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ABSTRACT

We have proposed a wavelet-domain de-noising technique for imaging of human brain malignant glioma by opti-
cal coherence tomography (OCT). It implies OCT image decomposition using the direct fast wavelet transform,
thresholding of the obtained wavelet spectrum and further inverse fast wavelet transform for image reconstruc-
tion. By selecting both wavelet basis and thresholding procedure, we have found an optimal wavelet filter,
which application improves differentiation of the considered brain tissue classes – i.e. malignant glioma and
normal/intact tissue. Namely, it allows reducing the scattering noise in the OCT images and retaining sig-
nal decrement for each tissue class. Therefore, the observed results reveals the wavelet-domain de-noising as a
prospective tool for improved characterization of biological tissue using the OCT.
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1. INTRODUCTION

Optical coherence tomography (OCT) was introduced by Huang et al1 in 1991. Many research have shown, that
OCT becomes an effective noninvasive imaging technique for many fields of biomedical applications, providing
necessary and important information about internal tissue structure and its scattering properties.2,3 Numerous
research in ophthalmology,4–8 vascular and blood imaging,9,10 dermatology,11,12 prostate pathology,13 repro-
ductive methods,14 detecting malignant tissues and cancer cells,15–20 neuroscience19–23 were done using OCT
techniques. OCT is based on the principles of low-coherence interferometry either in time-domain or frequency
domain.24–29 Using visual and infrared radiation sources, OCT can be combined with endoscopic approaches for
exploring hidden tissues. Besides, such techniques as Doppler and polarization-sensitive OCT are also widely
applied for biomedical imaging.30

Recent in vitro and in vivo studies in neurosurgery demonstrate that OCT could become an important imaging
technique.15,23 Comparing it with the existed and developing methods, such as intraoperative magnetic resonance
imaging,31–33 THz reflectometry,34,35 Raman spectroscopy,36–38 and fluorescence imaging,39–41 OCT combines
fast and noninvasive analysis of tissue structure, its scattering and polarization properties. One of the most
promising application of OCT in neurosurgery is imaging of brain tumors, such as malignant glioma.15,23,35,42

Glioma appears in almost 30% cases of human brain tumor diagnosis and in 80% of malignant cases.42 Complete
resection of glioma tissue is a key-reason for the successful treatment, thus, the necessity of accurate differentiation
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of tumor area from surrounding intact brain tissue is of high importance. Meanwhile, most of tissues, including
brain, are highly scattering media for OCT, accordingly, scattering noise leads to significant image distortion.43,44

Therefore, in order to improve differentiation between the considered tissues, an appropriate noise suppression
technique should be applied.

Several post-processing approaches are available in OCT-imaging, including averaging and filtering procedures,45–53

among which wavelet de-noising yields significant results.47–49,53 The effectiveness of wavelet filtration proce-
dure is mainly explained by the similar physical features of wavelet kernels and optical wave packets: zero means
value, finite energy corresponding to square norm one, and high locality in both time- and frequency-domains .

In the present paper, we suggest using wavelet-domain de-nosing procedure for the filtration of malignant brain
glioma and intact tissue images obtained by OCT. We apply selection between different wavelet basis and
thresholding methods in order to determine optimal wavelet filter parameters. We demonstrate that applying
this wavelet filter it is possible to reduce scattering noise and retain OCT-signal decrement, and yield better
differentiation of the considered tissue classes.

2. WAVELET-DOMAIN DE-NOISING PROCEDURE

Wavelet-domain de-noising procedure includes the following stages: image decomposition by the direct wavelet
transformation, thresholding of the obtained wavelet spectrum, and image reconstruction by the inverse wavelet
transformation. For the OCT-signal – light intensity I(x, z) scattered from the object, these procedures can
be applied separately to different cross-sections Ix (z) = I (x = x′, z). Here, z is the sample depth and x is the
lateral coordinate. Using the mother wavelet ψ(z) we obtain the wavelet-decomposition kernels ψ(a, b, z) for
scale and translation parameters a and b

ψ(a, b, z) = |a|−1/2ψ
(
z − b
a

)
. (1)

Then direct wavelet transform

C (a, b) =W [I (z)] =

+∞∫
−∞

Ix (z)ψ (a, b, z) dz, (2)

is followed by the thresholding of the wavelet-spectrum with T value

CT (a, b) =

{
C (a, b) , if C (a, b) ≥ T,
0, if C (a, b) < T.

(3)

The dual functions ψ̃(a, b, z) of ψ(a, b, z) are used for the inverse wavelet-transform

I ′x (z) =W−1[CT (a, b)] = C−1ψ

+∞∫∫
−∞

CT(a, b)

a2
ψ̃ (a, b, z)dadb, (4)

where the admissible constant

Cψ =

+∞∫
−∞

Ψ(ω)Ψ̃(ω)

|ω|
dω <∞ (5)

restricts the diversity of functions suitable for definition of mother wavelet ψ(z). Here, functions Ψ(ω) and Ψ̃(ω)

in (5) correspond to Fourier spectra of ψ(z) and ψ̃(z), respectively.

In order to process the data of OCT imaging, in this paper, we apply methods of fast direct and inverse wavelet
transforms54 (FDWT and FIWT) and consider “soft” and “hard” thresholding modalities,55,56 and different
number of decomposition levels L.
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Figure 1. In vitro OCT-imaging of brain tissue samples: (a) a photo of OCT time-domain system OCT1300Y; (b), (c)
examples of studied samples of malignant brain glioma and intact tissue; (d) tissue sample placed on glass and covered
with gelatin layer for preventing its hydration/dehydration during imaging.

3. DE-NOISING OF THE BRAIN TISSUE OCT-IMAGES

In order to obtain sample-images, we use OCT1300Y-system (Institute of Applied Physics RAS, Nizny Novgorod,
Russia), which is shown in Fig. 1(a). It operates in near-infrared range and employs radiation source with a
central wavelength of 1.3 µm and an average power up to 6 mW. It allows for performing A- and B-scans of
the sample and produces 256x400 pixels images with 4 sec acquisition time. The theoretical estimation of the
approximate OCT system resolution is 50 µm in lateral and 30 µm in depth directions. The optical depth of
sample probing is near 1...2 mm.

The samples of human brain intact tissue and malignant glioma (Fig. 1(b) and (c)) were explored no later than
4 hours after neurosurgery. To fix each tissue, prevent its hydration/dehydration, and sustain its structure
and composition during both transportation and OCT-imaging, we placed the tissue samples on a reference
optically-transparent substrate and cover them with gelatin films.57 All the examined tissues samples were
excited according to the initial medical diagnosis. After OCT-imaging, all samples were fixed in formalin and sent
to histological examination, which result confirmed initial diagnosis and verified the results of OCT experimental
study.

Initial OCT-images of glioma and intact tissue are demonstrated in Fig. 2 (a) and (b). The normalized OCT-
signal averaged for 350 A-scans I(z), where z is optical scanning depth, is shown in Fig. 2 (c). Since two
tissue types are characterized by different signal decrements, we find a width parameter L at 1/e level and

Figure 2. OCT-images of human brain tissue: (a) malignant glioma, (b) intact region; (c) normalized averaged intensity
I(z), (d) probability density function of signal width L with corresponding normal distribution assumption.
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Figure 3. Results of wavelet de-noising procedure with Daubechie-kernel filter for OCT-images of human brain tissue:
(a) malignant glioma, (b) intact region; (c) normalized averaged intensity I(z), (d) probability density function of signal
width L with corresponding normal distribution assumption.

the probability density function p(L), assuming its normal (Gaussian) character. These estimations for the
considered samples are shown on panel (d). Using the determined mean value M and standard deviation σ of
the obtained signal statistics, we calculate a separability parameter of two classes k = (M1 −M2)(1/σ1 + 1/σ2).
For the demonstrated images the value of k is equal to 9.2.

We apply wavelet-domain de-noising procedure described in Sec. 2 using several wavelet basis (Daubechies,
Coiflets, Symlets, Biorthogonal, and Reverse Biorthogonal) and thresholding techniques, and select optimal ones
(Daubechie-type db2 with “soft” thresholding and decomposition level equal to 8), which yield higher value of
k = 16.9. The results of this filter application is demonstrated in Fig. 3. The filtered images are characterized
with more smooth signal intensity and significant noise suppression. Meanwhile, de-noising procedure does not
result in changes of signal width comparing to the initial images. Therefore, analysis of signal width probability
density function due to less dispersion leads to better differentiation between brain tissue classes.

Designed and tested de-noising technique should be useful at application of tissue optical clearing to enhance
probing depth and image contrast28,29,58,59 We may expect synergetic effect from optical clearing used together
with signal filtering.

In case of other brain tissue types, for example, meningioma, with its highly heterogeneous internal structure,
other parameters and wavelet-domain de-noising filters should be proposed, which could be based on special mor-
phological and scattering features of each type of tissue. Nevertheless, combining OCT-imaging technique with
an appropriate wavelet filtration procedure, it is possible to increase the efficiency of brain tumor visualization.

4. CONCLUSION

We have demonstrated the application of wavelet-domain de-noising procedure for OCT-imaging of human brain
malignant glioma and its differentiation from intact brain tissue. For OCT-images of these tissue samples, we
applied de-noising procedure varying filter parameters: wavelet basis, thresholding method, and decomposition
level, and optimized them for better differentiation of the considered tissue classes. The obtained results of using
db2-wavelet with “soft” thresholding and decomposition level equal to 8 yields almost two-times increase of the
classification efficiency.
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