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Changes in the relationship between ENSO and the East Asian winter monsoon 1 
under global warming  2 

 3 
Zixuan Jia1, Massimo A. Bollasina1, Chaofan Li2,4, Ruth Doherty1, Oliver Wild3 4 
 5 
1School of GeoSciences, University of Edinburgh, Edinburgh, UK 6 
2Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of 7 
Sciences, Beijing, China 8 
3Lancaster Environment Centre, Lancaster University, Lancaster, UK 9 
4College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, 10 
Beijing, China 11 
 12 
Abstract 13 
Changes in the relationship between El Niño-Southern Oscillation (ENSO) and the East Asian 14 
winter monsoon (EAWM) at various global warming levels during the 21st century are examined 15 
using the Max Planck Institute Grand Ensemble (MPI-GE) RCP8.5 experiments. The externally-16 
forced component of this relationship (i.e., forced by greenhouse gases and anthropogenic aerosols 17 
emissions) strengthens from present-day to +1.5°C, and then weakens until +3°C. These changes 18 
are characterized by variations in strength and location of the core of El Niño-related warming and 19 
associated deep convection anomalies over the equatorial Pacific leading to circulation anomalies 20 
across the Asian-Pacific region. Under global warming, the ENSO-EAWM relationship is strongly 21 
related to the background mean state of both the EAWM and ENSO, through changes in the 22 
EAWM strength and the shift of the ENSO pattern. Anthropogenic aerosols play a key role in 23 
influencing the ENSO-EAWM relationship under moderate warming (up to 1.5°C).  24 
 25 
1 Introduction 26 
The East Asian winter monsoon (EAWM), a prominent feature of the northern hemisphere 27 
atmospheric circulation during boreal winter, has a large influence on the weather and climate of 28 
the Asian-Pacific region (e.g., Chang, 2006). Its dry cold low-level northeasterlies can generate 29 
cold surges leading to severe weather over Southeast Asia (e.g., Wang and Chen, 2010), with 30 
profound societal impact and economic losses (Zhou et al., 2009).  31 
 32 
The EAWM exhibits variability from interannual to interdecadal timescales, associated with mid- 33 
and high-latitude as well as tropical features (e.g., He and Wang, 2012; Chen et al., 2013; Wang 34 
and Chen, 2014). At interannual time scales, the EAWM is strongly influenced by El Niño-35 
Southern Oscillation (ENSO) and the ensuing Pacific-East Asia (PEA) teleconnection pattern (e.g., 36 
Zhang et al., 1996). Associated with an El Niño event, the anomalous low-level anticyclone over 37 
the western tropical Pacific induces southwesterlies on its western flank, which weaken the 38 
EAWM flow and lead to warmer and wetter conditions over southeastern China and the South 39 
China Sea (Wang et al., 2000; Wang et al., 2013). The observed ENSO-EAWM relationship 40 
displays substantial multi-decadal variability during the 20th century/ early 21st century (e.g., Li 41 
and Ma, 2012; He and Wang, 2013; Jo et al., 2015; Li et al., 2015), with corresponding pronounced 42 
variations in the teleconnections patterns over East Asia and the Pacific. Yet, there is no consensus 43 
on the factors affecting these fluctuations, which have been ascribed to the influence of large-scale 44 
internal climate variability (i.e., the Pacific decadal oscillation (e.g., Kim et al., 2017) and the 45 
Atlantic Multidecadal Oscillation (e.g., Geng et al., 2017)), interdecadal variations of ENSO (e.g., 46 
Wang et al., 2009) and the EAWM (e.g., Ding et al., 2014), and external forcing, either natural 47 
(e.g., solar cycle; Zhou et al., 2013) or anthropogenic (e.g., the shift of the climatological Walker 48 
circulation due to green house warming; He and Wang, 2013). Future projections of the ENSO-49 
EAWM relationship for the 21st century have also been investigated (e.g., Wang et al., 2013; Jiang 50 
et al., 2013; Xu et al., 2015); this topic has however received much less attention compared to the 51 
analysis of the link between ENSO and the East Asian monsoon during the summer (e.g., Li and 52 
Ting, 2015; Song and Zhou, 2015). 53 
 54 
While the literature provides evidence of the long-term variability of the ENSO-EAWM link, our 55 
understanding of its nature and underlying mechanisms is far from complete. Reproducing the 56 
observed ENSO-EAWM relationship and its interdecadal variations can be particularly 57 
challenging, even for the latest Coupled Model Intercomparison Project phase 5 (CMIP5) models 58 
(He et al., 2013; Wang et al., 2013; Gong et al., 2014, 2015). Large uncertainty in the ENSO-59 
EAWM link may stem from the interplay between external forcing and internal climate variability, 60 
especially on interannual time scales (e.g., Deser et al., 2012). The separation of internal climate 61 
variability and the forced response has been difficult in part due to the limited number of ensemble 62 
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members in the CMIP5 archive. In view of the global warming targets of 1.5°C and 2°C above 1 
pre-industrial levels set by the 2015 Paris agreement, it is critical to investigate potential changes 2 
in the ENSO-EAWM relationship at various degrees of warming during the 21st century and the 3 
related mechanisms forcing these changes. Our primary objective is to identify externally-forced 4 
anthropogenic variations (i.e., from greenhouse gases and aerosols emissions) as these are likely 5 
predominant throughout the 21st century (e.g., Kumar et al., 1999; Li et al., 2015), especially at 6 
high warming levels.  7 
 8 
2 Data and Methods  9 
We use the 100-member ensemble experiments of the Max Planck Institute Grand Ensemble (MPI-10 
GE), performed with a state-of-the-art comprehensive climate model (the MPI Earth System 11 
Model, MPI-ESM; Maher et al., 2019). This provides the opportunity to separate externally-forced 12 
changes from those associated with internal variability (Si and Hu, 2017; Maher et al., 2018): the 13 
former are obtained by using ensemble-mean quantities, the latter by subtracting the forced 14 
component from each ensemble member (e.g., Deser et al., 2014; Song and Zhou, 2015). Further 15 
details on the model are provided in the Supplementary material. Relevant for this study, the MPI-16 
ESM shows good skill amongst the CMIP5 models in simulating the EAWM (Gong et al., 2014) 17 
and its relationship with ENSO (Wang et al., 2013; Gong et al., 2015). Here we use the pre-18 
industrial control (2000 years), the historical simulations (1850–2005) and the future projections 19 
for the 21st century (2006-2100) under the Representative Concentration Pathway (RCP8.5) 20 
emission scenario. The European Centre for Medium-Range Weather Forecasts (ECMWF) interim 21 
reanalysis (ERA-I; Dee et al., 2011), the NOAA Outgoing Long-wave Radiation (OLR; Liebmann 22 
and Smith, 1996), and the Global Precipitation Climatology Centre (GPCC) land-surface 23 
precipitation (Schneider et al., 2018) observational data are used to evaluate the present-day model 24 
climatology and its ENSO-related patterns.  25 
 26 
Location and magnitude of the OLR anomalies are used as an indicator of ENSO’s convective 27 
anomalies and thus of the regions of deep ascent and upper-tropospheric divergence (e.g., Jo et al., 28 
2015). We focus on the boreal winter (December-February, DJF) season over 21-year periods for 29 
present-day (1984-2004) and the future. Global warming levels of 1.5°, 2° and 3°C above pre-30 
industrial times (here the period 1850-1900; Schleussner et al., 2016; Nikulin et al., 2018) are 31 
identified based on the time series of 21-year moving averages of global mean surface temperature 32 
(GMST). These three warming periods were selected as the first 21-year slices to exceed the 33 
temperature thresholds above (Fig. S1). ENSO is described by the Niño3.4 index (area-averaged 34 
sea surface temperature (SST) anomaly over 5°S-5°N, 120°-170°W). To quantify the EAWM 35 
circulation variability, we use the Ji et al. (1997) index (the negative 1000-hPa meridional wind 36 
averaged over 10°-30°N, 115°-130°E; hereafter EAWMI); as it describes the spatio-temporal 37 
characteristics of the ENSO-EAWM relationship well (Wang and Chen, 2010; Gong et al., 2015). 38 
Positive anomalies of the EAWMI indicate a stronger-than-normal EAWM. The spatial structure 39 
of the ENSO-EAWM relationship during each of the 21-year periods was deduced by regression 40 
and correlation analysis after removing the 21-year linear trend at each point, and the statistical 41 
significance was evaluated using the two-tailed Student’s t-test accounting for autocorrelation. As 42 
the main objective of this study is to identify externally-forced changes in the ENSO-EAWM 43 
relationship associated with anthropogenic global warming, the following analysis mostly uses 44 
ensemble-mean quantities.  45 
 46 
3 Results  47 
We first assess the MPI-GE performance in reproducing the present-day observed pattern and 48 
magnitude of the ENSO-related circulation anomalies across East Asia and the Pacific (Fig. 1). 49 
The spatial patterns of simulated SST and OLR anomalies are broadly similar to those found in 50 
observations (Figs. 1a, b, d, e); also, the model captures well the location of the two prominent 51 
low-tropospheric circulation features, the anticyclone over the western tropical Pacific and the 52 
cyclone over the north-eastern extratropical Pacific (Figs. 1c, f). The MPI-GE shares common SST 53 
biases with other CMIP5 models, such as a westward shift of the equatorial Niño warming and 54 
associated deep convective anomalies, a too wide meridional extension of the positive SST 55 
anomalies over the eastern Pacific, as well as a weaker and more confined cooling and suppressed 56 
convection to the northwest (Taschetto et al., 2014; Dieppois et al., 2015). Weaker sea level 57 
pressure anomalies over the western Pacific (Figs. 1c, f) are also a common characteristic of 58 
CMIP5 models (Wang et al., 2013; Gong et al., 2015). The pattern of the simulated 1000-hPa 59 
meridional wind anomalies over the EAWMI region in the South China Sea is also similar to 60 
observations, albeit of weaker magnitude (Figs. 1b, e). This results in a simulated precipitation 61 
distribution over Eastern Asia close to observations, despite the slight underestimation (Fig. S3a-62 
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b). However, more anomalous southerly winds along the East Asian coast may lead to enhanced 1 
continental warming over Asia compared to observations. The model appears to capture the 2 
observed close relationship between ENSO and the EAWM reasonably well (r = -0.50 compared 3 
to r = - 0.74 in observations). Overall, this confirms previous findings (Wang et al., 2013; Gong et 4 
al., 2015) and shows that the MPI-GE simulations can reproduce both the negative temporal 5 
correlation between the Niño3.4 index and the EAWMI (hereafter r(Niño3.4, EAWMI)), and the 6 
anomalous spatial patterns. 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
Figure 1. DJF regressions of (a, d) surface air temperature (SAT, SST over the ocean, °C/°C, 23 
shades); (b, e) outgoing longwave radiation (OLR; W/m2/°C, shades) and 1000-hPa meridional 24 
wind (V1000, m/s/°C, contours, values plotted only when larger than 0.2 m/s/°C); (c, f) sea level 25 
pressure (SLP; hPa/°C, shades) and 850-hPa wind (UV850; m/s/°C, vector:) onto the Niño3.4 26 
index for the period 1984-2004. Figures 1a-c are for ERA-I. Figures 1d-f are for the MPI-GE 27 
ensemble mean. Dotted regions and dark green contour lines in Figures 1b and 1e mark anomalies 28 
significant at the 90% level from the two-tailed Student’s t-test. The temporal correlation 29 
coefficient between the Niño3.4 index and the EAWMI is labelled in Figs. 1a and 1d. The 30 
definition regions of these two indices are marked by red and black rectangles respectively. 31 
 32 
The future changes in the ENSO-EAWM relationship and the associated spatial patterns are 33 
examined in Figure 2. The 21-year sliding correlation between the Niño3.4 index and the EAWMI 34 
(Fig. 2a) oscillates around present-day values until about 2015, strengthens to about 2035 35 
(approximately the 1.5°C warming level, when r = -0.63), followed by a progressive abatement 36 
until the end of the 21st century (r = -0.6 at +2°C, and -0.24 at +3°C). The other panels of Figure 2 37 
display the same ENSO-related surface and low-tropospheric anomalies shown in Figure 1 but at 38 
different warming levels. From present-day to +1.5°C, the El Niño-related warm SST anomalies 39 
over the equatorial Pacific are larger and more zonally extended, with a secondary maximum 40 
appearing around 110°W (Fig. S2a). Consistently with the SST changes, deep convection enhances 41 
over the central equatorial Pacific, while it is further suppressed over the western basin (Fig. 2b). 42 
Concurrently, the high-pressure anomaly over the western Pacific, the key component of the PEA 43 
pattern, strengthens and stretches northeastward, forming an additional anomalous anticyclone 44 
over the central subtropical Pacific (Fig. 2c). In turn, the anomalous North Pacific cyclone shifts 45 
eastward and reduces in spatial extent, while a widespread low-pressure anomaly forms over 46 
northern Asia and the northwestern Pacific. This results in intensified near-surface south-westerly 47 
winds (c.f. Figs. 2b, 1e) and precipitation along the East Asian coast and the South China Sea, 48 
while to the west dry northwesterlies lead to drier conditions over central-eastern China (Fig. S3b-49 
c). From +1.5°C to +2°C, the El Niño-related warming and convection maxima intensify and shift 50 
westward, while anomalies weaken to the east (Figs. S2b, 2d). Concurrently, the anticyclone over 51 
the western Pacific weakens and shifts northwestward, associated with a westward extension and 52 
intensification of the anomalous cyclone as compared to +1.5°C (Figs. 2c, e). Weaker and more 53 
southward confined southwesterlies blow along the East Asian coast. Despite the reduced wind 54 
magnitude, the stronger southerly component brings more moisture to eastern China and the East 55 
China Sea, resulting in excess precipitation (Fig. S3c-d). At +3°C, the core El Niño-related warm 56 
SST and deep convective anomalies shift further westward while weakening and expanding 57 
meridionally as compared to +2°C, accompanied by increased SSTs over the eastern equatorial 58 
Pacific (Figs. 2f, S2c). The subtropical anticyclone expands over Southeast Asia, while a deeper 59 
low-pressure system stretches across the entire extratropical Pacific (Fig. 2g). The weaker sea-60 
level pressure gradient over the South China Sea results in a more confined and weaker 61 
southwesterly flow (Fig. 2f), and the precipitation reduction along the East Asian coast (Fig. S3e). 62 
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Variations in the upper-tropospheric circulation patterns (e.g., the 200-hPa divergent circulation) 1 
(Fig. S4) are consistent with the underlying SST and convective heating anomalies from present-2 
day to +3°C.  3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 

 40 
 41 
 42 

Figure 2. (a) The 21-year sliding correlations between the Niño3.4 index and the EAWMI during 43 
1970–2098. The Niño3.4 and EAWMI time series were high-pass filtered (by subtracting the 44 
respective 11-year running mean time series) prior to computing the correlations in order to reduce 45 
the influence of any long-term (non-linear) trend. Yellow, green, blue and red areas represent the 46 
reference (1984-2004), 1.5°, 2° and 3°C warming periods, respectively. The horizontal dashed line 47 
denotes the 95 % significant level. Bottom six panels as in Figure 1, but for the three warming 48 
levels above pre-industrial times along the RCP8.5 scenario: +1.5°C (b, c), +2°C (d, e) and +3°C 49 
(f, g).  50 
 51 
Following previous findings (Kumar et al., 1999, Ashrit et al., 2001; Yan et al., 2019), we 52 
investigate whether the strength of the ENSO-EAWM relationship during a certain 21-year period 53 
is modulated by the corresponding background climate conditions. Each 21-year time interval 54 
(present-day and four warming periods) is characterised by a pair of (x, y) values, one for 55 
r(Niño3.4, EAWMI) and one for the climatological mean of either the Niño3.4 SST or the EAWMI. 56 
These pairs are displayed in Figure 3a as scatterplot (see for example Yan et al. (2019) for a use 57 
of this method, albeit in the context of linking climatology and interannual variability in CMIP5 58 
models). The spread of the points around the least-squares fitting line allows us to determine the 59 
linearity of the relationship, while its strength is quantified by computing the linear correlation 60 
among the variables on the x and y-axis. Similarly, the spatial patterns of surface air temperature 61 
(SST over the ocean) and 1000-hPa meridional wind associated with changes in the EAWM-ENSO 62 

95% 
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relationship at various warming levels are derived by linear regression on the r(Niño3.4, EAWMI) 1 
series (Fig. S5). These indicate that changes in variability are strongly linked to those in the mean 2 
state and, specifically, a weaker ENSO-EAWM correlation tends to be significantly (r > 0.94, p < 3 
0.05) associated with larger mean cooling over the central Pacific and stronger northerlies over the 4 
South China Sea. 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
Figure 3. (a) Scatterplot of r(Niño3.4, EAWMI) and two position indices for the reference and 36 
four warming periods. The +2.5°C warming level is added in order to better identify the transition 37 
to +3°C. The position indices are the climatological SAT minus its domain-mean (40°N-20°S, 38 
90°E-90°W) averaged over the Niño3.4 region (black line) and the EAWMI (red line), respectively. 39 
The magnitude of the domain-mean SAT for the reference and four warming periods is 23.2, 23.8, 40 
24.3, 24.7 and 25.1°C. The solid lines represent the least-square lines, and the numbers in the 41 
upper-right corner are the corresponding determination coefficients. Differences in the 42 
climatologies of (b, c) SAT minus domain-mean, (d, e) SLP and UV850 (vector), between (b, d) 43 
+1.5°C and reference period, (c, e) +3°C and +1.5°C. Red and black rectangles are the same as in 44 
Figure 1. 45 
 46 
We now turn to the examination of the changes in the climatologies between different periods in 47 
Figs. 3b-e to investigate the physical mechanisms underlying the association identified in Figure 48 
3a. In particular, we examine the differences between +1.5°C and present-day (Fig. 3b, 3d), when 49 
the ENSO-EAWM relationship strengthens, and between +3°C and +1.5°C (Fig. 3c, 3e), which 50 
corresponds to the overall weakening of the ENSO-EAWM relationship with global warming 51 
exceeding +1.5°C. Under moderate warming (from present-day to +1.5°C), r(Niño3.4, EAWMI) 52 
increases in response to changes in the climate mean state brought about by regional negative 53 
anthropogenic aerosol forcing. The temporal variation of the latter can be qualitatively inferred by 54 
inspecting Figure 4, which shows the changes in East Asian anthropogenic emissions of SO2, the 55 
predominant aerosol component over China (Lu et al., 2011), during the 21st century. Other species 56 
(i.e., black carbon, organic carbon) show a similar temporal evolution (not shown). Figure 4b 57 
indicates that under the RCP8.5 scenario, SO2 emissions display a clear increase from present-day 58 
to +1.5°C over East Asia. Despite the additional global warming, anomalous cooling and 59 
anticyclonic circulation anomalies appear over Southeast Asia at +1.5°C compared to present-day 60 
(Fig. 3b, 3d). Previous studies (e.g., Bartlett et al., 2018; Wilcox et al., 2019) have shown a link 61 
between increased East Asian aerosols and surface circulation anomalies consistent with the ones 62 
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found here. The anomalous near-surface southeasterlies over the South China Sea weaken the 1 
climatological-mean EAWM circulation, making it more susceptible to the ENSO modulation. 2 
 3 
 4 
  5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
Figure 4. (a) Climatological total SO2 emissions (1010kg/m2/s) during the reference period. The 25 
major East Asia emission region is enclosed by the black dashed area (20°-40°N, 100°-125°E). (b) 26 
Variations of r(Niño 3.4, EAWMI) (black solid line) and area-averaged total SO2 emissions 27 
(1010kg/m2/s; red solid line) over East Asia along with GMST anomalies relative to pre-industrial 28 
levels (from the reference to enhanced warming levels). The number in the top is the correlation 29 
coefficient of these two series.  30 
 31 
As the climate warms above +1.5°C, r(Niño3.4, EAWMI) weakens as a result of changes in both 32 
the climate mean state across the Asian-Pacific region and the ENSO pattern itself. The former 33 
mechanism entails tropical-extratropical coupled ocean-atmosphere feedbacks, triggered by 34 
enhanced SST warming in the eastern equatorial Pacific (east of 120°W) at +3°C (Fig. 3c; Wang 35 
et al., 2017; Cai et al., 2015). This warming is associated with an intense and wide anomalous 36 
anticyclone across the subtropical Pacific (Fig. 3e; e.g., Gan et al., 2017). On the southern flank of 37 
this anticyclone, stronger trade winds lead to cooler SST in the central north-equatorial Pacific by 38 
increased evaporation (e.g., Wang et al., 2000). A deeper Maritime Continent low results likely 39 
from both local warmer SSTs and vertical ascent related to the central Pacific cooling via a local 40 
closed circulation cell (e.g., Wang et al., 2000). Ultimately this leads to intensified low-41 
tropospheric northerlies over the South China Sea and thus to a stronger EAWM. As a result, the 42 
effect of ENSO on a stronger monsoon is reduced. The latter mechanism acts directly on 43 
interannual time scales, and stems from the westward extension of the ENSO pattern (i.e., the 44 
enhanced zonal thermal contrast between the warmer western equatorial Pacific and the cooler 45 
central basin) (Fig. 3c; Cai et al., 2015). Consequently, the ENSO-driven anomalous anticyclone 46 
in the western Pacific (the PEA teleconnection pattern) also shifts westward, leading to weaker 47 
anomalous southerlies over the East Asian coast and thus to a reduced ENSO signal (Fig. 2). Note 48 
that East Asian aerosol emissions decrease when global warming exceeds 1.5°C (Fig. 4b), and thus 49 
their impact further enhances - not opposes - the warming from increased greenhouse gases. 50 
Overall, the close association between r(Niño3.4, EAWMI) and East Asian aerosol forcing is 51 
illustrated by the significant correlation coefficient of their time series (0.73), as shown in Fig. 4b. 52 
 53 
4 Discussion and Conclusions 54 
This study investigates changes in the ENSO-EAWM relationship at various global warming 55 
levels throughout the 21st century under the RCP8.5 pathway. We use the MPI-GE experiments 56 
which allow us to more robustly characterise the role of external forcing by averaging over the 57 
large ensemble and thus largely removing the influence of internal climate variability. We find 58 
that the strength of the ENSO-EAWM relationship, as represented by the temporal correlation 59 
between the Niño3.4 index and a circulation-based EAWM index, increases from present-day to 60 
+1.5°C, and then weakens until +3°C. The core El Niño-related SST warm anomaly intensifies 61 
with global warming; additionally, above +1.5°C, it shifts westward and extends meridionally. The 62 
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associated convection anomalies instigate a change in the PEA teleconnection pattern: the surface 1 
anomalous anticyclone over the western tropical Pacific strengthens at +1.5°C, then moves 2 
northwestward with additional warming, covering the East Asian coast at +3°C. The upper-level 3 
circulation anomalies are characterised by a modulation of the zonal and meridional circulation 4 
cells over the western Pacific, consistently with the surface anomalies. These variations are also 5 
accompanied by an ENSO-forced anomalous tri-pole circulation pattern in the North Pacific-North 6 
American sector, with a prominent cyclone in the Aleutian low region, resembling the Pacific-7 
North America (PNA) pattern (e.g., Wallace and Gutzler, 1981; Zhou et al., 2014; Jo et al., 2015). 8 
Changes in the ENSO-EAWM relationship are closely associated with those in the background 9 
mean state of both ENSO and the monsoon. From present-day to +1.5°C, changes in East Asian 10 
anthropogenic aerosols are crucial to explaining the strengthening of the ENSO-EAWM 11 
relationship by inducing anomalous regional cooling and near-surface anticyclonic flow. Above 12 
+1.5°C, the deepening of the climatological Maritime Continent low and subsequent strengthening 13 
of the EAWM, as well as the westward shift of the ENSO pattern contribute to weakening the 14 
ENSO-EAWM relationship.  15 
 16 
To ascertain whether internal variability of the climate system may also modulate the ENSO-17 
monsoon relationship in addition to anthropogenic external forcing, we repeat the regression 18 
analysis for the differences between each of the 100 ensemble members and the ensemble mean, 19 
and then calculate the average anomalies from the 100 regression patterns. Figure S6 displays these 20 
anomalies for surface temperature and near-surface circulation. The internally-generated 21 
component of the ENSO-EAWM relationship is weaker than the externally-forced counterpart for 22 
present-day (Fig. 1), and its magnitude consistent with that estimated using the pre-industrial 23 
control experiment (Fig. S7a). Also, the contribution of internal variability is constant as global 24 
warming increases throughout the 21st century up to +2°C, with the slight weakening trend at +3°C 25 
possibly due to non-linear interactions with external forcing. Overall, this suggests that there are 26 
minor interdecadal variations of the ENSO-EAWM relationship due to internal variability during 27 
the 21st century (see also Fig. S7b). A comparison between Figures S6g and 2f indicates that the 28 
internally and externally-generated components are relatively weak and of comparable magnitude 29 
at +3°C. This suggests that, under elevated warming, there will be a comparatively more important 30 
contribution of internal variability, including the influence of large-scale atmospheric patterns such 31 
as those originating in the Northern Hemispheric mid-latitudes or the Arctic, in influencing the 32 
East Asian winter monsoon circulation.  33 
 34 
It is reasonable to ask whether using 21-year intervals, instead of longer ones, may actually reflect 35 
the interdecadal variability of the ENSO-EAWM relationship rather than the effect of progressive 36 
warming throughout the 21st century. Note that using very long periods will include years in which 37 
warming is both far smaller and far greater than the targeted threshold. The sliding correlation 38 
between ENSO and the EAWM using windows of both 31 and 41 years (Fig. S8) and the 39 
corresponding anomalous patterns (not shown) display remarkably similar changes during the 21st 40 
century, indicating that our results are robust to variations of the length of the sampling window. 41 
A close inspection of Figs. 1-2 helps to ascertain, at least qualitatively, the potential influence of 42 
using different EAWM indices by allowing us to infer the ENSO-related variations of key 43 
atmospheric variables on which several commonly-used indices are based (e.g., the negative 44 
meridional wind at 850 hPa (Yang et al., 2002), the sum of zonal sea level pressure differences 45 
(Wu and Wang, 2002)). The consistency between these changes and those of the 1000-hPa wind 46 
indicates that our main conclusions are robust to the choice of the monsoon index.  47 
 48 
Although this study benefits from the availability of a large number of ensemble members, the 49 
results will need to be confirmed by the analysis of other large single-model ensembles as well as 50 
the new CMIP6 experiments. This may also help to investigate the influence of model 51 
shortcomings in the simulated ENSO features on the link with the EAWM. Further investigations 52 
should also take into consideration, for example, inter-model differences in simulating the present-53 
day and future ENSO characteristics as well as the interdecadal fluctuations of the strength of the 54 
ENSO-EAWM relationship (Wang et al., 2013; Maher et al., 2018; Zheng et al., 2018). Given the 55 
large uncertainties associated with the future evolution of anthropogenic aerosols and their climate 56 
interactions, their role in modulating the ENSO-EAWM relationship should be further investigated. 57 
Despite some limitations, the varying spatial circulation patterns over East Asia associated with 58 
the ENSO-EAWM relationship at different warming levels found here translate into large spatial 59 
variability of near-surface temperature across China, with important consequences for planning 60 
and adaptation to global warming.  61 
 62 
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