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A plane-wave approximation in particle physics implies that a width of a massive wave packet σ⊥ is much
larger than its Compton wavelength λc = h̄/mc. For Gaussian packets or for those with nonsingular phases (say,
the Airy beams), corrections to this approximation are attenuated as λ2

c/σ
2
⊥ � 1 and usually negligible. Here we

show that this situation drastically changes for particles with the phase vortices associated with an orbital angular
momentum �h̄. For highly twisted beams with |�| � 1, the nonparaxial corrections get |�| times enhanced and
|�| can already be as large as 103. We describe the relativistic wave packets, both for vortex bosons and fermions,
which transform correctly under the Lorentz boosts, are localized in a three-dimensional space, and represent a
nonparaxial generalization of the massive Laguerre-Gaussian beams. We compare such states with their paraxial
counterparts, paying specific attention to relativistic effects and to the differences from the twisted photons. In
particular, a Gouy phase is found to be Lorentz invariant and it generally depends on time rather than on a
distance z. By calculating the electron packet’s mean invariant mass, magnetic moment, etc., we demonstrate that
the nonparaxial corrections can already reach the relative values of 10−3. These states and the nonparaxial effects
can be relevant for the proper description of spin-orbit phenomena in relativistic vortex beams, of scattering of
the focused packets by atomic targets, of collision processes in particle and nuclear physics, and so forth.
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I. INTRODUCTION

Many properties of the massive particles carrying orbital
angular momentum (OAM) can be described within the models
of a nonlocalized Bessel beam (akin to a plane wave) [1,2] and
of a localized Laguerre-Gaussian packet [2]. While the latter is
applicable only in the paraxial regime, the former also predicts
a number of nonparaxial effects for relativistic vortex electrons,
such as a spin-orbit interaction, thanks to a finite transverse
momentum. However, the Bessel beam is unsuitable for the
problems in which finite sizes of the wave packet and its finite
energy-momentum dispersions become important.

Depending on the problem, this may happen when the
beam is focused to a spot of a size σ⊥ comparable to a
Bohr radius, a ≈ 0.053 nm, or to an electron’s Compton
wavelength, λc = h̄/mc ≈ 0.39 pm. As the vortex electrons
have already been focused to a spot of σ⊥ � 0.1 nm ≈ 2a

[3], a more realistic wave-packet approach beyond the paraxial
approximation is needed, in particular, for proper study of the
spin-orbit phenomena and for scattering problems in atomic
and high-energy physics, especially when the quantum inter-
ference and coherence play a notable role [4–6]. The quantum
interference of the incoming packets is of crucial importance—
say, for potential applications in hadronic physics [7]—and the
orthogonal Bessel states do not describe these effects.

In collisions of particles described as wave packets instead
of the simplified plane waves, nonparaxial corrections to the
plane-wave cross sections are generally attenuated as λ2

c/σ
2
⊥ �

1 and do not play any essential role. Nevertheless, these
corrections can be enhanced when the OAM of a projectile is
large, |�|h̄ � h̄ [7]. As a result, for well-focused highly twisted
beams (the current record is |�| ∼ 103 [8]) these effects can
compete with the two-loop corrections to the QED processes
like e−γ → e−γ, e−e− → e−e−, etc.

Precise quantitative estimates of these phenomena require
that the vortex wave packets be spatially localized, described in
a Lorentz invariant way, and applicable beyond the paraxial ap-
proximation. Despite the recent interest in the relativistic wave
packets with OAM [9,10], such a model is still lacking (see
the recent discussion in [2,11]) first and foremost because the
widely used coordinate representation is much less convenient
for these purposes than the momentum one. The situation here
is somewhat reminiscent of that with a photon wave function
in x space [12].

Furthermore, for massive particles in a (3 + 1)-dimensional
space-time the very definition of the paraxial regime needs to
be revised, as the characteristic scale, the Compton wavelength
λc, is Lorentz invariant, unlike a de Broglie wavelength,
λdB = 2π/p, or the wavelength of a massless photon. As
we argue in this paper, an invariant condition of paraxiality,
σ⊥ � λc (or σ � m in momentum space), is more appropriate
for relativistic description of the vortex electrons than the
commonly used noninvariant one, p⊥ � pz.

The massive wave packets are actively used in neutrino
physics [13,14] and their Lorentz invariant description has
been recently given by Naumov and Naumov in [15–17]. In
a widespread model, the packet is Gaussian in p space; it
has a mean 4-momentum p̄μ (a parameter), p̄2 = m2, and
an uncertainty σ , which is a Lorentz scalar and vanishing,
σ � m, in the paraxial regime. Here we further develop this
approach by adding OAM to the set of quantum numbers, both
for bosons and fermions, and treating the nonparaxial effects.
Such vortex packets are localized in a three-dimensional (3D)
space and, which is crucial for relativistic phenomena, they
transform correctly under the Lorentz boosts. In the paraxial
approximation, these packets reduce to the invariant Laguerre-
Gaussian beams, which have notable differences from their
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photonic counterpart due to the massiveness of the packet (for
relativistic energies, they, of course, vanish).

We calculate such observables as the vortex electron’s mean
energy, magnetic moment, etc., and demonstrate that the non-
paraxial effects are |�| times enhanced for such vortex packets
compared to the Bessel beam, the Gaussian packet, or even
that with a nonsingular phase (say, an Airy packet [18,19]).
For instance, a corresponding correction to an invariant mass
of the electron packet is positive and with current technology
it can reach the values of (10−4–10−3) m. To put it differently,
such a wave packet is 0.01%–0.1% heavier than an ordinary
plane-wave electron. It is this weighting that can reveal itself
in the corresponding invariant corrections,

∼|�|λ2
c

/
σ 2

⊥ � α2
em = 1/1372 � λ2

c

/
σ 2

⊥,

to the e−e− or e−γ scattering.
Thus, the subnanometer-sized highly twisted beams can

be used for probing the previously unexplored nonparaxial
effects in high-energy and nuclear physics, analogous to the
recently described quantum coherence phenomena in atomic
physics [4,5] and in addition to the magnetic-moment effects
in electromagnetic radiation [20]. Moreover, in scattering of
a coherent superposition |�1〉 + |�2〉 of two vortex electrons
by atoms, the analogous fundamental scale is the Bohr radius
a, which is 1/αem = 137 times larger than λc. As a result, the
corresponding effects may become only moderately attenuated
(akin to [6]), and one would need an explicitly nonparaxial
approach, feasible with the packets described in this paper.

Here we study only the azimuthally symmetric packets
with a vanishing mean transverse momentum, that is, p̄ =
{0, 0, p̄}. Hence we imply only the longitudinal boosts; see
[21] for effects of the transverse ones. When calculating the
wave functions ψpar(x) in the paraxial regime, the following
expansion for the energy is employed:

ε =
√

p2 + m2 ≈ ε̄ + ū( p − p̄) + 1

2ε̄
(δij − ūi ūj )

× ( p − p̄)i ( p − p̄)j ,

ū = p̄/ε̄, ε̄ =
√

p̄2 + m2. (1)

This expansion does not alter the transformational properties
of the resultant packets with respect to the Lorentz boosts. The
4-vector p̄μ = {ε̄, 0, 0, p̄} serves as a parameter of the state
and it is only in the paraxial regime that the packet’s mean 4-
momentum 〈pμ〉 coincides with p̄μ. A system of units h̄ = c =
e = 1 is used and the metric is gμν = diag(1,−1,−1,−1), so
that p̄μxμ = ε̄t − zp̄.

II. NONRELATIVISTIC VORTEX PACKET

We start with a nonrelativistic wave packet with OAM,
which is a good benchmark example against which the subse-
quent relativistic vortex packets can be compared. In a model
of a Gaussian beam with a phase ϕ( p), the mean momentum
p̄, and with the momentum uncertainty σ , the wave function is

ψ ( p, t ) =
(

2
√

π

σ

)3/2

exp

{
−itε − ( p − p̄)2

2σ 2
+ iϕ( p)

}
,

∫
d3p

(2π )3
|ψ ( p, t )|2 = 1, (2)

where ε = p2/2m. When the phase ϕ( p) represents a smooth
and analytical function (for instance, for the Airy beams
[18,19]), neither the probability density nor the observables
like energy depend on the phase. For a vortex beam, however,
the phase ϕ� = �φp is not defined at the point p⊥ = 0, and its
derivative,

∂ϕ�

∂ p
= �

ẑ × p

p2
⊥

, ẑ = {0, 0, 1}, (3)

diverges when p⊥ → 0. To put it another way, the Fourier
transform of ψ ( p, t ) decays nonexponentially, namely, as
1/ρ2, at large distances.

To restore exponential decay of the vortex electron’s wave
function with ρ, one can add a prefactor of p

|�|
⊥ to ψ ( p, t ) and

modify the normalization constant accordingly [22]:

ψ�( p, t ) =
(

2
√

π

σ

)3/2
p

|�|
⊥

σ |�|√|�|!

× exp

{
−itε − ( p − p̄)2

2σ 2
+ i�φp

}
,

∫
d3p

(2π )3
|ψ�( p, t )|2 = 1, (4)

and now |ψ�( p, t )|2 does depend on |�|, as for the Bessel beam.
A Fourier transform of this state can be calculated exactly:

ψ�(r, t ) =
∫

d3p

(2π )3
ψ�( p, t ) ei pr

= 1

π3/4
√|�|! σ |�|+3/2

(iρ)|�|

(σ−2 + it/m)|�|+3/2

× exp

{
−iε̄t + i p̄z + i�φr − 1

2

ρ2 + (z − ūt )2

σ−2 + it/m

}
,

∫
d3x |ψ�(r, t )|2 = 1, (5)

where ε̄ = p̄2/2m, ū = p̄/m, and this is a simple Laguerre-
Gaussian packet with a radial index n = 0, as a generalized
Laguerre polynomial L

|�|
n=0(x) = 1.

The transverse part of the probability density,

|ψ�(ρ, z = t = 0)|2 = const
(ρσ )2|�|

|�|! e−(ρσ )2
, (6)

represents a gamma distribution (or a Poisson distribution for
|�|; see, for instance, [23]) with its typical doughnut-like profile
and one maximum (because n = 0).

Note that within the nonrelativistic framework, Eq. (5)
represents an exact solution of the Schrödinger equation and,
in contrast to the twisted photons, its Gouy phase,

∝ arctan(tσ 2/m),

depends on the time t and not on the distance z. This is
ultimately due to the massiveness of the packet and, more
importantly, this feature also holds in the relativistic regime in
which the corresponding states are only approximate (paraxial)
solutions to the Klein-Gordon equation (see Sec. V).

Finally, it is also worth noting that by using the light-cone
(null-plane) variables t ± z the corresponding relativistic states
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can still satisfy the Klein-Gordon equation exactly (see, for
instance, [24–26]). On the other hand, the latter formalism
requires a physical justification and for the Laguerre-Gaussian
modes it may even suffer from some inconsistencies (dis-
cussed, for instance, in [9]). That is why we shall not deal
with it in this paper, especially because the nonparaxial wave
packets with OAM, which are exact solutions either of the
Klein-Gordon equation or of the Dirac one, can readily be
obtained in the conventional variables.

III. RELATIVISTIC BOSON

A. Phaseless wave packet

Let us proceed with a massive boson and normalize its
phaseless and Lorentz invariant wave function ψ (p) by the
following condition:∫

d3p

(2π )3

1

2ε
|ψ (p)|2 = 1, (7)

which is invariant too and where ε =
√

p2 + m2. Here we
follow an approach of Refs. [15–17], albeit with another
normalization (somewhat simplified models of this kind were
previously studied, for instance, in [27]). The wave function
characterized by a 4-scalar σ and by the 4-momentum (parame-
ter) p̄μ can depend only on a scalar (pμ − p̄μ)2 ≡ (p − p̄)2 �
0 [or upon −(pμ + p̄μ)2] where

p2 = p̄2 = m2.

Drawing an analogy to Eq. (2), we define[28]

ψ (p) = 23/2π

σ

e−m2/σ 2√
K1(2m2/σ 2)

exp

{
(p − p̄)2

2σ 2

}
, (8)

which is real and satisfies Eq. (7). Here, K1 is a modified Bessel
function.

For vanishing mass, m � σ , this wave function vanishes as
ψ (p) ∝ m/σ → 0, which is why it seems that this formalism
cannot be directly applied to the massless particles (say,
to photons). On the other hand, it works perfectly in the
ultrarelativistic limit, ε̄ ≈ p̄ � m, as the corresponding wave
functions are Lorentz invariant. This allows one to make a
comparison between the nearly massless bosons and photons
[29].

In the paraxial regime with σ � m, one gets

K�(χ � 1) = e−χ

√
π

2

×
(

χ−1/2 + (2�)2 − 1

8
χ−3/2 + O(χ−5/2)

)
,

χ ≡ 2m2/σ 2, (9)

where the first correction depends on �, and so

ψ (p) 
(

2
√

π

σ

)3/2√
2m

(
1 − 3

32

σ 2

m2
+ O(σ 4/m4)

)

× exp

{
(p − p̄)2

2σ 2

}
. (10)

Here, both the uncertainty σ and the condition σ � m, are
Lorentz invariant, which may seem to contradict the model of

Ref. [7] in which a symmetric 3 × 3-matrix σij is used instead.
In the latter approach, the longitudinal component of this
matrix experiences a Lorentz extension, σzz = ε̄σ ′

zz/m, which
is quite natural. However, a close scrutiny reveals equivalence
of these two approaches in the paraxial regime, that of [17]
and that of [7]. Indeed, let us expand the energy ε in Eq. (10)
in a vicinity of p̄ [see Eq. (1)]. With an accuracy up to the
second-order terms, we get

(p − p̄)2

2σ 2
= − 1

2σ 2

(
δij − ūi ūj

)
( p − p̄)i ( p − p̄)j . (11)

Compared to the nonrelativistic expression (2), this one has a
new term ūi ūj , and it is this term that provides correct Lorentz
transformation of the exponent. For a packet moving along the
z axis on average, we get

− 1

2σ 2

(
δij − ūi ūj

)
( p − p̄)i ( p − p̄)j

= − p2
⊥

2σ 2
− m2(pz − p̄)2

2ε̄2σ 2
, (12)

which is invariant under a longitudinal boost, as the segment in
the momentum space exhibits Lorentz extension, (pz − p̄)2 ∼
ε̄2/m2 (so that �p�x = inv). Comparing this with Eq. (3.45)
from [7], we find a matrix σ−2

ij = σ−2(δij − ūi ūj ), which
transforms as prescribed, and det σij = σ 3ε̄/m. The latter
equality provides invariance of the normalization adopted in
[7], although only in the paraxial regime.

A Fourier transform of the nonparaxial wave function (8)
can be found exactly:

ψ (x) =
∫

d3p

(2π )3

1

2ε
ψ (p) e−ipx

= 1

π
√

2

σ

ς

K1(ςm2/σ 2)√
K1(2m2/σ 2)

,

ς = 1

m

√
(p̄μ + ixμσ 2)2 = inv, Re ς > 0. (13)

Obviously, it satisfies the Klein-Gordon equation and also
vanishes as ψ (x) ∝ m → 0 in the zero-mass limit. We call this
function a nonparaxial wave function of the bosonic packet,
even though it does not obey any simple Lorentz invariant
normalization condition, as the zeroth component of the current
j 0 is not positively defined (see, for instance, [31]). One
simple way to check whether the function (13) is properly
normalized is to calculate the packet’s mean energy by using
the energy-momentum tensor Tμν :

〈ε〉 =
∫

d3x T 00 =
∫

d3x(∂0ψ
∗(x)∂0ψ (x)

+∇ψ∗(x) · ∇ψ (x) + m2|ψ (x)|2)

=
∫

d3p

(2π )3

1

2ε
|ψ (p)|2 ε, (14)

as should be. The integral can also be evaluated exactly:

〈ε〉 = ε̄
K2

(
2m2/σ 2

)
K1

(
2m2/σ 2

) = ε̄

[
1 + 3

4

σ 2

m2
+ O

(
σ 4

m4

)]
. (15)

Note that it is also because of these subtleties with the
normalization in x space that the momentum representation
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turns out to be more convenient in the nonparaxial regime than
the coordinate one.

Analogously, we find the mean momentum,

〈 p〉i =
∫

d3x T i0 =
∫

d3p

(2π )3

1

2ε
|ψ (p)|2 pi

= p̄i K2(2m2/σ 2)

K1(2m2/σ 2)
. (16)

As a result, an invariant mass of such a wave packet,

m2
inv = 〈ε〉2 − 〈 p〉2 = m2 K2

2

(
2m2/σ 2

)
K2

1

(
2m2/σ 2

)
= m2

(
1 + 3

2

σ 2

m2
+ O(σ 4/m4)

)
, (17)

is bigger than the mass m of the plane-wave electron.
The nonparaxial correction

σ 2/m2 ≡ λ2
c/σ

2
⊥ = O(h̄2)

is less than 10−6 for modern electron microscopes (σ⊥ > 0.1
nm) and less than 10−14 for modern electron accelerators (σ⊥ >

1 μm), although it can reach the values of the order of 10−11

for the next-generation colliders such as the Compact Linear
Collider (CLIC) and International Linear Collider (ILC) for
which one of the beam’s transverse sizes will be of the order
of 1 nm [32].

Unlike the “dynamic” corrections due to quantum recoil
and spin in scattering or radiation, which are O(h̄), this
“kinematic” term describes purely quantum corrections O(h̄2)
to the particle motion. As we work with the one-particle
positive-energy states and the corrections to energy and mass
are positive (which also holds for a vortex fermion below),
these effects have no relation to the so-called Zitterbewegung.

Due to Eq. (9), the nonparaxial wave function (13) decays
exponentially at large spatial distances

√
−x2

μ → ∞:

ψ (x)√−x2
μ→∞ ∝ 1

(−x2
μ)3/4

exp

⎧⎨
⎩−

√
−x2

μ

λc

⎫⎬
⎭, (18)

with a characteristic scale (“a packet’s width”) being the
Compton wavelength.

The different behavior takes place in an approximate parax-
ial formula for ψ (x), which is found by expanding the energy
in the exponent of Eq. (8) according to Eq. (1) and evaluating
the corresponding Gaussian integral. The result is

ψpar(x) = 1

(σ
√

π )3/2
√

2m

1

(1/σ 2 + it/ε̄)3/2

× exp

{
−ip̄μxμ − 1

2

1

1/σ 2 + it/ε̄

×
(

δij + ūi ūj

1 − ū2

)
(r − ūt )i (r − ūt )j

}
, (19)

and it is an approximate solution to the Klein-Gordon equation.
This expression is also Lorentz invariant, as

t/ε̄ = τ/m = inv,

1 2 3 4 5
r (units of Λ��)

0.2

0.4

0.6

0.8

1.0
Ψ x  (a.u.)

c

FIG. 1. Spatial dependence at large distances and t = 0 of the
exact nonparaxial wave packet [Eq. (13)] (black solid line) and of
the paraxial one [Eq. (19)] (blue and red lines). The blue dashed
line: σ⊥ = 2λc; the red dash-dotted line: σ⊥ = 10λc. The width of the
nonparaxial packet does not exceed a few Compton wavelengths.

where τ is the boson’s proper time, and for a longitudinal boost:(
δij + ūi ūj

1 − ū2

)
(r − ūt )i (r − ūt )j

= ρ2 + ε̄2(z − ūt )2/m2 = (r ′)2 = inv, (20)

with r ′ being the observation vector in a rest frame of the
boson. Unlike the exact state (13), the paraxial one ψpar(x) is
normalized by a simple invariant formula,∫

d3x 2ε̄ |ψpar(x)|2 = 1. (21)

Such a packet is much wider than the nonparaxial one (13), as
its behavior is Gaussian,

ψpar(r ′, t = 0) ∝ exp

{
−1

2

(r ′)2

σ 2
⊥

}
, (22)

where the beam width σ⊥ ≡ 1/σ � λc. We compare the exact
law of Eq. (18) with the approximate one of Eq. (22) in Fig. 1.

B. Relativistic vortex wave packet

A Lorentz invariant wave function of a scalar packet with
OAM can be written as

ψ�(p) = 23/2π

σ |�|+1
√|�|! p

|�|
⊥

e−m2/σ 2√
K|�|+1(2m2/σ 2)

× exp

{
(p − p̄)2

2σ 2
+ i�φp

}


(
2
√

π

σ

)3/2 √
2m

× p
|�|
⊥

σ |�|√|�|!
(

1 − 4(|�| + 1)2 − 1

32

σ 2

m2

)

× exp

{
(p − p̄)2

2σ 2
+ i�φp

}
,

∫
d3p

(2π )3

1

2ε
|ψ�(p)|2 = 1, (23)

and it is no longer real. These states are orthogonal in OAM,∫
d3p

(2π )3

1

2ε
[ψ�′ (p)]∗ψ�(p) = δ�,�′ .
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A Fourier transform of this nonparaxial function can also
be found exactly:

ψ�(x) =
∫

d3p

(2π )3

1

2ε
ψ�(p)e−ipx

= (iρ)|�|√
2|�|! π

σ |�|+1

ς |�|+1

K|�|+1(ςm2/σ 2)√
K|�|+1(2m2/σ 2)

ei�φr , (24)

with ς from Eq. (13), which does not depend on the azimuthal
angle φr for a packet moving along the z axis on average. That
is why for such a packet 〈L̂z〉 = � where L̂z = −i∂/∂φp or
L̂z = −i∂/∂φr , depending on the representation.

Regardless of the OAM, the wave function (24) still decays

exponentially at large distances,
√

−x2
μ � λc, according to

Eq. (18). Note that within this class of functions, it is the only
law allowed by the invariance considerations and it is in sharp
contrast with Eq. (15) in Ref. [9] where the analogous scale
is ε̄/m times smaller than λc, which is impossible within a
one-particle approach with a stable vacuum (see, for instance,
[31]) and is not Lorentz invariant.

An approximate paraxial wave function in the coordinate
representation can easily be guessed by comparing Eqs. (19)
and (5):

ψ
par
� (x) = (iρ)|�|

σ |�|√|�|!
ei�φr

(1/σ 2 + it/ε̄)|�|
ψpar(x),

∫
d3x 2ε̄

∣∣ψpar
� (x)

∣∣2 = 1, (25)

where ψpar(x) is from Eq. (19). This state is also a Lorentz
scalar and it represents a relativistic Laguerre-Gaussian beam
in the ground state n = 0 with a Gouy phase depending on
time rather than on z (see Sec. V for more detail). In the
nonrelativistic limit we return to Eq. (5).

By analogy to Eq. (15), one can calculate the vortex packet’s
mean energy and momentum nonperturbatively,

〈
p

μ

�

〉 = {〈ε�〉, 〈 p�〉} = {ε̄, p̄} K|�|+2(2m2/σ 2)

K|�|+1(2m2/σ 2)

 {ε̄, p̄}
[

1 +
(

3

4
+ |�|

2

)
σ 2

m2

]
, (26)

and find that the nonparaxial correction now depends on the
OAM and it is also positive. As a result, the invariant mass,

m2
� = 〈p�〉2  m2

[
1 +

(
3

2
+ |�|

)
σ 2

m2

]
, (27)

depends on |�| too. One can say that a vortex packet is heavier
than an ordinary Gaussian beam,

δm�

minv
≡ m� − m�=0

m�=0

= K|�|+2(2m2/σ 2)

K|�|+1(2m2/σ 2)

K1(2m2/σ 2)

K2(2m2/σ 2)
− 1

= |�|
2

σ 2

m2
+ O(σ 4/m4). (28)

For beams with |�| ∼ 103 and focused to a spot of σ⊥ � 0.1
nm, we have

δm�

minv
 δm�

m
� 10−3.

Thus, the nonparaxial corrections are |�| times enhanced
for highly twisted particles compared to the packets with the
nonsingular phases (say, the Airy beams). To put it differently,
it is no longer the Compton wave length λc that defines a
paraxial scale for massive particles with phase vortices but
it is

√
� λc,

which can be more than an order of magnitude larger than λc

for available electrons.
In the paraxial regime, |ψpar

� (x)|2 plays the role of the
probability density [according to Eq. (25)] and its transverse
part,

∣∣ψpar
� (ρ, z = t = 0)

∣∣2 = const
(ρσ )2|�|

|�|! e−(ρσ )2
, (29)

is the gamma distribution with the typical doughnut-like profile
with a maximum, exactly as in the nonrelativistic case. It
is also because of this Poissonian behavior that the paraxial
vortex packets [Eq. (25)] closely resemble coherent states of a
quantum oscillator. Unlike the latter, however, these states do
not minimize the coordinate-momentum uncertainty relations
[only the Gaussian packet of Eq. (19) at t = 0 does], see also
Sec. V.

For smallρσ , the behavior of Eq. (29) is similar to the Bessel
beam for which |ψ�(x)|2 = const J 2

|�|(ρp⊥) ∝ (ρp⊥)2|�| when
ρp⊥ � 1. Thus, the packet width σ plays the role of the
transverse momentum p⊥. According to the properties of the
gamma distribution, a mathematical expectation for σ 2ρ2 is
|�|, which gives the

√|�| scaling of the intensity maximum ρ0,

ρ0 ≈
√

|�|/σ, (30)

discussed, for instance, in Ref. [33].
One can also calculate the packet’s mean transverse mo-

mentum exactly:

〈p⊥〉 = σ
�(|�| + 3/2)

�(|�| + 1)

K|�|+3/2(2m2/σ 2)

K|�|+1(2m2/σ 2)

 σ
�(|�| + 3/2)

�(|�| + 1)

(
1 + 5 + 4|�|

16

σ 2

m2

)
, (31)

where the function

〈p⊥〉/σ  �(|�| + 3/2)

�(|�| + 1)
≈

√
|�| when |�| � 1, (32)

grows as
√|�| for high OAM, see Fig. 2. Say, for |�| ∼ 103 we

have 〈p⊥〉 
√

103σ ∼ 30σ . As a result,

ρ0〈p⊥〉 ≈ |�|, when |�| � 1, (33)

analogous to the main peak of the Bessel beam.
The invariant condition of paraxiality can now be rewritten

as follows:

|�| σ
2

m2
 〈p⊥〉2

m2
=

(
ε̄2

m2
− 1

)
tan2 θ0 � 1, (34)
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FIG. 2. Mean absolute value of the transverse momentum of the
vortex packet of Eq. (23) in the paraxial regime, |�|σ 2/m2 � 1.

where we have introduced an opening angle θ0 =
arctan〈p⊥〉/p̄, which grows with |�|. One can say that
enhancement of the nonparaxial effects for vortex beams owes
to their large transverse momentum or to the large opening
angle θ0. We would like to emphasize that this enhancement
cannot be reproduced with the simplified Bessel beams or with
the Laguerre-Gaussian packets, as the former have a definite
transverse momentum �, which is independent of �, while
the latter yield just 〈p⊥〉 = σ

√|�| without the nonparaxial
correction.

IV. RELATIVISTIC FERMION

One can define a wave function in momentum representa-
tion for a wave packet of a fermion as follows:

ψf (p) = u(p)√
2ε

ψ (p),

∫
d3p

(2π )3

1

2ε
|ψf (p)|2 = 1 = inv, (35)

where ψ (p) is a normalized bosonic wave function from the
previous section [say, Eq. (8) or Eq. (23)] and

u(p) = (
√

ε + m ω,
√

ε − m (pσ )ω/|p|)T (36)

is a bispinor, which obeys |u(p)|2 = 2ε. In what follows, we
deal with the helicity states for which a 2-component spinor ω

obeys

(nσ ) ω = 2λ ω, n = p̄
|p̄| ≡ ẑ, λ = ±1/2, ω†ω = 1, (37)

where σ are the Pauli matrices. Note that we project the spin
onto the packet’s “mean momentum” p̄ and not onto p, which
is an integration variable.

A wave function in the configuration space, which is an
exact solution to the Dirac equation, can be defined as follows
[compare this with Eq. (13) for a boson]:

ψf (x) =
∫

d3p

(2π )3

1√
2ε

ψf (p)e−ipx

=
∫

d3p

(2π )3

u(p)

2ε
ψ (p)e−ipx . (38)

For the Gaussian packets studied in this paper, the integral can
be evaluated via the steepest descent method. The resultant
paraxial wave function, however, is of little use and it is more
convenient to work in the p space.

The 4-current for the fermion is

j = {|ψf (x)|2, ψ̄f (x)γψf (x)}, (39)

and therefore normalization in the coordinate space is also
invariant, ∫

d3x j 0 =
∫

d3p

(2π )3

1

2ε
|ψf (p)|2 = 1. (40)

If ψ (p) in the right-hand side of Eq. (38) is from Eq. (23),
the function ψf (x) describes a vortex electron wave packet
with a total angular momentum

〈ĵz〉 = � + λ,

as can be easily shown by acting by an operator ĵz = L̂z + ŝz on
the function ψf (x) [here ŝz = 1/2 diag(σ3, σ3) [31]]. Clearly,
the mean energy and momentum of this state coincide with the
scalar expressions (26).

We now turn to the calculation of an intrinsic magnetic
moment for an arbitrary wave packet, which is

μf = 1

2

∫
d3x r × ψ̄f (x)γψf (x)

= 1

2

∫
d3p

(2π )3

d3k

(2π )3
d3x

ψ∗(p − k/2)ψ (p + k/2)

2ε(p − k/2)2ε(p + k/2)
r × ū(p − k/2)γu(p + k/2) exp{−it[ε(p + k/2) − ε(p − k/2)] + irk}

= 1

2

∫
d3p

(2π )3
d3k δ(k) i

∂

∂k
× ū(p − k/2)γu(p + k/2)

ψ∗(p − k/2)ψ (p + k/2)

2ε(p − k/2)2ε(p + k/2)
, (41)

where we have taken into account that ū(p)γu(p) = 2p and the time-dependent term has vanished identically. Thus μf is an
integral of motion. Then we apply the following relation for the helicity states (we do not distinguish the upper and the lower
indices here):

ū(p) γj

∂u(p)

∂pk

−
(

∂ū(p)

∂pk

)
γj u(p) = 2i

(
pk

ε

1

ε + m
[ζ × p]j + [ζ × ĵ]k

)
, j, k = 1, 2, 3,

ζ = 2λn, (42)

where ĵ, |ĵ| = 1, is a unit vector of the j th axis.
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After some calculations, we arrive at the following averages:

μf =
∫

d3p

(2π )3

|ψ (p)|2
(2ε)3

(
ζ (ε + m) + p(pζ )

ε + m

)
+ 1

2

∫
d3p

(2π )3

1

(2ε)2
i p ×

(
ψ (p)

∂ψ∗(p)

∂p
− ψ∗(p)

∂ψ (p)

∂p

)

=
〈

1

(2ε)2

(
ζ (ε + m) + p(pζ )

ε + m

)〉
+ 1

2

〈
u × ∂ϕ(p)

∂ p

〉
≡ μs + μb, (43)

where the definition of a mean value 〈...〉 is from Eq. (14) and
ϕ(p) is a phase of the bosonic wave function,

ψ (p) ≡ |ψ (p)| eiϕ(p). (44)

The first term in Eq. (43) μs describes a spin contribution
to the magnetic moment, while the second (purely orbital)
one μb represents the magnetic moment of a boson and it is
nonvanishing for packets with phases only. It might seem that
both the contributions, that of the phase and that of the spin, do
not mix; that is, there is no spin-orbit coupling. It is indeed the
case when the phase ϕ(p) has no singularities (say, for the Airy
beams), but for vortex packets the square of the wave function
|ψ�(p)|2 still depends on � and that is why the terms like �ζ

survive in μs .
Up until now, we did not specify the model of the wave

packet and the only assumption we made was Eq. (37). Taking
then the nonparaxial vortex states [see Eq. (23)], one can
approximately evaluate the orbital integral in Eq. (43) via the
steepest descent method, which yields the following result in
the laboratory frame of reference:

μb = 1

2

〈
u × ∂ϕ�(p)

∂ p

〉
= ẑ �

〈
1

2ε

〉

 ẑ �
1

2ε̄

[
1 − σ 2

2m2

(
|�| + 1

2
+ m2

ε̄2

)]
. (45)

A couple of comments on this formula are in order. Unlike
the correction to the energy, the one to the magnetic moment is
negative. Neglecting this correction, we return to the result by
Bliokh et al., μb = ẑ �/2ε̄ [1,2]. The nonparaxial term is of the
order of |�|σ 2/m2, exactly as with the other observables, even
though the integral itself also brings the terms |�|2σ 2/m2 �
|�|σ 2/m2. It is the corresponding �2 summand in the expansion
of the normalization constant 1/K|�|+1(2m2/σ 2) from Eq. (23)
that cancels this term.

More interestingly, the factor at the small parameter σ 2/m2

turns out to be not Lorentz invariant, as it depends on the energy.
Mathematically, this happens because the function that is to be
averaged, 1/2ε, does not transform as a component of a tensor
[cf. Eq. (26) with the energy being a p0]. In the ultrarelativistic
regime with ε̄ ≈ p̄ � m, the noninvariant term m/ε̄ represents
a ratio of the particle’s de Broglie wavelength, λdB ∼ 1/p̄,
to its Compton wavelength λc. The standard interpretation of
smallness of this ratio is that the particle motion becomes
quasiclassical in the relativistic regime [O(h̄2) terms can be
neglected]. As can be seen, however, there are also the terms at
σ 2/m2 that are invariant and, therefore, do not vanish when
ε̄ � m. In other words, in contrast to the packets with a
nonsingular phase, the purely quantum corrections influence
the vortex packet’s motion even in the relativistic case.

Thus, the nonparaxial corrections can be frame dependent
for some observables. In fact, a pair of dipole moments (d,μ)
transforms as a product of an antisymmetric 4-tensor and a
volume V . As the latter is not invariant, it is εμ, not μ, that
transforms as a component of a tensor. Obviously, it is the
reason for noninvariance of the correction to the magnetic
moment.

The calculations for the spin contribution are more chal-
lenging and the result is

μs =
〈

1

(2ε)2

(
ζ (ε + m) + p(pζ )

ε + m

)〉

 ζ
1

2ε̄

{
1 − σ 2

2m2

[
1

2
+ 3

2

m

ε̄
+ 1

2

m2

ε̄2
− 3

2

m3

ε̄3

− m

ε̄ + m

(
3

2
− 2

m2

ε̄2
− 3

2

m3

ε̄3

)

+ |�|
(

1 + m

ε̄
− m

ε̄ + m

)]}
, (46)

where the two last frame-dependent summands represent a
parameter � used for characterizing the spin-orbit coupling
in Refs. [1,2,11],

� =
(

1 − m

ε̄

)
sin2 θ0  |�| σ

2

m2

(
m

ε̄
− m

ε̄ + m

)
, (47)

with the only difference that now it grows with |�|. Here,
the |�|2σ 2/m2 corrections have also been canceled by the
corresponding term from the normalization constant and there
has appeared the spin-orbit interaction term,

ζ |�| σ 2

m2
≡ ζ |�| λ2

c

σ 2
⊥

,

which is also |�| times enhanced compared to the Bessel beam
[cf. Eq. (20) in [1]].

As the total magnetic moment of a fermion μf represents
a sum of Eqs. (45) and (46), the spin-orbit coupling will
be obscured by the large orbital contribution, which is �

times stronger. As a result, although the spin-orbit effects are
enhanced for beams with high OAM, the detection of them
seems hardly feasible in the near future (in accordance with the
analysis made for Bessel beams in [34]). Note that separation
of the magnetic moment into the orbital part and the spin one is
unique, as r in the left-hand side of Eq. (41) is not an operator
(see a recent discussion in [11]).

Then, similarly to Eq. (41), one can also calculate an electric
dipole moment,

df =
∫

d3x r j 0 =
〈
ut − ∂ϕ(p)

∂ p
+ p × ζ

2ε(ε + m)

〉
, (48)
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where we have used that

u†(p)
∂u(p)

∂ p
− c.c. = 2i

ε + m
ζ × p.

Due to azimuthal symmetry of the vortex states, the two last
terms in Eq. (48) vanish and so df = 〈u〉t = 0 at t = 0. Note
that one can define a mean path of the electron wave packet
via its dipole moment as

〈r〉 := df∫
d3x j 0

= 〈u〉t,

where the mean velocity 〈u〉 = ū[1 + O(|�|σ 2/m2)] also ac-
quires the frame-dependent corrections, analogous to Eq. (45),
because it is u ε/m that represents a spatial component of a
4-velocity, not u.

V. LAGUERRE-GAUSSIAN BEAMS WITH n �= 0

Neglecting the spin, a well-normalized packet with OAM
and n + 1 radial maxima (n � 0) is the invariant Laguerre-
Gaussian beam with the following paraxial wave function:

ψ
par
�,n (p) =

√
n!

(|�| + n)!

(
2
√

π

σ

)3/2√
2m

(p⊥
σ

)|�|
L|�|

n (p2
⊥/σ 2)

× exp

{
i�φp − p2

⊥
2σ 2

− m2

ε̄2

(pz − p̄)2

2σ 2

}
,

∫
d3p

(2π )3

1

2ε

∣∣ψpar
�,n (p)

∣∣2 = 1, (49)

where L
|�|
n are generalized Laguerre polynomials. Here we

have already neglected the |�|σ 2/m2 corrections, and that is
why 1/2ε = 1/2ε̄ within this accuracy. For the same reason,
these states are monochromatic [36], 〈ε�〉 = ε̄. They are also
orthogonal in n and �,

∫
d3p

(2π )3

1

2ε

[
ψ

par
�′,n′ (p)

]∗
ψ

par
�,n (p) = δn,n′δ�,�′ . (50)

One can also obtain a nonparaxial Laguerre-Gaussian beam
with n �= 0, analogous to Eq. (23), which would be an exact
solution to the Klein-Gordon equation. For such a packet,
the radial index n would reveal itself in n σ 2/m2 corrections.
The number of radial maxima discernible in an experiment,
however, is usually not large (say, n � 10) and for the highly
twisted beam one can always suppose |�| � n. That is why we
shall not study these corrections and restrict ourselves from
now on to the paraxial regime.

A Fourier transform of the function (49) represents a mas-
sive generalization of an optical paraxial Laguerre-Gaussian
beam,

ψ
par
�,n (x) =

∫
d3p

(2π )3

1

2ε
ψ

par
�,n (p) e−ipx =

√
n!

(|�| + n)!

i2n+�

π3/4
√

2m

[ρ/σ⊥(t )]|�|

σ
3/2
⊥ (t )

L|�|
n

[
ρ2/σ 2

⊥(t )
]

× exp

{
i�φr − ip̄μxμ − i(2n + |�| + 3/2) arctan(t/td ) − 1

2σ 2
⊥(t )

(
1 − i

t

td

)[
ρ2 + ε̄2(z − ūt )2/m2

]}
,

∫
d3x 2ε̄

∣∣ψpar
�,n (x)

∣∣2 = 1, (51)

where

td = ε̄

σ 2
∼ σ⊥(0)

ū⊥
, σ⊥(t ) = σ−1

√
1 + (t/td )2

are a diffraction (spreading) time and a beam width, respec-
tively. The latter is Lorentz invariant together with the ratio
[recall Eqs. (19) and (20)]

t/td = τσ 2/m.

Clearly, in the special cases of n = 0 and n = � = 0 we return
to Eqs. (25) and (19), respectively.

As before, Eq. (51) is a Lorentz scalar, it does not suffer
from the drawbacks discussed in [9], because we do not use
the light-cone variables, and it has some notable differences
from its customary optical counterpart. First, the term

i(2n + |�| + 3/2) arctan(t/td )

represents an invariant Gouy phase, which has 3/2 instead of
1(≡2/2) because the packet is localized in a 3D, not a 2D,
space. Then, this phase and the beam width σ⊥(t ) also depend
on the time t and not on the distance z.

Indeed, for a paraxial light beam the so-called time-to-space
conversion takes place,

z  t.

This is no longer the case, however, for massive particles,
especially for beams of the electron microscopes with the
energies of hundreds of keV. While the paraxial states are
applicable when σ � m, that is, for a nonvanishing mass, the
ultrarelativistic regime with ε̄ ≈ p̄ � m is correctly described
by these formulas [37] and it is only in this regime that one can
substitute t → z [due to a saddle point z = ūt  t in Eq. (51)].

To put it differently, it is known that the Klein-Gordon equa-
tion can be reduced to the 2D Schrödinger one in the transverse
plane with the first derivative with respect to time rather than to
z (see, for instance, [24–26]). From this, the customary paraxial
wave equation with ∂/∂z is commonly obtained by demanding
pz � p⊥ [2,10]. This inequality, however, is neither invariant
nor can it be fulfilled in the nonrelativistic domain. Indeed, in
our notation it is

p̄ � 〈p⊥〉  σ
√

|�|, (52)
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whereas the invariant condition of paraxiality is m � σ
√|�|.

As a result, the Eq. (52) holds only if p̄ � m, that is, for
relativistic particles.

Perhaps the simplest argument as to why the Gouy phase
should depend on t in a Lorentz invariant description is that it
is so for nonrelativistic energies for which the corresponding
states (5) satisfy the Schrödinger equation exactly [of course,
Eq. (51) reduces to Eq. (5) in the corresponding limit]. If
needed, one can express the Gouy phase in terms of 〈z〉 by
using t = 〈z〉/ū, and so t/td = 〈z〉σ 2/p̄.

As we have already noticed, the vortex states are not
quasiclassical in the sense that they do not minimize the
uncertainty relations, and only the Gaussian beams [Eq. (19)]
with n = � = 0 at t = 0 do. Indeed, calculating the averages,

〈ρ〉 = σ⊥(t )
�(n + |�| + 3/2)

�(n + |�| + 1)
,

〈ρ2〉 = σ 2
⊥(t )(n + |�| + 1),

〈p⊥〉 = σ
�(n + |�| + 3/2)

�(n + |�| + 1)
, 〈p2

⊥〉 = σ 2(n + |�| + 1),

〈x2〉 = 〈y2〉 = 1

2
σ 2

⊥(t )(n + |�| + 1),

〈
p2

x

〉 = 〈p2
y〉 = 1

2
σ 2(n + |�| + 1),

〈x〉 = 〈y〉 = 〈px〉 = 〈py〉 = 0, (53)

we arrive at the following results (�x =
√

〈x2〉 − 〈x〉2):

�ρ�p⊥ =
√

1 + (t/td )2

[
n + |�| + 1

−
(

�(n + |�| + 3/2)

�(n + |�| + 1)

)2]

≈
√

1 + (t/td )2

(
1

4
− 1

32|�|
)

,

�ρ

〈ρ〉 = �p⊥
〈p⊥〉 ≈ 1

2
√|�| , when |�| � n,

�x�px = �y�py = 1

2

√
1 + (t/td )2(n + |�| + 1)

≈ |�|
2

√
1 + (t/td )2, (54)

when |�| � n. Clearly, �px,y � σ/
√

2 ; �x,�y � σ−1/
√

2,
that is, there is no squeezing for any n, |�|.

More importantly, the beam mean radius 〈ρ〉, unlike the
beam width σ⊥(t ), depends on the OAM:

〈ρ〉 = σ⊥(t )
�(n + |�| + 3/2)

�(n + |�| + 1)
≈ σ⊥(t )

√
|�|, (55)

when |�| � n. Thus, the highly twisted beam is
√|�| � 1

times wider than that with |�| ∼ 1, as also noted in Ref. [33]. To
be precise, one should call 〈ρ〉 = 〈ρ〉(t ), not just σ⊥(t ), a width
of the vortex beam. When producing vortex particles with the
help of the computer-generated holograms or the phase plates,
σ⊥ represents the width of the OAM-less beam incident onto
a mask or a plate (in-state), while 〈ρ〉 defines the width of the
diffracted beam with OAM (out-state).

3 50

2 4 6 8 10
ΡΣ

0.05

0.10

0.15

0.20

Ψ ,n
par 2 (arb. units)

FIG. 3. Radial distribution of the Laguerre-Gaussian beam ac-
cording to Eq. (58) at t = 0 for � = 3 (left), � = 50 (right). Black:
n = 0 (Poissonian behavior), blue (dashed- and dash-dotted lines):
n = 1, red (dashed- and dash-dotted lines): n = 3. For n �= 0, the
beam as a whole is wider than in the ground state, that is, super-
Poissonian. However each line in a set of n + 1 maxima is slightly
narrower than that for n = 0.

Now let us return to the nonparaxial corrections, which are
of the order of

|�| σ
2

m2
≈ �2 λ2

c

〈ρ〉2
, (56)

where the beam width 〈ρ〉 is taken at t = 0. Although this width
grows with the OAM as

√|�|, the numerator grows faster. As
a result, for a vortex beam with |�| � 103 focused on a spot of
〈ρ〉 ∼ 1–10 nm, the conservative estimate of this correction is

�2 λ2
c

〈ρ〉2
∼ 10−4–10−3.

Note that the mean absolute value of the transverse momentum
also grows as

√|�| and therefore at t = 0 [cf. Eq. (33)]

〈p⊥〉〈ρ〉 ≈ |�|, |�| � n. (57)

When n �= 0, the probability density is no longer Poisso-
nian,

∣∣ψpar
�,n (x)

∣∣2 ∝ n!

(|�| + n)!

(
ρ

σ⊥(t )

)2|�|{
L|�|

n

[
ρ2/σ 2

⊥(t )
]}2

× exp

{
− ρ2

σ 2
⊥(t )

}
. (58)

As can be seen from Eq. (53) and in Fig. 3, the radial width
�ρ σ of the whole beam is slightly larger for n �= 0 than for the
fundamental mode n = 0, which reveals a super-Poissonian
distribution. On the other hand, each individual line in a set
of n + 1 maxima becomes slightly narrower than that of the
ground state (that is, sub-Poissonian).

When the number of radial maxima is very large, n → ∞,
and the packet is wide, σ⊥ → ∞, the Laguerre-Gaussian beam
turns into the nondiffracting Bessel one (see Eq. 8.978 in [30]),

ψ
par
�,n (x) → const J�(2σρ) exp{i�φr − ip̄μxμ}, (59)

where 2σ plays the role of the transverse momentum �, which
is independent of � now, and the constant formally diverges,
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as the condition n → ∞ breaks the paraxial approximation,
n σ 2/m2 � 1, and so the Bessel beam is to be normalized in
a cylinder of a large but finite volume. It is also because of
this condition, n � |�|, that the Bessel beam is unsuitable for
precise quantitative estimates of the nonparaxial phenomena
with large �.

Finally, Eqs. (49) and (51) can be generalized for a beam
with two different momentum uncertainties, σp,⊥ � m and

σp,z � m, which can be the case in experiments. Let

σ⊥(t ) = σ−1
p,⊥

√
1 + (t/td,⊥)2, td,⊥ = ε̄/σ 2

p,⊥,

σz(t ) = σ−1
p,z

√
1 + (t/td,z)2, td,z = ε̄/σ 2

p,z (60)

be the width of the (OAM-less) beam and its length, respec-
tively (both are invariant). The corresponding normalized wave
functions are

ψ
par
�,n (p) =

√
n!

(|�| + n)!

2
√

π

σp,⊥

√
2
√

π

σp,z

√
2m

(
p⊥
σp,⊥

)|�|
L|�|

n (p2
⊥/σ 2

p,⊥) exp

{
i�φp − p2

⊥
2σ 2

p,⊥
− m2

ε̄2

(pz − p̄)2

2σ 2
p,z

}
,

ψ
par
�,n (x) =

√
n!

(|�| + n)!

i2n+�

π3/4
√

2m

[ρ/σ⊥(t )]|�|

σ⊥(t )
√

σz(t )
L|�|

n [ρ2/σ 2
⊥(t )] exp

{
i�φr − ip̄μxμ − i(2n + |�| + 1) arctan(t/td,⊥)

− i

2
arctan(t/td,z) − 1

2σ 2
⊥(t )

(
1 − i

t

td,⊥

)
ρ2 − 1

2σ 2
z (t )

(
1 − i

t

td,z

)
ε̄2

m2
(z − ūt )2

}
, (61)

and when σp,⊥ = σp,z ≡ σ we return to Eqs. (49) and (51).
As expected, these states have two diffraction times, td,⊥
and td,z, and therefore two invariant Gouy phases. If needed,
nonparaxial generalizations of these expressions can also be
readily found.

VI. SUMMARY

Many properties of the relativistic vortex beams, especially
the spin-orbit interaction as well as the nonparaxial phenomena
in scattering and radiation, can be quantitatively treated only
when using the spatially localized wave packets described in
a Lorentz invariant way and applicable beyond the parax-
ial approximation. We have proposed such massive packets
and showed that their paraxial counterparts, the invariant
Laguerre-Gaussian beams, have notable differences from the
corresponding states of the twisted photons, especially in
the nonrelativistic case. As it also turns out, the nonparaxial
corrections to observables grow linearly with the OAM for
such packets, regardless of the

√|�| broadening of them and in
contrast to the Bessel beams or to those with the nonsingular
phases. For vortex electrons with σ⊥ � 1 nm and |�| > 103

these corrections can reveal themselves in experiments with
freely propagating energetic particles, especially in collisions.

For instance, one of the nonparaxial effects is the increase of
the invariant mass of the free electron packet by 0.01%–0.1%
due to the high OAM. The electron mass can also be retrieved
in a tabletop Compton scattering experiment; see, for instance,
[35]. For this effective mass shift to be detected in scattering of
optical photons by the moderately relativistic vortex electrons,
one needs to perform such measurements with a resolution
better than 0.1%, which seems challenging but feasible with

modern technology. It is also this shift that reveals itself in the
corresponding correction dσ (1) to the plane-wave cross section
dσpw[7],

dσ (1)/dσpw ∼ |�|σ 2/m2 � α2
em = 1/1372,

Thus, the highly twisted electrons, protons, neutrons, and other
massive particles can become useful tools for particle physics
beyond the conventional plane-wave regime. In order to be
applied in hadronic physics, the particle’s mean transverse
momentum should reach the characteristic hadronic scale of
at least 〈p⊥〉 ∼ 10 MeV. For the OAM of � ∼ 103, one would
need to focus the electron beam to a spot of 〈ρ〉 ≈ |�|/〈p⊥〉 ∼
0.01 nm, which seems hardly feasible now, whereas for � ∼
105 the needed requirement is already 〈ρ〉 ∼ 1 nm.

The nonparaxial corrections described in this paper,
∼|�|λ2

c/σ
2
⊥, can be called kinematic or geometric, as there are

also dynamic effects, which are attenuated as λc/σ⊥ but arise
only in scattering beyond the Born approximation and only
if the azimuthal symmetry of the incoming states is broken,
say, when 〈 p⊥〉 �= 0 [7]. Clearly, such large corrections do not
appear in the description of the wave packets themselves, as can
be easily shown by considering a packet with a nonvanishing
(but small) mean transverse momentum, 〈 p⊥〉2 � σ 2 � m2.
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