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Abstract
Machine-checked proofs of security are important to increase the rigour of provable security.
In this work we present a formalised theory of two fundamental two party cryptographic
primitives: Σ-protocols and Commitment Schemes. Σ-protocols allow a prover to convince
a verifier that they possess some knowledge without leaking information about the knowl-
edge. Commitment schemes allow a committer to commit to a message and keep it secret
until revealing it at a later time. We use CryptHOL (Lochbihler in Archive of formal proofs,
2017) to formalise both primitives and prove secure multiple examples namely; the Schnorr,
Chaum-Pedersen and Okamoto Σ-protocols as well as a construction that allows for com-
pound (AND and OR) Σ-protocols and the Pedersen and Rivest commitment schemes. A
highlight of the work is a formalisation of the construction of commitment schemes from
Σ-protocols (Damgard in Lecture notes, 2002). We formalise this proof at an abstract level
using the modularity available in Isabelle/HOL and CryptHOL. This way, the proofs of the
instantiations come for free.
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1 Introduction

Provable security provides a firmmathematical foundation for reasoning about cryptography.
A variety of definition styles have been proposed to reason about security in different settings.
For example, simulation-based definitions [16,28] capture the security notions inMulti-Party
Computations (MPC), and game-based definitions [7,39] formalise the security of primitives
like encryption and commitments.

Security proofs are now a cornerstone of modern cryptography. Provable security has
greatly increased the level of rigour of the security statements, however proofs of these
statements often present informal or incomplete arguments. In fact, many proofs are still
considered to be unverifiable [7,30]. Formal methods offer one way to establish far higher
levels of rigour in proofs and tools have been developed to formally reason about cryptogra-
phy and obtainmachine-checked proof of security statements. Formalisation of cryptography
is a maturing area of research; the EasyCrypt framework [2] has captured proofs of low-lying
cryptographic primitives [34] as well as MPC [29] and Universal Composibility [17]. More-
over CryptHOL [6] has also considered fundamental primitives [6,13] and MPC protocols
[11,12] as well as Constructive Cryptography [33]. Other tools for reasoning about cryp-
tographic proofs in the context of our work include FCF [36], which provides a shallow
embedding in Coq for reasoning about cryptography and CertiCrypt [1], a deep embedding
in Coq in which the first (and only, before this work) formalisation of Σ-protocols was made
[5].

In this work we consider two fundamental cryptographic primitives, namely Σ-protocols
and commitment schemes, and their connection. Commitment schemes allow a party to
commit to a message and keep it hidden until it is chosen to be revealed at a later time. In
particular commitment schemes are used to hold parties accountable to the messages they
send; ensuring they do not cheat when participating in protocols. To this end, commitments
are often used to extend protocols secure in the semi-honestmodel (where parties are assumed
to follow the protocol) to be secure in the malicious setting (where corrupted parties may
arbitrarily deviate from the protocol).

Σ-protocols allow for a party, the prover, to convince a verifier they possess some knowl-
edge. More formally, we consider a relation R and say w is a witness to the relation with
respect public input x if (x, w) ∈ R. A Σ-protocol allows the prover to convince the verifier
that the prover knowsw for some given x without revealing anything else aboutw itself. Like
commitment schemes,Σ-protocols aid the enforcement of honest behaviour from potentially
malicious parties. For example the witness (and proof of knowledge of the witness) can pro-
vide a guarantee that the party is authorised to perform certain actions, or access certain
sensitive information.

The two primitives are strongly linked; Damgård [23] showed how Σ-protocols can be
used to construct commitment schemes. So every Σ-protocol yields a corresponding com-
mitment scheme.

Σ-protocols provide a basis for full zero-knowledge, even though the verifier is assumed
to be honest for the zero-knowledge property to hold (honest verifier zero-knowledge). The
honesty assumption on the verifier can be removed bymaking the verifier commit to the chal-
lenge first; Hazay and Lindell present a generic construction forΣ-protocols [31]. Moreover,
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the Fiat-Shamir transform [27] can be used to convert a Σ-protocol into a non-interactive
proof of knowledge.

Our formalisation is done using the CryptHOL framework inside Isabelle/HOL. We have
chosenCryptHOL for three reasons: First, it provides the expressiveness and rigour of higher-
order logic. Second, we believe the resulting formalisations are easy to read,1 even for the
non formal methods expert; this is something we feel is important. Third, it supports different
styles of security definitions.

The ability to reason about different types of security definition is imporant as the security
of commitment schemes is expressed using game-based definitions whereas Σ-protocols’
security definitions contain a flavour of the simulation-based proof method. Therefore our
work draws on the originally designed application of CryptHOL (game-based proofs) [6] as
well as more recently considered applications (simulation-based proofs) [12].

Contributions By leveraging the expressiveness and modularity of CryptHOL and Isabelle
we develop a framework for formally reasoning about the security proofs of commitment
schemes and Σ-protocols. To the best of our knowledge this is the first formalisation that
links the two primitives.

1. We formalise a framework for reasoning about the security of commitment schemes and
Σ-protocols in a generalmanner. This provides an abstract basis for others to use aswell as
lends weight to the notion that CryptHOL is an appropriate framework for cryptography.

2. We provide clarity to the definition of Σ-protocols. We show that the standard textbook
definition [31] and Damgård’s [23] are too weak. While this is, in theory, known in
the cryptographic community (Cramer’s original definitions, in his PhD thesis [21], are
sufficient) we do not believe it is widely known as the modern literature and Cramer’s
definitions are divergent.

3. We demonstrate how our general frameworks can be instantiated by proving security of
well-known examples of both primitives. In detail, we formalized the Σ-protocols by
Schnorr, Chaum-Pedersen, and Okamoto; and the commitment schemes by Rivest and
Pedersen.

4. We prove the construction of commitment schemes from Σ-protocols [23] secure at an
abstract level. That is, the construction works for anyΣ-protocol. Consequently the proof
effort for any instantiations of the construction is only in proving that the underlying
Σ-protocol is secure. The commitment scheme result then comes in a matter of lines
of proof. At an estimate this halves the proof effort as, in our experience, proofs of
commitment schemes’ security are similar in length (and effort) to proofs ofΣ-protocols.
In particular, for every new Σ-protocol proven secure in our framework we get a proof of
a new commitment scheme being secure for free. For example, security for the Pedersen
commitment scheme needs about 20 proof lines compared to a few hundred in previous
work [13].

5. We formalise the AND and OR compound statement construction of two Σ-protocols.
Here we generalise the proof to arbitrary boolean algebras. The construction from the
literature [22] given over bitstrings is one instance of our result.

This paper extends and improves the conference paper [13] as follows:

– We additionally formalize and prove secure the Rivest commitment scheme and the
Okamoto Σ-protocol. The Rivest commitment scheme uses a trusted initialiser who

1 While the proofs may only be accessible to experts, we feel the statements and proof methods are readable
to the non-expert—this is partially due to the Haskell style do notation in which probabilistic programs can
be written in CryptHOL.
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Fig. 1 The diagram outlines our formalisation in this paper

distributes correlated randomness to both parties. Formalising this result shows that our
framework can cope with different structures of commitment scheme.

– We formalize the generic construction of commitment schemes from Σ-protocols. In
[13], only the instantiated results were formalised.

– The formalisation of compound statements of two Σ-protocols is new to this work.

Outline Figure 1 outlines theworkwe present in this paper. Solid arrows represent proofs of
concrete commitment schemes orΣ-protocols; the arrows end at the instantiated framework.
The double arrow represents our formalisation of the general construction of commitment
schemes from Σ-protocols, and the corresponding commitment schemes from our instan-
tiated Σ-protocols whose security statements come for free due to the general proof. We
highlight one of these in particular with the dotted arrow as the instantiation of the Schnorr
Σ-protocol under the general construction yields the Pedersen commitment scheme, a result
we formalised from scratch in [13] but comes in a matter of lines of proof here.2

In Sect. 2 we introduce the relevant background on Σ-protocols, commitment schemes,
and CryptHOL. Section 3 outlines the general method of formalising cryptographic prim-
itives in CryptHOL. In Sects. 4 and 7 we introduce our formalisation of Σ-protocols and
commitment schemes respectively. We show how they can be instantiated for the Schnorr
Σ-protocol in Sect. 5, compound statements of Σ-protocol relations in Sect. 6, and for the
general proof of commitment schemes from Σ-protocols in Sect. 8. We show in Sect. 9 how
the security of the Pedersen commitment scheme follows from the general proof. We discuss
related work in Sect. 12 and detail how, during our formalisation, we came across discrep-
ancies in the definitions of Σ-protocols and how we resolved these. Finally we conclude in
Sect. 13.

The security definitions presented in Sect. 2.1 are the traditional paper-based definitions
of commitment schemes and Σ-protocols; all definitions and statements given in the rest of
the paper have been checked by the proof assistant Isabelle/HOL.

2 Background

2.1 ˙-Protocols and Commitment Schemes

Commitment schemes andΣ-protocols are two party protocols considered to be fundamental
building blocks in modern cryptography. Commitment schemes allow a party to commit to a

2 Our formal proofs can be found at [15].
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message and reveal it at a later time. This is a powerful construction that is widely used, for
example in MPC where they are used as a tool to convert semi-honest protocols to protocols
secure in the stronger malicious model. Σ-protocols allow a prover to convince a verifier
of some knowledge they posses and are a direct building block for Zero-Knowledge proofs.
The major limitation of Σ-protocols is that they do not account for a cheating verifier, it is
assumed that the verifier follows the protocol exactly—this is analogous to the semi-honest
model considered in simulation-based proofs.

2.1.1 ˙-Protocols

Cramer [21] introduced the abstract notion of a Σ-protocol, coined the term Σ-protocol,
and gave the definitions of the properties we consider here. He also developed a rich theory
of Σ-protocols that goes beyond what we formalise in this work. Schnorr introduced the
first efficient Σ-protocol [38]—the protocol we formalise in Sect. 5. The presentation of
Σ-protocols follows Damgård [23], Hazay and Lindell [31] and Cramer [21]. 3

A Σ-protocol is considered with respect to a relation R. If (h, w) ∈ R then h can be
considered an instance of a computational problem where w is the witness or solution to the
problem. For example consider the discrete log relation which is considered over a group G
with generator g. We say w is a witness to h ∈ G if the following relation holds.

(h, w) ∈ RDL ⇐⇒ h = gw (1)

The discrete log relation is widely used in cryptography as for certain groups (e.g Z
∗
p and

elliptic curves over finite fields) it is considered a hard relation, meaning that it is computa-
tionally infeasible to obtain the witness w from h = gw.

Any relation, R, gives rise to a language LR = {h. ∃w. (h, w) ∈ R} that consists of
statements in R.

A Σ-protocol is a three move protocol run between a Prover (P) and a Verifier (V ) where
h is common public input to both P and V andw is a private input to P such that (h, w) ∈ R.

Informal Definition 2 A Σ-protocol has the following three part form:

Prover Verifier
(a, r) ← initial(h, w)

a−−−−−−−−−−−−−−−−→ a

e
e←−−−−−−−−−−−−−−−− e ← challlenge

z ← response(r , w, e)
z−−−−−−−−−−−−−−−−→ z

accepts/rejects

That is: first the Prover sends an initial message a. Here r denotes the ramdomness used
to create a and is kept by the Prover. In a typical workflow r will be sampled by the prover
(as part of the initial phase) before a is created. Second the Verifier sends a challenge e and
finally the Prover sends a response, from which the Verifier decides if it will accept or reject
the proof.

A conversation for an execution of a Σ-protocol is the transcript of the protocol—(a, e, z).
The conversation is said to be accepting if the tuple corresponds to the outputs of the three
moves in the protocol and the verifier accepts the response z.

3 Damgard’s [23] and Hazay’s and Lindell’s definitions[31] are too weak. Our definition of a Σ protocol
in Definition 3 therefore includes Cramer’s additional requirements. A detailed discussion can be found in
Sect. 12.1.
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There are three properties that are required for a protocol of the above form to be a
Σ-protocol.

Informal Definition 3 Assume a protocol, π , of the above form run between P and V . Then
π is a Σ-protocol for a relation R if the following properties hold:

– Completeness: if P and V follow the protocol on public input h and private inputw such
that (h, w) ∈ R, then V always accepts.

– Special soundness: there exists an adversary,A, such that when given a pair of accepting
conversations (on public input h) (a, e, z) and (a, e′, z′) where e 
= e′ it can compute w

such that (h, w) ∈ R.
– Honest verifier Zero-Knowledge (HVZK): The following conditions must hold.

1. There exists a polynomial-time simulator S that on input h (public input) and e
(a challenge) outputs an accepting conversation (a, e, z) with the same probability
distribution as the real conversations between P and V on input (h, w). That is for
all h and w such that (h, w) ∈ R and every e we have

{S(h, e)} = {〈P(h, w), V (h, e)〉}
where {S(h, e)} is the output distribution of the simulator and {〈P(h, w), V (h, e)〉}
denotes the distribution of the output transcript of an execution of the protocol
between P and V .

2. For h /∈ LR the simulator S(h, e)must nevertheless output an accepting conversation
(a, e, z).

A Σ-protocol is said to be complete if the Verifier accepts in the final stage whenever
the protocol is executed honestly. The intuition for the special soundness property is that
if a Prover can respond correctly to two different challenges then it can also compute the
witness, meaning a prover cannot cheat the Verifier if they do not know the witness—that is
convince the verifier when a witness is not known to the prover. The HVZK property ensures
that no information about the witness is leaked during the execution of the protocol. The
first condition resembles definitions from Multi-Party Computation (MPC) where the real
view (the real conversation generated by the Prover and Verifier) can be simulated without
the private input (the witness). Condition 2 ensures that the OR construction of Σ-protocols
satisfies completeness (Sect. 6.1).

2.1.2 Commitment Schemes

Commitment schemes were first introduced by Blum [8] and Even [26]. The problem Blum
proposed was that of coin flipping by telephone; how do Alice and Bob flip a coin via
telephone. Blum proposed commitments to solve such a problem: Alice first guesses the
outcome of the coin flip and commits to her guess. Bob then flips the coin and reveals the
result uponwhich Alice reveals the value she committed to so Bob can verify her call matches
her commitment—if Alice’s call matches the coin flip she wins.

Informal Definition 4 A commitment scheme has the following three part form:

1. Key generation: (ck, vk) ← key. The algorithm key outputs a pair of keys that is sent
to the committer and verifier respectively.

2. Commitment phase: (c, d) ← com(ck,m). The algorithmcom takes as input themessage
to be committed and outputs the commitment c and an opening value d, which is sent to
V in the verification phase. C sends c to V .
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Fig. 2 The hiding game played between the committer (the challenger) and the adversary (the verifier)

3. Verification phase: b ← ver(vk, c,m, d). The algorithm ver takes the verification key,
commitment, original message and opening value as input and outputs a boolean depend-
ing on whether the verification is successful.

The three properties we want from a commitment scheme are correctness, hiding and
binding.

Informal Definition 5 (Correctness)A commitment scheme is said to be correct if the protocol
is run honestly between C and V , then V will always accept in the verification phase for all
messages that can be committed.

To define the hiding and binding properties we consider security games that are played
between an adversary and a benign challenger. Games are used to tame complexity [39]
of security proofs. The security games we consider can be considered as pseudo-protocols
played between the committer and the verifier, where one of the parties is controlled by an
adversary and the other is the challenger. Consider the hiding game depicted in Fig. 2. Here
the committer is the challenger and the verifier the adversary; the keys are distributed and the
adversary is asked to output two messages of its choosing and send them to the committer
uponwhich the committer picks one at random and constructs its commitment. The adversary
is then required to output its guess as to whichmessagewas committed andwins the game if it
guesses correctly. More generally the definition of security with respect to a security game is
tied to an event E (in the hiding game this is b = b′), security requires that the probability that
E occurs close to some target probability (this is 1

2 for the hiding property)—the difference
between the probability of the event E occurring and target probability is called the advantage
of the adversary. Intuitively security is achieved if this advantage is small.

The game-based approach allows the cryptographer to be more formal in their reasoning
about security properties. In particular they afford the opportunity to provide more rigorous
proofs of security. Informally a proof is structured as follows: let G0, . . . ,Gn be a sequence
of gameswhereG0 is the original security game andGn is a gamewhere the target probability
is met. In the proof one shows that the value |Pr [Gi ]− Pr [Gi+1]| is small and thus the value
of |Pr [G0] − Pr [Gn]| is also small.

We note that all the definitions here are actually parameterised by a security parameter
and it must be shown that the advantage approaches zero faster than any inverse polynomial
grows—that is the advantage is a negligible function. In our presentation here we omit the
security parameter and refer only to the advantages of adversaries. Intuitively the security
parameter gives a measure of the level of security of the protocol, a higher security parameter
means a higher level of security. Practically this is realised by, for example, the size of group
or field the protocol is considered over.
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Fig. 3 The binding game played between the challenger (the verifier) and the adversary (the committer)

To define the hiding property we consider the algorithm which plays out the hiding game
from Fig. 2. Informally the algorithm, hid-game, is as follows:

1. (ck, vk) ← key
2. (m0,m1) ← A(vk)

3. b
$←− {0, 1}

4. (c, d) ← com(ck,mb)

5. b′ ← A(c)
6. return b = b′

The notation
$←− denotes uniform sampling while we use ←− to denote assignment. We

define this game formally in (11).

Informal Definition 6 (Hiding) The hiding advantage is defined for all polynomial-time
adversaries, A, as

hid-adv(A) = |Pr [hid-game(A) = 1] − 1

2
|

The scheme is said to be perfectly hiding if for all adversaries, A, we have

hid-adv(A) = 0.

The scheme is said to be computationally hiding if for all computationally bounded adver-
saries, A, the advantage value hid-adv(A) is negligible. 4

Analogously to the hiding property we define the binding property with respect to the
binding game which is depicted in Fig. 3. The informal algorithm for playing the binding
game is as follows:

1. (ck, vk) ← key
2. (c,m, d,m′, d ′) ← A(ck)
3. checks m 
= m′
4. b ← ver(vk, c,m, d)

5. b′ ← ver(vk, c,m′, d ′)
6. return(b′ ∧ b)

4 Computational bounds and negligibility are typically used in asymptotic security statements. There, all
definitions are parametrised by a security parameter η and an adversary’s run-time must be bounded by
a (polynomial) function of η. Then, the advantage is negligible if it approaches 0 faster than any inverse
polynomial as the security parameter grows.
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Intuitively the challenger asks the adversary to output two messages (m,m′) and corre-
sponding opening values (d, d ′) for the same commitment c. If the adversary can achieve
this such that both messages (and corresponding opening values) verify then the adversary
(the committer) is not bound to the original message they commit to.

Informal Definition 7 (Binding) The binding advantage is defined for all polynomial-time
adversaries, A, as

bind-adv(A) = Pr [bind-game(A) = 1]
The scheme is said to be perfectly binding if for all adversaries, A, we have

bind-adv(A) = 0.

The scheme is said to be computationally binding if for all computationally bounded adver-
saries, A, the advantage bind-adv(A) is negligible.

We revert back to our coin flipping example to give some intuition regarding these prop-
erties. In the example Alice is the committer and Bob the verifier. Firstly we want the scheme
to be correct, that is if both parties run the commitment protocol in the prescribed way then
the Verifier will always be convinced in the verification phase. Secondly, we do not want Bob
to be able to learn anything about Alice’s call (what she commits to) from the commitment
itself — that is we want the commitment to be hiding. Finally we do not want Alice to be
able to decommit to a different call of the coin flip from the one she committed to, that is we
want her commitment to be binding.

2.2 CryptHOL and Isabelle Background

In this section we introduce Isabelle/HOL and CryptHOL highlighting the parts important
to our work. For more detail on CryptHOL see [6,32].

2.2.1 Isabelle/HOL

Isabelle/HOL is an interactive theorem prover that implements Higher Order Logic (HOL).
HOL is built on simple set-theory, where types are interpreted as sets of elements and terms
are elements of the set corresponding to their type. In this section we highlight some of the
basic notions and notations we use in this paper, however for a more comprehensive overview
we point the reader to [35].

The notationswe use in this paper resemble closely the syntax of Isabelle/HOL (Isabelle).5

For function application we write f (x, y) in an uncurried form for ease of reading instead
of f x y as in the sources. To indicate that term t has type τ we write t :: τ . Isabelle uses the
symbol ⇒ for the function type, so a ⇒ b is the type of functions that takes an input of type
a and outputs an element of type b. The type variable ‘a denotes an abstract type. Isabelle
provides a sum type ‘a+ ‘b that allows for the combination of elements of two different types
into a new type. The two constructors, inject left and inject right, are I nl :: ‘a ⇒ ‘a + ‘b
and I nr :: ‘b ⇒ ‘a + ‘b.

5 Figures 12 and 13 display the actual Isabelle code of the instantiation of the Pedersen commitment scheme
and the corresponding asymptotic security statements. They therefore do not adhere to the slightly simplified
notation used in the rest of the paper.
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The implication arrow −→ is used to separate assumptions from conclusions inside a
HOL statement. In HOL a function may be nameless, that is, λx . s(x), is the function that
maps every valuew to the results of s where x is replaced byw. In the situation where s does
not depend on x , the underscore _, replaces x in our notation. Pairs have the type ‘a × ‘b,
the projections of the first and second elements are written fst and snd respectively.

One technical aspect of Isabelle we use heavily is the module system, called locales in
Isabelle. At a technical level locales allow the user to prove theorems abstractly, relative
to given assumptions. These theorems can be reused in situations where the assumptions
themselves are theorems. For example we use locales to parametrise over cyclic groups as
well as fix parameters and assumptions. The locale system also allows us to modularise our
proofs in a natural way; to do this we use the sublocale command. Sublocales are a form of
interpretation of locales, in our case they allow us to work with an instance of a locale. For
example, we may wish to prove a particular protocol is indeed a Σ-protocol with respect our
formal definition of a Σ-protocol. When constructing this instance we must prove that all
assumptions of the original locale are met. We expand on this in Sect. 3.1 where we outline
the structure of our formalisation.

2.2.2 CryptHOL

CryptHOL [6] is a framework for reasoning about reduction-based security arguments that
is embedded inside the Isabelle/HOL theorem prover. At a high level it allows the user to
formally reason about game-based cryptographic proofs by writing probabilistic programs
and reason about relationships between them.

CryptHOL, like much of modern cryptography, is based on probability theory. Proba-
bilistic programs in CryptHOL are shallowly embedded as subprobability mass functions
of type spmf using Isabelle’s library for discrete distributions. These can be thought of as
probability mass functions with the exception that they do not have to sum to one—we can
lose some probability mass. This allows us to model failure events and assertions. When a
subprobability mass function does sum to one, we say it is lossless—if so, we can consider
the subprobability mass function (spmf) to be a probability mass function (pmf).

HOL functions cannot in themselves provide effects like probabilistic choice therefore
all such effects are modeled using monads. A monad consists of a (polymorphic) type con-
structor, in this case spmf and two (polymorphic) operations, return :: α ⇒ α spmf and
bind :: α spmf ⇒ (α ⇒ β spmf ) ⇒ β spmf . The return operation embedds an effect-
free value into the world of effects, and the bind operation composes components inside the
monad.

We now introduce the parts of CryptHOL that are relevant for this paper.

Writing probabilistic programs Probabilistic programs can be encoded as sequences of
functions that compute over values drawn from spmfs. CryptHOL provides some easy-to-
read do notation, like in Haskell, to write probabilistic programs, where do{x ← p; f (x)}
is the probabilistic program that samples x from the distribution p and returns the spmf
produced by f when given x . We can also return an spmf using the monad operation return.

To illustrate these operators, consider the random experiment with two urns shown in Fig.
4. The first urn contains one white ball W1 and two black ones B2 and B3. The second urn
contains one black ball B1 and one red ball R1. In the experiment, first choose one of the urns
uniformly at random, then draw one ball from the chosen urn and look at the ball’s colour.
This experiment can be formalized as follows:
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Fig. 4 Urn example

X =do {
U

$←− {urn1, urn2};
Ball

$←− if U = urn1 then {W1, B2, B3} else {B1, R1}
return(colour(Ball))}

Syntactically, this probabilistic program constructs the decision tree shown in Fig. 4: first the
urn is chosen, then a ball is drawn from the urn, and finally colour its is determined. In the
last step, the three different black balls B1 to B3 yield the same observation, namely black.
So their probabilities are summed. Semantically, this probabilistic program denotes just the
probability distribution in the last line. So, in the logic, one can prove that this program is
equal to the distribution that assigns the colours white, black, and red the probabilities 1

6 ,
7
12 and 1

4 . This shallow embedding of probabilistic programs induces many a rich theory of
identities that our proofs can exploit.

The following probabilistic program, completeness-game, is used in our formalisation of
the correctness property of commitment schemes, given in Sect. 4. Here init and response
are the probabilistic programs that define the two steps of a Σ-protocol completed by the
Prover and check is the function that the verifier uses to validate the response. To define the
completeness-game, init and response are sampled like in a real execution of a commitment
scheme, and the distribution (spmf ) of check is returned. Note, as check is deterministic we
must return the output as a probability distribution.

completeness-game(h, w, e) = do {
(r , a) ← init(h, w);
z ← response(r , w, e);
return(check(h, a, e, z))}

(2)

We note that bind is commutative, that is, assuming no dependency conditions one can
bind spmfs in any order. In particular, given a sequence of samplings the ordering of such
samplings is irrelevant.

Under bind we also have that constant elements cancel. In particular if p is lossless (its
probability mass sums to one), then

bind(p, λ_. q) = q. (3)

Our proofs of security are mainly completed bymanipulating the appropriate probabilistic
programs. While the proofs that each manipulation is valid are not always accessible to non-
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experts, the effect of eachmanipulation can be easily seen and recognised as they are explicitly
written in the do notation.

Assertions Making assertions inside probabilistic programs is sometimes useful. For exam-
ple wemust ensure that the adversary in the hiding game (Eq. 11) outputs two valid messages
for the game to proceed. The monad for subprobabilities has an element, ⊥, that accounts
for failure meaning the current part of the probabilistic program is aborted. This is captured
by assertion statements

assert(b) = i f b then return(_) else ⊥
where if b holds then the probabilistic program continues otherwise it fails. Here (_) is the
only element of the unit type, returning this element continues with execution of the program
with no effect. Assertions are often used in conjunction with the TRY p ELSE q construct.
For example T RY p ELSE q would distribute the probability mass not assigned by p to the
distribution according to q . Picking up on our example of the hiding game; if the adversary
fails to output two valid messages, the assertion fails and the ELSE branch is invoked—
resulting in the adversary’s output being a coin flip meaning they do not win the resulting
security game.

Assertions are not a necessity to our formalisation as the assumptions could be made
explicitly in the theorem statements, for example in any statement of the hiding property we
could assume all messages outputted by the adversary (A1) are valid:

∀vk. (m0,m1) ∈ set-spmf (A1) −→ valid-msg(m0) ∧ valid-msg(m1).

Assertions however, in general, make the formalisation more neat and readable.

Sampling Sampling from sets is important in cryptography. CryptHOL provides an oper-
ation uniform which returns a uniform distribution over a finite set. We use two cases of
this function extensively: by samp-uniform(q), where q is a natural, we denote the uniform
sampling from the set {0, . . . , q − 1} and by coin we denote the uniform sampling from the
set {True, False}—a coin flip.

The monad operations give rise to another function, map::(α ⇒ β) ⇒ α spmf ⇒
β spmf .

map( f , p) = bind(p, (λx . return( f (x)))) (4)

The map function can be thought of as the post-processing of sampled values. It is from
this level of abstraction that we are able to reason about the equivalence of distributions and
thus complete major steps in our proofs. For example, we can apply one time pad lemmas.
Below is that statement of the one time pad for addition in the finite group Zq .

map((λb. (y + b) mod q), (samp-uniform(q))) = samp-uniform(q) (5)

Probabilities Security definitions are based on explicit probabilities of events occurring.
In CryptHOL the expression P[Q = x] denotes the subprobability mass the spmf Q assigns
to the event x . In our proofs reasoning at this level is often the last step, much of the proof
effort is in showing properties of the probabilistic programs over which the probabilities are
defined.

Negligible functions To reason about security in the asymptotic case we must consider
negligible functions. These are formalised as a part of CryptHOL in the canonical way. A
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function, f :: nat ⇒ real is said to be negligible if

∀c > 0. f ∈ o(λx . inverse(xc))

where o is the little o notation. We discuss the use of such functions in our proofs in Sect. 10.

Cyclic Groups CryptHOL formalizes cyclic groups with a generator g. The formalisation
extends the formalisation ofmonoids in Isabelle/HOLmeaning there is an armoury of lemmas
immediately available for use. We use cyclic groups in the formalisation of the Pedersen
commitment scheme and the Schnorr, Chaum-Pedersen and Okamoto Σ-protocols. In the
formal parts of this paper we denote group multiplication by ⊗ whereas we denote the
multiplication of natural numbers by ·. In the informal parts of the paper all multiplication is
written as ‘·’.

3 Formalisation Overview

CryptHOL has been used for a number of formalisations of cryptography thus far. Our work
lends weight to the fact that CryptHOL provides a good environment for such formalisa-
tions, in particular that the method of modularisation can be used for considering low level
cryptographic primitives.

In this section we first discuss the general method of our formalisation at a high level,
in particular how CryptHOL allows the user to make their definitions abstract and then
instantiate them for the proofs we consider. This method could be considered as the general,
most effective, method that Isabelle and CryptHOL allow for. Second we briefly discuss
asymptotic security statements in CryptHOL.

3.1 Method of Formalisation

Isabelle’s module system and CryptHOL’s monadic structure allow for a natural hierarchy in
our formalisation. We begin our formalisation by abstractly defining the security properties
required for both commitment schemes and Σ-protocols. This part of the formalisation is
defined over abstract types, giving the flexibility for it to be instantiated for any protocol.
The human reader needs to only check the high level, abstract, definitions of security to
have confidence in the whole collection of proof as all instantiated proofs are made with
respect to these definitions. We are able to prove some lemmas at the abstract level and
have them at our disposal in any instantiation, thus reducing the workload for future proofs.
Some of the properties are technical and uninteresting to the cryptographer, for example
we prove losslessness of various probabilistic programs used in the definitions, however
we are also able to reason about the properties more generally. For example, to formalise
the construction of commitment schemes from Σ-protocols we work at an abstract level,
only assuming the existence of a Σ-protocol. This means the instantiated proofs (for the
Σ-protocols we consider) come for free once we prove they are Σ-protocols.

We next more explicitly describe the workflow in constructing our formalisation. We do
not expect the reader to understand the details of formulas here; these will be covered later.
We present the general formalisation approach here so that it does not get lost in the details
of the constructions and formalisation later in the paper.
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We use Isabelle’s locales to define properties of security relative to fixed parameters and
then instantiate these definitions for explicit protocols and prove the security properties as
theorems.

To illustrate this formalisation process we outline how we formalise and instantiate the
completeness property for Σ-protocols.

Formalisation Process

1. To consider Σ-protocols abstractly and define the completeness property we fix in
a locale the probabilistic programs (algorithms) that make up the primitive (i.e.
ini t, response, check) as well as other parameters of a Σ-protocol (Rel, Sraw,Ass ,
challenge-space, valid-pub)—the locale is given in Fig. 5 in Sect. 4, we introduce
the remaining parameters in Sect. 4.

2. We use the parameters to define a probabilistic program, completeness-game, given in
Eq. 2 in Sect. 2.2.2 and use it to define the completeness property given in Definition
9—Σ-protocol is complete if for all valid challenges the completeness game returns true.

3. To instantiate a Σ-protocol and prove it is complete we explicitly define the fixed param-
eters from the locale, Σ-protocol-base. To do this we refine the types and define the
probabilistic programs that describe the protocol. In the case of the Schnorr Σ-protocol
we work with a cyclic group G by fixing it in the locale schnorr -base, given in (7) in
Sect. 5.2.
Inside this locale we define the instantiated parameters:
ini t S, responseS, checkS, RDL , SSraw,AS

ss, challenge-space
S and valid-pubS—here

the superscript S denotes they are the parameters for the Schnorr protocol, and RDL is
the discrete log relation.

4. We then utilise Isabelle’s locale structure by importing the abstract theory using the
sublocale command—this is shown in (8) in Sect. 5. In doing this, not only must the
explicit definitions be of the correct type, one must also discharge any assumptions
that come with the locale. This means that our instantiation is valid with respect to the
Σ-protocol-base locale and we can refer its definition of correctness. In this case we
must prove that Domain(RelS) ⊆ valid-pubS (the only assumption in the base locale).

5. Any call of a definition from the original locale (in this case Σ-protocol-base) requires
the definition name to be prefixed by the name we give to the sublocale (in this case
Schnorr -Σ). The statement of completeness for the Schnorr Σ-protocol is now given by
schnorr-Σ.completeness.

3.2 Concrete Versus Asymptotic Security

In our formalisation, we first prove concrete security bounds using reduction-style proofs.
That is,weboundonadversary’s advantage as a functionof advantages of different adversaries
of the primitives used in the construction. For example, we show in Lemma 30 in Sect. 8.2 that
the binding advantage for commitment schemes constructed from Σ-protocols is bounded
by the advantage that the (transformed) adversary breaks the hard relation Rel. This is in line
with other CryptHOL formalisations [6,12].

From these concrete statements, we can easily derive more abstract asymptotic secu-
rity statements. To that end, a security parameter must be introduced. We describe in Sect.
10 how we achieve this with little effort using Isabelle’s locale system. Conceptually, this
process replaces a locale parameter such as the cyclic group G::‘grp cyclic-group with a
family of cyclic groups G::nat ⇒ ‘grp cyclic-group. And similarly, the challenge space
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challenge-space becomes a family of type nat ⇒ ‘challenge set. This parameterisation is
also the reason for the locale parameters valid-pub and challenge-space. Since HOL does
not have dependent types, the same abstract type ‘challenge must hold the challenge spaces
for every possible security parameter value. The parameter challenge-space then carves out
the right challenge space for the chosen security parameter.

Unfortunately, CryptHOL cannot reason about computational aspects, due to the shallow
embedding. We therefore cannot formalise notions like computational binding (Definition 7)
that quantify over computationally bounded adversaries. Instead, we capture the underlying
reduction argument in a reduction-based security theorem. As an example, for constructing
a commitment scheme from a Σ-protocol, the concrete security theorem has the following
form: the binding advantage bind-adv(A) of an adversaryA is bounded by the advantage of
a different adversary A′ against the hardness of the underlying relation Rel. This adversary
A′ is obtained by a reduction f , which systematically transforms binding-game adversaries
A into hardness game adversaries A′ = f (A). Such statements naturally yield asymptotic
security statements of the following form: The binding advantage of a family of adversaries
Aη against the commitment scheme is negligible if the family of reduced adversaries f (Aη)

has negligible advantage against the hardness of the underlying relation.
Such a reduction-based statement captures the key aspects of the security proof. Compared

to a computational statement, which quantifies over all computationally bounded adversaries,
the reduction f shows up in the security statement itself. This makes the statement more
generic in the sense that we need not commit to a particular computational model or com-
plexity class such as polynomial time. Conversely, the reader must manually check that the
reduction lies in the desired complexity class.

4 Formalising˙-Protocols

In this section we detail our formalisation of Σ-protocols following the definitions given in
Sect. 2.1.1. This follows Steps 1 and 2 from the formalisation process outlined in the previous
section.

We first define a locale where we fix the parameters required for the definitions of Σ-
protocols (Fig. 5). That is we fix, as probabilistic programs, the components of aΣ-protocol:

– ini t constructs the initial message sent from P to V , and its corresponding randomness.
– response is the response sent from P to V .
– check performs the verification V runs on the response from P .

We also fix the relation Rel, the adversary Ass required in the special soundness definition,
the challenge-space which is the set of all possible challenges and the set valid-pub which
contains all the valid public inputs. We also require a simulator for the HVZK definition:
the simulator outputs a conversation of the form (a, e, z), however the outputted challenge e
must be the same as the inputted challenge e; overall the simulator looks as follows:

(a, e, z) ← S(h, e).

To formally model this we fix in the locale the part of the simulator, Sraw, that constructs a
and z and then define the full simulator that outputs (a, e, z) using Sraw as follows:

S(h, e) = map(λ (a, z). (a, e, z), Sraw(h, e)).

The motivation of this definition is maintaining consistency with the literature. The
incurred complexity, namely the introduction of Sraw, is needed to ensure that e on both
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Fig. 5 Locale fixing the constants for Σ-protocols

sides (input and output) of the simulator are the same.6 We show this trivial property with
the following Lemma.

Lemma 8 shows (a, e′, z) ∈ set-spmf (S(h, e)) �⇒ e = e′

To improve the readability of the formalisation we define three type synonyms; the first
two define the type of Sraw and a conversation respectively and the third the type of the special
soundness adversary.

type − synonym (‘msg, ‘response) sim-out = (‘msg × ‘response)

type − synonym (‘msg, ‘challenge, ‘response) conv-tuple =
(‘msg × ‘challenge × ‘response)

type − synonym

(‘pub-input, ‘msg, ‘challenge, ‘response, ‘wi tness) prover -adversary

= ‘pub-input ⇒ (‘msg, ‘challenge, ‘response) conv-tuple

⇒ (‘msg, ‘challenge, ‘response) conv-tuple ⇒ ‘wi tness spm f

The locale where we fix these parameters is given in Figure. 5—note this is the same as
the locale given in the example in Sect. 3. The assumption requires that the domain of the
relation is contained in the set of valid public inputs.We nowmake our formalised definitions
of Σ-protocols.

Using the parameters we fixed in the locale Σ-protocol-base we define the properties
of Σ-protocols. First we define completeness. For this property we define a probabilistic
program, completeness-game, that runs the components of the protocol and outputs the
output of check. We repeat the definition from Eq. 2.

completeness-game(h, w, e) = do {
(r , a) ← init;
z ← response(r , w, e);
return(check(h, a, e, z))}

(6)

The definition of completeness is quantified over all public inputs, witnesses and chal-
lenges.

6 When considering probabilistic programs, it is not enough to have the same symbol on both sides of the
sampling to ensure equality. Thus we must explicitly define that the output is the same as the input.
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Definition 9

completeness = (∀h w e. (h, w) ∈ Rel −→ e ∈ challenge-space

−→ P[completeness-game(h, w, e) = True] = 1)

For special soundness to hold we require the special soundness adversary (Ass) to output
the witness when given two accepting conversations (with distinct challenges) with respect
to the public input h, (a, e, z) and (a, e′, z′). An accepting conversation is a tuple upon which
check is satisfied. To capture this formally we must show that for all w′ in the support set
(set-spm f ) of Ass the relation is satisfied. Together with this we require that the adversary,
Ass , is lossless; if not Ass may abort leaving no way to reason about all outputs of Ass .

Definition 10

special-soundness = (∀h a e z e′ z′. h ∈ valid-pub

−→ e ∈ challenge-space −→ e′ ∈ challenge-space −→ e 
= e′

−→ check(h, a, e, z) −→ check(h, a, e′, z′) −→
lossless(Ass(h, (a, e, z), (a, e′, z′))) ∧
∀w′ ∈ set-spm f (Ass(h, (a, e, z), (a, e′, z′))). Rel(h, w′))

The paper-based special soundness definition, given in Informal Definition 3 requires
the existance of a special soundness adversary. Our formal definition skolemizes over this
quantifier: we fix the adversary as a parameter in the locale. Such an adversary must thus
exist in any instance. Its properties are given by our speical soundness definition.

The definition of HVZK follows the simulation-based paradigm: we require the output
distribution of the simulator S to be equal to the output distribution of the real view of the
protocol which is given below.

real-view(h, w, e) = do {
(r , a) ← init;
z ← response(r , w, e);
return(a, e, z)}

The real view can be defined abstractly as we know the structure of the protocol. This is unlike
in general MPC protocols [12] where the real view has to be defined for each MPC protocol
considered. We must nevertheless construct a simulator for each instantiated Σ-protocol. As
noted in Sect. 2.1.1, we additionally require that the simulator’s output produces an accepting
conversation even if the public input h does not belong to the language.

Definition 11

HV ZK = (∀e ∈ challenge-space.

(∀(h, w) ∈ Rel. real-view(h, w, e) = S(h, e))

∧ (∀h ∈ valid-pub - Domain(Rel).

∀(a, e, z) ∈ set-spm f (S(h, e)). check(h, a, e, z)))

Interestingly the second condition holds for all valid public inputs, whether they are in
the relation or not, assuming the completeness property holds. We prove this in Lemma 13
after we define the notion of a Σ-protocol.
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Definition 12 (Σ-protocol)

Σ-protocol = completeness ∧ special-soundness ∧ HV ZK

It may appear surprising that in our formalisation of Σ-protocols we do not fix a proba-
bilistic program to output the challenge, like we do for the other components of the protocol.
In this case it is not needed as the verifier, who outputs the challenge, is assumed to be honest.
In particular we define the properties over all allowed challenges (∀e ∈ challenge-space).
This is valid when the challenge is always generated honestly. It is not strong enough if we
moved to assume the challenge was not generated honestly—in the case of a corrupt veri-
fier. This extension [31] is considered by full Zero-Knowledge protocols, which we do not
consider in this work.

As mentioned above, if the protocol is a Σ-protocol, a stronger property for the sec-
ond requirement in the HVZK definition holds, namely that the simulator outputs a correct
conversation whenever h is a valid public input.

Lemma 13
assumes Σ-protocol
shows ∀e ∈ challenge-space. ∀h ∈ valid-pub.

∀(a, e, z) ∈ set-spmf (S(h, e)). check(h, a, e, z)

Proof We split the proof into the cases depending on whether there exists a w such that
(h, w) ∈ Rel. If so, the real and simulated views are equal by the first HVZK property.
The result thus follows using the completeness property. Otherwise, we can directly use the
second HVZK property as h ∈ valid-pub -Domain(Rel). ��

5 The Schnorr ˙-Protocol

In this sectionwedetail howwe instantiate our formal definitions ofΣ-protocols given inSect.
4 for the Schnorr Σ-protocol. This achieves Steps 3 - 5 of the formalisation process in Sect.
3.1. We first explain the protocol in Sect. 5.1 and give some intuition and informal arguments
as to why the desired properties hold and then in Sect. 5.2 we detail our formalisation.

5.1 The Schnorr˙-Protocol

The Schnorr protocol uses a cyclic group G with generator g and considers the discrete log
relationwhich on public input h requires thewitness to be the discrete log of h inG—h = gw.
The Schnorr Σ-protocol is given in Fig. 6.

The Prover holds (h, w) such that h = gw and theVerifier holds only h. The initialmessage
sent by P to V is a uniformly sampled group element and the challenge is uniformly sampled
from the field of size |G|. The response is constructed by P as z = (w · e + r)mod|G| and
sent to V who accepts or rejects based on whether a · he = gz .

Completeness comes directly by unfolding the definitions and proving the identity gr ·
(gw)e = gr+w·e.

For the special soundness property a witness can be extracted from two accepting conver-
sations (a, e, z) and (a, e′, z′) by taking w = ( z−z′

e−e′ )mod|G|. This can be seen as follows.

Given two accepting conversations (a, e, z) and (a, e′, z′)wehave a ·he = gz and a ·he′ = gz
′

which after unfolding h = gw and rearranging leaves us with gz−w·e = gz
′−w·e′

meaning
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Fig. 6 The Schnorr Σ-protocol

we have [z − w · e = z′ − w · e′]mod|G|. Rearranging this we find w = ( z−z′
e−e′ ) mod|G|

as claimed. Note it is important that [e 
= e′]mod|G| , this comes from e, e′ < |G| (the
challenges are from Z|G|) and e 
= e′ (a condition on the special soundness property).

The protocol also observes the HVZK property. The intuition behind constructing the
simulator for the HVZK property is to work backwards. We would like the response to
independent of w, so let us pick it uniformly at random and then try to reconstruct the initial
message. If we sample z uniformly from the field and then set a = gz · h−e it can be shown
the resulting conversation gives a distribution equal to the output conversation distribution
of a real execution of the protocol.

5.2 Formalising the Schnorr˙-Protocol

Throughout our formalisation we work with natural numbers instead of formalising a field
construction. Therefore we work modulo q whenever we actually work in a field. One issue
we encounter is constructing inverses modulo q . We are required to reason about the inverses
of elements in a field in many places in our formalisation, for example the special soundness
adversary outputs w = ( z−z′

e−e′ )mod|G| in the Schnorr protocol.
We formalise such an inverse as follows,

invq(a) = fst(bezw(a, q)).

Its construction, and the use of the Bezout (bezw) function, is not trivial. We outline our
method in “Appendix A”.

The Schnorr Σ-protocol is defined over a cyclic group of prime order. We use the con-
struction of cyclic groups from [32] to fix a group G in the locale we work in as follows.

locale schnorr -base =
fixes G :: ‘grp cyclic-group (structure)
assumes prime(order(G))

(7)

To show the Schnorr Σ-protocol has the desired properties of Σ-protocols we explicitly
define the constants introduced in Sect. 4. We define

initS, responseS, checkS, RDL , SSraw,AS
ss, challenge-space

S, valid-pubS

where the superscript S denotes that these constants are for the SchnorrΣ-protocol.Wemake
these definitions inside the context of the locale. The types of the components of the protocol
are made more concrete from definitional theory of Σ-protocols, in particular we define the
following type synonyms.
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type-synonym witness = nat
type-synonym ‘grp pub-in = ‘grp
type-synonym ‘grp msg = ‘grp
type-synonym rand = nat
type-synonym challenge = nat
type-synonym response = nat

These new types specialize the types from the definitional theory to the Schnorr protocol.
For example, the witness, randomness, challenge and response are all naturals and the public
input and initial message are group elements.

For the Schnorr Σ-protocol the relation is the discrete log relation, as given informally in
Eq. 1; formally this is encoded into Isabelle as

RDL = {(h, w). h = gw}.
The programs initS, responseS and checkS correspond to the stages of the protocol given in
Fig. 6.

initS :: (‘grp pub-in × wi tness) ⇒ (rand × ‘grp msg) spm f
initS(h, w) = do {
r ← samp-uniform(|G|);
return(r , gr )}

responseS :: rand ⇒ wi tness ⇒ challenge ⇒ response spm f
responseS(r , w, e) = return((w · e + r) mod |G|)

checkS :: ‘grp pub-in ⇒ ‘grp msg ⇒ challenge ⇒ response ⇒ bool
checkS(h, a, e, z) = (a ⊗ he = gz)

A public input is valid if it is in the group, valid-pubS = carrier(G). And the challenge
set is the set of naturals up to the order of G, challenge-spaceS = {0, . . . , |G|}.

We show these constants are an instantiation of the Σ-protocol-base locale (Fig. 5). As
explained in Sect. 3.1 we do this using the sublocale command; this is an extension of the
sublocale given in Eq. 8.

sublocale schnorr -Σ : Σ-protocol-base ini t S responseS checkS

RelS Sraw Ass challenge-space
S valid-pubS (8)

We also inherit the cyclic group properties of the groupG by forming the following locale.

locale schnorr = schnorr -base + cyclic-group(G)

In this context we can prove the desired properties of the SchnorrΣ-protocol. When proving
instantiated results we highlight the exact locale that the result corresponds to (in brackets in
the statement), in this case it is the schnorr locale.

Lemma 14 (in schnorr) shows Schnorr-Σ.completeness

Proof Completeness follows after proving the identity gr ⊗ (gw)e = gr+w·e and passing it
as a rewrite rule to the simplifier. ��

Second we consider special soundness. To prove this property we construct an adversary
that can extract the witness from accepting conversations of the protocol. We informally gave
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the construction of this adversary in the previous section; given two accepting conversations
(a, e, z) and (a, e′, z′) the adversary outputs ( z−z′

e−e′ )mod|G|. The encoding of the adversary
in Isabelle must be mindful of whether e > e′; as we are working with naturals bounded
subtraction in the denominator e − e′ will return 0 if e < e′. So we construct an adversary
that is mindful of this—we know that e 
= e′ as it is a condition on the conversations given
to the adversary.

AS
ss(h, c1, c2) = do {
let (a, e, z) = c1;
let (a′, e′, z′) = c2;
return(i f e > e′ then (z − z′) · invG(e − e′)mod|G|

else (z′ − z) · invG(e′ − e)mod|G|)}
Using this adversary we prove the special soundness property for the SchnorrΣ-protocol.

Lemma 15 (in schnorr) shows Schnorr-Σ.special-soundness

Proof The adversary AS
ss is clearly lossless—it does not do any probabilistic sampling.

Showing the adversary outputs a witness to the relation is proven by using Lemma 31 to
rewrite the output of the adversary in a similar manner to a paper proof given in Sect. 5.1. ��

Finally we consider the honest verifier zero knowledge property. This proof technique
follows the technique of simulation-based proofs that was formally introduced in Isabelle
and CryptHOL in [12]. To prove HVZK we define the simulator, SSraw, which in turn defines
Schnorr-Σ.SS . We then prove this mimicks the real view. The unfolded simulator is formed
as follows; recall the intuition of sampling the response first and constructing the initial
message from it.

Schnorr-Σ.SS(h, e) = do {
z ← samp-uniform(|G|);
let a = gz ⊗ (he)−1;
return (a, e, z)}

Lemma 16 (in schnorr) shows Schnorr-Σ.HVZK(h, w)

Proof First we show the simulator and the real view are equal. The unfolded real view can
be written as:

Schnorr -Σ.real-viewS(h, w, e) = do {
r ← samp-uniform(|G|);
let a = gr ;
let z = (w · c + r) mod |G|;
return (a, e, z)}

The gist of the proof is showing that z constructed in the real view is a uniform sample—as
it is in the simulator—this destroys any information passed to V about the witness. To do
this we use the following one time pad lemma:

map(λb. (y + b) mod q, samp-uni f orm(q)) = samp-uni f orm(q)
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To use this lemma in the proof we must rewrite some of the terms in the real view. These
rewriting statements of equality are nearly always needed when using such lemmas as the
remaining probabilistic program can no longer depend on b and must be rewritten in terms
of the other variables in the probabilistic program.

Second we show the output of the simulator is a valid transcript. This part of the proof
comes easily and in a similar manner to the proof of correctness. ��

Using Lemmas 14, 15 and 16 we show that the SchnorrΣ-protocol satisfies the definition
of a Σ-protocol given in Sect. 4.

Theorem 17 (in schnorr) shows Schnorr-Σ.Σ-protocol

6 Compound ˙-Protocols

Σ-protocols can be combined to prove knowledge for AND andOR statements. Consider two
Σ-protocols, Σ0 and Σ1, with relations Rel0 and Rel1 respectively. The AND construction
allows the prover to prove they know witnesses w0 and w1 such that both Rel0(x0, w0) and
Rel1(x1, w1) are true and the OR construction allows for the proof of knowledge of a witness
such that Rel0(x0, w) or Rel1(x1, w) is true—(x0, x1) is the public input. Cryptographers
have found many uses for these basic constructions, for example the voting protocols in
[21]. In this section we detail our formalisation of the OR construction; details of the AND
construction can be found in “Appendix D”.

6.1 The OR Construction

The construction of the OR protocol follows the idea that the prover can run the real pro-
tocol for the relation for which the witness is known and run the simulator to generate the
conversation for the relation for which the witness is not known. By the HVZK property of
Σ-protocols the simulated view is equivalent to the real view, therefore the verifier cannot
tell which was constructed by the real protocol and which from the simulator. The protocol is
shown in Fig. 7. In this section we just give the statement of the lemmas, the proof sketches
can be found in “Appendix B”.

In the literature [21,23,31] the OR construction is considered over bitstrings. However we
only require the one time pad property of the xor function thus we are able to generalise the
construction to arbitrary boolean algebras.We formalise the concept of a boolean algebra and
prove the one time pad property, whose statement is seen in Eq. 9. Using this formalisation
we fix an abstract boolean algebra L (in the locale where we formalise the construction)—the
classical bitstring version of the construction comes by instantiating the parameter L with
the boolean algebra of bitstrings of a given length.

map((λa. a ⊕ x), (uni f orm(carrier(L))) = uni f orm(carrier(L)) (9)

where L is the boolean algebra with xor function ⊕.
To formalise the OR constructionwe fix twoΣ-protocols (Σ0 andΣ1) and their respective

components

ini t0, response0, check0, Rel0, Sraw,0,Ass,0, challenge-space0, valid-pub0
ini t1, response1, check1, Rel1, Sraw,1,Ass,1, challenge-space1, valid-pub1
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Fig. 7 The OR construction for two Σ-protocols, Σ0 and Σ1. L is the boolean algebra that the protocol is
run over. (x0, x1) is the public input such that Rel0(x0, w) or Rel1(x1, w) is satisfied and b represents the
relation that holds, that is we have that Relb(xb, w)

as well as a boolean algebra L ::‘bool-alg boolean-algebra. The only type constraint on the
components of Σ0 and Σ1 is that both challenges must be of type ‘bool-alg. We allow the
types of Σ0 and Σ1 to be different, thus the witness must be a sum type w :: (‘wi tness0 +
‘wi tness1).

We define the relation,

RelOR :: ((‘pub0 × ‘pub1) × (‘wi tness0 + ‘wi tness1)) set

as a set with the following introduction rules:

((x0, x1), I nl(w0)) ∈ RelOR if (x0, w0) ∈ Rel0 ∧ x1 ∈ valid-pub1
((x0, x1), I nr(w1)) ∈ RelOR if (x1, w1) ∈ Rel1 ∧ x1 ∈ valid-pub0

In particular the prover knows a witness for one of the two relations, and knows to which
relation the witness belongs to. We also require that the public input for which the prover
does not know the witness is a valid public input for its respective Σ-protocol.

In the OR construction the initial message is constructed as either the real initial message
(of the Σ-protocol for which the prover knows the witness) or the first message of the simu-
lator (of the other Σ-protocol). initOR’s output has two parts: (1) the randomness consisting
of the randomness from ini tb (where b ∈ {0, 1} is the relation for which the prover knows
the witness), the random challenge sampled, as well as the response from the conversation
that is simulated and (2) the initial messages sent in the protocol, one (and only one) of which
is constructed by the simulator.

initOR((x0, x1), I nl(w0)) = do {
(r0, a0) ← ini t0(x0, w0);
e1 ← uniform(carrier(L));
(a1, e1, z1) ← S1(x1, e1);
return(Inl(r0, e1, z1), (a0, a1)}

initOR((x0, x1), I nr(w1)) = do {
(r1, a1) ← ini t1(x1, w1);
e0 ← uniform(carrier(L));
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(a0, e0, z0) ← S0(x0, e0);
return(Inr(r1, e0, z0), (a0, a1))}

We recall, from Sect. 2.2.2 that uniform samples uniformly from a set. To respond to a
challenge, s, the prover constructs a new challenge to be used in constructing the real response
by xoring it with the challenge e it generated in ini tOR . The response for the relation the
prover does not know is given as the simulated response from the ini tOR phase. The inputs
to responseOR consist of 1. the randomness outputted by initOR (a 3-tuple) 2. the witness
that is known and 3. the challenge.7

responseOR(I nl(r0, e1, z1), I nl(w0), s) = do {
let e0 = s ⊕ e1;
z0 ← response0(r0, w0, e0);
return((e0, z0), (e1, z1))}

responseOR(I nr(r1, e0, z0), I nr(w1), s) = do {
let e1 = s ⊕ e0;
z0 ← response1(r1, w1, e1);
return((e0, z0), (e1, z1))}

To check the responses given by the prover, the verifier checks both conversations it
receives are valid with respect the Σ-protocols they correspond to as well as checking that
the challenge they provided, s, is the xor of the challenges in the respective conversations—
s = e0 ⊕ e1.

checkOR((x0, x1), (a0, a1), s, ((e0, z0), (e1, z1)))

= (s = e0 ⊕ e1 ∧ e0 ∈ challenge-space ∧ e1 ∈ challenge-space

∧ check0(x0, a0, e0, z0) ∧ check1(x1, a1, e1, z1))

The challenge-space is defined as the carrier set of L—challenge-spaceOR = carrier(L)

and the public input (x0, x1) is valid if xi is a valid public input with respect to its underlying
Σ-protocol, that is:

valid-pubOR = {(x0, x1). x0 ∈ valid-pub0 ∧ x1 ∈ valid-pub1}.

As usual we import the Σ-protocol-base locale — this time under the name Σ-OR—so
we can reason about the properties of Σ-protocols. First we show completeness.

The proof of the completeness property requires Condition 2 of the HVZK definition in
Definition 3. It is required because the simulated transcript in the OR protocol must also
produce a valid conversation if the verifier is to accept the proof. Without Condition 2 we
have no guarantee that this is the case.

7 In this sectionwe denote the challenge as s to distinguish it from the challenges of the underlyingΣ-protocols
which we will denote with e0 and e1.
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Lemma 18 (in Σ-OR-proof ) shows Σ-OR.completeness

To prove HVZK we use the following simulator, as always this is constructed by defining
Sraw,OR.

Σ-OR.SOR((x0, x1), s) = do {
e1 ← uniform(carrier(L));
(a1, e′

1, z1) ← S1(x1, e1);
let e0 = s ⊕ e1;
(a0, e0, z0) ← S0(x0, e0);
let z = ((e′

0, z0), (e
′
1, z1));

return((a0, a1), s, z)}

(10)

Note, in constructing the simulator we had a design choice: sample either e1 or e0 and
constructing the other—either choice results in the same simulator, this can be seen by
applying Eq. 9.

Lemma 19 (in Σ-OR-proof ) shows Σ-OR.HV ZK

To construct the special soundness adversary we condition on the case e0 
= e′
0. The

reason for this is that in the proof of the special soundness property we show that either
e0 
= e′

0 or e1 
= e′
1 must hold (depending on which relation the witness pertains to). In either

case the adversary outputs the witness to the respective relation using the special soundness
adversaries from Σ0 or Σ1.

Ass,OR((x0, x1), conv, conv′) = do {
let ((a0, a1), s, (e0, z0), e1, z1) = conv;
let ((a0, a1), s

′, (e′
0, z

′
0), e

′
1, z

′
1) = conv′;

if (e0 
= e′
0) then do {

w0 ← Ass,0(x0, (a0, e0, z0), (a0, e
′
0, z

′
0));

return(I nl(w0))}
else do{

w1 ← Ass,1(x1, (a1, e1, z1), (a1, e
′
1, z

′
1));

return(I nr(w1))} }
Lemma 20 (in Σ-OR-proof ) shows Σ-OR.special-soundness

Using Lemmas 18, 19 and 20 we can prove the OR construction is a Σ-protocol.

Theorem 21 (in Σ-OR-proof ) shows OR-Σ.Σ-protocol

7 Formalising Commitment Schemes

We formalise commitment schemes analogously to Σ-protocols. First we fix the required
parameters in the locale, commit-base, given in Fig. 8.

The probabilistic programs key-gen, commit and verify correspond to the three components
of a commitment scheme. The key generation algorithm outputs the keys that are available
to the committer and verifier. If, for example, all the keys are public then we have ck = vk.
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Fig. 8 Abstract commitment scheme locale

The predicate valid-msg ensures the messages outputted by the adversary in the hiding game
are valid, for example we may require them to be group elements.

Using these fixed parameters we define the correctness, hiding and binding for commit-
ment schemes.

For the correctness property we define the probabilistic program correct-game.

correct-game(m) = do {
(ck, vk) ← key-gen;
(c, d) ← commit(ck,m);
return(verify(vk,m, c, d))}

For a commitment scheme to be correctwe require that for all validmessages correct-game
always returns True.

Definition 22

correct = (∀m. valid-msg(m) −→ P[correct-game(m) = True] = 1)

When considering the hiding and binding properties we define the advantage an adversary
has of winning the corresponding security game as well as perfect hiding and binding.

The hiding game, hiding-game is defined as follows.

hiding-game (A1,A2) = T RY do {
(ck, vk) ← key-gen;
((m0,m1), σ ) ← A1(vk);
_ ← assert(valid-msg(m0) ∧ valid-msg(m1));
b ← coin;
(c, d) ← commit(ck, (i f b then m1 else m2));
b′ ← A2(c, σ );
return(b = b′)} ELSE coin

(11)

In this game the challenger asks the adversary to output two messages, commits one
of the messages and hands it back to the adversary who must determine which message
was committed. The adversary is said to win the game if it guesses correctly. Formally the
adversary is split into two parts (A1,A2), the first part outputs the messages and the second
its guess at whichmessages was committed to.We highlight that wemust check themessages
(m0,m1) outputted by the adversary are valid, if the assertion fails then the ELSE branch
is invoked and the adversary only wins the game half the time (equivalent to if it guessed
randomly). Also note the two parts of the adversary must be allowed to pass state to each
other. The hiding advantage is defined with respect to the hiding game.

Definition 23 hiding-advantage(A) = |P[hiding-game(A) = True] − 1
2 |

Definition 24 perfect-hiding(A) = (hiding-advantage(A) = 0)
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The binding game requires the adversary to output a commitment c and two message-
opening value pairs ((m, d), (m′, d ′)) such that both verify correctly—themessages outputted
by the adversary must be distinct and valid, with respect to c, this is accounted for by the
assert statement.

binding-game(A) = T RY do {
(ck, vk) ← key-gen;
(c,m, d,m′, d ′) ← A(ck);
_ ← assert(m 
= m′ ∧ valid-msg(m) ∧ valid-msg(m′));
b ← verify(vk,m, c, d);
b′ ← verify(vk,m′, c, d ′);
return(b ∧ b′)} ELSE return(False)

Definition 25 binding-advantage(A) = P[binding-game(A) = True]
Definition 26 perfect-binding(A) = (binding-advantage(A) = 0)

8 Commitment Schemes from ˙-Protocols

In this section we first describe the construction from [24] that uses a Σ-protocol and a
generator for elements in the relation R to realise a commitment scheme that is perfectly
hiding and computationally binding. We then detail our formalisation of the construction at
an abstract level. To realise this we fix a Σ-protocol and use its components to construct
a commitment scheme and prove it secure. Realising the proof at a general level like this
allows us to easily instantiate the result for the Σ-protocols we consider.

8.1 Constructing Commitment Schemes from˙-Protocols

Modern cryptography is based on hardness assumptions. These are relations that are consid-
ered computationally infeasible to break. For example the discrete log assumption given in
Eq. 1.

Consider a hard relation R for a Σ-protocol, we let gen be the generator of elements in
R. That is gen outputs h and w such that R(h, w) is satisfied. Using a Σ-protocol for the
relation R we can construct the commitment scheme given in Fig. 9. In the key generation
phase the verifier runs the generation algorithm, (h, w) ← gen and sends h to the committer.
To commit to a message e the committer runs the simulator on their key h and e; that is they
run (a, e, z) ← S(h, e) and send a to the verifier and keeps e and z as the opening values. In
the verification stage the prover sends e and z to the verifier who uses the check algorithm
of the Σ-protocol to confirm that (a, e, z) is an accepting conversation, with respect to the
public input h.

Correctness comes from the HVZK property of the Σ-protocol. The simulator’s output is
the same as the output of a real execution of the protocol, meaning the check algorithm will
accept the conversation. The commitment scheme is perfectly hiding because the commitment
a is the first message of the Σ-protocol which is created independently of the challenge (the
message being committed to). The binding property follows from the special soundness
property of the Σ-protocol; if the committer could output the commitment a and opening
values (e, z) and (e′, z′) such that both (a, e, z) and (a, e′, z′) are accepting conversations
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Fig. 9 A commitment scheme constructed from a Σ-protocol, e is the message being committed to

Fig. 10 The locale fixing the parameters of aΣ-protocol and the assumptions required to prove the commitment
scheme construction

then by the special soundness property there exists an adversary that can output the witness
w which contradicts the assumption on the relation being hard.

8.2 Formalising the Construction

To formalise this construction we fix the components of a Σ-protocol in a locale and assume
they form aΣ-protocol. The locale can be seen in Fig. 10, where the superscriptC denotes we
are using the parameters to construct a commitment scheme. The only additional parameter
we require in this construction beyond what the Σ-protocol provides is a generator,

genC :: (‘pub-input × ‘wi tness) spmf

that outputs (h, w) such that the relation is satisfied. Note, for indicates that all parameters
in the locale have been renamed (compared to the base Σ-protocol locale) and ′+′ indicates
further assumptions are added to the locale.

Using these fixed parameters we make the assumptions that they form a Σ-protocol and
that the generator outputs a tuple for which the relation holds. The assumptions on the
lossessness of the parameters ensure the components of the protocol do not return nothing,
intuitively this is assuming the protocol is executed, and not terminated.

To formalise the general notion of a hard relation we define a security game played by an
adversary who is trying to break the relation: (h, w) is sampled from genC and h is given to
the adversary who is asked to output w′. The adversary wins the game if (h, w′) ∈ RelC .

rel-game(A) = TRY do {
(h, w) ← genC ;
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w′ ← A(h);
return((h, w′) ∈ RelC )} ELSE return(False)

Using this game we define the relation advantage—the probability an adversary has of win-
ning the game.

Definition 27

rel-advantage(A) = P[rel-game(A) = True]
We show a reduction to this advantage in the proof of the binding property.
To formalise the protocol given inFig. 9wedefine the three components key-genC , commitC ,

verifyC that make up the commitment scheme and also what constitutes a valid message by
defining valid-msgC = (m ∈ challenge-spaceC ). The keys are generated by sampling from
genC .

key-genC = do {
(h, w) ← genC ;
return(h, (h, w))}

To commit to a message the committer runs the simulator and outputs the initial message
from the simulator as the commitment and holds the response as the opening value.

commitC (h, e) = do {
(a, e, z) ← SC (h, e);
return(a, z)}

Finally the verifier checks if the messages it has received from the committer correspond
to an accepting conversation.

verifyC ((h, w), e, a, z) = checkC (h, a, e, z)

We now prove that our construction of the commitment scheme meets the desired proper-
ties. The commit-base locale is imported under the name Σ-commit thus all definitions are
prefixed with this.

sublocale Σ-commit : commit-base key-genC commitC verifyC valid-msgC .

The formal proofs of the security properties broadly follow the intuition given in Sect.
8.1. The proof sketches can be found in “Appendix C”. The correctness and hiding properties
are given in Lemmas 28 and 29 below.

Lemma 28 (in Σ-commit) shows Σ-commit.correct

Lemma 29 (in Σ-commit) shows Σ-commit.perfect-hiding(A)

Finally we consider the binding property. Here we show a reduction to the relation advan-
tage. To show this reduction we construct an adversary, adversaryrel , that interacts with the
relation game using the Σ-protocols special soundness adversary and the adversary used in
the binding game—adversaryrel calls the binding adversary and constructs two conversations
from it to pass them as inputs to the special soundness adversary and outputs the witness
given.

adversaryrel(A, h) = do {
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Fig. 11 The Pedersen commitment protocol, the committer commits to message m. No keys are known only
to one party, we only have a publicly known key pk

(c, e, z, e′, z′) ← A(h);
AC

ss(x, (c, e, z), (c, e
′, z′))}

Lemma 30 (in Σ-commit)
shows Σ-commit.bind-advantage(A) ≤ rel-advantage(adversaryrel(A))

The next Section details howwe use this general proof to realise the commitment schemes
constructed from the Σ-protocols we consider—in particular we show how the security
statements for the Pedersen commitment scheme come with very little proof effort.

9 The Pedersen Commitment Scheme

The Pedersen commitment scheme is a well known commitment scheme that allows for the
commitment to an element in Zp . In [13] we formalised the Pedersen commitment scheme
from scratch. In this work, our general proof of the construction of commitment schemes
from Σ-protocols, from Sect. 8, gives the result in a few lines of proof.

We note the exact instantiation of the general result from Sect. 8 outputs a form of the
Pedersen scheme that is slightly different from the traditional version presented. Specifically
the commitment is taken as c = g · pk−m rather than c = g · pkm that is commonly presented
in the literature, note the verification step is also modified in the analogous way. This is due
to the simulator in the Schnorr protocol taking the inverse of the public input in constructing
the initial message. The Pedersen protocol that arises from our formalisation is given in
Fig. 11.

To realise the proof we leverage our proof of the Schnorr protocol and the general proof
of the construction from Sect. 8. Figure 12 shows the entire proof effort required to prove
the Pedersen commitment scheme secure using the two components outlined above. First we
import, under the name pedersen, the locale where the general proof is given and prove the
import is valid. The correctness and perfect hiding properties come directly from the general
proof, this is seen by the proof that only calls the on the lemmas pedersen.correct-commit and
pedersen.perfect-hiding respectively. For the binding property in the general proof (Lemma
30) we show a reduction to the hard relation, in any instantiation we must relate this to the
hardness assumption corresponding to the commitment scheme that has been constructed.
In this case we show the relation advantage in the general construction is equivalent to
the discrete log advantage. This is shown by the lemma rel-adv-eq-dis-log-adv in Fig. 12.
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Fig. 12 The proof (extracted from Isabelle) of the instantiation of the security statements for the Pedersen
commitment scheme using the general proof of the construction of commitment schemes from Σ-protocols

Using this we can show the binding advantage is bound by the discrete log advantage, thus
completing the reduction for the binding property.

We note that with the general proof, for every Σ-protocol proven secure, we get the
corresponding commitment scheme ‘for free’ (with the proof effort shown in Fig. 12).

10 Asymptotic Security for the Pedersen and Schnorr Protocols

So far, we have proved concrete security statements. Information-theoretic security notions
like perfect hiding can be easily formalised in the concrete setting. Computational properties
like computationally binding, however, can only be formalised in this setting by proving
bounds in terms of hard problems. We now switch to the asymptotic security setting where
we can formally express and prove computational security notions.

To that end, we must introduce a security parameter n to the formalisation and make
all definitions and statements depend on n. Then, we can easily derive the conventional
asymptotic security statements from the concrete ones. We use Isabelle’s locale instantiation
mechanism as shown in Fig. 13 to achieve this with little effort. First we construct a locale
that fixes the family of cyclic groups and then import the schnorr-Σ-protocol locale for all
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Fig. 13 Proving security in the asymptotic setting for the Schnorr Σ-protocol and the Pedersen commitment
scheme

n. The statement that the Schnorr protocol is a Σ-protocol in the asymptotic setting comes
trivially from the concrete setting (lemma Σ-protocol), as do the statements of correctness
(asymp-correct) and perfect hiding (asymp-perfect-hiding) for the Pedersen commitment
scheme.

It is left to show computational binding for the Pedersen commitment scheme. Here we
show A’s advantage against the binding game is negligible if adversary’s advantage against
the discrete log game is negligible. This follows directly from the bound in the concrete case.

11 Further Protocols and Schemes

We have formalised more protocols beyond those discussed in the main part of this paper.
The full outline of our formalisation is given in Fig. 1. Here we briefly discuss the other
protocols we formalise and point to the more detailed discussion of them in the appendix.

11.1 Compound˙-Protocols: The AND Construction

In Sect. 6 we described a formalisation of a Σ-protocol for the OR of two statements. We
have also formalised the corresponding construction for the AND of two statements. Like in
the OR construction we let Σ0 and Σ1 be the underlying Σ-protocols. The relation RelAND
is formally defined as:

RelAND = {((x0, x1), (w0, w1)). (x0, w0) ∈ Rel0 ∧ (x1, w1) ∈ Rel1}.
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where Rel0 and Rel1 correspond to the relations of the two underlying Σ-protocols. Unlike
in the OR construction we define this as a set rather than an inductive set.

The idea of the construction,ΣAND, is simpler than theOR construction. The prover proves
both statements in parallel for the same challenge sent by the verifier.

The formal proofs come more easily than in the OR construction as the underlying Σ-
protocols are run in parallel, making it easier to use their respective security properties. The
added complexity of the sum type needed in the OR construction is also not needed as the
witness is a tuple (w0, w1) :: ‘witness0 × ‘witness1 rather than a single element that could
either be of type ‘witness0 or ‘witness1.

Our formalisation of the AND construction is given in “Appendix D”.

11.2 The Chaum-Pedersen and Okamoto˙-Protocols

The Chaum-Pedersen and Okamoto protocols are based on variations of the discrete log
assumption. The Chaum-Pedersen protocol is based on the equality of discrete logarithms
relation: RelCP = {((h0, h1), w). h0 = gw ∧ h1 = g′w} whereas the Okamoto protocol is
based on a relation whereby the public input is just h and the witness comprises as a tuple
(w0, w1): RelOka = {(h, (w0, w1)). (h = gw0 ∧ h = gw1)} where g and g′ are distinct
generators of the cyclic group G.

Naturally both protocols are similar to the Schnorr protocol which is based on the discrete
log assumption. Many similar arguments are used in the formal proof, especially in the
rewriting of various terms. However, it was not always possible to reuse the exact auxiliary
lemmas proven in the Schnorr protocol as the form of the group element constructions are
subtly different in each case.

More details on our formalisation of the Chaum-Pedersen and Okamoto Σ-protocols are
given in “Appendices E” and “F” respectively.

11.3 Rivest Commitment Scheme

The Rivest commitment scheme uses a trusted initialiser to distribute correlated randomness
to both parties before the protocol is run. Its formalisation is of interest for two reasons.

Firstly, the trusted initialiser model is different from the standard form of a commitment
scheme. So we must consider how to model it in our framework. We choose to model the
distributed randomness sent to each party by the trusted initialiser as the keys each party
holds in the execution of the protocol—specifically we define the key generation algorithm
to output the randomness the trusted initialiser sends to the respective parties.

Secondly, the security results for the Rivest protocol are not obtained by the general result
of commitment schemes fromΣ-protocols proven in Sect. 8. This is because it is not based on
any hardness assumption, and thus there is not an associated relation. Commitment schemes
without a trusted initialiser cannot be both perfectly hiding and binding [25]. However as the
Rivest protocol utilises a trusted initialiser, it can achieve both perfect hiding and binding
and thus not rely on a hardness assumption.

Details of our formalisation of the Rivest commitment scheme can be found in “Appendix
G”.

123



D. Butler et al.

12 RelatedWork and Discussion

There are a number of tools that can be used for reduction based cryptographic proofs such
as CertiCrypt [4], CryptHOL [6], EasyCrypt [3] and FCF [36]. These tools were all initially
designed for game-based cryptographic proofs however some have been used for simulation-
based proofs too; in [11,12,14,29] standalone MPC protocols were considered whereas more
recent work [17,33] considers composibility in the form of Constructive Cryptography and
Universal Composibility respectively.

We highlight two reasons we believe the choice of using CryptHOL and Isabelle is jus-
tified. Firstly, as we have mentioned throughout this paper, CryptHOL provides a strong
foundation to formalise cryptography in a modular way. This allows others to pick up and
easily extend the work given here. For example if one wanted to extend the definitions of
Σ-protocols to consider witness indistinguishablitiy then one can simply incorporate the def-
initions into the abstract theory and construct the instantiated proofs in the relevant places.
Likewise, if one needed aΣ-protocol or commitment scheme, and its corresponding security
properties, in a more complex protocol we have demonstrated how they can be assumed and
general proofs constructed. Thus we feel CryptHOL goes a long way to providing the ability
to formally reason about security proofs in the way they are often considered on paper, with
a cut and pasting of properties of underlying primitives. While other frameworks for formal-
ising cryptography have similar concepts — EasyCrypt has a theory cloning mechanism and
CertiCrypt and FCF inherit the module system from Coq—they are not used as extensively
as in CryptHOL, for example they do not prove security in the asymptotic setting.

Secondly we highlight what is in our opinion an understated advantage of Isabelle—
the archive of formal proofs (AFP). The AFP is a refereed collection of formalisations in
Isabelle that is kept up to date for the current Isabelle release. In particular this ensures any
formalisation accepted to the AFP can be used and added to with ease. Even if CryptHOL
were not to be used for a number of years one could still download an up-to-date version
compatible with the most recent Isabelle release at any point in the future. It is perhaps not
quite as obvious how to do this with other frameworks for cryptography that do not have
such support behind them. The AFP also means there is a vast infrastructure of mathematical
libraries available to the user, this is especially relevant in our instantiations where the results
rely heavily on the underlying number theory—much of which has been formalised already.

The drawback or barrier to entry to using CryptHOL is that one needs to understand
Isabelle first. While this is not a trivial undertaking we suggest it is not considerably greater
than learning the intricacies of any other formal cryptographic framework.

Commitment schemes have been studied before in EasyCrypt in [34] where the Pedersen
commitment scheme was proven secure. One noticeable difference between the proof effort
required is in the construction of the adversary used to prove computational binding—in
particular in outputting the inverse of an element in a field. In EasyCrypt the inverse function
is defined with the required property, that is: x 
= 0 ⇒ x · inv(x) = 1 and consequently
division is defined as y 
= 0 ⇒ x

y = x · inv(y). In Isabelle on the other hand we do not
axiomatise the property of an inverse, but derive it from the Bezout function. This means our
approach could be considered more foundational, and thus warrants the extra proof effort
required.

Σ-protocols have been considered in [5] using CertiCrypt. The authors first proved secure
a general construction of Σφ-protocols that prove knowledge of a preimage under a group
homomorphism φ—the Schnorr and Okamoto Σ-protocols that we formalise are examples
of this type. Secondly they considered the compound statements we formalise in Sect. 6.
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Their work however only considered the compound statements over bitstrings whereas our
formalisation is over an arbitrary boolean algebra of which bitstrings of a given length are
one instance.

Both [5,34] formalise some of the protocols we consider however they do so in different
frameworks. For the ongoing development of the area we believe that it is important to have
up-to-date and usable formalisations in the same framework; therefore we feel our work
provides a strong basis for further formalisations in this area.

12.1 Differences in the Definitions of˙-Protocols

There are different definitions of Σ-protocols presented in the literature [5,20,21,23,31]. We
now discuss their differences and the consequences of Cramer’s additional HVZK require-
ment (Condition 2 in Definition 3). We also outline how Barthe et al. dealt with this issue in
their formalisation of Σ-protocols [5].

Damgard’s HVZKdefinition Damgard’s definition [23] of HVZKdoes not require the inputs
to the real view to satisfy the relation, namely it only requires that the output distributions
of the simulator and real view are equal. We found two problems with this requirement.
First, the real view is not well-defined if the public input is not in the relation: to construct
the real view, we must run the prover and the prover runs only if it gets a witness as input,
but there is no such witness when the public input is not in the relation. Accordingly, none
of the proofs of HVZK for Σ-protocols we study would work. For example, without the
assumption that h = gw (from (h, w) ∈ RelS) in the Schnorr Σ-protocol, we cannot reason
about the real view and the simulator being equal. In particular, we have no way of showing
a = gz · h−e outputted by the simulator is equal to the initial message that is constructed in
the real view. Second, Damgård assumes in the proofs in [23] that the relation holds for the
input. We therefore conclude that Damgård probably intended to include the restriction that
(h, w) ∈ Rel in his definition.

Hazay’s and Lindell’s HVZK definition In [31], Hazay and Lindell credit Damgard for
providing the ‘basis’ of their presentationofΣ-protocols. Their definition requires the relation
to be satisfied on the public input andwitness that are inputs to the real view. This corresponds
to Condition 1 of Definition 3 in this work.

Damgård [23] and Hazay and Lindell [31] both carry out the OR construction for Σ-
protocolswith the relationRelOR as defined in Sect. 6.1, with a proof similar to ours. However,
their proofs are flawed as the simulator for theHVZKproperty is unspecified for public inputs
h that are not in the language. Accordingly, completeness need not hold.

Cramer’s HVZK definition Cramer [21] additionally requires that the simulator outputs an
accepting conversation when the public input is not in the language, which corresponds
to Condition 2 in Definition 3 of Sect. 2. This ensures that the completeness proof of the
OR construction for Σ-protocols goes through. Lindell has confirmed that it was implicitly
assumed in the proof [private communication, 2019].We therefore conclude that the extended
definition should be the standard one.

To our knowledge no real-world Σ-protocol violates the additional requirement—
pathological examples can of course be constructed. In fact, it was straightforward to show
the additional requirement for all the Σ-protocols we consider, yet this extended property is
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rarely required in the literature. However, it is crucial for the OR construction, which allows
to efficiently prove compound statements in zero knowledge.

Barthe et al.’s formalisation and Ciampi et al.’s HVZK definition There is another way to
rescue the OR construction without adding Cramer’s requirement, namely changing the defi-
nition of RelOR. Barthe et al. [5] also noticed the completeness issue for the OR construction
in their formalisation of Σ-protocols. They recovered the proof by defining RelOR as

RelOR = {((x0, x1), w). ((x0, w) ∈ Rel0 ∧ x1 ∈ Domain(Rel1))

∨ ((x1, w) ∈ Rel1 ∧ x0 ∈ Domain(Rel0))}, (12)

i.e., that both inputs x0 and x1 are in the language. Ciampi et al. [20] use the same definition
in their paper proofs.

In contrast, our definition (and Damgard’s, Hazay’s and Lindell’s, and Cramer’s) requires
only one input x0 or x1 to be in the language; the other need only meet syntactic constraints
as formalised by valid-pub. This small difference has a substantial impact on the expressive
power of the OR construction. With (12), the languages for the constituent Σ-protocols
must be efficiently decidable. Indeed, Ciampi et al. “implicitly assume that the verifier of a
protocol for relation R executes the protocol only if the common input x belongs to LR and
rejects immediately common inputs not in LR” [19]. For relations like the discrete logarithm,
this is not a problem because every group element has a discrete logarithm; the hard part is
computing it. However, there are Σ-protocols where the language itself is hard, e.g., Blum’s
protocol for a Hamiltonian cycle in a graph [9]. The OR construction with the relation (12)
does not work for such Σ-protocols.

13 Conclusion

In this work we have formalised commitment schemes andΣ-protocols using the CryptHOL
framework in Isabelle/HOL. The frameworks we provide are modular and thus can easily be
used and extended by others. In principle the work we present could have been carried out
in other formal frameworks for cryptography.

Themerit of formalising cryptography is shown by the issuewe uncover regarding the def-
inition ofΣ-protocols.While the cryptographer’s intuitionmay usually suffice, it is important
that the correct definitions are presented consistently in the literature.

Our work is limited as it cannot reason about polynomial runtime, a central concept in
modern cryptography. Without being able to express this efficiency notion the security defi-
nitions we provide must be considered without it, however due to the nature of our reductions
this does not pose a significant problem. The main drawback is in the inability to formalise
the hardness assumptions adequately—we cannot quantify over the set of all efficient adver-
saries, but only over all adversaries. This limitation of our work is due to CryptHOL not yet
having a mechanism for reasoning about runtime. It is likely that if such a feature is added it
would be easily integrated with this work for two reasons: (1) the adversaries we construct
are, in general, simple. We do not require rewinding, or other procedures whereby technical
arguments will be required to determine runtime (2) the structure of our proofs is similar to
other formalisations using CryptHOL, thus any such feature will likely be constructed with
this in mind. In particular, our security definitions take adversaries and simulators as explicit
arguments rather than quantifying over them. This should allow us reason in a modular way
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about run-time as a refinement, without having to rewrite the existing proofs. We hope to
integrate it into our framework here when it becomes available.

Consequently, incorporating the notion of run-time into our framework constitutes future
work. Moreover a logical next step to increase the usability of our framework for others
would be to define and reason about full Zero-Knowledge as this is an extension of the
HVZK property of Σ-protocols. We believe this work is also likely to be of interest when
formalising the malicious MPC security model as commitment schemes, Σ-protocols and
Zero-Knowledge are commonly used to transfer protocols from semi-honest to malicious
security.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Formalising Inverses

In this section we show how we formalise inverses in Isabelle.
The standard division function on natural numbers is not suitable to obtain an inverse in

the field modulo q . Instead, we use the existing number theory formalisation in Isabelle’s
standard library, in particular Bezout’s function (bezw). Bezout’s identity informally says:
let a and b be integers such that gcd(a, b) = d then there exist integers x and y such that
a · x + b · y = d . In Isabelle, the function bezw(a, b) returns the pair (x, y) of witnesses to
Bezout’s identity. So we obtain the inverse of a as fst(bezw(a, q)). For readability we define
an abbreviation for the inverse.

invq(a) = fst(bezw(a, q))

We prove the following general lemma, which we find is sufficient in all the cases where
reasoning about the inverse is required in our formalisation.

Lemma 31 assumes gcd(a, q) = 1
shows [a · invq(a) = 1] mod q

Proof The function bezw outputs a pair of witnesses to Bezout’s identity, using this along
with the assumption that gcd(a, q) = 1 we have

invq(a) · a + snd(bezw(a, q)) · q = 1

Considering this modulo q the result comes easily as the second term on the left hand side
vanishes. ��

The assumption that gcd(a, q) = 1 is usually realised as q is a prime and a < q .

B Proofs fromOR ˙˙-Protocol Construction

Lemma 18 (in Σ-OR-proof ) shows Σ-OR.completeness
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Proof For ease we split the proof into cases depending on which relation holds. For the case
where Rel1(x1, w) holds the components corresponding to Rel1 are generated using the Σ-
protocol Σ1, whereas the components corresponding to Rel0 are simulated using S0. For the
correctly generated case (Rel1) the check outputs true due to the completeness property of
Σ1. For the simulated case (Rel0) we use the HVZK property (Condition 2) fromΣ0 to show
the check outputs true. ��
Lemma 19 (in Σ-OR-proof ) shows Σ-OR.HVZK

Proof We simulate the real view by running the simulator (given in Eq. 10) for both relations.
The challenges we give to the simulators (e0 and e1) are related by s = e0 ⊕ e1, where we
sample e1 uniformly (we could have sampled e0) and s is the challenge in theORconstruction.
This asymmetry (we must sample one of e0 or e1) is dealt with using the lemma given in Eq.
9. In the case where Rel0(x0, w) holds the result comes directly by writing the components
from Σ0 in Σ-OR.R into the real view then using the HZVK property of Σ0 to rewrite the
real view as the simulator. In the case where Rel1(x1, w) holds we follow the same process
but use Eq. 9 in the last step. ��
Lemma 20 (in Σ-OR-proof ) shows Σ-OR.special-soundness

Proof We must show Ass,OR is lossless and always outputs a witness for RelOR . We have
two conversations ((a0, a1), s, (e0, z0), (e1, z1)) and ((a0, a1), s′, (e′

0, z
′
0), (e

′
1, z

′
1)) on pub-

lic inputs x0 and x1 respectively. We can assume the following hold (the assumptions in the
statement of special soundness):

– s 
= s′
– checkOR((x0, x1), (a0, a1), s, (e0, z0), (e1, z1))
– checkOR((x0, x1), (a0, a1), s′, (e′

0, z
′
0), (e

′
1, z

′
1))

– (x0, x1) ∈ valid-pubOR
– s, s′ ∈ challenge-spaceOR

From s 
= s′ we show that e0 
= e′
0 ∨ e1 
= e′

1 and partition the proof on the case e0 
= e′
0.

When this condition holds we know the conditions for the special soundness property forΣ0

hold and thus Ass,0 is lossless and outputs a witness to Rel0. The branch of the if statement
that is invoked inAss,OR in this case callsAss,0 and therefore outputs a witness to Rel0. The
proof for the second case, e1 
= e′

1, is analogous. ��

C Proofs from Sect. 8

Lemma 1 (in Σ-commit) shows Σ-commit.correct

Proof We rewrite the simulator as the real view of the transcript using the HVZK property
of Σ-protocols (Definition 11). After unfolding the real view into the components of the
Σ-protocol we apply the definition of completeness (Definition 9) to show that check will
always return true. ��
Lemma 2 (in Σ-commit) shows Σ-commit.perfect-hiding(A)

Proof We replace the simulator in the hiding game by the real view of the Σ-protocol. The
commitment a comes from the probabilistic program ini tC and is therefore independent of
the message that is committed as the only inputs to ini tC are h and w. Thus the adversary
learns nothing of the committed message and so the chance of it winning the hiding game is
the same as that of guessing the output of a coin flip—which implies perfect hiding. ��
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Fig. 14 The reponse and check functions for the AND construction

Fig. 15 The special soundness adversary and simulator for the AND construction

Lemma 3 (in Σ-commit)
shows Σ-commit.bind-advantage(A) ≤ rel-advantage(adversaryrel(A))

Proof The binding game is equal to calling rel-game(adversaryrel) with the assertions from
the binding game incorporated in the probabilistic program. When removing the assertions
the probability mass of the probabilistic program can only increase, thus the bound in the
above statement is valid. ��

D AND Construction for ˙-Protocols

Section 6.1 showed how a Σ-protocol for the OR of two relations can be constructed. Here
we show how this can be done for the AND of two relations.

The relation RelAND is defined as:

RelAND = {((x0, x1), (w0, w1)). ((x0, w0) ∈ Rel0 ∧ (x1, w1) ∈ Rel1)}.
The idea of the construction, ΣAND, is more simple than the OR construction. The prover

proves both statements in parallel for the same challenge sent by the verifier. The construction
of the initial messages are shown below and the other components in Figs. 14 and 15.

ini tAND((x0, x1), (w0, w1)) = do {
(r0, a0) ← ini t0(x0, w0);
(r1, a1) ← ini t1(x1, w1);
return((r0, r1), (a0, a1))}

The parallel running of both Σ0 and Σ1 can be seen easily here. Analogous to the case
of the OR construction we import the Σ-protocol locale as Σ-AND. Due to the construction
being more simple than the OR construction the proofs of correctness, HVZK and special
soundness come more easily too. The proofs are able to directly use the corresponding
properties of Σ0 and Σ1.

Lemma 32 (in Σ-AND) shows Σ-AND.completeness

Proof The executions ofΣ0 andΣ1 are run in parallel, therefore the completeness properties
of Σ0 and Σ1 can be applied straightforwardly for completeness to be realised. ��
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Fig. 16 The Chaum-Pedersen Σ-protocol

Lemma 33 (in Σ-AND) shows Σ-AND.HVZK

Proof The conversations for the AND construction are the conversations for Σ0 and Σ1

combined, thus both can be simulated by the HVZK property of Σ0 and Σ1, the simulator
(given in Fig. 15) does exactly this. ��

Lemma 34 (in Σ-AND) shows Σ-AND.special-soundness

Proof The special soundness adversary, Ass,AND, runs the special soundness adversaries for
both Σ0 and Σ1 to get the witnesses for each relation. The correct witnesses are outputted
due to the adversaries for Σ0 and Σ1 outputting the correct witnesses for their respective
protocols and Ass,AND is lossless as the adversaries it uses are lossless, again due to the
special soundness soundness property of Σ0 and Σ1. ��

Combining the properties we can show the construction is a Σ-protocol.

Theorem 35 (in Σ-AND) shows Σ-AND.Σ-protocol

E Chaum-Pedersen ˙-Protocol

In this section we detail our formalisation of the Chaum-Pedersen Σ-protocol [18]. The
protocol is run over a cyclic group G of prime order where g and g′ are generators of G. The
relation considered here could be described as the equality of discrete logs relation.

RelCP = {((h0, h1), w). h0 = gw ∧ h1 = g′w} (28)

The protocol is shown in Fig. 16.
In the locale chaum-ped-Σ-basewefix the groupG and a natural x that we use to construct

g′ = gx .

locale chaum-ped-Σ-base =
fixes G :: ‘grp cyclic-group
and x :: nat

assumes prime(|G|)
begin

As usual we define the components of the Σ-protocol.
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Fig. 17 The simulator and the special soundness adversary for the Chaum-Pedersen Σ-protocol

initC P ((h0, h1), w) = do { checkCP ((h0, h1), (a0, a1), e, z)
r ← samp-uniform(|G|); = (a0 ⊗ he0 = gz ∧ a1 ⊗ he1 = g′z)
return(r , (gr , g′r ))}

responseCP (r , w, e) = (return(w · e + r) mod |G|)

After importing the Σ-protocol-base locale as CP-Σ we construct a new locale where
we import the cyclic group properties of G in which to prove the properties of the protocol.

locale chaum-ped-Σ = chaum-ped-Σ-base + cyclic-group(G)

begin

The unfolded simulator used to show HVZK and the special soundness adversary are
given in Fig. 17. Both the defining probabilistic programs, up to its inputs, are very similar
to the adversary for the Schnorr Σ-protocol. This is to be expected as the relation and the
protocol of the Chaum-Pedersen Σ-protocol are strongly related to the Schnorr Σ-protocol.
The intuition behind the construction of the simulator is to uniformly sample the response to
ensure it contains no information about the witness (by definition). The other components of
the output can then be constructed around this uniform sample.

The proofs of the properties here are similar to the proofs of the Schnorr Σ-protocol
(Lemmas 14, 15 and 16) the general difference being we do everything twice as we have two
initial messages sent compared to one in the Schnorr protocol. The statements of the security
properties are given below.

Lemma 36 (in chaum-ped-Σ) shows CP-Σ.HVZK

Lemma 37 (in chaum-ped-Σ) shows CP-Σ.special-soundness

Lemma 38 (in chaum-ped-Σ) shows CP-Σ.completeness

Together Lemmas 36, 37 and 38 imply our formalisation of the Chaum-Pedersen Σ-
protocol is a Σ-protocol.

Theorem 39 (in chaum-ped-Σ) shows CP-Σ.Σ-protocol
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Fig. 18 The Okamoto Σ-protocol

F Okamoto ˙-Protocol

In this section we detail our formalisation of the Okamoto Σ-protocol [18]. The protocol is
run over a cyclic group G of prime order where g and g′ are generators of G. The relation is
as follows.

RelOk = {(h, (w0, w1)). h = gw0 ⊗ g′w1} (29)

The protocol is shown in Fig. 18.
In the locale okamoto-Σ-base we fix the group G and a natural x that we use to construct

g′ = gx , this is equivalent to the Chaum-Pedersen Σ-protocol.

locale okamoto-Σ-base =
fixes G :: ‘grp cyclic-group
and x :: nat

assumes prime(|G|)
begin

As usual we define the components of the Σ-protocol.

initOk(h, w) = do { responseOk((r0, r1), (w0, w1), e) =
r0 ← samp-uniform(|G|); return(w0 · e + r0) mod |G|, w1 · e + r1) mod |G|
r1 ← samp-uniform(|G|);
return((r0, r1), (gr0 ⊗ g′r1))} checkOk(h, a, e, (z0, z1)) = (a ⊗ he = gz0 ⊗ g′z1)

After importing the Σ-protocol-base locale as O-Σ we construct a new locale where
we import the cyclic group properties of G in which to prove the properties of the protocol.

locale okamoto-Σ = okamoto-Σ-base + cyclic-group(G)

begin

The unfolded simulator used to show HVZK and the special soundness adversary are
given in Fig. 19.

The proofs of the properties here are similar to the proofs of the Schnorr Σ-protocol
(Lemmas 16, 15 and 14) the general difference being we do everything twice as we have
two initial messages sent compared to one in the Schnorr protocol—here we just give the
statements of the properties.

Lemma 40 (in okamoto-Σ) shows O-Σ.HVZK

Lemma 41 (in okamoto-Σ) shows O-Σ.special-soundness
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Fig. 19 The simulator and the special soundness adversary for the Okamoto Σ-protocol

Lemma 42 (in okamoto-Σ) shows O-Σ.completeness

Together Lemmas 40, 41 and 42 imply our formalisation of the Okamoto Σ-protocol is a
Σ-protocol.

Theorem 43 (in okamoto-Σ) shows O-Σ.Σ-protocol

G Rivest Commitment Scheme

In this section we show how we formalise the Rivest commitment scheme [37]. The Rivest
scheme is run using a field of prime order, Zq and is built using a trusted initialiser. In this
case the trusted initialiser provides co-related randomness to the parties in advance of the
protocol, it does not participate in the running of the protocol thereafter. Protocols using a
trusted initialiser are generally easier to implement as the initialisation can be performed in
advance of the protocol and the co-related randomness reduces overheads in the protocol
itself.

The protocol we formalise is shown in Fig. 20. Note this is not quite the original scheme
proposed by Rivest in [37]; as was noted by Blundo and Masucci in [10] the original scheme
did not provide perfect hiding. The original committed message was constructed as c =
a ·m + bmodq , the authors offered a slight amendment that does provide perfect hiding—it
is this protocolwe formalise in ourwork, and that is presented in Fig. 20. The trusted initialiser
randomly generates a, b and x1 and constructs y1 = a · x1 + bmodq . It sends (a, b) to the
committer and (x1, y1) to the verifier. To commit to the message m the committer computes
c = m + amodq and to reveal sends the pair (a, b) and the message m upon which the
verifier checks c = m + amodq and y1 = a · x1 + bmodq .

We formalise the protocol in the locale rivest where we fix the size of the field and assume
it is of prime order. Note we do not use any field construction previously formalised in
Isabelle, preferring to work modulo q throughout the formalisation.

locale rivest =
fixes q :: nat
assumes prime(q)

begin
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Fig. 20 The Affine Plane commitment scheme of [10] that slightly amends the Rivest commitment scheme
[37]

Fig. 21 The formalised components of the Rivest commitment scheme

The components of the commitment scheme are given in Fig. 21. Our formalisation allows
for the trusted initialiser as we treat the co-related randomness given to each party as the keys,
the work done by the trusted initialiser in the protocol is done in our key generation algorithm.
As usual we import the commitment scheme locale, here under the name rivest-commit.

We first consider the hiding property.

Lemma 44 (in rivest) shows rivest-commit.perfect-hiding(A)

Proof The commitment c = m + amodq reveals no information about m as it is masked by
the randomness of a, which the verifier does not have access to. Therefore an application of
the one time pad lemma for addition in a field (Eq. 30), which we prove, means the committed
message given to the adversary is independent of the message.

map(λ. (c + a)modq, samp-uniform(q)) = samp-uniform(q) (30)

We then show the adversary’s guess can be no better than a than flipping a coin to determine
its output, meaning its chance of winning the hiding game is 1

2 . ��
The binding property is proven by bounding the binding advantage by 1

q .

Lemma 45 (in rivest) shows rivest-commit.bind-advantage(A) ≤ 1
q

Proof The conditions required on the output of the binding adversary (in the binding game)
are such that we can compute x1 (let us call the function computing x1, f ), which is uniformly
sampled in the game (as part of the key generation algorithm), from the output ofA. Intuitively
this means we can correctly guess the output of a uniform sampling from a set of q elements,
the probability of which is 1

q . More formally we have f (a, a; , b, b′) = x1 where x1 is a
uniform sample. As f is independent of x1 we show the probability of the game returning
true is less than or equal to f guessing the value of x1, that is the probability is less than 1

q . ��
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Correctness comes easily after unfolding the relevant definitions.

Lemma 46 (in rivest) shows rivest-commit.correctness

Together Lemmas 44, 45 and 46 show the desired properties of the commitment scheme
presented in Fig. 20.

H Roadmap to Source Theory Files

Our formal proofs are available online at [15]. Below we give a guide to the reader to help
navigate the formal theories.

– Commitment_Schemes.thy formalises commitment schemes (Sect. 7).
– Sigma_protocols.thy formalises Σ-protocols as well as the construction that forms a

commitment scheme from a Σ-protocol (Sect. 4).
– Pedersen.thy,Rivest.thy formalise the Pedersen and Rivest commitments schemes

respectively (Sect. 9 and “Appendix G”.)8

– Schnorr_Sigma_Commit.thy,Chaum_Pedersen_Sigma_Commit.thy and
Okamoto_Sigma_Commit.thy formalise the Schnorr, Chaum-Pedersen and Okamoto
Σ-protocols as well as the instantiated proofs that they can be used to construct a com-
mitment scheme.

– Sigma_OR.thy,Sigma_AND.thy formalise the compound Σ-protocol statements
(Sect. 6.1 and Appendix D).

– Xor.thy formalises the concept of a boolean algebra, used in theORandANDΣ-protocol
construction.

– Uniform_Sampling.thy formalises numerous one time pad constructions used in our
proofs.

– Cyclic_Group_Ext.thy extends the formalisation of cyclic groups from CryptHOL,
providing results we require in this work.

– Discrete_Log.thy formalises the discrete log assumption as well as a variant (and a
reduction from this to the original) that we require.

– Number_Theory_Aux.thy formalises various results from number theory we require,
in particular we prove who we compute the inverse using the Bezout function—Lemma
31.
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