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Abstract—We consider the relationship between the unitary quantization scheme and the para-Fermi statis-
tics of order 2. We propose an appropriate generalization of Green’s ansatz, which has made it possible to
transform bilinear and trilinear commutation relations for the creation and annihilation operators for two dif-
ferent para-Fermi fields φa and φb into identities. We also propose a method for incorporating para-Grass-
mann numbers ξk into the general unitary quantization scheme. For the parastatistics of order 2, a new fact
has been revealed: the trilinear relations containing both para-Grassmann variables ξk and field operators ak
and bm are transformed under a certain reversible mapping into unitary equivalent relations in which commu-
tators are replaced by anticommutators, and vice versa. It is shown that this leads to the existence of two alter-
native definitions of the coherent state for para-Fermi oscillators. The Klein transformation for Green’s com-
ponents of operators ak and bm is constructed in explicit form, which enabled us to reduce the initial commu-
tation rules for the components to the normal commutation relations for ordinary Fermi fields. We have
analyzed a nontrivial relationship between the trilinear commutation relations of the unitary quantization
scheme and the so-called Lie supertriple system. The possibility of incorporating the Duffin–Kemmer–
Petiau theory into the unitary quantization scheme is discussed briefly.
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1. INTRODUCTION
The problem of quantization of finite-dimensional

physical systems has permanently attracted the atten-
tion of theoretical physicists. From the recent publica-
tions in this field, the work by Assirati and Gitman [1]
is worth mentioning. In this work, we consider
another approach to the investigation of quantization
in finite-dimensional classical theories, in which
major attention is paid to the Lie-algebra aspects of
physical systems in question. An approach to the
quantization of fields based on the Lie algebra rela-
tions for unitary group SU (2M + 1) was proposed in
[2–4] and independently in [5–8].1 The quantization
scheme proposed in [2] was called uniquantization,
while in [5] it was referred to as “A-quantization.” In
this work, we investigate in greater detail some proper-
ties of the relations obtained in [2] and, in particular,
establish the relationship between unitary quantiza-
tion and the para-Fermi statistics of order 2. Several

basic formulas from [2], which will be repeatedly
referred to in further analysis, will be given below. A
brief scheme of the derivation of these expressions is
given in Appendix A.

Let  and ak be the creation and annihilation oper-
ators that obey the Green trilinear commutation rela-
tions [12] (we confine our analysis to only para-Fermi
statistics)

(1.1)
where k, l, m = 1, 2, …, M and [ , ] denotes a commu-
tator. Operator  denotes ak or  and  = δkl when

 = ak( ) and  = (al); otherwise,  = 0. For uni-
tary quantization, operators  are supplemented with
another set of creation and annihilation operators 
obeying the same commutation relations

(1.2)
In addition to trilinear Green’s relation (1.1) and (1.2),
the given quantization scheme unambiguously leads to

1 It should be noted that some aspects of special cases of quanti-
zation based on SU(2) and SU(3) algebras were considered ear-
lier in [9–11].
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the two types of mutual commutation relations
between operators  and :

(i) trilinear relations

(1.3)

(1.4)
(ii) bilinear relations

(1.5)

(1.6)
Thus, we have two para-Fermi fields of order p,

which must satisfy not only trilinear, but also bilinear
relations. It is well known [13, 14] that commutation
relations (1.1) and (1.2) generate an algebra that is iso-
morphic to the algebra of orthogonal group SO(2M + 1).
Remaining relations (1.3)–(1.6) supplement this alge-
bra to the algebra of unitary group SU(2M + 1). The
particle number operator

(1.7)

together with algebra (1.1)–(1.6) unambiguously
define the unitary quantization scheme.

In addition to the above arguments, it should be
noted that in Govorkov’s construction [2] for the
SU(2M + 1) group, there exists another important
operator denoted by ζ0. In view of relations (A.10) and
(A.18), this operator can be expressed in terms of oper-
ators  and  as follows:

(1.8)

Operator ζ0 possesses the commutation properties:

(1.9)
This article is organized as follows. In Section 2, a

brief review of Greenberg and Messiah’s article [15] is
given for the case of different para-Fermi fields. In
Sections 3 and 4, the set of the commutation rules is
generalized for the Green components of the creation
and annihilation operators of two parafields φa and φb.
A detailed proof of the fact that for parastatistics of
order p = 2, this system converts the bilinear and tri-
linear Govorkov relations into identities is presented.
Section 5 is devoted to the inclusion of para-Grass-
mann numbers ξk into the general scheme of unitary
quantization. Section 6 deals with the construction of
the commutation relations between operators ak and

bm, para-Grassmann numbers ξk, and operator ,
where  is defined by formula (5.9) and α is an arbi-
trary real number. Two important particular cases of
the general relations, in which α = ±π and α = ±π/2
are considered. A certain invertible mapping of trilin-
ear relations, which include both para-Grassmann

k̂a k̂b

= δ + δ + δˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ[[ , ], ] 4 2 2 ,m k l km l lk m lm kb a a b b b

= δ + δ + δˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ[[ , ], ] 4 2 2 ,m k l km l lk m lm ka b b a a a

=ˆ ˆˆ ˆ[ , ] [ , ],k m m ka b a b
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= =
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numbers and field operators, is also considered. Non-
trivial peculiarities of this mapping are revealed. In
Section 7, the action of some operators, which emerge
in the unitary quantization scheme, on the vacuum
state is defined.

Section 8 is devoted to the discussion of the prop-
erties of coherent states. In particular, an interesting
fact of the existence of another state for para-Fermi
statistics of order 2 is discovered, which possesses the
same properties as those for the commonly used
coherent states. In Section 9, the possibility of deriving
the trilinear Govorkov relations from the requirement
of the invariance of the commutation relations
between operators ak, bm, and  under unitary trans-
formation of operators ak and bm is analyzed. It is
shown that in contrast to the case of a single parafield,
this requirement of invariance alone is insufficient for
reconstructing all trilinear Govorkov’s relations. In
Section 10, the so-called Klein transformation is con-
structed for the Green components of the creation and
annihilation operators of parafields. In Section 11, the
relation between trilinear Govorkov relations and the
Lie supertriple system is considered. Section 12 deals
with the inclusion of the Duffin–Kemmer–Petiau
formalism into the general unitary quantization
scheme. It is shown that these two approaches are
incompatible in the long run. In concluding
Section 13, the possible relation between the unitary
quantization scheme based on the Lie algebra of uni-
tary group SU(2M) and the para-Bose statistics is dis-
cussed briefly. In the same section, some unusual
properties inherent only in the parastatistics of order 2
are accentuated.

In Appendix A, all basic relations of the Lie algebra
for unitary group SU(2M + 1) are given. Some inaccu-
racies we noticed in Govorkov’s publications [2, 4] are
also indicated. In Appendix B, various operator iden-
tities which are used throughout the work are written.
In Appendix C, all basic commutation relations
involving operator  are collected.

2. REVIEW OF THE GREENBERG
AND MESSIAH WORK

Let us write general relation (1.1) in a more detailed
form:

(2.1)

(2.2)

By virtue of Jacobi identity (B.1) this gives

(2.3)

Greenberg and Messiah [15] proposed a generaliza-
tion of relations (2.1)–(2.3) to the case of several dif-
ferent parafields. For determining the corresponding
commutation rules between different parafields, it was

�N

α �

e iN

= − δ†[[ , ], ] 2 ,k l m km la a a a

=[[ , ], ] 0.k l ma a a

= δ − δ†[[ , ], ] 2 2 .k l m lm k km la a a a a
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required by the authors that the desired relations sat-
isfy the following three conditions:

(i) the left-hand side of these relations must have
the trilinear form2

while the right-hand sides must be linear;
(ii) when the internal pair [A, B] is formed by the

operators of the same field, it must commute with C if
C corresponds to the other field;

(iii) ordinary Bose and Fermi fields must satisfy
these relations.

In the case when these conditions are imposed to
two para-Fermi fields φa and φb, Greenberg and Mes-
siah obtained the following system of trilinear relations
involving field φa twice and field φb once:

(2.4)

(2.5)

(2.6)
If Jacobi identity (B.1) together with conditions (i) and
(iii) is employed, relation (2.4) leads to two more tri-
linear relations:

(2.7)

(2.8)
The derivation of these relations will be considered in
Section 9 in greater detail. Relations (2.4)–(2.8) are
supplemented with their Hermitian conjugate and 18
more trilinear relations involving field φb twice and
field φa once.

The authors of [15] also proposed a direct general-
ization of the Green ansatz [12]. Each field operator is
written in the form of an expansion in Green’s compo-
nents:

(2.9)

where p is the order of the parastatistics. Each pair of
components corresponding to the same field satisfies
the commutation relations

(2.10)

analogous relations can be written for field φb. Here,
braces { , } denote an anticommutator. For each pair of
Green’s components of different fields, Greenberg
and Messiah postulated the following rules:

2 However, the authors themselves did not rule out the existence
of bilinear commutation and anticommutation relations
between different parafields. Nevertheless, they concentrated
attention only on trilinear relations. In the unitary quantization
scheme, bilinear relations (see Eqs. (1.5) and (1.6)) appear inev-
itably.

[[ , ], ],A B C

=†[[ , ], ] 0,k l ma a b

=[[ , ], ] 0,k l ma a b

=† †[[ , ], ] 0.k l ma a b

= δ†[[ , ], ] 2 ,m k l kl mb a a b

= − δ†[[ , ], ] 2 .l m k kl ma b a b

α α

α= α=
= =∑ ∑

( ) ( )

1 1
, ,

p p

k k m ma a b b

α α α α

α β α β

= δ =
= = α ≠ β

( ) †( ) ( ) ( )

( ) ( ) ( ) †( )

{ , } , { , } 0,

[ , ] [ , ] 0, ,
k l kl k l

k l k l

a a a a

a a a a
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(2.11)

and

(2.12)

The fields obeying rules (2.11) and (2.12) turn trilinear
relations (2.4)–(2.8) into identities.

Finally, the uniqueness conditions of vacuum
state |0〉,

(2.13)

and

(2.14)

were supplemented by Greenberg and Messiah with
two more conditions:

(2.15)

These additional conditions can be obtained from
commutation relations (2.4)–(2.8) and from the
uniqueness of vacuum state |0〉. This derivation will be
considered in more detail in Section 7 in the context of
our problem.

3. GREEN’S ANSATZ
FOR GOVORKOV’S RELATIONS

In Introduction, the trilinear and bilinear commu-
tation relations emerging in the Govorkov unitary
quantization scheme were written out. As the first
step, we consider trilinear relations for two different
parafields. The following expressions are the special
case of general formula (1.3):

(3.1)

(3.2)
These relations differ from analogous relations (2.7)
and (2.8) of the Greenberg–Messiah quantization
scheme in the presence of the last two terms on the
right-hand sides. Summing expressions (3.1) and (3.2)
and using the Jacobi identity, we obtain an analog of
trilinear relation (2.4):

(3.3)
Here, we also observe the nonzero term emerging on
the right-hand side.

Let us write the a and b operators in the form of
Green expansion (2.9). The following question arises:
what must be the form of commutation rules for
Green’s components  and  for trilinear Govo-

α α α α

α α α α

= =
= =
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( ) ( ) †( ) †( )
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〉 = δ 〉

†
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|0 |0 , for all ,
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b b p m n

〉 =
〉 =

†

†

|0 0, for all , ,

|0 0.
m k

k m

b a m k
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= δ + δ†[[ , ], ] 2 4 ,m k l kl m km lb a a b b
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rkov relations (3.1) and (3.3) to be satisfied identically?
Clearly, commutation rules (2.10) (and analogously
for the φb field) must hold in this case also since the
sets of the a and b operators separately satisfy the stan-
dard trilinear relations (1.1) and (1.2) for para-Fermi
fields. Therefore, we need to generalize relations (2.11)
and (2.12) for Green’s components of different fields.
It should be noted that these commutation rules are
quite trivial in a certain sense.

Let us consider specifically relation (3.3). The left-
hand side can be written in terms of Green’s compo-
nents. For commutator [ , al], we have

The last term on the right-hand side is equal to zero by
virtue of relations (2.10). For the double commutator,
we can write

(3.4)

Symbol  denotes summation over both α and β
indices with a single constraint α ≠ β. For the first
expression in the summand on the right-hand side of
relation (3.4), we use operator identity (B.2), while for
the second expression, usual Jacobi identity (B.1)
must be used:

(3.5)

(3.6)

In view of Greenberg–Messiah commutation rules
(2.11) and (2.12), these expressions vanish, and we
arrive at relation (2.4). Let us modify the first two rela-
tions in (2.11), leaving the remaining terms unchanged
(in this case, the second double commutator (3.6)
vanishes). For this purpose, we introduce a new oper-
ator Ω as a certain additional algebraic element that
satisfies the relations

(3.7)

It can easily be seen that expression (3.5) in this case
leads to

and, hence, by virtue of relation (3.4), we reproduce
(3.3). If, however, we try to apply commutation rules
(3.7) to trilinear relation (3.1), it can be seen that the

†
ka
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α= α≠β
= +∑ ∑† †( ) ( ) †( ) ( )

1
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k l k l k la a a a a a
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+

∑
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1
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a a b a a b
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α α α α α α= α −
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= δ Ω Ω =
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last term on the right-hand side of relation (3.1) is not
reproduced. In this case, a more radical modification
of expressions (2.11) and (2.12) is required. We will
postulate below a new system of bilinear relations for
Green’s components  and . Further, we verify
that these commutation rules turn bilinear (1.5) and
(1.6) and trilinear (3.1) and (3.3) Govorkov’s relations
into identities. This, however, will occur only for the
special case of parastatistics of order 2.

Let us require that Green’s components  and
 and additional operator Ω satisfy the following set

of commutation rules:

(3.8)

(3.9)

(3.10)

(3.11)

It should be noted that not all of these relations are
independent. It will be shown at the end of this section
that relations (3.10) are a consequence of relations
(3.8), (3.11) and bilinear relations (1.5). Comparing
relations (3.8) and (3.10) with relations (3.7), we see
that the latter relations contain commutators instead
of anticommutators. The same is true for Greenberg–
Messiah relations (2.12) also, in which commutators
are replaced by anticommutators (3.11).

Let us first consider the simplest relations from
Gorvorkov’s commutation rules, namely, bilinear
relations (1.5) and (1.6). In particular, relation (1.5)
implies that

Substituting expansion (2.9) into the left-hand side of
this relation and taking into account relations (3.9),
(3.10), and the Jacobi identity, we obtain the following
chain of equalities:

In deriving these relations, we have also used the
commutation rules for Green’s components of the φa
field (2.10).

Further, we consider bilinear relation (1.6), which
implies, in particular, that

α( )
ka β( )

mb
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ka

β( )
mb
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Using commutation rules (2.10), relations (3.9),
(3.10), and Jacobi identity (B.1), we obtain the chain
of equalities

Let us return again to bilinear relation (1.5) and
analyze a slightly more complicated case when one
operator is a creation operator and the other is an
annihilation operator:

(3.12)
Using relations (3.8) and (3.10), we obtain for the left-
hand side of (3.12)

(3.13)

By virtue of the Jacobi identity and commutation rules
(2.10) and (3.10), the expression in the summand in
the last term assumes the form

Adding and subtracting the sum

to the right-hand side of relation (3.13), we obtain

Thus, bilinear relation (3.12) holds if operator Ω
satisfies the following condition:

(3.14)
The examples considered here are sufficient to state that
bilinear relations (1.5) and (1.6) are turned into identities
using system of commutation relations (2.10), (3.8)–
(3.11) and the additional condition imposed on oper-
ator Ω (3.14).

Concluding the section, we will show that for a spe-
cific case of parastatistics (namely, for p = 2), commu-
tation rules (3.10) are consequences of relations (3.8),
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(3.11) and bilinear relation (3.12). In other words, if we
postulate the validity of relations (3.8), (3.11), and
(3.12), their inevitable consequence will be relations
(3.10). For this purpose, we write relation (3.12) in
terms of Green’s components:

(3.15)

Let us now calculate the commutator between this

relation and operator . In this case, we have two
nontrivial trilinear commutators:

(3.16)

In the former case, we used identity (B.2). As a result,

the required commutator of  with (3.15) leads to

relation [Ω, ] = , and the analogous commuta-

tor with  gives [Ω, ] = , and we reproduce the
first relation in (3.10). For obtaining the second rela-

tion, we must take the commutator between  and
(3.15). For α = 1, nonzero commutators are

(3.17)

This gives [Ω, ] = – . The commutator contain-

ing  leads to an analogous expression with the
replacement of Green’s index 2 → 1; in this way, we
reproduce the second relation in (3.10).

4. TRILINEAR GOVORKOV’S RELATIONS

Let us now analyze trilinear Govorkov’s relation (1.3)
and (1.4). In this case, it is sufficient to consider only
particular cases (3.1)–(3.3). We have already analyzed
relation (3.3) in the previous section, but we will now
proceed in a different way. We will use the Jacobi iden-
tity for the first expression on the right-hand side of
relation (3.4) and identity (B.2) for the second expres-
sion. In accordance with commutation rules (3.8)–
(3.11), instead of relations (3.5) and (3.6), we obtain
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Here, we also reproduce relation (3.3) as was done for
rules (3.7).

Let us now consider more complicated trilinear
relation (3.1), which we write again for convenience:

(4.1)
For the “internal” commutator we can use the result
(3.13):

Then the initial expression for analyzing the left-hand
side of (4.1) takes the form

(4.2)

Using identity (B.2), we can write the double commu-
tator in the summand in the form

and present the triple sum as

(4.3)

Taking into account relations (2.10) and (3.11), we
obtain the following nonzero terms:

The second contribution on the right-hand side of the
last expression can be presented with the help of iden-
tities (B.2) and (B.1) as
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This contribution is zero by virtue of relations (2.10)
and (3.9). Finally, we obtain instead of relation (4.2)

(4.4)

It can be seen that this expression reproduces (4.1)
only when p = 2. In this particular case, the last term
on the right-hand side of relation (4.4) is just absent,
and numerical coefficients of the remaining terms take
correct values.

Trilinear relation (3.2) holds automatically by vir-
tue of the Jacobi identity. Nevertheless, it is instruc-
tively to demonstrate this directly. In view of relation
(3.9), the following equality holds:

therefore, we can write

(4.5)

We represent the triple sum on the right-hand side of
this relation again in the form of decomposition (4.3).
With allowance for commutation rules (3.11) and
(2.10), expression (4.5) takes the form

For the second contribution on the right-hand side,
we have a chain of equalities

which gives, instead of (4.5),
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It can be seen that this expression reproduces trilinear
relation (3.2) only for p = 2.

5. INCLUSION OF PARA-GRASSMANN 
NUMBERS

In this section, we intend to include in the general
scheme of uniquantization the para-Grassmann num-
bers that will be denoted by ξk, k = 1, …, M. Our task
is the formulation of the commutation rules including
simultaneously ξk and operators ak and bm. In the case
of a single para-Fermi field (e.g., φa), such commuta-
tion rules were proposed in [16]:

(5.1)

For the special case of parastatistics p = 2, we can use
instead of the last relation in (5.1) the simpler expres-
sion

The remaining relations can be obtained from (5.1) by
the Hermitian conjugation. We assume that analogous
commutation rules exist for the second φb field also.
For para-Grassmann numbers ξk, the Green repre-
sentation

also holds. The bilinear commutation relations for
Green’s components , , and  were given
in [17]:

(5.2)

including their Hermitian conjugates. They turn rela-
tion (5.1) into identity.

As noted above, we are interested in the trilinear
relations including simultaneously operators ak, bm,
and para-Grassmann numbers ξk. It is natural to begin
our analysis with the following expressions:

Preliminary analysis of these relations using (3.8)–
(3.11) and (5.2) has shown, however, that the double
commutators are ultimately reduced to tangled expres-
sions. For this reason, keeping in mind the above anal-
ysis, we consider slightly different trilinear relations,
namely,
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ξ ξ† †[ ,[ , ]], [ ,[ , ]].m k l k m lb a a b
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(5.3)

In terms of the Green components and with allowance
for relations (5.2), the first relation takes the form

(5.4)

Using identity (B.3) and rules (3.8) and (5.2), we can
write the first term on the right-hand side of this rela-
tion in the form

It can easily be seen using the same identity that the
second term in expression (5.4) vanishes and, hence,
we obtain instead of (5.4)

(5.5)
Analogous line of reasoning for the second expression
in (5.3) leads to

(5.6)
As a direct consequence of relations (5.5), (5.6), and
identity (B.3), we obtain the following equalities:

It should be noted that relations (5.5) and (5.6) are a
direct consequence of commutation rules (3.8)–(3.11)
and (5.2) for the Green components and contain no
new information. However, we can proceed further
and postulate the following condition:

(5.7)
where Λ is a certain constant satisfying (by virtue of
relation (3.14)) the condition

(asterisk denotes complex conjugation). Therefore,
instead of relations (5.5) and (5.6), we now have the
desired trilinear relations

(5.8)

Govorkov has introduced in [2] an important oper-
ator :

(5.9)

where λ is a real-valued nonzero constant.3 In terms of
operator ζ0 (1.8), expression (5.9) with allowance for
(3.12) can be written in the form

3 Note that number λ was fixed neither in [2] nor in review [4].
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(5.10)

Operator  possesses the following properties:

(5.11)

These relations exactly coincide with relations (3.10)
for Green’s components  and . Nevertheless,
operator Ω in relation (3.10) cannot be literally identi-
fied with operator i , since this would lead to contra-
dictions in further analysis. A certain nontrivial rela-
tion between i  and Ω can be seen at a simple level if
we derive a relation of type (5.7) for operator i . For
this purpose, we consider the anticommutator

The first term in the summand is defined by the first
relation in (5.8), while the second term is given by

(validity of this expression will be shown in the next
section). Taking into account the above arguments, we
can write

then expression (5.10) leads to

(5.12)

where

(5.13)

We can derive the explicit expressions for the com-
mutators between operator i  and Green compo-
nents  and . For this purpose, we substitute
relation (3.13) for p = 2 into the right-hand side of
relation (5.9), which gives

(5.14)

Using relations (3.10) and equality (3.16), we obtain
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Analogous arguments for commutators with Green
components  taking into account relations (3.10)
and (3.17) lead to

(5.16)

In spite of the somewhat unusual form of commuta-
tion relations (5.15) and (5.16), these relations cor-
rectly reproduce (5.11), which can easily be verified by
simply summing the relations in (5.15) and in (5.16)
and taking into account the fact that

6. COMMUTATION RELATIONS
WITH OPERATOR 

Let us define a set of commutation relations
between operator , operators ak, bm, and para-
Grassmann numbers ξl. Here, α is an arbitrary real
number. For this purpose, we note above all that oper-
ator ak satisfies the following equality:

(6.1)

In deriving this relation, we have taken into account
identity (B.7) and relations (5.11). A similar expression
can also be obtained for operator bm. Using equality
(6.1), we can write basic relations determining the
rules of permutation between  and ak, bm:

(6.2)

Here, we are mainly interested in two important spe-
cial cases of these formulas:

(i) when α = ±π, we have

(6.3)

(ii) when α = ±π/2, we get

(6.4)

(6.5)
It should be emphasized that relations (6.4) and (6.5)
indicate the possibility of two equivalent “mappings”
of operator bk into operator ak:

(6.6)
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This circumstance is convenient, in particular, in
analysis of specific expressions. Anticommutation
relations (6.3) coincide with analogous relations for
operator (–1)N = e±πiN:

(6.7)
where N is the particle number operator (1.7). Rela-
tions (6.7) hold, since

(6.8)

As regards relations (6.4) and (6.5), we can mention an
interesting formal relationship with Schwinger’s pub-
lications [18, 19] (see also [20]) devoted to the con-
struction and analysis of unitary operator bases. The
relation

from [18, 19] is analogous to (6.4), (6.5). Here, (α)
and (α) are two orthonormal operator bases in a
given space, which are connected by unitary operator

 = ( ):

where |ak〉, |bk〉, and their adjoints form two ordered

sets of vectors. In our case, operator  plays the
role of operator . A number of other coincidences
between two formalisms can be indicated, but we will
not dwell on detailed analysis of this relationship.

Let us introduce para-Grassmann numbers ξk.
Since we now have anticommutation relation (5.7), we
must consider the following expression instead of
(6.1):

Here, we have used identity (B.8). Thus, we have the
following commutation rule between operator eαΩ and
para-Grassmann numbers ξk:

Analogously, with allowance for relation (5.12), we
obtain the following expression for operator :

(6.9)
On the basis of permutation relations (6.4), (6.5), and
(6.9), the following question arises: what is the form
acquired by various trilinear relations under mapping
(6.6)? The answer to this question is quite unexpected:
this mapping is reduced to simple replacement ak  bk
not in all cases.
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Ŷ
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Let us consider the mapping of the simplest trilin-
ear relation from (5.1), which involves only one oper-
ator am:

(6.10)

We consider first the commutator [ξl, am]. Using rela-
tions (6.6) and (6.9), we arrive at the following expres-
sion:

(6.11)

Pay attention to the fact that an anticommutator
appears on its right-hand side. The substitution of
relation (6.11) into (6.10) gives

(6.12)

Further, using relations (6.3) and (6.9), we obtain the
following expression for the last term in (6.12):

which gives, instead of (6.12),

(6.13)

Contrary to the expectation, relation (6.10) under map-
ping (6.6) is not transformed into an analogous expres-
sion differing only in replacement am → bm. It can be
seen that in addition to this replacement, all commuta-
tors are replaced by anticommutators. This situation
can take place only for parastatistics of order 2.

We can directly verify the correctness of trilinear
relation (6.13) using the Green ansatz. Indeed, in view
of commutation rules (5.2), the following equality
holds:

Using now the decomposition of triple sum (4.3), we
obtain

(6.14)

Taking into account identity (B.2) and relations (5.2),
we can obtain the following expressions for the first
two terms on the right-hand side of relation (6.14):
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The third term in relation (6.14) is absent for p = 2.
Let us consider the mapping of more nontrivial tri-

linear relations (5.8). Specifically, we consider the
second of these relations:

(6.15)
Using the second formula in (6.6), we obtain the initial
expression for our analysis:

For the commutator on the right-hand side, we use the
expression analogous to (6.11):

Multiplying both sides of expression (6.15) by operator
 and taking into account the above arguments,

we obtain

The expression in the parentheses on the left-hand
side is equal to bk{ξl, }, while the expression in

the parentheses on the right-hand side is ξk.

Cancelling out the common factor  on the left-
and right-hand sides, we finally obtain

(6.16)
Here, we again observe that under the mapping of
expression (6.6), not only the replacement of opera-
tors a  b occurs in trilinear relation (6.15), but the
commutator is replaced by the anticommutator, and
vice versa. Similarly to the previous case with (6.13),
we can verify relation (6.16) using the Green represen-
tation for operators and para-Grassmann numbers.

Let us consider the mapping of the trilinear relation
from (5.1), which contains operators ak and :

The arguments completely analogous to those in the
previous case lead to the relation

(6.17)
the validity of which can be verified using the Green
ansatz.

The peculiarity of all examples considered above is
that para-Grassmann numbers ξk always appear in the
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commutator or anticommutator together with opera-
tors ak or bm (or with their Hermitian conjugates). Let
us consider the mapping of the relations for which this
is not true, for example, the relations of the form

(6.18)

Clearly, under mapping (6.6), these two relations can
never be converted into each other, since their right-
hand sides are different. Repeating the above argu-
ments, we obtain

i.e., the structure of trilinear relations remains
unchanged, and these relations in the given case are
just Hermitian conjugation of (6.18). The same also
holds for trilinear relations that do not contain variable
ξk at all, for example,

Under mapping (6.6), this relation is transformed to

In this case also, the structure is preserved completely.
Therefore, all trilinear commutation relations can be
divided into two sets, in one of which their structure
changes under mapping (6.6), while in the other, the
structure is preserved. It depends on how para-Grass-
mann variable ξk enters into a specific trilinear rela-
tion. All above arguments are obviously also valid for
the mapping inverse to (6.6), i.e.,

(6.19)

We must only replace operators ak in initial relations
(6.10), (6.16), etc., by bk (and vice versa) and do the
same in final formulas (6.13), (6.16), etc.

7. ACTION OF OPERATORS
Ω AND i  ON THE VACUUM STATE

Let us consider the action of operators Ω and  on
vacuum state |0〉. For operator  (5.10), we can write

(7.1)

In accordance with the definition of operator ζ0 (1.8),
taking into account relation (2.13), we obtain

(7.2)

Imposing the additional Greenberg—Messiah condi-
tion (2.15), we find
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therefore, it follows from expression (7.1) that

If we required that the condition

(7.3)
be satisfied analogously to the similar condition for
the particle number operator,

we would arrive at the trivial requirement λ = 0. How-
ever, the latter condition actually leads to degeneracy
of the theory under consideration. The only way to
avoid this is to reject conditions (2.15).

To find out how relations (2.15) should be changed
in this case, we consider in detail the derivation of
conditions (2.15) as presented in [15]. However, we
will now proceed from trilinear Govorkov relations. At
the first step, we act by relation (4.1) on the vacuum
state:

The uniqueness condition for vacuum state |0〉 implies
that

(7.4)
where cmk are certain numbers. It should be noted that
at this stage of analysis, additional term 4δkmbl on the
right-hand side of relation (4.1) is immaterial. Fur-
ther, we consider a commutator of the form

Using trilinear relations (2.1) and (3.3) with the inter-
change of a and b, we obtain

Precisely at this stage, a new term appears on the right-
hand side as compared to the Greenberg and Messiah
case. Acting with the last expression on the vacuum
state and using Eqs. (2.14) and (7.4), we obtain

or

We set

where c is an arbitrary generally speaking complex-
valued constant. Thus, using the unitary quantization
scheme, we arrive at the following additional condi-
tions instead of (2.15):
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(7.5)

In this case, relation (7.2) implies that

(7.6)

and, hence,

(7.7)

Acting further with relation (5.12) on the vacuum state
and taking into account the rule [17]

and Eq. (7.7), we obtain the equation connecting con-
stants Λ and c:

or

(7.8)

As a direct consequence of relations (7.8) and (5.7), we
obtain the rule of action of operator Ω on the vacuum
state:

If we required the fulfillment of condition (7.3),
Eqs. (7.7) and (7.8) would result in unambiguous fixa-
tion of constants Λ and c in terms of parameter λ:

(7.9)

It is the only parameter that remains undefined in the
theory considered here. It should be noted that in the
case of (7.9), constant  vanishes, and we obtain
instead of relation (5.12)

8. COHERENT STATES
The coherent states of para-Fermi operators were

constructed and studied in [16] based on para-Grass-
mann algebra. The coherent state of the set of para-
Fermi oscillators ak was defined as

(8.1)

so that

(8.2)

In the notation of coherent state |(ξ)p〉 adopted in [16],
we have used additional symbol a to emphasize that
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this state is associated with field φa. Expression (8.2) is
a consequence of the operator relation

(8.3)

which can easily be obtained using identity (B.7) and
trilinear relations (5.1). It should only be noted in this
connection that the simple form of the second term on
the right-hand side of relation (8.3) is due to exact
truncation of the series

after the second term of the expansion.
In a similar way, we can define the coherent state

for a set of para-Fermi oscillators bk:

(8.4)

so that

(8.5)

In the general case, coherent state (8.4) for b-opera-
tors is not at all a coherent state for a-operators. How-
ever, the situation with uniquantization for a parasta-
tistics of order 2 is somewhat different. Indeed, let us
consider the following operator identity:

(8.6)

Here and below, we are using for simplicity of notation
the conventional rule of summation over two repeated
indices. By virtue of identity (B.8) and relations (5.8),
we can write

(8.7)
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consequently, identity (8.6) leads to an operator equal-
ity of the form

(8.8)

In contrast to equality (8.3), the sign in the exponen-
tial function of first term on the right-hand side of this
relation is reversed. This, however, is immaterial since
under the action of operator (8.8) on the vacuum state,
this term vanishes. More serious changes have
occurred in the second term; as compared to relation
(8.3), it acquired the additional factor

(8.9)

This is due to the fact that series in expression (8.7) is
not terminated after the second term Λξk as in the der-
ivation of relation (8.3). The only positive aspect is the
finiteness of series (8.9). In particular, for the most
important case from the physical point of view, when
M = 2 (and p = 2), this series contains only the terms
appearing in (8.9). Acting with operator relation (8.8)
on the vacuum state, we obtain

(8.10)

If we introduce the conjugate coherent state for the φb
field,

we can write the matrix element of operator ak for spe-
cial case M = 2 in the basis of coherent states for
b-operators:

where the overlap function has the standard form [16]

(8.11)

The expression on the right-hand side of relation
(8.10) is inevitably cumbersome in this approach. This
is ultimately a consequence of “implicating” the
coherent state with the opposite sign of para-Grass-
mann variable ξk. Indeed, by acting with operator

[ξl, ] on relation (8.10), we obtain
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By virtue of relation (5.8), this expression can also be
written as

(it should be recalled that the summation over repeated
indices is implied). In turn, the state |(–ξ)2; b〉 can be
represented as a result of action of the parafermion
operator of the so-called G-parity (–1)N with particle
number operator (1.7) on the initial coherent state
|(ξ)2; b〉; i.e.,

It should be noted that such states were also consid-
ered in [21] using usual Fermi statistics in the context
of construction of the worldline path integral for the
imaginary part of the effective action, i.e., of the phase
of the fermion functional determinant. It is also note-
worthy that the G-operator appears in the so-called
deformed Heisenberg algebra (Calogero–Vasiliev
operator) [22–24] involving reflection operator R =
(–1)N and deformation parameter ν ∈ . It was shown
in [25] that this single-mode algebra has finite-dimen-
sional representations of a certain deformed parafer-
mion algebra that can be reduced to the standard para-
fermion algebra of order 2 for deformation parameter
ν = –3. This may indicate a certain relationship
between the Govorkov unitary quantization and the
deformed Heisenberg algebra.

In Section 6, we analyzed the mappings of various
trilinear commutation relations. Here, we consider the
mapping of coherent states (8.1) and (8.4). It would be
interesting to find out whether the coherent states are
interrelated by a transformation of the type (6.6) (or
(6.19)). To be specific, we take (8.1) as the starting
expression and choose the following relation as a
transformation connecting operators ak and bk:

(8.12)

The final expression has a simple form, but its deriva-
tion is slightly laborious.

Taking into account relation (8.12), we can write
formula (8.2) in the form (for p = 2)

By acting with operator  on the left and insert-
ing unit operator

in front of vacuum state |0〉 on the left-hand side and,
in addition, the unit operator into the right-hand side
between ξk and the exponential function, we obtain
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(8.13)

Using operator identity (B.9), we get

At the last step, we have used relation (6.11). By virtue
of relation (6.9), the expression in the first parentheses
on the right-hand side of (8.13) has the form

Taking into account the above arguments, we obtain
instead of relation (8.13)

(8.14)

In Section 7, we have derived the rule of action of
operator i  on the vacuum state:

(8.15)

Using this rule, we obtain

It remains for us to analyze the exponential operator
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Let us consider the following expansion:
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In deriving this expression, we have taken into account
the fact that by virtue of relations (6.3) and (6.9), the
following equality holds:

Therefore, we have

and

Substituting the resulting expressions into (8.17), we
find that exponential operator (8.16) can be written in
the form

On the right-hand side of this expression, the action of
operator  on the vacuum state is defined by for-
mula (8.15). In view of the above arguments, the basic
expression (8.14) takes the form

(8.18)

It should be emphasized that all exponential factors
containing constant  have been cancelled out
exactly. This is an indirect proof of the correctness of
our line of reasoning. Slightly cumbersome expression
(8.18) becomes an identity if the following relation
holds4

(8.19)

4 The relation of form (8.19) is naturally not unique. For example,

the relation  also

converts relation (8.18) into an identity. However, the sign in the
exponential function on the right-hand side has changed, and
there is no factor i in front of ξk. In addition, it can be verified by
direct calculations that in contrast to (8.19), this relation does
not hold.
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Thus, the mapping of coherent state (8.1) with (8.2)
leads not to coherent state (8.4) with (8.5), but to
expression (8.19). This is in full agreement with the
rule established in Section 6: if para-Grassmann num-
ber ξk appears in a commutator (anticommutator)
together with operator ak or bk (or their conjugates), in
addition to the replacement ak  bk in mapping (6.6)
or (6.19), we must replace the commutator (anticom-
mutator) by the anticommutator (commutator).
Clearly, factor (±i) in expression (8.19) is immaterial
in this case.

Let us now prove relation (8.19) by direct calcula-
tion. Omitting factor (±i) on the left- and right-hand
sides, we can write the relation in the form

(8.20)

To prove this relation, it is sufficient to consider the
following expression:

(8.21)

Here, we have used trilinear commutation rules (6.17)
and (6.13), which hold for p = 2. The series in expres-
sion (8.21) is truncated precisely after the second term
of the expansion as in the calculation of operator rela-
tion (8.3) for the standard definition of coherent state
(8.1), (8.2). An analog of expression (8.3) is now

Acting on vacuum state |0〉 with the above expression,
we arrive at formula (8.20). Further, we can prove that
instead of expression (8.8), we obtain

Finally, we can obtain the overlap function for the

“coherent” state exp |0〉. After cumbersome

calculations that are omitted here, we get
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This should be expected because the right-hand side
in expression (8.11) is invariant under mapping (6.6)
(or (6.19)).

9. UNITARY TRANSFORMATIONS

It was shown in [26] that trilinear relations (2.1)–
(2.3) for single para-Fermi field φa can be derived from
the requirement that the equations

(9.1)

where N is the particle number operator (1.7), be
invariant under unitary transformation of ak operators:

Here, infinitesimal transformation parameters αkl
obey the condition

(9.2)

The following question arises: can trilinear Govo-
rkov relations (3.1)–(3.3) containing operators of two
different para-Fermi fields φa and φb be obtained pro-
ceeding from the requirement of the invariance of the
equations

(9.3)

under an infinitesimal linear transformation of opera-
tors ak and bk? For convenience of further analysis, we
write once again the explicit form of operator i :

(9.4)

Clearly, the required transformation leaving Eqs. (9.3)
invariant must “mix” operators ak and bk, i.e., must
have the form

(9.5)

Here, we have omitted for brevity the summation sym-
bols and required that infinitesimal transformation
parameters αkl and βkl satisfy condition (9.2). The
commutator in expression (9.4) can be written in the
form

The requirement of invariance of the first equation in
(9.3) leads to the following relation:

( ) ( )
( )
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= ξ ξ

† †
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1 1'0| exp { , } exp { , } |0
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=
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l

a a a

α + α =* 0.kl lk
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�N

=
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† † †
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= − α + β† † † †' '[ , ] [ , ] [ , ] [ , ].k k k k lk l k kl k la b a b b b a a
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The commutator in the first term on the left-hand side
is equal to –as by virtue of Eqs. (9.3), while the double
commutator in the third term is equal to 2δmkal in view
of (2.1). Therefore, we can represent the above expres-
sion as

We now take the next step and require the fulfillment
of the additional condition connecting parameters αkl
and βkl:

Only in this particular case, parameter  on the left-
and right-hand sides is cancelled out exactly, and we
arrive at

The requirements of the invariance of the second
equation in (9.3) leads to the analogous expression

(9.6)
Therefore, we have reproduced Govorkov’s relation
(3.3).

The form of transform (9.5) is more visual in
matrix notation

where a = (a1, …, aM)T, b = (b1, …, bM)T (T is the sign
of the transposition), and α = (αkl). The matrix

satisfies the condition X† = X and, hence, belongs to
the algebra of unimodular group SU(2M), which is
quite natural since Govorkov’s relations were obtained
using the field quantization based on the relations of
the Lie algebra of group SU(2M + 1).

However, it remains unclear whether one trilinear
relation (9.6) can be used for obtaining other relations
(3.1) or (3.2). In the case of single para-Fermi field φa,
the answer is positive [26]. Indeed, the requirement of
invariance of equations (9.1) leads to relation (2.1).
The use of the Jacobi identity and relation (2.1) is suf-
ficient for restoring the other trilinear relation (2.3). In
the case of (9.6), the Jacobi identity gives

(9.7)
and in contrast to the case of a single field, here we
obtain two different expressions on the left-hand side,
and it is not clear a priory how these expressions can
be “uncoupled.”

α − α
+ β = β
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Greenberg and Messiah [15] proposed their own
approach to uncoupling relations of type (9.7). This
was mentioned in Section 2. Let us consider this
approach in more detail. In this case, (2.4) is the initial
relation. The application of the Jacobi identity leads to

(9.8)
In uncoupling of this relation, Greenberg and Messiah
used conditions (i) and (iii) from Section 2. In partic-
ular, condition (iii) requires that the desired trilinear
relation be satisfied for the ordinary Bose and Fermi
fields.

Let operator ak and bk be operators of the Fermi
oscillators, i.e., satisfy the usual commutation rela-
tions

(9.9)

(9.10)

(9.11)
Using identity (B.2) for the first term on the left-hand
side of relation (9.8), we obtain

(9.12)
accordingly, for the second term, we get

(9.13)
The expressions on the right-hand sides of relations
(9.12) and (9.13) are simply postulated as the right-
hand sides in trilinear relations for para-Fermi oscilla-
tors ak and bk as was done in relations (2.7) and (2.8).

Using this approach for relation (9.7), we clearly
see that the standard system of commutation rules
(9.9)–(9.11) is inapplicable in this case. This system
must be somehow modified for reproducing the right-
hand sides of trilinear relations (3.1) and (3.2). Rela-
tions (9.9) and (9.10) must remain unchanged, and
instead of the first relation in (9.11), we should con-
sider, for example,

Here, we have introduced an additional algebraic
quantity G such that

In this case, we find that the following relation holds
instead of (9.13):

However, relation (9.12) still remains unchanged. This
means that in contrast to the system of the Green-
berg–Messiah trilinear relations, Govorkov’s trilinear
relations cannot in principle be reduced to simpler
bilinear relations of the usual Fermi statistics even
after a modification of bilinear relations containing
different fields. Therefore, the rule for uncoupling
relations (9.7) still remains unclear.

+ =† †[[ , ], ] [[ , ], ] 0.m k l l m kb a a a b a

= δ = δ† †{ , } , { , } ,k l kl m n mna a b b

= ={ , } 0, { , } 0, ...,k l m na a b b
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= − = δ† † †[[ , ], ] { ,{ , }} { ,{ , }} 2 .m k l m l k k l m lk mb a a b a a a a b b

= − = − δ† † †[[ , ], ] { ,{ , }} { ,{ , }} 2 .l m k l k m m k l lk ma b a a a b b a a b

= − δ†{ , } 2 G.k m kma b

={ ,G} .l la b

= − δ − δ†[[ , ], ] 2 2 .l m k km l kl ma b a b b
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10. KLEIN TRANSFORMATION

The so-called Klein transformation [29–34] of
Green’s components of a para-Fermi field of arbitrary
order p was constructed in [27] (see also [28]). This
transformation has made it possible to reduce initial
relations (2.10) that contain both commutators and
anticommutators to the normal commutation rela-
tions for p ordinary Fermi fields. It was shown in par-
ticular in [27] that for the reduction to normal com-
mutation rules, it is necessary to consider p/2 Klein’s
operator H2j, j = 1, …, p/2 for even p and (p – 1)/2
operators for odd p. Therefore, for a parastatistics of
order p = 2, 3, one Klein’s operator H2 is required,
while for p = 4, two operators H2 and H4 need to be
used.

In the problem with two parafields φa and φb of
order p = 2 considered here, we can assume that at
least two Klein’s operators denoted by  and 
are required (the meaning of these notations will be
explained below). We must define the Klein transfor-
mation of Green’s components  and  so that
both commutation relations (2.10) separately for each
set { } and { } and commutation relations (3.8)–
(3.11) of the mixed type could be simultaneously
reduced to the normal form. We assume that the
required Klein transformation has the form

(10.1)

where  and  are the new Green components
satisfying the following commutation rules with Klein
operators ( , ):

(10.2)

At the same time, Klein’s operators themselves satisfy
the conditions

(10.3)

The Klein operators will be written in explicit form
later. We will just show now that Klein’s transforma-
tion (10.1) with rules (10.2) and (10.3) indeed gives the
required result.

It can easily be verified that commutation relations
(2.10) are reduced by transformation (10.1) to the nor-
mal form. This enables us to write these relations as
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(10.4)

Therefore, we concentrate our attention on analysis of
system (3.8)–(3.11). Let us consider relation (3.8) for
α = 1. Direct substitution of transformation (10.1) into
(3.8) with allowance for (10.2) and (10.3) gives

(10.5)
This expression suggests that operator Ω should also
be transformed. Therefore, Klein’s transformation
(10.1) need to be supplemented with the following
rule:

(10.6)

where  is a new operator. A relation analogous to
(10.5) also holds for α = 2. Therefore, instead of (3.8),
we now have

(10.7)

It can now be easily verified that instead of relations
(3.9), we obtain

(10.8)
and relations (3.10) combined with (10.6) are trans-
formed into

(10.9)
Pay attention to the fact that the signs on the right-
hand sides of these expressions are identical in con-
trast to relations (3.10). Finally, anticommutation
relations (3.11) remain unchanged under the Klein
transformation, and we simply perform the substitu-
tion

Let us now define the explicit form of Klein opera-
tors  and . For this purpose, we write the para-
fermion number operators (1.7) in terms of new
Green’s components  and . To be specific, we
consider the particle number operator for b para-
Fermi oscillators. For p = 2, we have

Substituting Klein’s transformation (10.1) into the
previous expression and taking into account relations
(10.2)–(10.4), we find that this parafermion particle
number operator can be written as

where
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(10.10)

are the particle number operators for ordinary fermi-
ons. The explicit form of Klein operators  and 
is defined by the following expressions:

Most commutation relations in (10.2) obviously hold.
Only two of them require special consideration,
namely,

(10.11)

Let us consider the first of these relations. Above all,
we write Klein operator  in a slightly different
form:

Then the considered expression can be written as

(10.12)
Further, using identity (B.7), we obtain

(10.13)

Therefore, the proof boils down to the calculation of
commutator [ , ]. Using the definition of fer-
mion number operator (10.10) and identity (B.2), we
get

The first term on the right-hand side is equal to zero
by virtue of relation (10.8), while in view of relations
(10.7) and (10.9), for the second term we obtain

Thus, the desired commutator is given by

Substituting this relation into (10.13), we get

Thus, the right-hand side of equality (10.12) vanishes
indeed. The second relation in (10.11) can be proved
analogously.
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11. LIE SUPERTRIPLE SYSTEM
In this section, we will consider an interesting link

between trilinear Govorkov relations (3.1)–(3.3) and
the so-called Lie supertriple system. Such a system,
which is a generalization of the standard Lie triple sys-
tem [35–38], was studied in detail in [39–42]. Our
analysis will be based on publication [39], in which the
author reformulated the parastatistics as a Lie super-
triple system. A number of examples of such a refor-
mulation were also given in [39]. We are especially
interested in Example 3 from [39] (the explicit formu-
lation of this example is given below). We will require
a few definitions (in the notation used in [39]).

Let V be a vector superspace, which has the form
of direct sum

In this superspace, we introduce the grade

(11.1)

and triple superproduct […, …, …] is defined as a tri-
linear mapping

The triple superproduct obeys three conditions that
can be found in [39]. If Vf = 0 (i.e., V = VB), triple
product [x, y, z] leads to the standard Lie triple system.

In addition, we assume that vector superspace V
always possesses bilinear form 〈x|y〉 satisfying the con-
ditions

(11.2)

We now consider the formulation of Example 3
from [39]. Let P : V → V be a grade-preserving linear
map in V, i.e.,

(11.3)
we also assume the validity of relations

(11.4)

(11.5)
where I is the identity mapping in V and λ is a nonzero
constant. The expression

(11.6)

for the triple product transforms V into a Lie supertri-
ple system. It should be noted that the same constant
for λ appears in condition (11.4) as well as in the defi-
nition (11.6) of the triple product.

Let us prove that the Govorkov trilinear relations
(3.1)–(3.3) are particular cases of general expression
(11.6). In addition, the triple product also contains the
standard trilinear relations for single field φa (and φb)
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(2.1)–(2.3). At the first step, we fix two sets of opera-
tors

between which we specify a map P in accordance with
the rule (cf. (5.11))

(11.7)

It follows, hence, that

and, in view of condition (11.4), constant λ is fixed
uniquely:

(11.8)

Let us consider the second condition in (11.5). We set
x =  and y = bm; by virtue of relations (11.7), the con-
dition for bilinear form 〈⋅|⋅〉 can be reduced to

(11.9)

We fix the grade

then the first condition in (11.2) gives

Thus, VF  = 0 and V = VB. We choose bilinear form
〈x|y〉 so that the following conditions are satisfied:

(11.10)

Condition (11.9) holds automatically.
We now return to basic relation (11.6) and set

x = , y = al, and z = bm in it. By virtue of rela-
tions (11.7), (11.8), and (11.10), we then get

Therefore, we have reproduced trilinear relation (3.3).
Further, if we set x = bm, y = , and z = al, triple prod-
uct (11.6) takes the form

=† †( , ) and ( , ), 1,..., ,k k k ka a b b k M

= = −
= = −† † † †

, ,

, .
k k k k

k k k k

Pa b Pb a

Pa b Pb a

= − = −2 2, ,k k k kP a a P b b

λ = −1.

†
ka

〈 〉 = 〈 〉
† †| | .k m k ma a b b

σ = σ = σ = σ =† †( ) ( ) 0, ( ) ( ) 0,k k m ma a b b

〈 〉 = 〈 〉 ∈| | for any , .x y y x x y V

〈 〉 = 〈 〉 = − δ
〈 〉 = 〈 〉 = − δ
〈 〉 = 〈 〉 =
〈 〉 = 〈 〉 =
〈 〉 = 〈 〉 =
〈 〉 = 〈 〉 =

† †

† †

† †

† †

†

† † †

| | 2 ,

| | 2 ,

| | 0,

| | 0,

| | 0,

| | 0.

k m m k km

k m m k km

k m k m

k m k m

k m k m

k m k m

a a a a

b b b b

a a a a

b b b b

a b a b

b a b a

†
ka

= −〈 〉 + 〈 〉 + 〈 〉

− 〈 〉 + 〈 〉 = − δ

† † † †

† †

[ , , ] | | 2 |

| | 2 .
k l m l m k k m l k l m

l m k k m l km l

a a b a a b a a b a b a

a b a a b a b

†
ka

= −〈 〉 − 〈 〉

− 〈 〉 − 〈 〉 + 〈 〉 = δ + δ

† † †

† † †

[ , , ] | |

2 | | | 4 2 ,
m k l k l m m l k

m k l k l m m l k mk l kl m

b a a a b a b b b

b b b a a b b a a b b
YSICS  Vol. 127  No. 3  2018



416 MARKOV et al.
which gives relation (3.1). It is not difficult to verify
that for x = al, y = bm, and z = , we reproduce rela-
tion (3.2). It can be stated that with rules (11.7), (11.8),
and (11.10), all trilinear Govorkov’s relations are con-
tained in the single expression (11.6).

To complete our analysis, let us consider the triple
product for one set of operators, e.g., for (ak, ). Let

us suppose that x = , y = al, and z = am; then we
obtain from relation (11.6)

We see that the triple product with rules (11.7), (11.8),
and (11.10) correctly reproduces the standard trilinear
relations of the para-Fermi statistics. This particular
case was considered in [39] as Example 2 for the triple
product

(11.11)
In fact, this triple product represents the last two terms
in relation (11.6). Our case differs, however, from that
in [39]. We fix constant λ and the bilinear form as fol-
lows:

while this was done in [39] in a different manner:

In both cases, triple product (11.11) correctly repro-
duces the relations for the para-Fermi statistics, but
the Govorkov relations are not reproduced in the latter
case.

12. RELATIONSHIP WITH THE DUFFIN–
KEMMER–PETIAU FORMALISM

In our earlier work [43], we obtained the Fock–
Schwinger proper-time representation for inverse
operator :

(12.1)

where

and

is the Hamilton operator, Dμ = ∂μ + ieAμ(x) is the
covariant derivative, and χ is the para-Grassmann
variable of order p = 2 (i.e., χ3 = 0) with the following
integration rules [16]:

†
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†
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†
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−1
+̂

( )}

∞
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3 2
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1 1ˆ ˆ[ , ] [ , ] , 0,
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di dT iT H z i
T

T T

+

+ +
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e

e
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z
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JOURNAL OF EXPERIMENTAL AN
Operator (z, D) is the cubic root of a certain third-
order wave operator in an external electromagnetic
field. Matrices ημ(z) are defined in terms of matrices
βμ of the Duffin–Kemmer–Petiau (DKP) algebra and
complex deformation parameter z:

where

(12.2)

and

(12.3)

Completing the calculations, we must proceed to the
limit z → q (q is a primitive cubic root of unity).

One of the main goals of this study was the devel-
opment of a convenient mathematical technique that
would enable us to construct the path integral repre-
sentation for the inverse operator (z, D) (12.1) in a
certain parasuperspace using the DKP approach. The
matrix element of operator (z, D) in the appropri-
ate basis of states can be treated as a propagator of a
massive vector particle in an external gauge field.
Unfortunately, Govorkov’s unitary quantization for-
malism turned out to be unsuitable for this purpose.
This problem will be considered below in greater
detail.

At the first step, we calculate commutator [ζμ, ω],
where ζμ is defined by Eq. (12.2). Using the algebraic
relations5

(12.4)

we can easily find that

(12.5)

Comparing expressions (12.2) and (12.5) with (A.17),
we find that the simplest way for establishing the rela-
tionship between the DKP theory and the unitary
quantization is the literal identification of matrices βμ
and ζμ from the DKP approach with quantities βμ and
ζμ emerging in uniquantization (Eqs. (A.6)). In partic-
ular, it follows, hence, that

(12.6)

We must now verify whether or not relations (A.11)–
(A.16) hold if analysis is based only on the DKP for-
malism. Taking into account relations (12.4), we

5 All basic formulas for the ω – βμ matrix algebra for spin 1 are
given in Appendix A of our earlier paper [43].

χ = = χ χ χ χ =∫ ∫ ∫
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+̂

( )μ μ μ
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1 3( ) 1 ,
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μ μζ = β ω[ , ]i

μ μ μ μ μ μω = β β β
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( !) M MM

e

−1
+̂
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+̂

μ μ μ μω β + β ω = β ωβ ω =2 2 , 0,

μ μζ ω = β[ , ] .i

ω ≡ − ζ0
1 .
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obtain the following expression for the right-hand side
of relation (A.15):

In the ω – βμ algebra, the following equality holds:

(12.7)

and we therefore arrive at relation (A.15). Taking into
account the Jacobi identity and relation (12.7), we
obtain for bilinear relation (A.16)

(12.8)

where the complete coincidence is also observed.
However, relation (12.8) in the DKP theory is in fact
less stringent. Indeed, let us consider again bilinear
relation (A.16) without resorting now to the Jacobi
identity. Using the relations

we obtain

and, hence, can write instead of (A.16)

(12.9)

It is this circumstance that has negative consequences
for trilinear relations that will be considered below.

Trilinear relation (A.11) obviously holds in accor-
dance with the DKP algebra:

(12.10)

Relation (A.12) also holds because algebra (12.10) is
also valid for ζμ matrices. Let us now consider the
mutual commutation relations between ζμ and βμ. By
virtue of relations (12.9) and (12.5), we obtain the fol-
lowing relation for (A.13):

while there should be

It can be seen that the right-hand sides of the last two
relations are different. Trilinear relation (A.13), as well
as (A.14), is not valid.

The discrepancy between the unitary quantization
scheme and the DKP theory can also be seen if we
consider relation (A.10) in which ζ0 is replaced by ω in
accordance with rule (12.6). Taking into account rela-
tion (12.9), we get

μ ν μ ν μ ν μ νζ ζ = − β ω β ω = ω β β ω + β β[ , ] [[ , ],[ , ]] [ ,[ , ]] [ , ].

μ νω β β =[ ,[ , ]] 0

μ ν μ ν

μ ν ν μ ν μ

ζ β = − ω β β
= β β ω + β ω β = ζ β

[ , ] [[ , ], ]
([[ , ], ] [[ , ], ]) [ , ],

i
i

μ ν ν μ μν

μ ν ν μ

ωβ β + β β ω = ωδ
β ωβ + β ωβ =

,
0,

μ ν μ ν

μ ν ν μ μ ν ν μ μν

ζ β = − ω β β
≡ − ωβ β + β β ω − β ωβ − β ωβ = − ωδ

[ , ] [[ , ], ]
( )

i
i i

μ ν ν μ μνζ β = ζ β = − ωδ[ , ] [ , ] .i

μ ν λ λ ν μ μν λ λν μβ β β + β β β = δ β + δ β .

λ μ ν μν λ μν λζ ζ β = − δ ζ ω ≡ δ β[ ,[ , ]] [ , ] ,i

λ μ ν μν λ λν μ λμ νζ ζ β = δ β + δ β + δ β[ ,[ , ]] 2 .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
(12.11)

This relation demonstrates obvious contradiction.
Summarizing the above arguments, we can state that
in spite of certain similarity between two formalisms,
the quantization scheme based on the Duffin–Kem-
mer–Petiau theory cannot be embedded into the uni-
tary quantization scheme proposed by Govorkov.

However, there is one more possibility associated
with the parafermion quantization in accordance with
the Lie algebra of orthogonal group SO(2M + 2). Such
a quantization was considered earlier in [44] (see also
[45]). It is important for our analysis that in the case of
the SO(2M + 2) group, there also appears a certain
additional operator denoted in [44] by a0. This opera-
tor should be treated as an analog of operator ζ0 (1.8).
Unfortunately, in contrast to the unitary quantization
scheme, we have for the SO(2M + 2) group only one
set of operators (ak, ), which are connected with ini-
tial quantities βμ by relations (A.18). Nevertheless, in
this situation we can simply introduce the second set
of operators (bk, ), setting by definition6

In this case, the trilinear relations in [44], which con-
tain operator a0, assume the form

and, in particular, we have

(12.12)

In addition, the action of operator a0 on the vacuum
state (cf. (7.6)) was also defined in [44]:

Pay attention to the fact that the expression on the
right-hand side of relation (12.12) contains a different
factor in front of the summation symbol as compared
to (1.8). This enables us to eliminate the contradiction
in relation (12.11) when operator a0 was identified with
operator ω from the DKP theory. It should also be
noted that all quantities ζμ are connected with (bk, )

6 We have redefined the operators from [44] for our case as fol-
lows: 
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by relation (A.18). In this case, a direct consequence of
expression (12.2) is

All questions associated with parafermion quantiza-
tion based on the orthogonal SO(2M + 2) group, as
well as the relationship between the quantization
scheme and the Duffin–Kemmer–Petiau theory, are
the subject of separate investigation.

13. CONCLUSIONS

In this article, we have considered various aspects
of the relationship between the unitary quantization
theory and the parastatistics. In analysis of this rela-
tionship, the main emphasis has been laid on the
application of the Green decomposition of the cre-
ation and annihilation operators as well as para-Grass-
mann numbers. It turns out that the set of commuta-
tion relations derived by Govorkov using uniquantiza-
tion is quite rigid because it can be related only with a
particular case of the parastatistics (namely, para-
Fermi statistics of order 2). However, the introduction
of a number of additional assumptions and a new
operator Ω (see Section 3) was required even in this
case. It should also be noted that the case of odd num-
ber of dimensions, i.e., unitary group SU(2M), was
also considered in [2, 3]. Govorkov proved that the Lie
algebra of this unitary group contains the Lie algebra
of the simplectic Sp(2M) group, as well as other oper-
ators that supplement it to the Lie algebra of the initial
SU(2M) group. It is well known [13] that the quantiza-
tion in accordance with the Lie algebra of simplectic
group Sp(2M) corresponds to the paraboson quantiza-
tion. Therefore, we can formulate an analogous prob-
lem of the relationship between the unitary quantiza-
tion scheme based on the Lie algebra of unitary group
SU(2M) and the para-Bose statistics.

In this concluding section, however, we would like
to consider a little more detailed one of the conse-
quences of the constructions described in this work
(see Section 6), which remained slightly shaded
because of the large number of formulas. This conse-
quence is associated with the para-Fermi statistics of
order 2 as such and is not a specific feature of the uni-
tary quantization scheme. It turns out that certain tri-
linear relations containing both ak (or bm) and para-
Grassmann numbers ξk have another equivalent
(dual?) representation. This can be illustrated by the
following two relations:

(13.1)

for which the dual relations have the form

(13.2)

All these relations turn into identities when the com-
monly used commutation rules for the Green compo-

≡ − ω0 .a i

ξ ξ = ξ = δ ξ†[ ,[ , ]] 0, [ ,[ , ]] 2 ,k l k l m kl ma a a

ξ ξ = ξ = δ ξ†{ ,{ , }} 0, { ,{ , }} 2 .k l m k l m kl ma a a
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nents of operators ak and para-Grassmann numbers ξk
(Eqs. (2.10) and (5.2)) are taken into account.

It was shown in Section 8 that these two formula-
tions of trilinear relations (13.1) and (13.2) lead to the
existence of two alternative definitions of the parafer-
mion coherent state, namely,

In both cases, the main property of the coherent state
is fulfilled :

in addition, the overlap function in both cases has the
usual form

The exact meaning of the emergence of such “twins”
remains unclear for us. One of possible reasons of a
purely algebraic origin is that only two of main identi-
ties (B.1)–(B.4) (namely, (B.2) and (B.3)) are inde-
pendent. This circumstance and its consequences
were analyzed in detail by Lavrov et al. [46]. In partic-
ular, Jacobi’s identity (B.1) is a consequence of gener-
alized identity (B.2). The latter contains double anti-
commutators on the right-hand side as in (13.2). This
means that relations (13.1) and (13.2) follow from each
other for p = 2. In any case, we can state that the para-
Fermi statistics of order 2 (as well as the ordinary
Fermi statistics with p = 1) is a very specific case of
parastatistics because it possesses the properties that
are completely absent for para-Fermi statistics of
higher orders (p ≥ 3).

APPENDIX A
Lie Algebra of SU(2M + 1)

The Lie algebra of unitary group SU(2M + 1) has
the form [47]

(A.1)

where indices μ, ν, … run through values 0, 1, 2, …,
2M. If we introduce a new set of operators

Lie algebra (A.1) assumes a somewhat different form:
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(A.3)
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(A.4)

and the condition of speciality is transformed to

(A.5)

Operators Fμν form the Lie algebra of orthogonal group
SO(2M + 1), while operators  supplement this alge-
bra to the algebra of unitary group SU(2M + 1).

The unitary quantization procedure is based on the
choice of the Lie algebra of group SO(2M + 1) as the
basic algebra. Govorkov [2] has introduced the follow-
ing quantities:

(A.6)

The relations

(A.7)

(A.8)

(A.9)

are the consequences of algebra (A.2)–(A.4). In view
of the equality  = , relation (A.9) implies that

This relation defines the antisymmetric part of com-
mutator [ζμ, βν]. In [2], formula (A.7) contains no
terms in the parentheses, there is no factor 2 in for-
mula (A.8), and the last but one term is absent in for-
mula (A.9). All these terms and the factor are import-
ant when the consistency of various expressions is ver-
ified (see below).

Further, assuming that μ = ν in (A.9) and summing
over μ with allowance for relation (A.5), we obtain one
more important relation

(A.10)

i.e., operator ζ0 is not independent, but is determined
by other operators.

In terms of variables (A.6) we can write algebra
(A.2)–(A.4) in an equivalent form of trilinear relations

(A.11)

(A.12)

(A.13)

(A.14)

and bilinear relations
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The indices here run through the values 1, 2, …, 2M. It
is stated, however, in Govorkov’s review [4] that rela-
tions (A.11)–(A.16) “…are satisfied for ζ0 automatically
due to their fulfillment for other ζμ. Therefore, we can
assume that indices μ, ν, and λ in these relations run
through the values 0, 1, 2, … , 2M.” The incorrectness
of this statement follows, for example, from compari-
son of bilinear relations (A.15) and (A.16) with rela-
tions (A.8) and (A.9). In the former case, for ν = 0, we
have (it should be recalled that β0 = 0)

while in the latter case, the commutators assume the
form

(A.17)
The generalization of trilinear relations (A.11) and
(A.12), which hold for any values of indices, has the
form

respectively. The characteristic feature of the last
expression is the emergence of terms which are bilin-
ear in the β and ζ operators and cannot be eliminated
in principle.

Finally, a more general expression for (A.13) has
the form

Here, the right-hand side also contains a term bilinear
in ζ.

For the unitary representation of the algebra under
consideration, quantities βμ and ζμ are Hermitian:

This enables us to introduce the Hermitian conjugate
operators

(A.18)

where k = 1, 2, …, M. Algebra (1.1)–(1.6) and (1.9) for
operators ak, bk, and ζ0 is a direct consequence of rela-
tions (A.11)– (A.16) and (A.17).

APPENDIX B
Operator Identities

In this appendix, we consider a number of operator
identities that have been repeatedly used in the above
text:
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(B.1)
(B.2)

(B.3)
(B.4)

where [ , ] and { , } denote the commutators and anti-
commutators, respectively. In addition to identities
(B.1)–(B.4), the following simple relations are also
useful:

(B.5)
(B.6)

Finally, the operator identities involving the exponen-
tial functions have the form [48–51]

(B.7)

(B.8)

(B.9)

APPENDIX C

Commutation Relations with Operator 
Here, we collect all (anti)commutation relations

containing operator , which appeared in Sections 6
and 8 for different reasons. For values of parameter
α = ±π, we have
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or, in equivalent form, 
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