all return phenomena yield statistically significant abnormal

returns relative to a Fama and French (1993) model. Averaged across anomalies of group

2 to 20, the average equally weighted (value weighted) abnormal return is 79 (70) bp per

month. Our screens on nominal share price and market capitalization might explain why

the overall difference between equally weighting and value weighting returns is relatively

small. Unless noted otherwise and to conserve space, we thus report results from equally

weighted portfolios only.

Please insert table 1

For most parts of our empirical analysis, we group anomalies based on their underlying

economic intuition as well as based on the correlation structure of their abnormal returns.

By doing so it is intended to carve out the joint economic, institutional, or psychological

drivers of related individual anomalies, to maximize the sample period, and to facilitate

presentation. As indicated by the paragraph structure above, the procedure results in the
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construction of 20 “meta anomalies”, which simply correspond to the equally weighted

average of the 2 to 17 constituent individual anomaly returns.

In this context, the meta anomaly concerned with deviations of the law one price is

distinct in at least three ways. First, it is partly based on data from international stock

markets. Second, violations of the law of one price are often considered to be among the

most undisputed and obvious mispricings. Third, the absolute level of deviations from

theoretical price parity is hardly comparable among the four settings which are part of

this meta anomaly. We thus standardize the four anomalies so that their mean is zero and

their standard deviation is one, before we aggregate them into meta anomaly 1.

Table 2 shows sample periods and selected characteristics of monthly returns for meta

anomalies 2 to 20. All anomalies produce large abnormal returns relative to a Fama and

French (1993) model. In line with the literature, several anomalies (momentum, short-

term reversal, lead-lag effects among economically linked firms, pairs trading, earnings

surprises) generate average abnormal monthly returns of at least 100 bp.

Please insert table 2

However, there is large time-series variation in the raw as well as the abnormal returns

of each anomaly. The difference between the 10th percentile and the 90th percentile of

monthly returns is always several hundred bp. Can these large differences at least in part

be linked to time-series variation in proxies deemed to quantify market-level arbitrage

constraints? We explore this question in the following sections.

3.2 Proxies for market-level arbitrage constraints

Our goal is to identify useful measures for the willingness and ability of speculators’ capital

to put arbitrage capital at risk. We select these measures based on a literature survey,

and start by employing the following six variables which can be divided in three groups:

overall expected volatility and uncertainty, interest rate spreads, and constraints related

to transaction costs. Each group consists of two proxies, out of which one is available from

the 1920ies onwards, whereas the other one only covers a more recent time period.
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Overall expected volatility and uncertainty We consider the Chicago Board Options

Exchange Market Volatility Index (Vix), which reflects the implied volatility of S&P index

options. Theoretical work suggests that higher expected volatility leads to tighter funding

constraints of speculators (e.g. Gromb and Vayanos (2002), Brunnermeier and Pedersen

(2009)). During times of high Vix, arbitrageurs may have hard times to raise money

from investors or to borrow it from lenders. Investors and lenders may even withdraw

their money, forcing arbitrageurs to unwind potentially profitable positions prematurely

(e.g. Shleifer and Vishny (1997), Gromb and Vayanos (2010)). They may also stem from

increased risk aversion and subsequent flight to quality phenomena (e.g. Vayanos (2004)).

There is also evidence that hedge funds reduced leverage and suffered from outflows in

phases of high Vix (Ang et al. (2011), Ben-David et al. (2012)). As Ang et al. (2006), we

rely on the old version of the Vix (denoted Vxo) as it starts four year earlier (in January

1986) and has been available in real time.

The Vix is highly positively correlated (.51) with an empirical estimation of aggregate

idiosyncratic risk which is deemed to be related to diversification concerns of arbitrageurs

(e.g. Pontiff (2006), Akbas et al. (2013)). More precisely, we first define a stock’s idiosyn-

cratic volatility for a given month as the standard deviation of the residual obtained from

regressing the daily excess return in that month on a Fama and French (1993) model. We

then compute the equally weighted average value of our eligible stock universe, starting in

the 1920ties. This yields an aggregate monthly measure, which builds on high-frequency,

non-overlapping data. Using a one factor or four-factor Carhart (1997) model generates

highly correlated measures, and inferences remain unchanged.

Interest rate spreads The Ted spread is defined as the difference between the 3-month

LIBOR Eurodollar rate and the 3-month T-Bill rate. Short-term US government debt

is considered riskless, whereas the LIBOR rate additionally reflects perceived credit risk

in interbank loans. In times of liquidity problems, the spread between both measures

typically widens due to a “flight to quality” or “flight to liquidity” phenomenon (e.g

Brunnermeier et al. (2008)). The Ted spread is thus by now a widely employed measure of

funding liquidity (e.g. Ang et al. (2011), Asness et al. (2012), Brunnermeier and Pedersen

(2009), Moskowitz et al. (2012)). Similar arguments hold for a corporate credit spread,

defined as the difference between Moody’s BAA corporate bond rate and Moody’s AAA
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corporate bond rate (e.g. Akbas et al. (2013), Engelberg et al. (2009)), which on a monthly

frequency is available from the 1920ties on.

Transaction costs We use the eligible stock universe to construct a monthly time-

series of average bid-ask spreads using the recently proposed algorithm in Corwin and

Schultz (2012). We also rely on the aggregate liquidity level as constructed in Pástor and

Stambaugh (2003). We multiply values by -1 so that a high level indicates illiquidity. In

times of high spreads or low liquidity, trading is likely to be more costly, which in turn

might affect the magnitude of seemingly anomalous returns (see e.g. Chordia et al. (2013),

Chordia et al. (2011), or Nagel (2013) for a motivation).

The upper half of figure 1 shows the time-series of each proxy. For presentation purposes,

the minimum (maximum) value for each variable is set to 0 (1). High values signal high

limits to arbitrage. The proxies appear to share a common component. For instance,

during the recent financial crisis, they all indicate severe constraints. However, the average

correlation between the proxies is only .42. Thus, each variable also seems to capture

different aspects of market environments, which justifies the separate consideration of all

proxies in the following tests.

Please insert figure 1

3.3 The impact of market-level arbitrage constraints on anomaly returns

Related work has relied on a broad range of regression approaches, including the use of

both predictive models and contemporaneous models, the use of both raw anomaly returns

and benchmark-adjusted anomaly returns, and the use of levels, changes, or (median-

based) dummies for market-level conditions (e.g. Akbas et al. (2013), Ang et al. (2011),

Frazzini and Pedersen (2013), Green et al. (2011), Stambaugh et al. (2012)). We consider

several combinations of these approaches to test for the sensitivity of our findings.

To start as simple as possible, we run predictive regressions of the time-series of monthly

raw long-short returns on a dummy variable, which takes on a value of 1 (0) if a given arbi-

trage proxy was above (below) its median value in the previous month. From a conceptual

point of view, these regressions correspond to e.g. the baseline approach in Stambaugh
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et al. (2012). However, inferences are qualitatively unchanged if we construct a dummy

based on rolling historical values in order to avoid any potential forward-looking bias.

The lower half of figure 1 shows the proxy-specific time-series of high and low limits to

arbitrage environments. The average correlation between the measures is .21.

We run univariate regressions for each pairwise combination of the 20 meta-anomalies

and the six proxies for limits to arbitrage. We also construct a composite anomaly which

simply is the average raw zero-cost return of all meta anomalies (2-20) available in a given

month. As an alternative approach, we run a panel regression with all meta anomalies

(2-20) and random fixed effects. Table 3 and 4 show the main results.

Please insert table 3 and table 4

Several findings are noteworthy. First, violations of the law of one price appear to be

heavily driven by limits to arbitrage. This type of mispricing becomes more severe fol-

lowing months of above-median Vix, idiosyncratic volatility, Ted spread, bid-ask spreads,

and illiquidity. Findings are not only statistically, but also economically significant. As a

rough estimate, an above-median bid-ask spread in month t-1 is for instance associated

with a 3/4 standard deviation (=0.49) increase in violations of the law of one price in

month t. Similarly, an above-median level of average idiosyncratic volatility is associated

with a 2/3 standard deviation increase. Untabulated findings show that a very similar

pattern is also found at a daily (as opposed to monthly) frequency.

Second, however, there appears to be, at best, a weak link between the magnitude of

the other meta anomalies and the dynamics of arbitrage constraints. Anomaly returns

only sporadically load on arbitrage risk factors in a statistically significant matter in the

direction suggested by theory. Significantly positively related to at least two proxies for

arbitrage constraints are only a handful of anomalies: short-term reversal, pairs trading,

innovation, and earnings surprises. With the exception of anomalies related to innovation,

a common theme of these phenomena is that they tend to require frequent trading. As

some proxies are directly (e.g. bid-ask spread) or indirectly related to costs of trading,

these findings are in line with the limits to arbitrage argument when observed in isolation.

However, at least some of the above mentioned anomalies are not only unconditionally
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among the seemingly most profitable ones, but they also generate large profits in periods of

low arbitrage constraints. For instance, depending on the specification, anomalies related

to earnings surprises appear to yield monthly returns of 70 to 120 bp if one explicitly

conditions on environments characterized by low limits to arbitrage. More generally, in

about 85% of all regression estimates for meta anomalies 2 to 20, there are statistically

significant excess returns even in periods when market-wide conditions suggest hardly any

obstacles to arbitrage activities.

Similar insights are gained from attempts to measure the overall impact of limits to ar-

bitrage on anomaly returns: neither the composite meta-anomaly return nor the pooled

meta anomaly returns are significantly higher following months of high arbitrage con-

straints, as quantified by any proxy. From an economic perspective, only the estimates for

idiosyncratic volatility seem meaningful, which indicate a 20 bp return difference between

periods with high and low limits to arbitrage in the previous month.

However, we have relied on a simple binary variable of lagged market environments and

thus potentially have neglected useful information. We therefore replicate all regressions,

but now rely on the actual, continuous values of the arbitrage proxy. We moreover measure

these values contemporaneously although inferences do not change if we lag them. Table

5 displays the corresponding regression coefficients.

Please insert table 5

The role of limits of arbitrage turns out to be a bit stronger, especially in case of the

Vix and of the illiquidity measure. About half of the 20 meta-anomalies and also the

composite anomaly measures are now significantly positively related to the level of these

two variables. More specifically, violations of the law of one price and anomalies related

to calendar effects, pairs trading, beta, distress, skewness, differences of opinion, net stock

and financing, and capital investment and growth appear to be most pronounced in illiquid

markets or when expected volatility is high.

However, these findings are based on raw returns and thus do not explain whether ar-

bitrage proxies matter once one controls for the Fama and French (1993) factors, or, in

unreported tests with similar findings, for the market factor only. We thus implement
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a two-stage regression as in e.g. Brennan et al. (1998) or Stambaugh et al. (2012). The

approach involves regressing the monthly time-series of raw returns of anomaly i (Ri,t) on

the market excess return (RMRF ), the small-minus-big factor (SMB), and the value-

minus-growth factor (HML).

Ri,t = α̂i + β̂1iRMRF t + β̂2iSMBt + β̂3iHMLt + ϵi,t (1)

Benchmark-adjusted abnormal monthly returns are then defined as the sum of α̂i and

the fitted value of ϵi,t. The resulting series is then regressed on measures of arbitrage

conditions, analogously to table 5. Table 6 displays the main findings.

Please insert table 6

The most important observation from this two-stage regression approach is that the im-

pact of proxies for limits to arbitrage on anomaly returns becomes even weaker. For

instance, neither the Vix nor market illiquidity are now significantly positively related to

anomaly returns anymore. However, the link between violations of the law of one price

and arbitrage conditions remains stable. These findings suggest that inferences about the

impact of market frictions on these special settings cannot simply be transferred to most

other anomalies and may represent a distinct phenomenon.

Table 7 shows that inferences do not change if we switch to a more disaggregated analysis.

We now run the analysis of table 6 separately for each of the 100 individual anomalies

and determine in each case whether the coefficient obtained on the proxies for arbitrage

constraints is greater than zero and statistically significant at least at the 10% level.

For presentation purposes, we aggregate these numbers within each meta anomaly. For

instance, table 7 uncovers that five out of nine (56%) anomalies based on fundamental

analysis load positively on aggregate idiosyncratic volatility, but only one (11%) of these

anomalies does so in a statistically significant matter.

The last row of the table averages the numbers across all (meta) anomalies and reveals

that the likelihood of positive coefficients on arbitrage constraints is often not much higher

than the likelihood of negative coefficients. Moreover, the average fraction of statistically

significant loadings is low and ranges from 8% in the case of the Ted spread to 24% in

the case of idiosyncratic volatility.
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Please insert table 7

Taken together, the main insight from the investigation so far thus is that widely employed

proxies for market-level constraints to arbitrage activities appear to have surprisingly little

power to explain the time-series variation in the magnitude of a broad range of anomalies.

While previous work has sporadically revealed related findings regarding the behavior of

specific anomalies and specific proxies3, our results suggest that the lack of explanatory

power is a phenomenon which is potentially far more general than commonly thought.

3.4 Robustness checks

The main inferences from the baseline analysis do not materially change after a number of

sensitivity checks which we briefly describe in the following. For means of brevity, results

are not tabulated.

Changes vs. levels We decompose the contemporaneous level of the arbitrage proxies

(see table 5) into its value in month t-1 and its change from month t-1 to t. Alternatively,

we only rely on the change of the arbitrage proxies, and either on the level or the change

of anomaly returns.

Outliers We winsorize anomaly returns, arbitrage proxies, or both at the 99% level.

Value-weighted returns If we use value-weighted instead of equally weighted anomaly

returns, the role of arbitrage constraints appears to become even slightly weaker.

Non-linearities We have experimented with a number of piecewise linear regressions, for

instance by regressing benchmark-adjusted anomaly returns on quintile dummy variables

times the arbitrage proxy under consideration.

Combined proxiesWe have experimented with different approaches to assess the overall

impact of market-level arbitrage proxies, for instance by aggregating the dummies in tables

3 and 4 to a single variable or by running multivariate regressions with all six proxies

3For instance, it is well known that momentum returns are negatively related to various measures of market volatility

and stress (e.g. Cooper et al. (2004), Daniel and Moskowitz (2013)). With regard to the low beta anomaly, Frazzini and

Pedersen (2013) find that the lagged Ted spread negatively predicts abnormal returns which appears to be “inconsistent

with the model [of leverage constraints] if a high Ted spread means a tightness of investors’ funding constraints” (p. 5).
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simultaneously. Performing the latter analysis analogously to the univariate approach

in table 6 yields, over the time period from 1986 to 2011, an R2 of 0.40 (0.05) for the

anomalies related to the law of one price (the average remaining anomaly).

Time trends and publication effects Even though there does not seem to be con-

sensus on this issue (see section 2.), there might be a negative time trend for anomaly

returns. This could affect our findings to the extent that high and low limits to arbitrage

environments are clustered over time. To explore this issue, we include a linear time trend

variable in all regressions outlined so far. We have also experimented with subsamples,

such as testing distinct subperiods of 25 years length or excluding the recent financial

crisis. The only notable deviation from our baseline findings is that the impact of idiosyn-

cratic volatility often becomes stronger once one focuses on a more recent time period.

We also include a dummy variable which characterizes the (average) post-publication pe-

riod for meta-anomalies (see McLean and Pontiff (2013)). The qualitative nature of our

insights does not change.

Timing and lags It might be the case that the impact of limits to arbitrage might not

show up in monthly data, but instead might matter at lower frequencies. However, most

proxies for arbitrage constraints exhibit substantial autocorrelation (see figure 1) so that

at least slow moving capital effects (e.g. Mitchell et al. (2007)) should partly be picked

up. We have nevertheless also re-run the analysis with quarterly data. As theory does

not offer a prior, we have experimented with different lag lengths between measures of

arbitrage constraints and anomaly returns. Our findings remain similar.

Other proxies for market-level arbitrage constraints We have experimented with a

number of proxies deemed to measure the role of institutions likely to act as arbitrageurs,

the role of interest-related variables, and the role of price impact.4

4More specifically, we have constructed a proxy for overall shadow banking activity as in Adrian et al. (2010). We have

also considered hedge fund index returns by following e.g. Menzly and Ozbas (2010) in relying on the Credit Suisse/Tremont

Long/Short Equity Hedge Fund Index. Moreover, we have constructed an aggregated abnormal stock return measure of the

nine investment banks relied on in Ang et al. (2011). Finally, we have experimented with the LIBOR, the term spread, and

the Amihud (2002) illiquidity measure.
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3.5 Market-level arbitrage constraints and anomaly-level arbitrage activity

Do proxies for market-level arbitrage constraints go along with changes in anomaly-level

arbitrage activity? To explore this question, we build on recent work which proposes

novel measures to infer arbitrage capital invested to profit from specific strategies. These

variables are argued to reflect factors that drive arbitrageurs’ decision making process and

might be understood as anomaly-specific, time-varying arbitrage popularity barometers.

We compute the following variables for each of all 96 anomalies (groups 2-20), and then

aggregate them to 19 time-series at the meta anomaly level.

Changes in short interest Short interest should be most meaningful for stocks that

a typical trading strategy would recommend shorting. Consequently, shocks of short in-

terest in stocks entering the short leg of an anomaly, benchmarked against stocks in the

long leg, might signal changes in arbitrage activity (e.g. Hanson and Sunderan (2013) and

Hwang and Liu (2012)).We build on this intuition by constructing an arbitrage popularity

measure based on short interest data for NYSE and AMEX stocks obtained from Com-

pustat. As there is an upward trend in market-wide short selling activity over time (e.g.

Hanson and Sunderan (2013)), we focus on relative measures (e.g. McLean and Pontiff

(2013)). In each month, we rank all eligible stocks based on their short interest and assign

a continuous value from 0 (lowest short interest) to 1 (highest short interest). We then

compute the difference between the average short interest rank of the stocks contained in

the short and long leg of the anomaly portfolio in a given month. An untabulated analy-

sis shows that, with the exception of anomalies related to lead-lag effects or innovation,

the difference is (often highly significantly) greater than zero on average. This suggests

that there is indeed an attempt to exploit these anomalies, which in turn indicates that

changes in short interest (from month t-1 to t) might help to draw a conclusion about

sophisticated market participants behavior.

Trading activity Increased arbitrage activity has also been shown to manifest itself

in higher turnover for those stocks that a typical anomaly would speculate on (see e.g.

McLean and Pontiff (2013)). We again construct a rank-based measure as the time-series

of the average rank of trading activity in the long and short leg of each anomaly. We then

aggregate this variable at the meta-anomaly level and compute the monthly change.
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Our regression framework mirrors the approach in table 5. The only difference is that we

now use the monthly change in the average short interest rank (long portfolio-short port-

folio) or the monthly change in the average turnover rank (0.5*long portfolio + 0.5*short

portfolio) as dependent variable. Due to length concerns, we here only report results for

the Vix, the Ted spread, and the average bid-ask spread. Using the other three proxies

from the baseline analysis leads to similar results. The same holds true for a number

of plausible changes in methodology.5 The major insight from table 8 is the following:

proxies for market-wide limits to arbitrage are at best only loosely related to changes in

anomaly-level arbitrage activity. Virtually all regression coefficients are insignificant. In

other words, the relative amount of capital invested in those anomalies does not, in the

overall picture, seem to exhibit pronounced shocks in turbulent market conditions. The

analysis thus appears to confirm the insights from the baseline analysis.

Please insert table 8

4. Conclusion

Are there market-wide economic barriers which prevent sophisticated market participants

from capitalizing on abnormal returns? The idea that such limits to arbitrage are often

binding and thus offer a convincing rationale for the survival of alleged mispricings has

gained much interest in recent years. However, in contrast to these predictions, our find-

ings on the dynamics of 100 cross-sectional well-known or recently discovered phenomena

reveals that return anomalies appear to be surprisingly large in magnitude even in times

when market wide limits to arbitrage are commonly thought to be low. The unobservabil-

ity of arbitrage activities clearly make it hard to arrive at strong inferences. We believe

it is nevertheless justified to conclude that our findings collectively support the emerging

stream of literature which highlights some limits in the large work on limits to arbitrage.

5More specifically, we have experimented with relying on raw (instead of Nasdaq-adjusted) turnover or relying on short

interest data also for Nasdaq stocks (from 2003 on, instead of solely relying on NYSE/AMEX). We have rerun the regressions

with levels of (instead on changes) in short interest and turnover. We have also used dollar trading volume instead of turnover.

We have relied on value weighted (instead of equally weighted) anomaly returns. Finally, we have also included the Fama

and French (1993) factors in the regression.
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Table 1: Sample periods and abnormal returns of individual return anomalies

This table provides an overview over all 100 individual anomalies relied on in this paper.

ID is a running number to identify anomalies in section 3.1. Start and End characterize the

sample period. Where applicable, 3factor alpha reports average monthly intercepts (in %)

from time-series regressions of the long-short anomaly return on a Fama and French (1993)

model. Reported are alphas for both the equally weighted (ew) and the value weighted (vw)

version of anomaly returns. In the case of pairs trading, there is no distinction between equally

and value weighted returns for conceptual reasons. The online appendix gives more detailed

information about the construction of each anomaly. T-statistics (in parentheses) are based

on the heteroskedasticity-consistent standard errors of White (1980). Statistical significance

at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

ID Start End Anomaly name 3factor

alpha

(ew)

t-stat 3factor

alpha

(vw)

t-stat

(vw)

1. Anomalies related to violations of the law of one price

1 Aug-91 Sep-02 Twin stock anomaly Anomalies related to the law of one price

2 Jan-90 Dec-08 Cross-listed shares anomaly are standardized so that their mean

3 Jan-87 Dec-11 Dual-class shares anomaly is zero and their standard deviation is one

4 Jul-65 Feb-11 Closed-end fund anomaly (see section 3.1)

2. Momentum anomalies

5 Aug-26 Dec-11 Standard momentum 1.014*** (8.08) 0.915*** (6.64)

6 Sep-26 Dec-11 Age-enhanced momentum 1.232*** (9.52) 1.305*** (8.90)

7 Aug-26 Dec-11 Turnover-enhanced momentum 1.179*** (9.10) 1.207*** (8.38)

8 Jan-72 Dec-11 Market-to-book ratio-enhanced momentum 1.457*** (6.75) 1.301*** (5.44)

9 Feb-86 Dec-11 Credit rating-enhanced momentum 1.520*** (4.22) 1.292*** (3.40)

10 Sep-26 Dec-11 Size-enhanced Momentum 0.714*** (4.61) 0.768*** (4.80)

11 Jan-80 Dec-11 (Residual) analyst coverage-enhanced momentum 1.002*** (4.46) 0.790*** (2.87)

12 Jan-80 Dec-11 Forecast dispersion-enhanced momentum 1.071*** (4.14) 0.983*** (3.51)

13 Mar-29 Dec-11 R2-enhanced momentum 0.926*** (7.17) 0.973*** (6.01)

14 Aug-26 Dec-11 Return consistency-enhanced momentum 1.520*** (8.82) 1.444*** (8.23)

15 Jul-28 Dec-11 (Idiosyncratic) volatility-enhanced momentum 1.034*** (8.31) 1.154*** (7.37)

16 Aug-26 Dec-11 52 week high-enhanced momentum 1.442*** (9.70) 1.349*** (8.45)

17 Aug-26 Dec-11 Formation period return-enhanced momentum 1.334*** (8.73) 1.327*** (7.87)

18 Oct-26 Dec-11 Signed volume-enhanced momentum 0.732*** (7.70) 0.544*** (5.33)

19 Apr-80 Dec-11 Change in breadth of ownership-enhanced momentum 1.010*** (4.03) 0.924*** (3.61)

20 Aug-26 Dec-11 Continuous information-enhance momentum 1.455*** (9.10) 1.304*** (7.95)

21 Jan-27 Dec-11 Intermediate momentum 0.714*** (6.28) 0.863*** (6.23)

3. Technical analysis anomalies

22 Oct-26 Dec-11 250 day moving average anomaly (deciles) 0.602*** (2.99) 0.606*** (2.75)

23 Oct-26 Dec-11 200 day moving average anomaly (deciles) 0.388** (1.99) 0.392* (1.84)

24 Oct-26 Dec-11 250 day moving average anomaly (dummy) 0.357*** (3.55) 0.205** (2.04)

25 Oct-26 Dec-11 200 day moving average anomaly (dummy) 0.238** (2.42) 0.113 (1.18)

26 Feb-69 Dec-11 250 day moving average anomaly (25% band) 1.464*** (5.23) 1.299*** (4.09)

27 Feb-69 Dec-11 200 day moving average anomaly (25% band) 1.350*** (4.52) 1.274*** (3.69)

4. Short-term reversal anomalies

28 Jul-26 Dec-11 Short-term reversal 1.116*** (7.35) 0.541*** (3.08)

29 Aug-28 Dec-11 Industry residual return-enhanced short-term reversal 1.715*** (15.08) 1.282*** (9.34)

5. Long-term reversal anomalies

30 Mar-31 Dec-11 Long-term reversal 0.177* (1.82) 0.002 (0.02)

31 Mar-31 Dec-11 Idiosyncratic volatility enhanced-long term reversal 0.499*** (4.57) 0.481*** (3.40)

6. Calendar-based anomalies

32 Jan-31 Dec-11 Seasonality momentum 0.700*** (7.47) 0.705*** (5.50)

33 Sep-72 Dec-11 Earnings announcement premium 0.555*** (6.54) 0.663*** (4.79)

34 Jan-65 Dec-11 Dividend month anomaly 0.563*** (7.33) 0.438*** (4.17)

7. Anomalies related to lead-lag effects among economically linked firms

35 Jan-81 Dec-05 Customer-supplier anomaly 0.975*** (3.77) 1.032** (2.35)

36 Jan-77 Dec-11 Complicated firms anomaly 1.252*** (5.52) 0.665*** (2.77)

8. Pairs trading anomaly

37 Jan-62 Dec-08 Pairs trading (6 months, conservative) 0.716*** (9.99) 0.716*** (9.99)

38 Jan-62 Dec-08 Pairs trading (6 months) 0.874*** (11.78) 0.874*** (11.78)

39 Jan-62 Dec-08 Pairs trading (1 month, conservative) 1.227*** (13.65) 1.227*** (13.65)

40 Jan-62 Dec-08 Pairs trading (1 month) 1.542*** (16.64) 1.542*** (16.64)

9. Beta anomalies

41 Jul-27 Dec-11 Low beta anomaly (high frequency) 0.890*** (6.81) 0.814*** (5.26)

42 Aug-29 Dec-11 Low beta anomaly (low frequency) 0.685*** (5.48) 0.590*** (4.13)

43 Dec-26 Dec-11 Low volatility anomaly (high frequency) 0.984*** (7.54) 0.827*** (4.86)

44 Dec-28 Dec-11 Low volatility anomaly (low frequency) 0.819*** (6.64) 0.737*** (4.81)

[continued overleaf]
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10. Distress risk anomalies

45 Oct-72 Dec-11 Distress risk (Campbell et al. (2008)) anomaly 1.405*** (7.15) 1.347*** (5.10)

46 Nov-71 Dec-11 Distress risk (Ohlson (1980)) anomaly 0.787*** (7.31) 0.678*** (5.19)

47 Jul-51 Dec-11 Distress risk (Shumway (2001)) anomaly 1.067*** (6.38) 0.999*** (6.67)

48 Jan-86 Dec-11 Bond credit rating anomaly 0.646*** (3.68) 0.573** (2.41)

49 Feb-86 Dec-11 Bond credit rating changes anomaly 0.701*** (2.82) 0.985*** (3.09)

11. Skewness anomalies

50 Jan-27 Dec-11 Lottery-type stocks anomaly 0.463*** (6.71) 0.529*** (6.52)

51 Jul-26 Dec-11 Maximum daily return anomaly 1.318*** (12.33) 0.959*** (6.63)

52 Aug-36 Dec-11 Expected skewness anomaly 0.510*** (4.40) 0.474*** (3.73)

12. Anomalies related to differences of opinion

53 Feb-76 Dec-11 Analyst forecast dispersion anomaly 1.338*** (9.31) 1.173*** (5.98)

54 Jul-26 Dec-11 Turnover anomaly 0.741*** (6.52) 0.503*** (3.86)

55 Jul-29 Dec-11 Idiosyncratic risk anomaly (low frequency 1) 0.623*** (5.66) 0.488*** (3.21)

56 Jul-64 Dec-11 Idiosyncratic risk anomaly (low frequency 2) 0.990*** (6.41) 0.960*** (5.45)

57 Jul-64 Dec-11 Idiosyncratic risk anomaly (high frequency) 1.020*** (7.54) 0.998*** (6.48)

13. Anomalies related to industry effects

58 Jul-62 Dec-11 Procyclical stocks anomaly 0.312*** (2.83) 0.523*** (3.03)

59 Jan-65 Dec-11 Sin stocks anomaly (industry-based measure) 0.156 (1.29) 0.377** (2.37)

60 Feb-92 Dec-10 Sin stocks anomaly (rating-based measure) 0.197* (1.81) 0.0707 (0.49)

14. Fundamental analysis anomalies

61 Jul-75 Dec-11 F-Score anomaly 1.062*** (4.73) 1.071*** (3.66)

62 Jul-75 Dec-11 Firms strength anomaly 0.260** (2.37) 0.432*** (2.63)

63 Nov-75 Dec-11 Sales - inventories anomaly 0.869*** (9.24) 0.805*** (4.84)

64 May-72 Dec-11 Gross margin -s ales anomaly 0.497*** (5.77) 0.196 (1.46)

65 May-72 Dec-11 Administrative expenses - sales anomaly 0.342*** (3.32) 0.082 (0.47)

66 May-74 Dec-11 Change in leverage anomaly 0.373*** (4.38) 0.551*** (3.68)

67 Feb-72 Dec-11 Change in gross profit margin anomaly 0.445*** (5.33) 0.134 (1.04)

68 Mar-72 Dec-11 Return on assets anomaly 1.266*** (7.04) 0.993*** (4.95)

69 Jul-51 Dec-11 Gross profitability anomaly 0.631*** (5.63) 0.922*** (7.43)

15. Net stock and financing anomalies

70 Jul-31 Dec-11 Composite equity issuance anomaly 0.646*** (7.84) 0.588*** (5.93)

71 Jul-52 Dec-11 Annual issuance anomaly 0.671*** (9.29) 0.574*** (5.80)

72 Jul-63 Dec-11 Net external financing anomaly (1) 0.734*** (7.26) 0.609*** (4.51)

73 Jul-72 Dec-11 Net external financing anomaly (2) 0.798*** (7.90) 0.650*** (4.05)

16. Capital investment and growth anomalies

74 Jul-65 Dec-11 Net operating assets (change) anomaly 0.571*** (4.74) 0.533*** (3.13)

75 Jul-63 Dec-11 Net operating assets (levels) anomaly 0.704*** (5.59) 0.495*** (3.50)

76 Jul-52 Dec-11 Capital investments anomaly 0.571*** (6.68) 0.342*** (3.07)

77 Jul-53 Dec-11 Capital expenditures anomaly 0.294*** (3.63) 0.327*** (2.82)

78 Jul-52 Dec-11 Asset growth anomaly 0.356*** (3.22) 0.145 (1.17)

79 Jul-74 Dec-11 Advertising anomaly 0.345*** (3.09) 0.200 (0.95)

17. Anomalies related to innovation

80 Jul-60 Dec-11 R&D to market equity anomaly 0.339** (2.43) 0.282** (2.16)

81 Jul-75 Dec-11 R&D growth anomaly 0.436*** (2.89) 0.411*** (3.05)

82 Jul-80 Dec-11 Patent citation anomaly 0.377* (1.94) 0.327 (1.35)

83 Jul-82 Dec-11 Innovative efficiency anomaly 0.163** (1.98) 0.267** (2.01)

84 Jul-80 Jun-10 Innovation predictability anomaly 0.648** (2.04) 0.824* (1.77)

18. Accruals anomalies

85 Jul-65 Dec-11 Classical accruals anomaly 0.514*** (4.50) 0.547*** (3.48)

86 Jul-52 Dec-11 Accruals (broadly defined) anomaly 0.365*** (4.27) 0.202 (1.63)

87 Jul-72 Dec-11 Abnormal accruals anomaly 0.535*** (6.20) 0.494*** (2.97)

88 Jul-71 Dec-11 Industry-enhanced accruals anomaly 0.574*** (3.46) 0.395 (1.50)

89 Jul-52 Dec-11 Inventory change anomaly 0.514*** (6.19) 0.360*** (3.15)

90 Jul-52 Dec-11 Inventory growth anomaly 0.482*** (5.64) 0.262** (2.24)

19. Dividend anomalies

91 Jul-26 Dec-11 Dividend initiation anomaly 0.263*** (3.23) 0.126 (1.27)

92 Feb-45 Dec-11 Dividend resumption anomaly 0.332** (2.30) 0.078 (0.46)

93 Jan-65 Dec-11 Change in dividend (absolute level) anomaly 0.256** (2.24) 0.463** (2.25)

94 May-72 Dec-11 Change in dividend yield anomaly 0.493** (2.43) 0.494* (1.74)

20. Anomalies related to earnings surprises

95 Nov-73 Dec-11 PEAD (computation scheme 1) 1.303*** (10.19) 0.803*** (5.01)

96 Nov-72 Dec-11 PEAD (computation scheme 2) 1.319*** (9.41) 1.005*** (5.42)

97 Jul-84 Dec-11 PEAD (computation scheme 3) 0.999*** (8.33) 0.686*** (3.42)

98 Nov-71 Dec-11 PEAD (computation scheme 4) 1.246*** (11.78) 1.030*** (6.10)

99 Nov-84 Dec-11 Streaks in earnings surprises anomaly 0.773*** (7.62) 0.707*** (4.84)

100 Feb-72 Dec-11 Profit/loss anomaly 1.204*** (6.46) 1.108*** (5.12)
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