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ABSTRACT: Recent developments in photonics include efficient
nanoscale optoelectronic components and novel methods for
subwavelength light manipulation. Here, we explore the potential
offered by such devices as a substrate for neuromorphic computing. We
propose an artificial neural network in which the weighted connectivity
between nodes is achieved by emitting and receiving overlapping light
signals inside a shared quasi 2D waveguide. This decreases the circuit
footprint by at least an order of magnitude compared to existing optical
solutions. The reception, evaluation, and emission of the optical signals
are performed by neuron-like nodes constructed from known, highly
efficient III−V nanowire optoelectronics. This minimizes power
consumption of the network. To demonstrate the concept, we build a
computational model based on an anatomically correct, functioning
model of the central-complex navigation circuit of the insect brain. We
simulate in detail the optical and electronic parts required to reproduce the connectivity of the central part of this network using
previously experimentally derived parameters. The results are used as input in the full model, and we demonstrate that the
functionality is preserved. Our approach points to a general method for drastically reducing the footprint and improving power
efficiency of optoelectronic neural networks, leveraging the superior speed and energy efficiency of light as a carrier of information.

KEYWORDS: nanowire, neural network, phototransistor, optoelectronic modeling, optoelectronic device, optical interconnects, insect brain,
polarization anisotropy

The neural computation performed by real brains remains
an important inspiration for machine intelligence.

However, software implementations of artificial neural net-
works using standard computer hardware are orders of
magnitude less energy efficient compared to biological
brains,1,2 limiting future applications. To address this
challenge, a multitude of physical/chemical mechanisms such
as memristors,3 ionic liquids,4 and spintronics5 are being
explored to realize naturalistic neural networks.6 Recently, the
use of photonics-based solutions has gained renewed
interest,7−9 as it can overcome both speed and efficiency
limits of standard technology for neural networks.7,10−13 For
bioinspired processing networks, a main energy expenditure
and complexity challenge is in the need for a large number of
communication connections between components.10,14 Using
light for network connectivity is, in principle, a superior
solution, as it can transmit information quickly and with high
energy efficiency. However, realizing the full potential of
optical solutions is hindered by their large circuit footprint and
the energy losses in regular (macroscopic) optoelectronic
components. Even in recent work on (impressive) integrated

optical network solutions, the circuit footprint is many
hundreds of microns across.9,10 The plethora of recently
developed nanoscale photonic components, such as semi-
conductor nanowires, present an avenue to solving these
challenges, which has not yet been explored.
Significant progress has been made in concentrating and

manipulating light using nanostructure components, thus,
allowing for the necessary miniaturization of optical
computation circuitry. In particular, III−V nanowires have
matured into a versatile, controllable, and well-characterized
nanotechnology platform. This has allowed the development of
novel light harvesting15−17 and emission technologies,18−20 as
well as combining with Si-based technology.21 III−V
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heterostructure nanowires can uniquely be tailored with widely
varying optical and electronic properties. They respond locally
and efficiently to optical signals, concentrate light on a
subwavelength scale,22,23 and have a natural polarization
sensitivity24 that has been used for optical logical gates.25

Importantly, they can have a much higher absorption cross-
section than their physical size22,23 and can thus act as efficient
photodetectors. Precise and varied large-scale 2D arrays of
functionalized nanowires22 and single nanowire optical
emitters with controllable emission patterns,19,20,26,27 as
summarized by Mantynen et al.,28 have been manufactured
and experimentally studied in detail.
An excellent way to explore the potential of III−V

nanostructured components for neural networks is to imple-
ment specific circuit models based on a detailed understanding
of biological neural circuits. The insect brain offers substantial
advantages as a target, as its lower complexity and higher
accessibility supports the functional understanding at the single
neuron level. At the same time, insects are capable of tasks well
beyond the reach of current artificial neural nets, such as
traveling across hundreds of kilometers of unfamiliar terrain to
pinpoint a specific breeding ground,29,30 or returning to a near
invisible nest entrance from several kilometers away in a
straight-line trajectory, after a convoluted searching trip
through dense vegetation.31 Using only a few drops of nectar
as an energy supply, they achieve all this with a brain the size of
a grain of rice, which contains about 100000× fewer neurons
than mammalian brains.
One module of the insect brain conserved across species

with vastly different lifestyles is the central complex (CX),
which is a brain region containing core decision-making and
motor-control circuits.32,33 The neural circuit of the CX has
been decoded in great detail, which is of the utmost

importance to any attempt to mimic the neural functionality.
It is characterized by tight structure−function coupling, in
which the anatomical layout of a circuit defines its
computations. One important purpose of this neuronal circuit
is to serve as a navigational control system that underlies most
planned, directed movements of insects.32 The CX has been
distilled to its fundamental neuroarchitecture, and the function
of a number of its components was mapped onto a biologically
constrained computational model.34 This model has the ability
to integrate the outward going path of a simulated insect
leaving its nest and to switch into producing the required
steering signals to enable the insect to navigate directly back to
its point of origin. This homing task is successfully carried out
using the input of limited precision and with considerable
circuit noise. Containing less than 100 neurons of qualitatively
similar function, the CX model is simple enough to serve as a
target system for investigating novel nanotechnology solutions
for neural networks while still being important for solving real
navigational tasks in insects.
In this paper, we describe how the spatial and energy

footprint of an optical neural network that reproduces a key
part of the insect CX circuit can be minimized using
nanocomponents placed inside a shared waveguide. We first
describe the model of the CX that we implement and the
general requirements of the nodes and their network
intercommunication architecture. These principles should be
widely applicable in reproducing any neural circuit. Second, a
nanowire-based device is shown to be a prime candidate for
the neural node, as it can have a very small energy
consumption and large cross-section for light detection.
Third, optical simulations on the network level demonstrate
how the interdevice coupling weights are set by emission
patterns and geometrical layout inside a shared quasi 2D

Figure 1. Ring-attractor network that is implemented in this study. It is the most connected subcircuit of the insect brain central complex model
(CX) of Stone et al.34 The CX neural network main parts (schematically shown in bottom right) can be represented in a circular topology as three
concentric and interconnected ring network layers (attractor, memory, and steering). The ring-attractor layer (focus of present study) is shown in
the center of Figure 1. The eight neural nodes (neurons) in the ring attractor are shown as circles, with arrows representing a 2D heading of the
insect. All attractor neurons are mutually inhibiting and simultaneously provide (inhibiting) signal information to the outer network layers. For
clarity, only the inhibiting connections from node 1 to the other nodes are shown (red lines) in the central part of Figure 1. The weights are given
by the thickness of the lines. The existence of the other interconnections is indicated as dashed gray lines. The input to each node is given by
external compass neurons, as exemplified by the purple arrows. The schematics of the sigmoid neural node are shown in the top left corner. It
receives inhibiting/exciting signals and outputs either an inhibiting or exciting signal. Inset in bottom left corner exemplifies the sigmoidal
electronic data processing of each neural node.
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waveguide. This broadcasting strategy is a key component of
our design, as it reduces the spatial footprint of the network,
removing the need for both internode connecting waveguides
and interdevice electrical wiring. Fourth, the results from the
electrical and optical modeling are tested by substituting it into
the full computational model of the insect brain CX circuit,34

successfully demonstrating that the navigation capability is
preserved. Finally, we evaluate the operational efficiencies
needed in order to realize our optoelectronic implementation.

■ RESULTS

General Concept of the Neural Network and Its
Implementation. To establish the basic design criteria for
our hardware solutions, we provide a brief discussion of the
insect brain neural navigation network model of Stone et al.,34

which is the foundation for exploring and demonstrating our
approach. Converted into mathematical form and imple-
mented on a standard computer, the CX network allows an
insect to be guided back to its nest after a foraging trip (“the
insect” in this case is an abstract agent in the computer that
receives input data from either an artificial or a real
environment; the model has been shown to work for a real-
world robot34). The model uses the insect’s current heading
and speed as input and, by integration, generates an internal
(vector) representation of the angle and distance of the point
of origin. Once homing is initiated, the same circuit outputs a
left or right steering signal that indicates how the insect should
change its heading in order to move homeward. The model
can perform this task with limited, noisy input data and deals
successfully with obstacles blocking its path. It can function
with internal noise levels in the neural processing of up to 20%.
In the lower right corner of Figure 1, we show the three

main network layers of this navigational circuit, which can be
represented topologically as concentric circles. The innermost
layer and the heart of the CX model is a ring-attractor circuit,
which constantly keeps track of the heading of the insect. This
layer receives its input from specialized compass neurons, as
schematically indicated in the top right of Figure 1. Each ring-
attractor neural node communicates both inward with its peers

as well as outward with the subsequent layers of the circuit.
This adds a recurrent feature to this layer. The second layer is a
memory layer, which receives input from both the ring-
attractor and the speed-input neurons (not drawn in Figure 1).
Using this information, it performs a path integration to keep
track of the home direction. The third layer compares the
current heading direction from the ring attractor with the
desired heading toward home, given by the memory neurons,
to compute the steering signal. This description summarizes
features of the network relevant for the present paper; for
further details and biological justification of the circuit design
refer to Stone et al.34

In the present study, we focus on the innermost ring
attractor layer, which has the largest and most complex
connectivity pattern. The nodes in this subcircuit perform
signal evaluation in a qualitatively similar fashion to all other
nodes across the network. Implementing this inner ring will,
therefore, demonstrate and test the main aspects of our
approach. This requires the design of an optoelectronic
component that can serve as a node as well as designing a
network of these nodes that fulfils the interconnection weight
requirements.
The artificial neuron (neural node component) to be

constructed is a sigmoidal neuron entity, as schematically
shown in the top left inset of Figure 1. Sigmoidal neurons
operate using a rate code, that is, the frequency of neuronal
action potentials is encoded as a continuous numerical value.
This generic neuron type will receive external inhibiting and
exciting input from multiple sources. It may also have an
internal input source (for example, a bias) that creates an offset
in the activation function. All inputs are weighed, added, and
the sum evaluated via a nonlinear sigmoidal function, which
will result in activation of an output signal (if the excitation
sufficiently dominates inhibition) that must then be transferred
to several other neurons. For biologically inspired neural
implementations of the node, it is important that both the
slope and the offset of the activation function can be tuned. In
our hardware implementation, the neural firing rates of both
input and output signals are represented by light intensities

Figure 2. Schematics of the nanowire-based artificial neuron that will evaluate input light signals, resulting in an appropriate light output. (a)
Diagram of the neural node component that is a branched nanowire with two npn transistors in the stem and a LED in the branch. The red and
purple parts indicate III−V materials of a smaller bandgap than the dark blue areas around. Specific parameters are given in Table 1. p-doped
regions on the nanowire are indicated by the gray stripes. All other parts of the nanowire are n-doped. Electrical contacts needed to power the
component are indicated. (b) Equivalent circuit model of the component in (a) with the floating base npn phototransistors modeled with current
sources representing the generated exciting and inhibiting photocurrents.
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(rate of photons), while the sigmoid evaluation is performed
electrically within each neural node component.
A topological illustration of the ring attractor is provided in

the center of Figure 1. Each of the eight neurons in the ring
attractor network are represented by a circle with an arrow
that, in turn, represents a specific directional heading of the
insect. In the specific CX architecture, exciting inputs provide
compass and speed information, while the neurons commu-
nicate via inhibiting signals among themselves. The strongest
inhibition is from the neural node on the opposite side of the
ring, gradually falling off for neighboring nodes. This stabilizes
the activity in the inner ring to a single bump centered on one
of the neurons.34 This is how the insect obtains a robust sense
of direction.
To achieve this weighted communication, the neural-node

components will be distributed within a single planar
waveguide in a circular pattern (resembling the topological
layout of the circuit, see Figure 1), and the light emission
patterns of the nodes will be shaped using the morphology of
the nano-optoelectronic/photonic structures. As the commu-
nication between the neural nodes is achieved inside a single
shared waveguide, the inhibiting and exciting signals must
operate alongside at different wavelengths. The multitude of
collected signals in each node represent a clear analogy to the
dendrites of biological neurons. The waveguide defines the
plane of computation: each node responds to all available local
optical signals and emits the appropriate nonlinear response
into the waveguide anew. This approach allows us to use the
propagation direction normal to the waveguide plane for
supplying input signals as well as for probing of the network.
Sigmoidal Neural Node Component. In this section we

propose a specific III−V nanowire-based implementation of
the sigmoidal neuron and present simulations demonstrating
that it meets the biologically defined functional criteria,34 as
also discussed above. In brief, this component should receive
(inhibiting and exciting) optical signals, weight and sum them,
process the results through a sigmoid activation function (with
variable slope/offset), and broadcast an optical (inhibiting or
exciting) signal. The T-shaped component that performs these
tasks is shown in Figure 2. To be practically feasible, the design
is made as simple as possible and is based on existing types of
III−V nanostructures. It consists of a nanowire stem with two
npn heterojunction bipolar phototransistors (for input) and a
nanowire branch with an LED (for output). Specific values for
component dimensions and material compositions are given in
Table 1.
The two colored regions (purple/red) in Figure 2a indicate

materials with bandgaps corresponding to the wavelengths of
the excitation (λ+) and inhibition light signals (λ−),
respectively (we choose λ+ < λ−). When light signals at λ+
generate a photocurrent (I+), the excitation phototransistor
opens up, resulting in a current (β+I+) to the LED, if no
inhibition signal is present (β± is the current gain of the
respective transistors). When a λ− light signal is present, this
generates a photocurrent (I−) and the inhibition photo-
transistor opens. As a result, part of the current β+I+ flows to
the ground as β−I− instead of exciting the LED. We note that
the material region absorbing at λ− is susceptible also to the
excitatory λ+ signal (because λ+ < λ−). To avoid significant
signal contamination, experimentally verified wavelength and
polarization-specific nanoantennas35 can be used to focus the
external excitatory light input on the λ+ region (signal
transmission is discussed more in the next section). The

external resistance in series with the LED in Figure 2b is
designed to be large enough to cause saturation above a certain
current Isat, as discussed in Methods. The ideal mathematical
function for the current across the LED can then be expressed
as

β β β β= + − + > ≥+ + − − + + − −I I I I I Imin( , ( 1) ( 1) ), 0diff sat

(1)

which constitutes a basic nonlinear activation function. The
inequality (noted with eq 1) arises as the current through the
inhibition phototransistor cannot exceed the current through
the excitation phototransistor.
An equivalent circuit diagram of the component is shown in

Figure 2b, which is used to separate the detailed modeling into
three (inhibiting, exciting, and emitting) nanowire subcompo-
nents. Using physical models, with parameters extracted from
experimental studies, we simulate the behavior of these three
individual subcomponents. By mapping the results onto the
equivalent circuit elements in Figure 2b, the complete neural
node is modeled to demonstrate the required functionality.
The more realistic simulation results in deviations from the
ideal mathematical function, which is included in the
evaluation of the neural processing capabilities and used in
the detailed component design.
The detailed design should be experimentally realizable

using well-known techniques for heterostructure nanowire
growth and selective doping along the principal axis (as will be
discussed in more detail below). In Figure 3, the main results
from modeling the node component are presented. Figure 3a
shows a band diagram for the inhibiting phototransistor
section of the T-component stem in a floating base
configuration. The emitter, base, and collector regions (E, B,
and C) are created by selective p- and n-doping. The smaller
bandgap region, from x ∼ 100 to ∼300 nm, effectively leads to
an accumulation of the photogenerated holes in the base, while
the electrons are separated out by the base-collector pn-
junction. The holes eventually recombine with electrons
diffusing into the base. This process is dominated by
nonradiative processes and counteracts the accumulation of
holes and leads to a steady state for a given intensity. A larger
bandgap material has been chosen for the emitters (see Table
1) to avoid undesired excitation by the light input signals. The

Table 1. Neural Node Component Materials and
Parametersa

parameter value excitation inhibition

Dstem 200 nm
Lstem 700 nm
Dbranch 50 nm
Lbranch 1000 nm
LED QW InP
λ 750 nm 830 nm
β 1400 1900
emitter Al0.4In0.6P Al0.3In0.7P
base/collector Al0.1In0.9P InP
other sections Al0.3In0.7P

aFor the excitation and inhibition photo-transistors the respective
materials parameters are given. The wavelength λ is the target
wavelength that matches the respective bandgap and β is current
forward gain (based on detailed modeling, as described in the SI). In
Figure 2a, the base and collector are colored red and purple for
inhibition and excitation light signal absorption regions, respectively.

ACS Photonics pubs.acs.org/journal/apchd5 Article

https://dx.doi.org/10.1021/acsphotonics.0c01003
ACS Photonics 2020, 7, 2787−2798

2790

http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.0c01003/suppl_file/ph0c01003_si_001.pdf
pubs.acs.org/journal/apchd5?ref=pdf
https://dx.doi.org/10.1021/acsphotonics.0c01003?ref=pdf


exciting npn phototransistor behaves in a qualitatively similar
fashion as the inhibiting and is discussed in the Supporting
Information (SI). The LED branch is designed in the same
material system as the phototransistors, with a pn-junction
defined by selective doping along the principal axis of the
branch. In the center of the junction, an undoped emission
section with a smaller bandgap (than the adjacent Al0.3In0.7P
sections) is placed in order to increase the spatial overlap of
holes and electrons, maximizing efficiency. In the present case,
the material in the emission section will be InP, as we want the
component to output a signal at the inhibiting wavelength λ−.
For a detailed description of the phototransistor, LED design,
and modeling, see Methods and the SI.
In Figure 3b, the current through the LED as a function of

combined excitation and inhibition is shown, exemplifying the
results from the modeling of the complete T-component. The
inset displays two examples of activation functions used by
neurons of the full network model.34 They are characterized by
their slope and offset (inversion point), which varies for
different types of neurons. The proposed neural node
component can reproduce these varying functional features.
The slope depends both on the bias over the component as
well as on the design parameters, such as base region length,

emitter-base bandgap offset, and doping.36 The saturation
current can be directly controlled by the load resistance (see
the SI for examples). As seen in the inset of Figure 3b, the
node component naturally produces a result similar to the
activation function of the memory layer neurons of Stone et
al.34 A zero point offset must be added to replicate the
behavior of the ring-attractor neurons. This can be
accomplished by adding a background input light at a constant
level, effectively expressing the signal relative to this back-
ground. The total input signal would be operated at fixed duty
cycle (see the SI for estimates of the component time
constants). An alternative method would be to connect an
additional bias point to the neural node component.
Figure 3b further shows that the onset of the activation

function as well as its slope is shifted for increasing inhibiting
currents. The onset shift is due to the difference in current gain
β of the excitation and inhibition npn transistors, while the
effect of a changing slope for higher inhibition currents is a
consequence of the nonideal elements of the equivalent circuit
model. When simulating the complete CX network function
(see below), the effects were fully included and no degradation
of the performance due to these effects was observed.

Figure 3. Results from the electronic modeling of the III−V neural node component in Figure 2. (a) Band diagram of the inhibiting npn
phototransistor at an applied bias of 1 V. Above the diagram the nanowire stem regions of larger (blue) and smaller (red) band gap are shown as
well as the differently doped emitter, base and collector regions (marked E, B, and C). This corresponds to the top half of the stem seen in Figure
2a. Solid lines represent band edges and dashed lines quasi-Fermi levels. (b) Results from modeling the full circuit in Figure 2b with the parameters
V0 = 3.0 V and Rload = 30 MΩ. Current through the LED as a function of the difference in exciting and inhibiting currents for different fixed values
of inhibiting currents is shown. For comparison, eq 1 is also shown as a dashed line. Inset shows two different activation functions from Stone et
al.34 Dashed line in ring attractor inset shows the renormalized nanowire node component activation function for comparison.

Figure 4. Drawing of the inner ring attractor network using the neural node component shown in Figure 2. (a, b) Top and side view of the
network, encapsulated in a SiO2 substrate/HfO2/air 2D waveguide. Scale bar is given in (a). The internal inhibiting signaling at λ− between neural
nodes occurs in the 2D plane of the network system as seen in (a). The external exciting light (compass) input at λ+ enters perpendicular to the 2D
communication plane, as seen in (b). To ensure that the exciting signals reach the correct input position, nanoantennas35 can be used. (c) One
node with the superimposed emission pattern of a dipole source. The two absorption regions are again indicated by red/purple, as in Figure 2.
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Communication between Neural Nodes in the Ring-
Attractor Network. We now discuss the placement and
emission patterns of the neural node components to achieve
weighted communication via optical signals in the shared
waveguide structure. As shown in Figure 4a,b, the components
are positioned in a geometry directly inspired by the
topographic representation of the ring-attractor central net-
work shown in the center of Figure 1.
To obtain the desired pattern of coupling coefficients in the

ring attractor (see Figure 1 and Stone et al.34), a node should
emit the maximum signal toward the node farthest away in the
circle, gradually decreasing toward the two closest nodes. Any
self-inhibition due to the LED coupling to the phototransistors
in the individual node component should be minimized. To
fulfill these conditions a dipolar radiation pattern from the
LED is suitable. The dipole source serves the additional
purpose of transmitting signals in the 2D plane outward from
the network center. This facilitates the necessary communica-
tion of the ring attractor with the nodes in the two outer ring
network layers (indicated in Figure 1, bottom right).
As seen in Figure 4a, the inhibition part of the nanowire

stem of each neural node faces inward, which maximizes the
absorption cross-section for receiving light signals from the
other nodes. The components are placed on a flat SiO2
substrate and covered with HfO2 (as depicted in Figure 4b).
The SiO2 substrate/HfO2/air structure functions as a quasi 2D
waveguide. As a result, a majority of the intensity is spread in
the waveguide, which is important to keep the efficiency of the
network high. Nanowires have been reported to have giant
polarization anisotropy.37 As a result, the coupling of light from
inside the nanowire to its surroundings depends on the
polarization. The large dielectric contrast between the
nanowire and surrounding HfO2 strongly favors coupling to
light fields polarized parallel to the nanowire axis. The dipole
emission pattern corresponding to this polarization is shown in
Figure 4c and it determines the weights on each neural node
component (along with their placement).
To quantify the absorption and emission between the

components and to calculate the corresponding coupling
weight matrix gij, a full 3D model of the optical network with
its node components was implemented in a Finite Difference
Time Domain (FDTD) simulation using the solver from
Lumerical.38 FDTD methods are widely used to model

nanowire optical absorption,23 scattering,39 and emission,19,40

demonstrating good agreement with experimental observations
in nanostructures as used in the present study. In Figure 5a,b,
the field distributions in the attractor ring due to one neural
node LED (#3 in Figure 4a), as well as from an individual
component, are seen.
The absorption of each component was determined by

calculating the optical transmission through a closed box
around each absorption region in a component. The fraction of
intensity absorbed in component (i) relative to the emitted
power of component (j) directly corresponds to the weight
matrix indices gij displayed in Figure 5c. The intensity flowing
out of the waveguide in both the horizontal and the lateral
directions was recorded to calculate the waveguide confine-
ment factor Γ, found to be around 60% at 830 nm. The
remaining 40% is light lost from the communication processes.
Stand-alone modeling of one node component was also
performed to understand how the thick receiver branch
interferes with the dipole emission. The resulting intensity
emission pattern w(θ) is shown in Figure 5b, demonstrating
that the main dipole shape of the radiation is retained. In the SI
we discuss the dipolar emission from nanowires embedded in
the waveguide structure in more detail.
Even with a dipole emitter, the absorption region of a

component is subject to some radiation from its own LED, so
that gii ≠ 0. It is important to minimize any such reabsorption
because it leads to undesirable self-inhibition in the
component. For the network to perform well, it is enough
that gii is substantially smaller than the internode coupling
coefficients gij. This can be achieved using the polarization
selectivity of the dipole source and extending the branch to
move the LED away from the stem. Increasing the length of
the branch, however, increases the footprint and asymmetry of
the network circuit, but a sweet spot can be found that
optimizes all these parameters sufficiently for excellent
functionality. These considerations set the length of the LED
branch used in the neural node design (given in Table 1).
The placement of the T-components (as seen in Figure 4a)

results in an asymmetry of the signal reception. For example,
the distances from the LED of node component 1 to nodes 4
and 6 are not identical. This leads to an overall asymmetry in
the network interconnecting weights as is observed in the
matrix plot in Figure 5c, which is based on the simulation

Figure 5. Simulated field distributions in the ring attractor network and resulting communication matrix. (a) The field distribution of dipole
emission from neural node 3 (as denoted in Figure 4a) in the xy-plane of the waveguide based on FDTD modeling. To the right of the dashed
white line, a log scale is used to visualize the fields close to the dipole source. (b) Polar emission pattern from the radiating dipole inside the
nanowire branch (oriented horizontally in the figure). (c) Internode weight matrix calculated from the absorption in each component, with labels as
in Figures 1−4. An asymmetry can be seen due to the rotation of the components, as seen in Figure 4a.
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including all eight nodes. Results given in the following section
show that this has no significant influence on the navigational
capacity of the network.
Simulation of the Full Navigation Network Using the

III−V Nanowire-Based Ring-Attractor. Using the complete
computational model of the insect navigation CX,34 the
performance of the network, when realized using III−V
nanowire components, was tested. The activation functions in
the ring attractor (inset of Figure 3b) were replaced with the
results obtained from the component response simulation (full
plot in Figure 3b). In addition, the communication weights
connecting the ring attractor nodes were replaced by the
simulated counterparts of the matrix seen in Figure 5c. For use
in the computational model, the output current (for input
current see Methods), as well as the weight matrix values, were
normalized to unity. Here it is important to reiterate that, while
the original CX model neural node has a 1D simple sigmoidal
functional response (which depends only on the difference
between the sum of inhibiting and sum of exciting signal
intensities), the separate values play a role in the III−V
components. Thus the response function is now 2D in the
intensities of the inhibiting and exciting signals. Such a 2D
functional (shown in Figure S9) will be an almost inevitable
consequence when constructing a real component. Only if the
amplification in both transistors is identical and slope-
saturation can be avoided, it would in the present case revert
to the model 1D response. However, our simulations show that
the more complicated response still allows full network
functionality.
The results of the navigation tests are summarized in Figure

6 using the physical parameters from the III−V components
placed in the network. In Figure 6a, an example route with
1500 steps is shown where the insect finds its way back without
difficulty with 10% added noise. In Figure 6b, the results of a
statistical study where the signal noise was systematically
increased up to 40% is shown. In summary, the network is
capable of handling trips of a maximum of 5000 steps and a
noise level of 20% before the insect cannot find its way back.
These results are on a par with those presented by Stone et
al.34 and represent a clear success of the network with the III−
V components.
Operational Efficiencies of the III−V Nanowire-Net-

work Implementation. In each step of transmission,
detection, and signal processing in the network circuit, energy
is dissipated, either due to conversion losses or intensity
leaking out of the waveguide. To counteract the power
dissipation and achieve stable operation, enough built-in signal
amplification is required in the output of each neural node to
drive the subsequent input in other nodes (fulfilling demands
on fan-out and cascadability41). We discuss the different
efficiencies in the process, evaluate their magnitudes based on
our calculations and experimental values to demonstrate the
feasibility of our approach, and estimate necessary efficiency
demands.
Starting from the optical input signals in the III−V neural

node component, the photon-exciton conversion efficiency
(antenna efficiency ηa) describes how efficiently the photons
absorbed in the components generate electron−hole pairs in
the base and collector regions of the two npn phototransistors.
The efficiency of converting the electronic signal back to
photons in the LED branch (the internal quantum efficiency
(IQE), ηIQE) describes the relative effectiveness of the radiative
recombination compared to competing processes, such as trap-

assisted recombination and Auger recombination. Then the
light extraction efficiency ηout multiplies with the IQE to
provide the external quantum efficiency of the LED. To
compensate for the power lost in these processes, each node is
required to have a gain mechanism so that it can generate the
output needed to stimulate the subsequent components. In our
approach, this is the current gain β± of the excitation and
inhibition transistor, respectively.
Approximating these parameters to be the same for all

nanowire nodes, for the sake of this estimate, the output power
of component (i) in terms of absorbed power, process
efficiencies, and amplification then reads:

Figure 6. Simulated navigation using the model of Stone et al.34

implemented with the specific III−V network circuit proposed here.
(a) An example insect travel route obtained by the full navigation
computational model with the results of the simulated III−V
nanowire-based network integrated. First, the insect performs a
random foraging trip (purple line). At a given point, it is switched to
return home to the nest, indicated by N (green line). When it reaches
the nest, it will keep circling it, as seen in the green line trace. (b)
Statistics of the success rate for 1000 traveled routes distributed on 20
different trip lengths for different noise levels. The standard deviation
is depicted as filled areas around the respective lines. For comparison,
a reference case using a random walk for homing is also shown.
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βη η η=P Pi iout, out IQE a abs,

The absorbed power (Pabs,i) consists of contributions from
all other node components as well as exterior (compass) input.
For a given node (i), the power contribution from node (j) can
be calculated using the geometrical coupling coefficient gij(r),
describing the overlap of the emission light pattern of (j) and
the absorption cross-section of (i). For cascadability and fan-
out to be fulfilled, a node must be able to deliver at least Pabs to
the other nodes in order to activate them. Demanding that
node (j) must be able to supply the full power needed for node
(i) constitutes an upper limit of power needed, so

≥g P Pij j iout, abs,

Finally, noting that all neural node components are identical
(the output powers of (i) and (j) will be similar in size) leads
to the inequality:

η η η
β

≥g
1

ij out IQE a

which relate the losses and efficiencies to the current gain of
the npn bipolar phototransistors. Most of the values in this
equation can be determined from the modeling and
experimentally known values. For the ring attractor, the
strongest geometrical coupling coefficient is gij ≈ 0.006 (as
shown in Figure 5c). This includes the waveguide loss and
describes how much of the total signal reaches a connected
component with the largest weighting factor. The internal
quantum efficiency is closely related to the trap-assisted
recombination lifetime of 1.34 ns used here for the III−V
nanowires.42 From the node component modeling (further
detailed in the SI), a maximum efficiency of ηIQE = 0.7 for a
current density of J = 800 A/cm2 was found. This number is
well beyond the low-current limit for npn bipolar photo-
transistors where β saturates.43 Regarding the antenna
efficiency, it has been shown recently that InP nanowires
with a diameter of 310 nm, designed for solar cells, enjoy a
photocarrier collection efficiency of 90% over several
microns.44 The diameter is similar to the one used in the
present work, which motivates the choice of ηa = 0.9 As a final
step the current gain factor was set to β = 1900 based on the
component modeling results. This leads us to an estimate for
the required light extraction efficiency from the LED

η
η η β

> ≈
g

1 1
0.14

ji
out

IQE a

This is well below the number of 42%, as reported by
Reimer et al.,19 demonstrating that the proposed network
circuit appears feasible given realistic values from experiments
and modeling. However, as discussed below, further work will
be important for improving the energy efficiency of the system.

■ DISCUSSION
We have proposed and successfully simulated an optoelec-
tronic design to implement the nodes and connections of a
neural circuit, closely based on the insect brain, that carries out
an important navigational task. A relevant question is if all
components are available for a practical realization of the
proposed implementation. III−V nanopillar bipolar photo-
transistors have been developed, exhibiting transistor gain at
subpicowatt levels.45 Nanowire-based optical emitters that can
perform above the required efficiencies have been exper-

imentally realized.19,20 Electrically pumped sources with high
efficiency have been reported in the III−V material system as
well.46 Individual nanowires have been demonstrated23 to have
a light concentration factor of 8 and high efficiency nanowire
solar cells have been realized.22

The subcomponents of phototransistors and LED are most
elegantly connected in a T-shaped or crossed nanowire
structure. Branched III−V nanowires have been grown by
several groups with a large level of control using catalyst
migration.47,48 Crossing nanowires in the III−V material
system have been grown epitaxially by placing two growth
substrates at an angle toward each other with the nanowires
meeting and crossing during growth.49 Other nanocrosses have
been grown from both a hexagonal and cubic basis.50 As an
alternative implementation, two wires positioned in close
proximity and connected with a metal bond could perform the
same tasks.
A network that requires many nodes with similar operating

parameters is a challenge to realize in most nanotechnologies.
However, the present analog computational circuit has a large
robustness built into the architecture. This is demonstrated by
the statistical outcome of the navigation tests that was
performed on the network (shown in Figure 6). A signal
noise of 20% can be tolerated before the results become
significantly worse than the noise-free reference. In addition,
the effect of inaccuracy of the positioning of each node
component is estimated in the Methods section, addressing the
deviations in rotational alignment precision of the individual
nodes. Deviations of up to 13° can be tolerated for the largest
coupling coefficient. This indicates that significant variations in
component positioning and perfection can be tolerated. For
the necessary optimization, a wide variety of microscopy-based
diagnostic tools are available for optimization of the optical
fields and electron excitation locally in III−V nanowire
structures.51,52

The LED polarization engineering is not a major obstacle to
constructing the components. InP nanowires have a giant
polarization anisotropy,37 which naturally helps shape the
optimal emission pattern shown in Figure 5b. Embedding the
nanowire components in a waveguide decreases the dielectric
contrast and reduces the anisotropy. To re-enhance this
anisotropy, one option is to use a tapered nanowire cavity,19

which has the additional benefit that it, through the Purcell
effect, decreases the spontaneous emission lifetime in the
quantum dot. This directly leads to a better efficiency ηIQE of
the LED, which translates to lower operating currents and
power consumption. Better emission control also allows a
decrease in the network diameter and thus increases the
geometrical coupling coefficients gij. Among other possible
improvements,53 the antenna structure demonstrated by
Ramezani et al.54 is suitable for controlling the emission
from the nanowire LED.
The shared waveguide design dispenses with intercompo-

nent wiring or waveguides and instead allows setting the
weights using the geometry of the system. This strategy enables
a small footprint and low energy use. Further generalizing this
concept to different networks might require additional design
developments and new light focusing components. However, a
wide variety of subwavelength nanophotonic structures have
been designed recently that can guide light to focus at specified
points with varying intensity. Wiring to supply power to the
active components is still required, and this will cause some
additional scattering. Indium tin oxide (ITO) is a transparent
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conductor at the wavelengths of interest with a refractive index
(2.1) close to that of HfO2 (1.8) and can thus be used to
minimize this scattering. Although imperfections in the
deposition are likely to occur, this is not foreseen as a major
obstacle.
Before finally discussing the power consumption of our

network solution, we would like to put it in context by briefly
relating it to biological systems and CMOS technology. The
human brain is known to require 10−20 W of power. Based on
simple assumptions the energy consumption per neuron and
operation has been estimated1 at 10−16 J. More detailed studies
of the energy consumption of the neural system in the brain
have been put forward, however, estimates end up in a similar
range.55 Exactly how the brain spends this energy is a matter of
debate, but it has been estimated that around 70% is used for
interneuron communication.56 Using CMOS solutions partic-
ularly optimized toward neural networks, efficiencies in the
range of 10−11 J per operation have been achieved.2,57 This is
already considerably better than standard computers, but
orders of magnitude below the efficiency of the human brain.
The power dissipation bottleneck in the present design is the

nanowire LED efficiency. In order for the total losses not to
overcome the transistor gain factor, the LED must be operated
at a relatively high external quantum efficiency. As an example,
a moderate internal efficiency of 50% requires a current
through the LED of about 100 A/cm2. This corresponds to ∼2
nA in the branch. Assuming that a few volts is applied to the
component and that there is additional energy dissipation due
to possible inhibition, a power use of ∼10 nW per neural node
component during operation can be estimated. The energy
needed per operation depends on the frequency, but with
experimentally verified values for components and reasonable
assumptions on operation, an energy dissipation of 10−16 J/
operation or less can be reached (see the SI for more details),
equivalent to the levels observed in biological brains. To
further reduce the power consumption, the most important
optimization is the LED efficiency at lower currents. If the
trap-recombination lifetimes could be increased toward bulk
values of InP, an improvement of 1 or 2 orders of magnitude
can be expected.

■ CONCLUSIONS

Two major new concepts for an artificial neural network
system based on nanoscale optoelectronics have been
investigated. First, optical communication is done directly via
broadcasting, with all components in the same 2D slab
confining the radiation. This radically reduces the footprint of
the neural network since no wiring (electrical or fiber) between
components is needed. Second, a mature III−V nanowire
technology platform is used to create the neural nodes. The
nanowires have light absorption cross sections much larger
than their geometric dimensions and the III−V materials are
very efficient in photon−electron conversion. To investigate
their feasibility, these concepts were implemented on the most
heavily interconnected part of a specific, anatomically verified
model of the navigation center of the insect brain. This allowed
a thorough simulation of all electrical and optical parts of the
network using experimentally verified parameters. Using
conservative estimates for all parameters and already available
nanowire technology, the network is shown to function and
can be orders of magnitude more efficient than present
technologies.

While the present work can be viewed as a proof of principle,
it also identifies challenges for the development of such
networks in terms of component design. Central is the power
efficiency of the artificial neuron. The more efficient emission
and absorption of light in the nanowire components, the more
favorable solutions become. Another important challenge is the
placement of the components and the focusing of light in
subwavelength structures. For placement, technology relevant
for other applications such as III−V nanowire-based quantum
computers face similar challenges, and several solutions have
been put forward. The focusing and manipulation of light on a
subwavelength scale have seen a wealth of new developments
in recent years, thus, it would even be possible to create
advanced patterns that can act as low footprint communication
paths. Again, energy dissipation is an important issue as many
such components have significant losses.
The ring-attractor system implemented is, in principle,

dedicated to a specific navigational task. Importantly, its
functional connectivity can be expressed in geometrical terms
that exploit a light broadcast as a method of internode
communication. The extent to which this may be a general
principle in biological neural networks is unknown, but the ring
attractor itself appears to subserve a wide range of navigational
functions for the insect. As such, the methodology described
might have the greatest application for reproducing specific,
but crucial, capabilities of biological brains. On the other hand,
the proposed nanoscale nonlinear processing unit with optical
input and output may serve as the minimal unit in many other
neural network approaches.

■ METHODS
Electronic Modeling of the Node Component. A

detailed account of the node component modeling is given in
the SI, but a short summary is provided here. A drift-diffusion
model with thermionic emission boundary conditions was
implemented in COMSOL to calculate the transport in the
nanowire subcomponents. Similar models have been shown to
yield good agreement with experimental data for InAs
nanowire heterostructures58 and InP pn-junctions.59 The
components studied here are heavily doped, and the main
effect due to the surface is the increased carrier recombination
due to surface states, which is why no explicit surface charge
was considered here. An effective 1D model was used where
the surface recombination term enters as an additional trap-
assisted recombination process.60 The modeling was divided
into two steps. In the first, the two nanowire npn photo-
transistors and the LED were modeled. The results were fitted
to an Ebers-Moll model and the Shockley diode equation,
respectively. In the second step, these were used as elements in
the equivalent circuit of our node component, as shown in
Figure 2b. Here the two current sources I− and I+ represent the
photoinduced current in the base and collector regions of the
respective transistors. To provide a saturation level to the
output of the nanowire-based nodes, a large external resistance
Rload is used. The resulting load line imposes an approximate
maximum current level on the circuit for the range of biases
used. Using a spice solver, the final results are extracted as
shown in Figure 3b.
This trapping of holes increases the optical gain of the npn

phototransistors.36 However, the fast trap and surface
recombination in nanowires strongly limits the gain and the
functionality. This study used a realistic electron and hole
recombination lifetime of 1.34 ns, as measured at room
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temperature,42 together with the experimentally observed
mobilities.42 Despite these limitations, nanowire npn photo-
transistors can deliver current gain β > 1900, which is needed
to transmit the signals across the ring attractor.
For the nanowire LED, the fast recombination process

prevents a high efficiency at low currents, as a large current
density is needed for the spontaneous emission process to
compete with nonradiative processes. In this work, the
momentum matrix element for the spontaneous emission
process is calculated from the Kane energy of InP of 20.7 eV.61

In order to use the simulated activation function in the
computational model, the output current through the LED was
normalized by the saturation current Isat, while the input
currents were normalized instead by Isat/β− to take the
amplification in each npn phototransistor into account. This
directly yields the activation function shown as a dashed line in
the ring attractor inset of Figure 3b.
Optical Modeling of the Network. In the FDTD 3D

model, the ring attractor network of 8 components was placed
inside a guiding layer of 300 nm HfO2, surrounded by SiO2
and air, as shown in Figure 4a,b. This quasi-2D waveguide
confines 60% of the intensity emitted by the components
inside the network, which would otherwise suffer dramatic
losses. It has been designed for a wavelength of 830 nm, which
matches the bandgap of InP used for the absorbing region of
the inhibition transistor (red in Figure 2a) and for the
recombination region of the nanowire LED. A dipole source,
representing the nanowire LED, was placed 100 nm from the
end of the nanowire branch in node 3, oriented along the
branch axis. The network circumference, with respect to the
center of gravity of the nanowire stem of each component, was
set to

π =R L N2 2network branch nodes

in order to leave generous space between components for
wiring. This resulted in a network of diameter 2Rnetwork = 5.1
μm. The InP and SiO2 was modeled using the data of Palik,62

the HfO2 using Wood et al.,63 while the wide-gap material
Al0.3In0.7P was modeled as a dielectric with refractive index
n(AlInP) = 3.3, as its dispersive properties are of little interest
in this study.
Nominally, each component was positioned with the

nanowire stem directed toward the center. However, in order
to enhance the opposite coupling coefficient (e.g., g15) and to
reduce the coupling to the clockwise neighbor (e.g., g12), each
component was subsequently rotated 0.3 rad in the clockwise
direction around the waveguide normal, as seen in Figure 4a,
still keeping the normal orientation of the nanowire branch
relative to the nanowire stem. It is possible to estimate the
effect of positioning noise relative to this rotation. If the
allowed reduction of the strongest weight g15 is denoted p, we
find the maximum tolerable angle from expanding the power of
the ideal dipolar radiation pattern cos2θ around θ = 0, as

θ θ θ− = ≈ − ≈ −p1 cos ( ) (1 /2) 12 2 2 2

which provides (Δθ)2 = Δp. It has been shown that the CX
can navigate successfully with 5% weight noise.34 Using p =
0.05, we find a corresponding uncertainty in angle of Δθ = 13°,
which indicates that some noise in the positioning of the
components is tolerable. Expansions far from the peak are less
favorable, giving a smaller allowed uncertainty for coupling
coefficients of components closer to each other. However, the

absolute value of these coefficients is smaller in general, which
limits the impact of positioning errors in these couplings.

Modeling of the Complete Navigation System. The
complete network has been implemented in Python 2.7, as
described previously.34 The three layers of the neural circuit
depicted in Figure 1 (lower right inset) have nodes with
activation functions tuned for a specific functionality. In the
present work, the program was modified to take the weights
and neural performance of the III−V components solution into
account. The two-variable activation function was interpolated
by the program from a given discrete 2D map (see SI). The
weights were given as a matrix. In order to test the robustness
of the computational capability of the circuit, the simulations
feature different levels of noise. The noise is added to the result
processed by each activation function (final value clipped to
the interval [0,1]), both inside and outside the ring attractor.
This number corresponds to the amplitude of the white noise
that was added to the signal, which was in turn normalized to
unity.
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