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a b s t r a c t 

Investments in abatement technology are often characterised by irreversibility and signifi- 

cant implementation lags, whereas emissions permits can be traded at any time. As such, 

abatement and emissions permit trading systems are hardly perfect substitutes. We for- 

mally study the flexibility of emissions permits and propose a unified framework to ra- 

tionalise the impact of both investment/divestment lags and irreversibility in relation to 

the price of emissions permits. Using option pricing concepts, we reformulate the tech- 

nology adoption problem in terms of the technology’s characteristics (irreversibility and 

implementation lags) and offer a conceptual quantification of the flexibility premium of 

emissions permits. 

© 2020 Published by Elsevier B.V. 

 

1. Introduction 

A cap-and-trade programme sets a maximum level of pollution – a cap – and distributes emissions permits among 

businesses that produce emissions. Currently, jurisdictions comprising 42% of global GDP have adopted (or are in the pro- 

cess of adopting) cap-and-trade programmes, covering approximately 15% of global greenhouse gas emissions. Their global 

coverage is growing as a key policy lever on the road to net-zero emissions ( ICAP, 2020 ). The chief objective of a cap-and-

trade programme is to curb emissions by encouraging businesses to adopt low-polluting technologies and to innovate, ulti- 

mately becoming more efficient ( European Commission, 2005 ). However, the literature acknowledges that currently adopted 

abatement technologies are mature, low-investment, ready to implement and easily reversible. 1 In other words, there is 
� The author gratefully acknowledges funding from the Grantham Foundation for the Protection of the Environment, the UK Economic and Social Re- 
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Ritsumeikan, University of Tokyo, University of Zurich. The authors would like to thank Jiro Akahori, Federica Buricco, Luciano Campi, René Carmona, David 

Mauer, Yoichi Otsubo and Gianangelo Taschini for valuable insights and conversations at different stages of this project. The usual disclaimers apply. 
∗ Correspondence to: University of Edinburgh Business School 29 Buccleuch Place, Edinburgh, EH8 9JS United Kingdom. 
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1 Most current cap-and-trade programmes have primarily encouraged fuel-switching – switching from cheap-but-dirty coal to expensive-but-cleaner gas 

( Goulder, 2013, Schmalensee and Stavins, 2017 ). 
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currently no empirical illustration of the alternative scenario, where firms adopt innovative abatement technologies that 

require high upfront investments, have relatively long implementation lags and are difficult or very costly to reverse. A re- 

cent roadmap for decarbonisation suggests that low-carbon investment needs to increase by an order of magnitude by 2030 

( Rockstróm et al., 2017 ). Will cap-and-trade regulations spur substantial investments in advanced abatement technologies? 

This paper proposes a general model to describe and rigorously analyse how firms respond to cap-and-trade regulations 

when abatement technologies are characterised by implementation lags and irreversibility. It provides new insights for the 

role of permit markets in achieving net-zero emissions, by explicitly considering the characteristics of alternative abatement 

technologies, and contributes to the debate about which carbon price levels are consistent with climate neutrality ( Stern and

Stiglitz, 2017 and Burke et al., 2019 ). 

Empirical research has found broad support for the adoption of mature abatement technologies. The Acid Rain Program, 

a major cap-and-trade programme to control SO 2 emissions from US coal plants, encouraged firms to adopt readily avail- 

able flue-gas desulphurisation technologies – so-called scrubbers ( Calel, 2020 ). Besides accommodating scrubbers, plants also 

switched to lower-sulphur coal, a carbon management practice that is relatively easy to implement and that does not require 

upfront capital investments ( Schmalensee et al., 1998, Cicala, 2015 ). The NO X Budget Trading Program spurred the adoption

of straightforward add-on control technologies, such as selective catalytic reduction ( Fowlie et al., 2012 ). The Environmen- 

tal Protection Agency’s market-based phase-down of leaded gasoline promoted the adoption of a relatively inexpensive and 

well-known substitute technology, pentane-hexane isomerisation ( Kerr and Newell, 2003, Calel, 2020 ). Similarly, the Euro- 

pean Union Emissions Trading System (EU ETS), the first large-scale cap-and-trade programme for carbon emissions, has 

largely encouraged low-investment cost-management strategies, such as fuel-switching. Studies have suggested that a large 

proportion of the emissions reductions under the EU ETS can be accounted for by fuel-switching in the electricity generation 

sector ( Delarue et al., 2008, Carmona et al., 2009, Delarue et al., 2010 ). By switching from dirty coal-fired generation to more

efficient gas-fired output, electricity generators improve fuel-mix efficiency and reduce the carbon-intensity of their output. 

This growing body of empirical work highlights a story of adopting mature technologies that can be implemented soon after 

the decision to invest and where the investment strategy can be reversed , for example by switching back from lower-sulphur

coal to higher-sulphur coal generation. These technologies, however, are not sufficient to deliver the transformation required 

to achieve net-zero emissions. 

Less mature technologies tend to require larger upfront capital investments, and new equipment is durable and often 

specialised. In other words, these capital investments are irreversible . Chao and Wilson (1993) are among the first to recog-

nise that, because of the risk presented by irreversible commitments, abatement technologies are not perfect substitutes 

for emissions permits in the context of cap-and-trade regulations. Emissions permit purchasing can be adapted to chang- 

ing market conditions, whereas a specific abatement technology might be under-utilised if product demand falls. Focusing 

on the SO 2 market in the US, Chao and Wilson (1993) consider the case where an SO 2 scrubber can be installed instantly

at any time, and at a constant marginal cost. Assuming future product demand is known, Chao and Wilson show that,

in equilibrium, emissions permit prices equal the marginal cost of the scrubber. This is consistent with the results of the

emissions-constrained problem originally formulated by Montgomery (1972) under certainty and extended by Cronshaw and 

Kruse (1996) , Rubin (1996) , Schennach (20 0 0) and, more recently, Carmona et al. (2009) , Kollenberg and Taschini (2016) ,

and Hitzemann and Uhrig-Homburg (2018) . In practice, however, product demand varies in response to fluctuations in the 

input and output product markets. Thus, under a more realistic framework where demand is uncertain, Chao and Wil- 

son (1993) maintain that scrubbers become imperfect substitutes for emissions permits. The rationale is quite intuitive: 

scrubbers are irreversible and durable investments, whereas emissions permits can be purchased as needed in response 

to changes in product demand. Consequently, under uncertainty, the price of emissions permits is expected to exceed the 

marginal cost of a scrubber by an amount that corresponds to what Chao and Wilson dubbed the ‘option value’, or the

reversibility optionality value of emissions permits. Effectively, the reversibility optionality represents the ability to divest , 

namely to liquidate or sell the technology. 

By the same token, reversible abatement technologies that can be instantly installed would be a perfect substitute for 

emissions permits. In practice, however, decisions to install even reversible abatement technologies are typically charac- 

terised by significant implementation lags . With a few exceptions, off-the-shelf mature abatement technologies are not im- 

mediately brought online following the decision to invest ( Bar-Ilan and Strange, 1996 ). Implementation lags might have 

profound impacts on the economic viability of the abatement decision undertaken. In fact, depending on the evolution of 

the product market, the decision to invest in, or divest from, abatement (in the case of reversible strategies) might have

partially lost its economic attractiveness during the implementation lag. Thus, even reversible but non-instantaneous abate- 

ment investments are inferior substitutes for emissions permits. Crucially, abatement investments might become too costly if 

product demand falls during the implementation period, whereas emissions permit trades can be easily adjusted to market 

conditions. 2 Consequently, the total price embeds both the divestment , or reversibility , and the immediateness optionalities. 

Together they constitute a flexibility premium , which is embedded in the price of emissions permits. To sum up, a firm that is

subject to cap-and-trade is only indifferent between investing in abatement and trading emissions permits when each strat- 

egy incurs the same total costs, results in the same amount of emissions reduction and when, simultaneously, (i) technology 

divestment is possible and (ii) the abatement investment is instantaneous . 
2 Most cap-and-trade programmes are characterised by a liquid market for emissions permits and virtually zero or negligible transaction costs. 
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Following Brennan and Schwartz (1985) and McDonald and Siegel (1986) the basic formulation of the investment prob- 

lem under uncertainty has been extended in many different directions to account for the reversibility of the investment 

and implementation delays. Dixit (1989) uses the real options approach to examine entry and exit from a productive ac- 

tivity. Using dynamic programming, Brekke and Øksendal (1994) examine a resource extraction problem and determine the 

optimal opening and closing times. Investment lags have been incorporated into the irreversible investment framework by 

Majd and Pindyck (1987) , Bar-Ilan and Strange (1996) and Zhou (20 0 0) , where the investment lag, called time-to-build in

this literature, captures the time between the instant the decision to invest is taken and the instant the investment decision

is implemented and starts generating new revenues. 3 Under the time-to-build scenario, the investment decision is taken at 

a specific point in time when the optimal investment threshold is reached, but the implementation occurs only after some 

time (the lag). The decision to invest might have lost its economic attractiveness by then. But in reality, a firm’s investment

decision incorporates their expectations about market conditions at the end of the implementation lag. They may reserve 

the right to withdraw the decision to invest at any time during the implementation lag, if the investment loses its attrac-

tiveness, or they may delay the decision to invest until further information is accumulated. For example, construction lags 

affect decisions around residential construction projects ( Oh and Yoon, 2020 ) and shipbuilding ( Kalouptsidi, 2014 ). 4 In other

words, the decision can be said to occur over a period of time , and depends on the economic attractiveness of that decision

remaining positive over the course of that period. This scenario is effectively represented by the Parisian constraint 5 which 

incorporates both the attractiveness element and the time span over which it must be maintained. It is used to select an

optimal dividend policy in the corporate finance literature (see Dassios and Wu, 2009 and Cheung and Wong, 2017 ), but

here, we simply apply the concept to describe the context within which the decision is taken. 

Returning to our setup, Chao and Wilson (1993) consider a cap-and-trade programme in the presence of investment 

constraints. Abatement constraints are modelled by assuming that the investment is irreversible, i.e. that divestment is not 

possible. Permits and abatement are no longer perfect substitutes and the relationship between permit prices and marginal 

abatement costs is distorted. In fact, Chao and Wilson show that the price of emissions permits can exceed the marginal

cost of abatement by an amount that captures permits’ reversibility/divestment optionality. They also show that investments 

in abatement are reduced when the uncertainty about product demand is significant. A later study by Zhao (2003) confirms

this last result in a general equilibrium framework with stochastic abatement costs. However, both these papers limit their 

analysis to irreversible and instantaneous investment decisions, a key simplification that allows them to formulate a tractable 

investment problem. 

This paper provides a significant generalisation of a firm’s investment problem with cap-and-trade regulations under 

more realistic assumptions. The economic analysis is significantly enriched as the firm now considers both a (one-time) re- 

versibility optionality and the implementation lags following the abatement investment and divestment decisions. To keep 

the model tractable, we concentrate on the main considerations discussed earlier: (1) either the technology is too spe- 

cialised and it is not possible to divest (irreversible investment) or, conversely, it is possible to liquidate the equipment

(one-time reversible investment); and (2) the timing of the implementation of the investment (or divestment) decision 

(length of implementation lags). Despite the binary alternative between irreversible and (one-time) reversible investments, 

the formulation of the decision problem under the Parisian setup appears rather complex. Yet, we are still able to provide

a remarkably tractable analysis of this problem using an intuitive decomposition of the permit price based on the flexibility 

premium. The decomposition and quantification of the flexibility premium represent an important extension to the existing 

literature, which fails to take these characteristics into account. It also offer important insights by reflecting the real-world 

trade-offs involved in existing emissions abatement options. 

The remainder of the paper is organised as follows. Section 2 proposes an intuitive decomposition of the permit price.

The model and the main results about the flexibility premium are presented in Section 3 . Section 4 provides a quantitative

illustration of the flexibility premium. Section 5 concludes. 

2. The decomposition of the permit price 

Consider an economy subject to cap-and-trade regulations which impose a cap on cumulative emissions over a pre- 

specified period, also called the programme phase. To achieve compliance and remain within the emissions limit, regulated 

firms can reduce their emissions by adopting an emissions abatement technology. Alternatively, firms can purchase the num- 

ber of permits required to offset their emissions in excess of their authorised limit. Within the canonical microeconomic 

framework ( Rubin, 1996, Schennach, 20 0 0, Kollenberg and Taschini, 2016 and Lintunen and Kuusela, 2018 ) and experimental

framework ( Stranlund et al., 2011 and references therein), these two compliance strategies are assumed to be perfect sub- 

stitutes, insofar as (i) they each generate the same total reduction in emissions at the same total cost, and, simultaneously
3 With an application to portfolio divestment and resource extraction, Øksendal (2005) studies the effect of delayed information and identifies optimal 

divestment rules. The combination of investment reversibility and implementation delays has found numerous applications in economics and finance (see 

de Almeida and Zemsky, 2003, Bultan, 2005, Sødal et al., 2008, Paciorek, 2013, Bloom, 2014, Aguerrevere, 2015 ). 
4 Oh and Yoon (2020) observe that ‘forward-looking’ homebuilders consider their expected return on investment during the entire house construction 

process. Similarly, Kalouptsidi (2014) reports that construction lags and expected revenues during construction have a substantial impact on the level of 

investment in new ship construction. 
5 The Parisian constraint takes its name from the Parisian option – a specific barrier option used in finance. A complete description of the scenario is 

provided later. 

3 
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(ii) the abatement investment is reversible and there are no implementation lags. In reality, most technologies are charac- 

terised by irreversibility and significant delays between the instant the investment decision is taken and the instant when 

the investment is implemented. 

In this paper, we depart from the assumption of perfect substitutes and examine the implications of a one-time invest- 

ment reversal (divestment) and implementation lags, thereby extending the work done by Chao and Wilson (1993) and 

Zhao (2003) who only consider the irreversible and instantaneous case. A one-time reversal is a simplified stand-in for the 

infinitely reversible case (such as fuel-switching decisions that can be reversed an infinite number of times) but it allows us

to concentrate on the contrast between reversible vs non-reversible investments. Furthermore, it is important to incorporate 

implementation lags since they affect investment and divestment timing as well as the investment value. Since emissions 

permit trading is both reversible and instantaneous, in contrast with most abatement technology, this work argues that the 

price of emissions permits should incorporate an ‘option value’ that reflects this flexibility. We dub this option value the 

flexibility premium . 

Below, we propose an intuitive representation of the flexibility premium. First, we determine the permit price that makes 

a firm indifferent between trading and abatement. Then, we evaluate the difference between the permit prices associated 

with (1) reversible and instantaneous abatement and (2) reversible and non-instantaneous abatement (the full model allow 

us to consider irreversibility as well). This difference constitutes the flexibility premium and captures both the reversibility 

and immediateness optionalities. In the next section we concentrate on the flexibility premium and propose a general ex- 

pression in terms of the ability to divest (reversibility) and implementation lags, i.e. the key parameters that characterise 

the abatement technology. 

Firm’s net operating profits We consider a firm with an abatement investment opportunity modelled as in McDonald and 

Siegel (1986) . We assume that the net operating profits (S t , t ≥ 0) are described by a one-dimensional stochastic process

which drives the entire economy. As in the real option pricing literature, we assume that S t follows a geometric Brownian

motion 

dS t 

S t 
= μdt + σdZ t , S 0 = x, 

with μ and σ constant parameters and (Z t , t ≥ 0) a standard Brownian motion. 6 To keep the model tractable, and to concen-

trate on the main considerations discussed in the Introduction, namely irreversibility and implementation lags, we assume 

that the net operating profits pre– and post-technology adoption are described by the same stochastic process. However, the 

costly adoption of the abatement technology slashes the instantaneous rate of pollution emission α to zero, where α > 0 . 7 

Finally, we consider a zero-emissions cap regulation. These two extreme model assumptions – zero post-investment emis- 

sions and zero-emissions regulations – are innocuous. They help to make our point more vividly, but these values could 

equally be set to any non-zero level within the same model without any loss of generality. 

By convention, the firm’s value V t is defined as the expected sum of the present value of future net operating profits: 

V t = E t 

[ ∫ ∞ 

t 

e −ρ(u −t) S u du 

] 
, 

where ρ is the constant discount rate. Our model specification allows us to straightforwardly obtain the dynamics of the 

firm’s value. In fact, it is simple to verify that V t satisfies the following stochastic differential equation: 

dV t 

V t 
= μdt + σdZ t , V 0 = 

S 0 
ρ − μ

. 

Comparing compliance strategies There are two basic compliance strategies in a cap-and-trade programme, sometimes used 

in combination: abating and trading. Let us consider a programme phase [0 , T ] and two possible compliance alternatives

at time t = 0 . In the first scenario, the firm decides to undertake no technology adoption and acquire the exact number of

permits required to stay within the administered cap at the end of the regulated phase T . Analytically, we can describe this

compliance strategy as: 

V 0 − e −ρ T (αT ) P T , 

where P T is the (futures) price of emissions permits at time T . In the second scenario, we consider the case where the

regulated firm decides to invest at time s and to divest at time s ′ , with (0 < s < s ′ < T ) . We momentarily assume that these

decisions are the optimal outcome of an investment–divestment problem and let F d (V ) be the solution of this problem when

the abatement technology is reversible and characterised by a pair of implementation lags { d I ≥ 0 , d D ≥ 0 } respectively and

with d = (d I , d D ) . In particular, let F 0 (V ) be the solution of the technology adoption problem when the abatement technol-

ogy is reversible and instantaneous . In the next section we provide the complete formulation of the investment–divestment 

problem in terms of the characteristics of the available abatement technology. Returning to the second scenario, upon in- 

vestment, the instantaneous rate of emissions is slashed to zero; upon divestment, the instantaneous rate of emissions goes 
6 By convention, the Brownian motion (Z t , t ≥ 0) is defined on a filtered probability space (�, F, (F t ) t≥0 , P ) . 
7 At the cost of introducing yet more notation, the analysis can be extended to the case where, post-technology adoption, (i) the parameters of the 

geometric Brownian motion describing the net operating profits differ, and (ii) the new instantaneous emission rate is ˜ α ∈ [0 , α] . In both situations, the 

final decomposition of the permit price remains unaltered. In particular, under (ii), there is a change in the total amount of emissions reduction. 

4 
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back to α. Therefore, there are αs emissions in period [0 , s ] , zero emissions in period [ s, s ′ ] and α(T − s ′ ) emissions in period

[ s ′ , T ] . The cap-and-trade regulations require a 100% reduction in emissions for the entire regulated period [0 , T ] . Therefore,

at time T , the firm acquires the number of permits required to offset the total amount of emissions. Using the new notation,

we can analytically describe this alternative compliance strategy as 

F d (V 0 ) − e −ρ T α(T − s ′ + s ) P T , 

where F d (V 0 ) is the value of firm investing at time s and divesting at time s ′ . For the sake of simplicity, this expression

neglects the net operating profits generated between [0 , s ] and [ s ′ , T ] . This approximation does not affect the final decom-

position of the permit price and, more importantly, it is irrelevant for the flexibility premium. 

These two compliance strategies attain the same total amount of emissions reduction and 

P T = e ρ T V 0 − F d (V 0 ) 

α(s ′ − s ) 

is the permit price that makes total compliance costs equal. Yet, a firm is indifferent between the two alternative strategies

only when trading and abating are perfect substitutes. Here F d (V ) can represent the entire spectrum of possible abate-

ment technologies: from technologies that are reversible and instantaneous to technologies that are irreversible and non- 

instantaneous. Thus, we can rewrite the (futures) permit price at time t = 0 as the combination of two components: 

P T = e ρ T V 0 − F d ( V 0 ) 

αT 
= e ρ T V 0 − F 0 ( V 0 ) 

α
(
s ’ − s 

) + e ρ T 

f l exibil ity premium ︷ ︸︸ ︷ 
F 0 ( V 0 ) − F d ( V 0 ) 

α
(
s ’ − s 

) . (1) 

We now exclusively concentrate on the second component. We exclusively consider the technology adoption decision 

problem and formulate it as an investment and divestment decision problem under a decision constraint that appropriately 

reflects irreversibility and implementation lags. This allows us to go beyond the alternative decomposition of the permit 

price and offer a conceptual quantification of the flexibility premium. 

3. The flexibility premium 

Eq. (1) offers a compact and intuitive interpretation of the flexibility premium in terms of the difference between the 

solutions of the investment decision problem under two extreme abatement technology scenarios: (1) reversible and instan- 

taneous vs (2) reversible/irreversible and non-instantaneous. 8 However, it remains unclear prima facie how each of these 

constituents (irreversibility and implementation lags) affect the magnitude of the flexibility premium. To illuminate this 

further, first we formulate a general investment–divestment problem under the associated setup that appropriately captures 

the reversibility/divestment optionality and implementation delays. Second, we unpack the flexibility premium in Eq. (1) and 

describe the cumulative effects of irreversibility and implementation lags on the premium. 

We introduce the specification for investment (divestment) costs and implementation delays as follows. If the firm de- 

cides to invest (divest), it incurs an upfront fixed cost C I ( C D ). A positive value for C D indicates a positive liquidation value of

the technology: there is a second-hand market or, equivalently, its scrap value is non-zero. A negative C D indicates that di-

vestment is costly, e.g. the firm might bear expenses associated with plant decommissioning. Furthermore, the firm can face 

investment and divestment lags; d I and d D , respectively. Such lags correspond to the delays between the moment the deci-

sion to invest or divest is taken and the instant when the investment or divestment is implemented. The proposed model is

sufficiently general to span the entire range of possible implementation lags. At one extreme, there are mature technologies 

where adoption is practically instantaneous and implementation requires very little time. In this case the lag is virtually 

zero. The only example of this in reality applies to some electricity plants that are equipped to switch from cheap-but-dirty

coal to expensive-but-cleaner gas within a matter of hours. At the other extreme, there are less mature technologies that 

require large upfront investments in durable equipment whose implementation/installation can take a very long time. The 

adoption of these technologies might involve multiple investment stages and occasional bottlenecks that further delay the 

completion of the investment. For example, the adoption of carbon capture – a technology frequently discussed for the de- 

carbonisation of energy-intensive industries like cement, oil refineries, and iron and steel – currently requires several years. 

At the same time, most of these investments in durable and expensive equipment are completely irreversible. The adoption 

of SO 2 scrubbers is a striking example. As discussed in Cicala (2015) , scrubbers are enormously expensive pieces of equip-

ment that have no second-hand market and are more costly to dismantle than to assemble. By considering finite (d D < ∞ )

and infinitely long (d D → ∞ ) divestment lags, we account for both reversible and irreversible investments, respectively. Ba- 

sically the model allows us to consider varying lengths of implementation lags { d I , d D } ∈ [0 , ∞ ] and a binary alternative

between reversible and irreversible investments. When the divestment lag is infinitely long, reversibility is not possible. 

The technology adoption problem is formulated as an investment–divestment decision problem. To handle both irre- 

versibility and implementation lags consistent with the empirical evidence and the abatement technology characteristics 
8 The model allows us to consider a binary alternative between reversible and irreversible investments and varying lengths of implementation lags. 

5 
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described in the Introduction, we borrow the Parisian setup for pricing a particular kind of barrier option. 9 The Parisian

condition requires that investment (or divestment) only occurs when the net operating profits post-technology adoption 

cross a specific threshold and remain there for a specific period of time. This period corresponds to the implementation

lags d I and d D introduced earlier, whereas the specific threshold levels correspond to the optimal investment and divest- 

ment thresholds. According to the Parisian condition, the firm’s commitment to invest (divest) depends on the expectation 

that the market conditions will remain, on average, favourable (unfavourable) once the investment (divestment) decision is 

implemented (at the end of the implementation lag). In the main text we reformulate the investment–divestment decision 

problem under the Parisian setup and propose a formula for the flexibility premium. 

As in the real options literature, the value of the firm can be written as the expected sum of the investment and di-

vestment abatement opportunities. Given the investment and divestment costs, the firm maximises the present value of its 

opportunities: 

F d (V 0 ) = max 
τI <τD 

E 0 

[ 
e −ρτI (V τI 

− C I ) 1 { τI < ∞} + e −ρτD (C D − V τD 
) 1 { τD < ∞} 

] 
, (2) 

where τI and τD represent the first instants when the firm’s value has consecutively spent a given amount of time above 

or, respectively, below a specific threshold. In other words, the Parisian condition requires that investment or divestment 

only occurs when the value of the abatement investment crosses specific investment or divestment thresholds h I or h D ,

respectively, and remains there for time period τI or τD , respectively. The investment τI and divestment τD stopping times 

which satisfy the Parisian condition are: 

τI = inf { t ≥ 0 : t − g V 0 ,h I t ≥ d I , V t ≥ h I | V 0 = v } , 
τD = inf { t ≥ τI : t − g V 0 ,h D t ≥ d D , V t ≤ h D | V 0 = v } , 

where g 
V 0 ,a 
t (V ) represents the last time the process (V t , t ≥ 0) crossed the generic threshold a and formally it is defined as

g 
V 0 ,a 
t (V ) = sup { s : s ≤ t, V t = a | V 0 = v } . For a review of key definitions and the properties of the Parisian condition, we refer

readers to the technical appendices ( Appendix A and B ). 

Because we consider the firm to exist in perpetuity, the investment or divestment decision will occur at the first in-

stant when (V t , t ≥ 0) hits some constant optimal threshold h ∗I or, respectively, h ∗D . Thus, with τI and τD stopping times

corresponding to the Parisian condition, we can rewrite the abatement technology adoption problem in terms of optimal 

investment and divestment thresholds: 

F d (V 0 ) = max 
h D ≤h I , V 0 ≤h I 

E 0 

[ 
e −ρτI (V τI 

− C I ) 1 { τI < ∞} + e −ρτD (C D − V τD 
) 1 { τD < ∞} 

] 
, (3) 

We take advantage of some standard results in Revuz and Yor (1991) and Chesney et al. (1997b) and utilise the key results

in Costeniuc et al. (2008) to reformulate the investment–divestment decision problem (3) . The Appendix contains the key 

definitions and reproduces the main results in Costeniuc et al. (2008) required to rewrite the problem (3) in terms of the key

model parameters (the implementation lags and the investment and divestment costs) and the main decision variables (the 

investment and divestment thresholds). Below we report the final reformulation of the investment–divestment problem: 10 

F d (V 0 ) = max 
h D ≤h I , V 0 ≤h I 

(
V 0 

h I 

)
ψ 1 

φ(b 
√ 

d I ) 

φ( 
√ 

(2 ρ + b 2 ) d I ) 

{ 

h I 

φ( 
√ 

d I (σ + b)) 

φ(b 
√ 

d I ) 
− C I 

+ 

(
h I 

h D 

)
ψ 2 

φ(−
√ 

(2 ρ + b 2 ) d I ) 

φ( 
√ 

(2 ρ + b 2 ) d D ) 

φ(−b 
√ 

d D ) 

φ(b 
√ 

d I ) 

(
C D − h D 

φ(−(b + σ ) 
√ 

d D ) 

φ(−b 
√ 

d D ) 

)} 

(4) 

where, following the literature on Parisian options, the original dynamics of the firm’s net operating profits post-technology 

adoption are translated in terms of the drifted Brownian motion 

V t = V 0 e 
σX t , where X t = bt + Z t , and b = 

μ − σ 2 

2 

σ
. (5) 

To simplify for the sake of legibility, we adopt the following notations: 

ψ 1 = 

−b + 

√ 

2 ρ + b 2 

σ
and ψ 2 = 

−b −
√ 

2 ρ + b 2 

σ
. 

And φ is defined as: 

φ(z) = E ( exp (zx )) = 

∫ ∞ 

0 

exp (zx ) P x (dx ) . 
9 The Parisian option is a barrier option in option pricing theory. It specifies that barrier activation and deactivation is conditional on the underlying 

price staying beyond the barrier for a pre-determined consecutive period of time, Chesney et al. (1997b) . 
10 For a detailed derivation of the problem reformulation, we refer interested readers to the technical appendix in Costeniuc et al. (2008) . 
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Costeniuc et al. (2008) offer a formal and rigorous analysis of the problem (4) . Below we reproduce the key expressions

of interest and present an analytical description of the flexibility premium in terms of the solutions of the abatement 

technology adoption problem under the two abatement technology scenarios: (1) reversible and instantaneous vs (2) re- 

versible/irreversible and non-instantaneous. 

First, we take the partial derivative with respect to h D and, solving for the critical value, we obtain the optimal divestment

threshold 

h 

∗
D = 

φ(−b 
√ 

d D ) 

φ(−(b + σ ) 
√ 

d D ) 

ψ 2 C D 
ψ 2 − 1 

. (6) 

When d D = 0 we reproduce the expression for the optimal instantaneous divestment threshold h ∗
ND 

= 

ψ 2 C D 
ψ 2 −1 

, which is the

result obtained by Dixit and Pindyck (1994) . Noting that φ is an increasing function, it is straightforward to show that h ∗
ND 

≤
h ∗

D 
when b > 0 : divestment lags would lead one to anticipate divestment, as argued by Bar-Ilan and Strange (1996) and

Sødal (2006) . Increasing the second-hand market value of the abatement technology, C D > 0 , may even speed up divestment

if the liquidation of the abatement investment outstrips the sum of future net profits. 

Second, we take the partial derivative with respect to h I and, solving for the critical value, we obtain the optimal invest-

ment threshold h ∗I that corresponds to the solution of h ∗I = max { V 0 , x ∗} where x ∗ solves the implicit equation 

x = 

ψ 1 C I 
ψ 1 − 1 

φ(b 
√ 

d I ) 

φ((b + σ ) 
√ 

d I ) 
+ 

(
x 

h 

∗
D 

)
ψ 2 

ψ 2 − ψ 1 

ψ 1 − 1 

φ(−
√ 

(2 ρ + b 2 ) d I ) 

φ( 
√ 

(2 ρ + b 2 ) d D ) 

φ(−b 
√ 

d D ) 

φ((b + σ ) 
√ 

d I ) 

C D 
1 − ψ 2 

. (7) 

When both d I = 0 and d D = 0 , we obtain the optimal instantaneous investment threshold h ∗NI , echoing Dixit and Pindyck’s

result for the case of an instantaneous and reversible investment problem. In particular, h ∗
NI 

solves the implicit equation 

x = 

ψ 1 C I 
ψ 1 − 1 

+ 

(
x 

h 

∗
ND 

)
ψ 2 

ψ 2 − ψ 1 

ψ 1 − 1 

C D 
1 − ψ 2 

. 

We now have all the necessary results to analytically describe the effects of irreversibility and implementation lags on the 

flexibility premium component in Eq. (1) . We can solve the optimal investment–divestment problem under the Parisian 

setup and finally replace the generic expression of the flexibility premium with the optimal solutions of the problem when 

the investment is (1) reversible and instantaneous, F 0 
∗
(V 0 ) , and (2a) reversible and non-instantaneous or (2b) irreversible 

and non-instantaneous, F d 
∗
(V 0 ) . Again, the binary alternative of reversible vs non-reversible is attainable when the divest- 

ment lag is infinitely long. Let θ be the flexibility premium normalised for the number of permits required to offset the

total amount of emissions 

θ = 

F 0 
∗
(V 0 ) − F d 

∗
(V 0 ) 

α T 
, (8) 

where the investment and divestment lags are d I = 0 and d D = 0 for F 0 (V 0 ) and d D > 0 and d I > 0 for F d (V 0 ) . 

The expression for θ offers a conceptual description of the flexibility premium that describes how firms respond to cap- 

and-trade regulations when abatement technologies have relatively long implementation lags and are difficult and costly to 

reverse. Now that we have a unified framework to model the characteristics of the available abatement technology, the next 

section illustrates how to quantify the impact of investment lags and irreversibility on the price of emissions permits. 

4. Quantitative illustration 

In this section we employ our theoretical results to illustrate how implementation lags and irreversibility affect the mag- 

nitude of the flexibility premium, extending the results in Chao and Wilson (1993) which are limited to the irreversible and

instantaneous abatement case. To that end, we perform a numerical evaluation of the investment–divestment decision prob- 

lem where the Parisian condition simultaneously handles the timing of the implementation of the investment (instantaneous 

vs non-instantaneous) and the ability to divest (reversible vs irreversible). 

Illustration settings We first introduce the general setting of the numerical example. The firm’s value at t = 0 is set, for

normalisation, to a value V 0 = 100 . The fixed investment cost is C I = 150 , implying that the ratio of the current firm’s value

to fixed cost is 1 to 1.5. Also, we set the divestment value C D = 50 , implying the existence of a second-hand market for

the abatement technology. Finally, we set the continuously compounded rate of discount ρ = 0 . 13 , the drift rate μ = 0 . 05

and the volatility rate σ = 0 . 40 . The emission rate pre-technology adoption is α = 1 unit of emissions per unit of time (one

year, in this example). The cap-and-trade regulation specifies zero emissions within 10 years, T = 10 . Hence, the required

cumulative emissions reduction totals 10. 

The investment–divestment decision problem under the Parisian condition is sufficiently general to allow us to model the 

case where the abatement technology is (1) instantaneous and reversible, d I = d D = 0 , (2a) non-instantaneous and reversible,

d I > 0 and d D > 0 , and, finally, (2b) non-instantaneous and irreversible, d I > 0 and d D → ∞ . We first illustrate (1) and (2a)

considering different combinations of investment and divestment lags. Then, we discuss the effects on the flexibility pre- 

mium of varying investment and divestment costs and different values of the volatility of the net operating profits. This way
7 
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Table 1 

Flexibility premium when ρ = 

0 . 13 , μ = 0 . 05 , σ = 0 . 40 , C D = 50 ;C I = 

150 , V 0 = 100 , α = 1 , T = 10 , s = 0 . 

d I /d D 0 2 4 

0 0 0.001 0.002 

3 0.268 0.269 0.271 

5 0.454 0.456 0.457 

Table 2 

Flexibility premium when ρ = 

0 . 13 , μ = 0 . 05 , σ = 0 . 40 , C D = 50 , C I = 

170 , V 0 = 100 , α = 1 , T = 10 , s = 0 . 

d I /d D 0 2 4 

0 0 0.001 0.002 

3 0.252 0.254 0.255 

5 0.428 0.429 0.430 

Table 3 

Flexibility premium when ρ = 

0 . 13 , μ = 0 . 05 , σ = 0 . 40 , C D = 70 , C I = 

150 , V 0 = 100 , α = 1 , T = 10 , s = 0 . 

d I /d D 0 2 4 

0 0 0.002 0.005 

3 0.262 0.270 0.272 

5 0.452 0.455 0.458 

 

 

 

 

 

 

 

 

 

 

 

we model the main groups of industries currently regulated under cap-and-trade programmes: (1) those few electricity gen- 

eration industries characterised by virtually instantaneous and reversible abatement options and (2a) those energy-intensive 

industries characterised by long investment lags or (2b) irreversible investments in durable equipment. 

The investment–divestment decision problem is solved considering different pairs of investment–divestment lags: d I ∈ 

{ 0 , 3 , 5 } and d D ∈ { 0 , 2 , 4 } . The range of these intervals is sufficient to illustrate the general effect of varying degrees of

implementation lags on the flexibility premium. Table 1 reports the values of the flexibility premium for every possible 

combination. When divestment is possible and both investment and divestment are instantaneous, (d I , d D ) = (0 , 0) and the

flexibility premium is zero. At the opposite extreme, when investment and divestment each take approximately half of the 

length of the regulated phase, (d I , d D ) = (5 , 4) , the premium is in excess of 0.45 per permit. To place this number into

context, the flexibility premium corresponds to a non-negligible 4.5% of the firm’s initial value. 11 

The flexibility premium θ combines the immediateness and reversibility optionality of trading emissions permits. Intu- 

itively, the premium increases when the investment/divestment lag increases, albeit in a non-linear fashion. Importantly, the 

effect on the premium of an increasing d D is less pronounced than that of d I . The reversibility of the abatement investment

justifies this result. More importantly, it illustrates that reversibility bears a larger importance in determining the value of 

the flexibility premium and our theoretical results readily provide a quantification of this effect. 

In what follows, we study the sensitivity of the flexibility premium around different values for the investment and di- 

vestment costs, and the volatility of net operating profits. The effects of varying emission rates and lengths of the regulated

period can be trivially inferred from Eq. (8) and are therefore not discussed here. 

Investment and divestment costs The higher the investment cost C I , the higher the trigger threshold for investment. This

holds both in the case of instantaneous and non-instantaneous adoption of the abatement technology. This is the result in 

Majd and Pindyck (1987) and Dixit (1989) for the case of instantaneous investments and in Bar-Ilan and Strange (1996) for

the case of delayed investments. A higher investment threshold corresponds to a lower value of the solution of the 

investment–divestment problem. Crucially, the effect of an increasing C I is more pronounced on F d (V 0 ) than on F 0 (V 0 ) .

These findings provide an alternative confirmation to the numerical results in Bar-Ilan and Strange (1996) . Table 2 reports

the values of the flexibility premium for C I = 170 , holding everything else constant. Overall, an increasing C I coincides with

a lower flexibility premium. The intuition behind these results is that, ceteris paribus, a higher investment cost makes the 

abatement technology adoption less attractive compared to trading permits. 

Similarly, the higher the second-hand market value of the abatement technology, the stronger the incentive to liquidate 

the investment. Table 3 reports the values of the flexibility premium for C D = 70 holding everything else constant. The

impact of varying divestment costs is however less clear-cut. An increasing C corresponds to a higher flexibility premium 
D 

11 To obtain this figure, first consider the number of permits required to achieve the prescribed zero emission reduction, 10 permits over the 10 −year 

phase. Hence the cumulative flexibility premium is 4.5 for a firm whose initial value is V 0 = 100 . 
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Table 4 

Optimal instantaneous irreversible investment threshold h ∗II , 
and investment h ∗I and divestment h ∗D threshold. The param- 

eters we used are ρ = 0 . 13 , μ = 0 . 05 , C D = 50 , C I = 150 , V 0 = 

100 , α = 1 . 

d I = d D = 3 d I = d D = 5 

σ h ∗II h ∗I h ∗D h ∗I h ∗D 

0.05 249.62 204.89 52.01 185.06 52.44 

0.06 252.08 203.29 52.50 183.18 53.14 

0.07 254.91 201.75 52.95 181.20 53.84 

0.08 258.08 200.31 53.36 179.22 54.52 

0.09 261.55 199.00 53.74 177.27 55.18 

0.1 265.32 197.80 54.08 175.37 55.83 

0.11 269.35 196.72 54.40 173.54 56.46 

0.12 273.63 195.73 54.68 171.77 57.07 

0.13 278.14 194.84 54.94 170.06 57.67 

0.14 282.87 194.02 55.18 168.41 58.25 

0.15 287.80 193.28 55.40 166.82 58.82 

0.16 292.94 192.60 55.60 165.28 59.39 

0.17 298.26 191.97 55.78 163.78 59.94 

0.18 303.76 191.38 55.96 162.33 60.49 

0.19 309.43 190.84 56.12 160.91 61.03 

0.2 315.28 190.34 56.28 159.53 61.57 

0.21 321.30 189.87 56.42 158.17 62.11 

0.22 327.48 189.43 56.56 156.85 62.65 

0.23 333.81 189.01 56.70 155.55 63.18 

0.24 340.31 188.62 56.83 154.28 63.72 

0.25 346.97 188.25 56.96 153.03 64.26 

0.26 353.78 187.90 57.08 151.80 64.80 

0.27 360.74 187.57 57.20 150.59 65.34 

0.28 367.86 187.25 57.32 149.40 65.89 

0.29 375.13 186.95 57.44 148.23 66.44 

0.3 382.55 186.66 57.56 147.07 67.00 

0.31 390.12 186.38 57.68 145.92 67.57 

0.32 397.85 186.11 57.80 144.79 68.14 

0.33 405.73 185.84 57.93 143.67 68.72 

0.34 413.76 185.58 58.05 142.55 69.30 

0.35 421.94 185.32 58.18 141.45 69.89 

0.36 430.28 185.07 58.30 140.36 70.50 

0.37 438.76 184.82 58.43 139.27 71.11 

0.38 447.40 184.57 58.57 138.18 71.73 

0.39 456.20 184.32 58.70 137.10 72.36 

0.4 465.15 184.06 58.84 136.03 73.00 

 

 

 

 

 

mainly when the length of the divestment lag exceeds the length of the investment lag ( d D = 4 , d I = 3 , flexibility premium

= 0 . 272 ). 

Uncertainty about future net operating profits We now consider the effect of uncertainty on the investment–divestment 

decision problem when the investment is instantaneous and irreversible vs non-instantaneous and reversible. 

When d I = 0 and d D → ∞ , the investment threshold becomes 

h 

∗
II = 

ψ 1 C I 
ψ 1 − 1 

, 

where h ∗
II 

represents the optimal investment threshold when divestment is not possible and there is no investment lag. As 

σ increases, the investment threshold h ∗II rises. The greater the uncertainty about future market conditions, the stronger 

the incentive to wait and postpone the decision. If market conditions prove unfavourable, a committed firm will regret the 

adoption of the abatement technology, while an uncommitted firm can choose to trade permits or invest at a later stage. As

reported in Table 4 , the benefit of waiting rises with uncertainty because the probability of market conditions bad enough to

prompt regret also rises with uncertainty. The opportunity cost of waiting is the foregone income post-technology adoption, 

which depends on the net operating profits during the postponement. Since the firm can adopt the irreversible technology 

immediately, the opportunity cost of a postponement is independent of uncertainty. This is consistent with the conventional 

result in real options literature when investments are irreversible and instantaneous ( Pindyck, 1988 ). 

The presence of implementation delays changes the firms choice by making the opportunity cost of waiting contingent 

on uncertainty and the length of the implementation window. With lags, the foregone income is now uncertain; it depends 

on the random path followed by net operating profits over the lag period. The firm’s choice changes even more when di-

vestment, even at a cost, is possible. Now the returns from the adoption of an abatement technology are bounded below.

This means that expected net operating profits increase with uncertainty, and therefore that the opportunity cost of waiting 
9 
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Fig. 1. θD and θOI are, respectively, the flexibility premium when the investment is reversible (top graph) and irreversible (middle graph). The flexibility 

premia are computed considering different combinations of the uncertainty about future net operating profits, σ, and the investment lag, d I . The lower 

graph represents the difference between the two premia. All premia are scaled up to improve the readability of the graphs. 

 

 

 

 

now rises with uncertainty. Thus, when the investment is non-instantaneous and reversible, uncertainty may hasten invest- 

ment and divestment decisions. As reported in Table 4 , h ∗
I 

falls from 204.89 to 184.06 and h ∗
D 

climbs from 52.01 to 58.84

when d I = d D = 3 . The longer the investment/divestment lags, the stronger the effect. Therefore, by extending the model to

realistically capture both reversibility and implementation lags, the conventional findings about the effect of uncertainty on 

investments are reversed. This confirms the numerical results in Bar-Ilan and Strange (1996) and Sødal (2006) . 

Fig. 1 graphically illustrates the combined effect of implementation lags and volatility on the flexibility premium. The 

larger σ and d I , the larger the flexibility premium. These analysis of the effect of different values of the volatility of net op-

erating profits provide an alternative qualification and extension of the results in Chao and Wilson (1993) and Zhao (2003) ,

who studied the price of permits but limited their analysis exclusively to the case of irreversible and instantaneous abate- 

ment technologies. 
10 
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Irreversible investment Finally, we illustrate the non-instantaneous and irreversible abatement investment case. By letting 

d D → ∞ , we offer a general characterisation and readily quantify the ‘option value’ in Chao and Wilson (1993) , who were

the first to study the reversibility optionality embedded in the total price of emissions permits but fall short to consider the

immediateness optionality. When d D → ∞ , the investment threshold becomes 

h 

∗
OI = 

ψ 1 C I 
ψ 1 − 1 

φ(b 
√ 

d I ) 

φ((b + σ ) 
√ 

d I ) 
, 

where h ∗
OI 

represents the optimal investment threshold when divestment is not possible and d I is the usual investment 

lag. The lower diagram of Fig. 1 graphically illustrates the divergence between the flexibility premium associated with an 

irreversible abatement option ( θOI ) and a reversible abatement option ( θD ). The intuition behind this result is that without

reversibility, the firm must endure the potentially extremely bad market conditions that a high level of uncertainty may 

generate. As such, the associated flexibility premium must be higher, as illustrated in the lower diagram of Fig. 1 . 

The results of the quantitative illustration have two kinds of practical relevance. First, they may partly explain the em- 

pirical observation that, in most existing cap-and-trade programmes where emissions permits prices are low, all currently 

adopted abatement technology is mature, ready to implement and easily reversible or even infinitely reversible. Second, 

they suggest that for industries characterised by long investment lags or irreversible investments in durable equipment, 

achieving net-zero emissions requires permits to be in the high-price range as advocated by Stern and Stiglitz (2017) and

Burke et al. (2019) . 

5. Conclusion 

Under a cap-and-trade programme, regulated firms have two basic alternatives to achieve compliance: adoption of pol- 

lution abatement technologies or trading of emissions permits. Firms are indifferent between these compliance strategies 

when they attain the same total amount of emissions reduction and have the same total cost. Importantly, indifference re- 

quires perfect substitution. Trading is reversible and instantaneous, whereas abatement investments are often not reversible 

and the technology adoption is usually subject to implementation lags. As such, from the perspective of the regulated firms, 

trading of emissions permits is a more flexible compliance strategy since trades can be easily adjusted to changing market 

conditions. 

The academic literature has long recognised irreversibility, and recently implementation lags, to be part of the expla- 

nation for the limited adoption of less mature abatement technologies that require large upfront investments in durable 

equipment whose implementation/installation can take a very long time. This paper’s results make two important contribu- 

tions to this literature. First, we offer an intuitive decomposition of the permit price, offering a conceptual quantification of 

the embedded flexibility premium that encompasses both the reversibility and the immediateness optionalities. Second, we 

formulate a general investment–divestment problem that appropriately captures varying lengths of implementation delays 

and the ability to divest, namely investment reversibility, by adopting the Parisian setup used in option pricing. Finally, we 

illustrate how to quantify the impact of both irreversibility and implementation lags on the price of emissions permits. 

Of course, our model has been based on many simplifying assumptions such that our study focusses on only two key con-

siderations: varying lengths of implementation lags and a binary alternative between reversible and irreversible investments. 

These assumptions rest mainly on the empirical observation that available abatement options largely consist of mature tech- 

nologies that can be implemented quickly after the adoption decision, or they are irreversible and durable investments. 

The policy implications of our theoretical results and quantitative illustration are nevertheless worth discussing. Regu- 

lated industries whose investments are characterised by long implementation lags or irreversible durable equipment respond 

to cap-and-trade regulations differently. The flexibility premium increases with increasing investment–divestment lags and 

decreasing degrees of reversibility, which means that less stringent cap-and-trade regulations have smaller effects on these 

abatement technologies. These analytical and quantitative results speak directly to the debate about higher permits prices, 

advocated by Stern and Stiglitz (2017) and Burke et al. (2019) , necessary to achieve zero emissions. 

Appendix A. Definitions and results 

Taking advantage of some standard results in Revuz and Yor (1991) and Chesney et al. (1997b) and utilising the key

results in Costeniuc et al. (2008) , the appendix reconstructs the elements required to rewrite the problem (3) in terms

of the key parameters that characterise the available abatement technology (irreversibility and implementation lags) and 

describe the flexibility premium. 

We first define the Brownian meander and list some of its properties. In words, the Brownian meander is a piece of

Brownian motion that spends all its time away from its starting point. We refer to Revuz and Yor (1991) for complete

mathematical details of the Brownian meander. Then, we present the connection between the Brownian meander and the 

Parisian condition. 

Let (Z t , t ≥ 0) be a standard Brownian motion on a filtered probability space (�, F , (F t ) t≥0 , P ) . For each t > 0 , we define

the random variables 

g t = sup { s : s ≤ t, Z s = 0 } , 

11 
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d t = inf { s : s ≥ t, Z s = 0 } . 
The interval (g t , d t ) is called the ‘interval of the Brownian excursion’ which straddles time t . For instant u in this interval,

sgn (Z t ) remains constant. In particular, g t represents the last time the Brownian motion crossed level 0. Recalling standard

results in Revuz and Yor (1991) and Chesney et al. (1997b) , g t is not a stopping time for the Brownian filtration (F t ) t≥0 ,

but for the slow Brownian filtration (G t ) t≥0 , which is defined by G t = F g t ∨ σ (sgn (Z t )) . The Brownian motion continuously

crosses the level 0, thus the slow Brownian filtration is a way of representing the information about (a) the last instant the

Brownian motion crossed level 0 and (b) whether it is above or below the level 0 ( Revuz and Yor, 1991 and Chesney et al.,

1997b ). 

The Brownian meander process ending at t is defined as (see Revuz and Yor, 1991 ) 

m 

(t) 
u = 

1 √ 

t − g t 
| Z g t + u (t−g t ) | , 0 ≤ u ≤ 1 . 

The process m 

(t) 
u is the non-negative and normalised Brownian excursion which straddles time t and is independent of the 

σ -field (G t ) t≥0 . When u = 1 and t = 1 , we conveniently denote m 1 = m 

(1) 
1 

. The random variable m 1 will play a central role

in the calculation of many other variables that will be introduced later on. Recalling Revuz and Yor (1991) , the distribution

of m 1 is 

P (m 1 ∈ dx ) = x exp (−1 

2 

x 2 )1 x> 0 dx, 

and the moment-generating function φ(z) is given by (see Revuz and Yor, 1991 ) 

φ(z) = E ( exp (zm 1 )) = 

∫ ∞ 

0 

x exp (zx − 1 

2 

x 2 ) dx. 

We follow in the footsteps of Costeniuc et al. (2008) , and define the first instant when the Brownian motion spends d units

of time consecutively above (or below) level 0. For d ≥ 0 , we define the random variables 

H 

+ 
d 

= inf { t ≥ 0 : t − g t ≥ d, Z t ≥ 0 } (A.1) 

H 

−
d 

= inf { t ≥ 0 : t − g t ≥ d, Z t ≤ 0 } 
The variables H 

+ 
d 

and H 

−
d 

are G t -stopping times and, hence, F t -stopping times (see Revuz and Yor (1991) for more details).

Using Eq. (A.1) we can easily deduce that the pairs of random variables H 

+ 
d 

and Z H + 
d 
, and H 

−
d 

and Z H −
d 
, are independent. 

Chesney et al. (1997a) were the first to calculate the Laplace transform of H 

+ 
d 

. Below we report the main results omitting

the proofs. We refer to Chesney et al. (1997a) for a formal and rigorous demonstration of the results. 

Laplace transform of H 

+ 
d 

: Let H 

+ 
d 

be the stopping time defined in (A.1) and φ the moment-generating function defined

in Eq. (A.1) . For any λ > 0 , 

E [ exp (−λH 

+ 
d 
)] = 

1 

φ( 
√ 

2 λd ) 
. 

The proof is based on the Azèma martingale, μt = sgn (Z t ) 
√ 

t − g t – a remarkable (G t ) martingale. The same results also hold

when H 

+ 
d 

is replaced with H 

−
d 

. 

So far, we have only looked at the Brownian motion excursions above or below level 0. More generally, we can define

for any a ∈ R and any continuous stochastic process X that 

g X 0 ,a t (X ) = sup { s : s ≤ t, X 0 = X 0 , X t = a } , (A.2) 

H 

+ 
(X 0 ,a ) ,d 

(X ) = inf { t ≥ 0 : t − g X 0 ,a t ≥ d, X 0 = X 0 , X t ≥ a } , 
H 

−
(X 0 ,a ) ,d 

(X ) = inf { t ≥ 0 : t − g X 0 ,a t ≥ d, X 0 = X 0 , X t ≤ a } 
Thus, building on the previous definitions, g 

X 0 ,a 
t (X ) represents the last time the process Xcrossed level a . As for the Brownian

motion case, g 
X 0 ,a 
t (X ) is not a stopping time for the Brownian filtration (F t ) t≥0 , but for the slow Brownian filtration (G t ) t≥0 .

The random variables H 

+ 
(X 0 ,a ) ,d 

(X ) (resp. H 

−
(X 0 ,a ) ,d 

(X ) ) represent the first instant when the process X spends d units of time

above (or below) the level a . The variables H 

+ 
(X 0 ,a ) ,d 

(X ) and H 

−
(X 0 ,a ) ,d 

(X ) are G t -stopping times and hence F t -stopping times.

In our notation, we indicate the starting point of the process X, the level a and the length of time d. 

While the identification of the starting point seems unnecessary, it turns out to be extremely helpful in the context of

the Parisian condition. In the context of the abatement investment discussed in the main text, the value of the reversibil-

ity/divestment and immediateness optionalities depend on the excursions of the underlying investment value above or below 

a certain barrier. The relevance and effect of a time lag between the instant the decision is taken and the instant the deci-

sion is implemented has been explored in the optimal dividend payment literature as well (see Dassios and Wu, 2009 and

Cheung and Wong, 2017 ). 

Another relevant random variable is the first hitting time of level a, which we define below: 
T X 0 ,a (X ) = inf { s : X 0 = X 0 , X s = a } . 
12 
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Appendix B. Parisian condition 

According to the notation introduced in Section 3 , and considering an underlying process (V t , t ≥ 0) to ease the notation,

the investment stopping time τI which satisfies the Parisian condition corresponds to H 

+ 
(V 0 ,h I ) ,d I 

(V ) . In order to express the

divestment stopping time τD in mathematical formulas, we need to extend the definition of H 

+ 
(V 0 ,h I ) ,d I 

(V ) . Let τ be any

stopping time, a ∈ R ,X a continuous stochastic process and g 
X 0 ,a 
t (X ) as defined in Eq. (A.2) . Then 

1. the first instant after τ when process X spends d units of time above or below level a is given by the stopping time

H 

+ ,τ
(X 0 ,a ) ,d 

(X ) or H 

−,τ
(X 0 ,a ) ,d 

(X ) , respectively 

H 

+ ,τ
(X 0 ,a ) ,d 

(X ) = inf { t ≥ τ : t − g X 0 ,a t ≥ d, X 0 = X 0 , X t ≥ a } , 
H 

−,τ
(X 0 ,a ) ,d 

(X ) = inf { t ≥ τ : t − g X 0 ,a t ≥ d, X 0 = X 0 , X t ≤ a };
2. the first hitting time after τ of level a is the stopping time T τ

X 0 ,a 
(X ) 

T τX 0 ,a (X ) = inf { s ≥ τ : X 0 = X 0 , X s = a } . 
If X has the strong Markov property and τ is a finite stopping time, we have the following equalities in distribution 

H 

+ ,τ
(X 0 ,a ) ,d 

(X ) = H 

+ 
(X τ ,a ) ,d 

(X ) ,H 

−,τ
(X 0 ,a ) ,d 

(X ) = H 

−
(X τ ,a ) ,d 

(X ) , and T τ
X 0 ,a 

(X ) = T X τ ,a (X ) . Using these results, Costeniuc et al. (2008) can

state the expression of the stopping times τI and τD which satisfy the Parisian condition. Below, we reproduce the key 

expression of interest and refer to Costeniuc et al. (2008) for a detailed derivation of the decomposition of the divestment

Parisian time. 

Stopping times and the Parisian condition: Let τI and τD be the stopping times corresponding to the Parisian condition 

with time windows d I ,d D and levels h I ,h D respectively. Then the following equalities hold 

τI = H 

+ 
(V 0 ,h I ) ,d I 

(V ) , τD = H 

−,τI 

(V 0 ,h D ) ,d D 
(V ) . 

Otherwise, in terms of the drifted Brownian motion, the Parisian stopping times are 

τI = H 

+ 
(V 0 ,h I ) ,d I 

(V ) = H 

+ 
(l 0 ,l I ) ,d I 

(X ) , where l 0 = 0 , and l I = 

1 

σ
log 

(
h I 

V 0 

)
, 

and 

τD = H 

−,τI 

(V 0 ,h D ) ,d D 
(V ) = H 

−,τI 

(l 0 ,l D ) ,d D 
(X ) , where l 0 = 0 , and l D = 

1 

σ
log 

(
h D 

V 0 

)
. 

Decomposition of divestment Parisian time: Let τ be any finite stopping time such that τ and V τ are independent, and 

assume h D ≤ V τ a.s. Then the following equality in distribution holds 

H 

−,τ
(V 0 ,h D ) ,d D 

(V ) = τ + T V τ ,h D (V ) + H 

−
(h D ,h D ) ,d D 

(V ) , 

and the terms of the sum are independent. A similar relationship holds for H 

+ ,τ
(V 0 ,h I ) ,d I 

(V ) if we assume V τ ≤ h I a.s. 

Appendix C. Reformulation of the investment–divestment problem 

To obtain the optimal investment and divestment thresholds in analytic form, Costeniuc et al. (2008) calculate all terms 

that enter into the maximisation problem. Below we report the key expressions that allow us to rewrite the problem (3) in

terms of the key model parameters (the implementation lags and the investment and divestment costs) and the main deci- 

sion variables (the investment and divestment thresholds). 

We first introduce the Parisian investment time, 

E P ∗

[ 
e −λτI 

] 
= 

(
V 0 

h I 

) √ 
2 λ
σ

1 

φ( 
√ 

2 λd I ) 
, 

the moment-generating function for the process X t defined in (5) , stopped at the Parisian investment time 

E P ∗

[ 
e −λX τI 

] 
= 

(
h I 

V 0 

)
− λ

σ φ(−λ
√ 

d I ) , 

and the first hitting time of X starting at the Parisian investment time 

E P ∗

[ 
e 

−λT (X τI 
,l D ) 

(X ) 
] 

= 

(
h D 

h I 

) √ 
2 λ
σ φ(−

√ 

2 λd I ) . 

We now consider the divestment action and introduce the Parisian divestment time 

E P ∗

[ 
e −λτD 

] 
= E P ∗

[ 
e −λτI 

] φ(−
√ 

2 λd I ) 

φ( 
√ 

2 λd D ) 

(
h D 

h I 

) √ 
2 λ
σ , 
13 
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the moment-generating function for the process X t defined in (5) , stopped at the Parisian divestment time 

E P ∗

[ 
e −λX τD 

] 
= 

(
h D 

V 0 

)
− λ

σ φ(λ
√ 

d D ) . 

Equipped with these expressions, we can rewrite the first term appearing in the investment–divestment problem (3) as: 

E P 

[ 
e −ρτI (V τI 

− C I )1 { τI < ∞} 
] 

= E P ∗

[ 
e −(ρ+ b 2 2 ) τI 

] (
h I 

V 0 

)
b 
σ φ(b 

√ 

d I ) ×

×
{ 

h I 

φ( 
√ 

d I (σ + b)) 

φ(b 
√ 

d I ) 
− C I 

} 

. 

Similarly, we can rewrite the second term in (3) as: 

E P 

[ 
e −ρτD (C D − V τD 

)1 { τD < ∞} 
] 

= E P ∗

[ 
e −(ρ+ b 2 2 ) τI 

] (
h I 

V 0 

)
b 
σ

(
h I 

h D 

)
−b−

√ 

2 ρ+ b 2 
σ ×

×φ(−
√ 

(2 ρ + b 2 ) d I ) 

φ( 
√ 

(2 ρ + b 2 ) d D ) 
φ(−b 

√ 

d D ) 
{ 

C D − h D 

φ(−(b + σ ) 
√ 

d D ) 

φ(−b 
√ 

d D ) 

} 

. 
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