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This paper considers magnetohydrodynamics (MHD) and some of its applications from the perspective of
differential geometry, considering the dynamics of an ideal fluid flow and magnetic field on a general three-
dimensional manifold, equipped with a metric and an induced volume form. The benefit of this level of
abstraction is that it clarifies basic aspects of fluid dynamics such as how certain quantities are transported,
how they transform under the action of mappings (for example the flow map between Lagrangian labels
and Eulerian positions), how conservation laws arise, and the origin of certain approximations that preserve
the mathematical structure of classical mechanics.

First, the governing equations for ideal MHD are derived in a general setting by means of an action
principle, and making use of Lie derivatives. The way in which these equations transform under a pull
back, by the map taking the position of a fluid parcel to a background location, is detailed. This is then
used to parameterise Alfvén waves using concepts of pseudomomentum and pseudofield, in parallel with
the development of Generalised Lagrangian Mean theory in hydrodynamics. Finally non-ideal MHD is
considered with a sketch of the development of the Braginsky αω-dynamo in a general setting. Expressions
for the α-tensor are obtained, including a novel geometric formulation in terms of connection coefficients,
and related to formulae found elsewhere in the literature.

1. Introduction

In this paper we discuss some aspects of magnetohydrodynamics (MHD) from a geometric per-
spective: we consider an ideal fluid flow and magnetic field occupying a three-dimensional man-
ifoldM equipped with a metric g and induced volume form µ. We discuss several topics where
this level of abstraction is useful in understanding mathematical structure, approximations and
phenomena, even when we may ultimately be operating in everyday three-dimensional space.
Taking a geometric perspective on fluid dynamics was pioneered in the seminal paper Arnold
(1966); this and related works are reviewed in the book Arnold and Khesin (1998). Building
on the mathematical foundations of classical mechanics, Arnold showed that an incompress-
ible ideal fluid flow may be considered as a geodesic on a manifold known as SDiff(M), the
space of all volume-preserving diffeomorphisms of the space M, and that this space has an
underlying Lie group structure. Here SDiff(M) has a metric that comes from the metric g
on M, and this is needed to define geodesics: the shortest path taken by a point in this big
space SDiff(M) gives the flow map, say φt, that moves all the Lagrangian fluid parcels for
the actual flow in M. Arnold’s geometric perspective on a classical topic led to many new
and varied results in theoretical fluid dynamics, for example in stability theory (e.g. Holm et
al. 1985), in Hamiltonian mechanics, understanding the origin of conservation laws and deter-
mining systematic approximate or reduced fluid systems (e.g. Morrison 1982, McIntyre and
Shepherd 1987, Salmon 1988, Shepherd 1990, Morrison 1998, Webb 2018), and in modelling
fluctuations and waves in laminar and turbulent flows (e.g. Foias, Holm and Titi 2001, Soward
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and Roberts 2010, Gilbert and Vanneste 2018). Often the key advantage of a geometric per-
spective is that the transformations or approximations used naturally preserve the underlying
geometry of fluid motion, in other words the essential structure of classical mechanics, together
with its conservation laws. A modern geometric approach also underlies mimetic numerical
methods (e.g. Qin, Guan and Tang 2009, Leok and Shingel 2012, Thuburn and Cotter 2015,
Kraus, Tassic and Grassod 2016, Palha and Gerritsma 2017), which are designed to respect
key mathematical properties; an example is that a discrete approximation to vector calculus
operators should preserve the fundamental identity that div curlf = 0, or in a more general
setting that d2γ = 0 for the exterior derivative d of a differential form γ. Failing to preserve
such identities easily leads to spurious physical effects whose origin is purely numerical.

While there has been more study of geometric methods applied to hydrodynamics than to
MHD (reviewed in the book Webb 2018), many key ideas in fact arose in parallel with (or
following) similar developments in the latter field. One notion familiar to anyone dealing with
a magnetic field b (or vorticity ω) is that ideal transport (that is, with zero diffusion) in
incompressible flow is achieved by means of the Cauchy solution. This relates a field vector
b(x) attached to a Lagrangian fluid parcel at x that is transported to a point x′, to the new
vector b′(x′) with components

b′i(x
′) = Jij(x)bj(x), where Jij = ∂x′i/∂xj (1.1)

is the Jacobian matrix J of the transformation ψ : x 7→ x′.
In geometric parlance this is the push forward of the field under the map ψ, and is a standard

way of looking at the transport of magnetic field in ideal or near-ideal MHD or dynamo theory.
What is less intuitive perhaps, is that some quantities are not transported in this way, as a
(contravariant) vector field, but as a 1-form field (or covariant vector field), an example of this
being momentum. In a key paper, Soward (1972) showed that the natural way of tranporting
momentum p from place to place is using the inverse transpose of the same Jacobian,

p′i(x
′) = Kij(x)pj(x), K =

(
J−1

)
T. (1.2)

In the language of differential geometry this is a push forward of the momentum p considered
as a 1-form, under the map ψ.

Thus, there are two types of transport relevant to everyday vector fields in incompressible
flow, that given by (1.1) and that given by (1.2). If we have quantities transported in this way
then the inner product b ·p is conserved. As an example, if the map ψ is the flow map φt,
moving Lagrangian parcels from their positions at time t = 0 to those at time t, then magnetic
field b and vorticity ω evolve according to (1.1), and a scalar gradient ∇χ and (in a suitable
gauge) the magnetic vector potential a evolve according to (1.2). We then have immediately
that ω ·∇χ and b ·a are conserved on fluid parcels. These are respectively Ertel’s potential
vorticity (Ertel 1942) and the magnetic helicity density (see Moffatt and Dormy 2019).

The picture is more complicated for the momentum p because this can be redistributed by
the pressure field, so that the transport of momentum does not occur via (1.2) under the flow
map φt. However this equation does give the means of moving momentum from point to point
in any kind of Lagrangian averaging. This was realised in Soward’s (1972) paper, which built
on earlier work of Frieman and Rotenberg (1960) and Eckart (1963), and was developed as
Generalised Lagrangian Mean (GLM) theory in the papers Andrews and McIntyre (1978a,b)
(see the book Bühler 2009, for further developments). The key idea here is that it is often
beneficial to take averages of fluid dynamical equations not at a fixed location in a family of
flow realisations – an Eulerian average – but to take a Lagrangian average, over the locations
of a single Lagrangian parcel. In this case it is necessary to move vectors from place to place
in the flow, and the transformation rules (1.1) and (1.2) come into play. If quantities are
moved in this way (rather than parallel transport, say), remarkable properties of the resulting
Lagrangian averages emerge; in particular the structure of the Euler equation is preserved to
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the extent that Kelvin’s circulation theorem continues to apply (for recent developments see
Holm 2002b, Soward and Roberts 2010, Gilbert and Vanneste 2018 and the book Webb 2018).

Although all this machinery works beautifully and is well established in the literature,
together with applications, we argue that it is only by stepping back and considering some of
these fluid dynamical systems in a more abstract setting that it is clear why these methods
work, what is the origin of various transformation and conservation laws, and where choices can
and cannot be made. For example working in Euclidean space R3 with Cartesian coordinates
(x, y, z) and metric g = dx2 + dy2 + dz2, it is too easy to switch between vector fields such as
the velocity u and 1-form fields such as the momentum p, which have the same components
(up to the factor of density ρ) even though they are very different objects in terms of their
properties under transport. Working on a general manifoldM with a metric g and an induced
volume form µ forces one to establish what type of object one is dealing with at the outset,
and with this, theory can become easier and clearer, drawing on well-established results in
differential geometry. The advantage of the use of differential geometry and particularly Lie
derivatives has been stressed by several authors in MHD, including Tur and Yanovsky (1993),
Marsden and Shkoller (2001), Holm (2002b), Roberts and Soward (2006a,b), Arter (2013a,b),
Soward and Roberts (2014) and Webb (2018). Even working in R3, the use of a formulation
based on a general metric g can avoid complications switching from Cartesian coordinates to,
say, cylindrical polars, and is well-nigh essential if non-orthogonal coordinates are employed,
for example when a coordinate labels surfaces of constant buoyancy in a geophysical fluid
dynamical setting (Gilbert and Vanneste 2020b).

In the present paper, we discuss three related topics in which we place MHD in an abstract
geometric setting. In section 2 we derive the MHD equations from an action principle: this
starting point is useful as it forces us to identify the different types of objects that can be
used to describe the flow field (velocity u, momentum ρν) and magnetic field (flux 2-form B,
vector field b and 1-form field β), how they are related using the metric and volume form,
and how they appear in the equations of motion. Compressible fluid flow is allowed, and
the magnetic pressure term emerges in the calculation. The section is standard material but
takes a geometric approach to recast the classical derivation of Newcomb (1962), reviewed in
Van Kampen and Felderhoff (1967), Morrison (1998) and Webb (2018). We also discuss the
conservation of different types of helicity within the geometical framework (Arnold and Khesin
1998, Fukumoto 2008, Webb et al. 2014a,b). With the equations established in geometric form,
in section 3 we discuss how they transform under a pull back (or push forward) by a mapping.
This gives rise to the notion of pseudomomentum and pseudo (magnetic) field, and these
are calculated for finite amplitude Alfvén waves on a uniform magnetic field threading an
incompressible fluid (Alfvén and Falthammar 1950). We also consider cross helicity under
Lagrangian averaging (Holm 2002a).

In section 4 we discuss transformation of the induction equation under a mapping and sketch
its use in the Braginsky (1964a,b) dynamo: here one starts with a background flow that is not
a dynamo but gives an ω-effect, stretching out field that is transverse to streamlines. Then
waves are included by means of a Lagrangian map: through the diffusion term, these can
generate an α-effect and close the dynamo cycle to give an αω-dynamo. We note that the use
of mappings and transport of field is well-established following Soward (1972), with further
developments in Roberts and Soward (2006a,b) and a comprehensive treatment given recently
in Soward and Roberts (2014). Although these papers use many concepts from differential
geometry implicitly, the goal of the present paper is to make the machinery explicit, and so
both simplify and unify previous methods and results: to our knowledge the perspective that
we aim to convey is novel and we also obtain a new description of the α-effect in terms of
a connection tensor. The present paper is self-contained, but the framework follows on from
Gilbert and Vanneste (2018); a companion paper Gilbert and Vanneste (2020a) studies how
fluid systems can be written in a conservation form, including MHD and shallow water MHD.
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2. Ideal MHD from an action principle

2.1. Usual MHD equations

For reference purposes, we begin by setting out the equations for MHD in usual Euclidean
space R3 using standard notation, namely,

ρ(∂tu + ω × u + 1
2∇|u|

2) +∇p = j × b, (2.1)

∂tb =∇× (u× b)− η∇× j, (2.2)

ω =∇× u, j =∇× b, ∇· b = 0. (2.3)

Here we have allowed the field to be non-ideal, with (constant) magnetic diffusivity η: sections
2 and 3 will consider ideal MHD, η = 0, and section 4 dynamos with η > 0. We have not
introduced viscosity (see Gilbert, Riedinger and Thuburn 2014 and Gilbert and Vanneste
2020a for discussion of how the divergence of a stress tensor is taken in a geometric setting).
For convenience the magnetic permeability µ0 is scaled out, the true magnetic field is in fact

µ
1/2
0 b. We allow either incompressible flow with ∇·u = 0 or ideal compressible flow, in which

case an equation of state p = p(ρ, s) is also needed, with s as the entropy and ρ the density
governed by

∂ts+ u ·∇s = 0, (2.4)

∂tρ+∇· (ρu) = 0. (2.5)

2.2. Geometric setting and transport

Having set out the equations in ordinary three-dimensional space, we now place these in an
abstract setting, and will use lighter face quantities for all the various physical fields to stress
this. Our fluid domain is now an orientable three-dimensional manifold M, with or without
a boundary ∂M; examples include all of R3 or a solid sphere. For simplicity we will avoid
discussion of manifolds with ‘holes’ in them, for example a spherical shell; in other words
we restrict to manifolds M where any curve or closed surface can be contracted to a point.
In ideal fluid mechanics any flow or magnetic vector field is taken parallel to the boundary,
u, b ‖ ∂M.

We assume that the reader has knowledge of the fundamentals of differential geometry, as
given by, for example, Hawking and Ellis (1973), Schutz (1980), Frankel (1997) or Besse and
Frisch (2017). In particular we make use of vectors, differential forms, the Lie derivative L,
inner product y, exterior derivative d, the Hodge star operator ?, and the musical raising
and lowering operators ] and [. To discuss fluid dynamics we need M to be equipped with a
metric g and induced volume form µ, and occasionally it is useful to refer to the corresponding
covariant derivative ∇. We make frequent use, often without comment, of Cartan’s formula:
for any differential form γ,

Luγ = d(uyγ) + uydγ. (2.6)

Our first concern is the magnetic field, whose most fundamental property perhaps is the
absence of magnetic monopoles, so that the integral of magnetic flux over any closed surface S
vanishes. From the geometric viewpoint this means that the magnetic field is most naturally
represented by the magnetic flux 2-form B (Tur and Yanovsky 1993, Frankel 1997), which is
required to be closed, dB = 0. Then, as any closed surface S in M bounds a volume V with
S = ∂V, we have ∫

S
B =

∫
V

dB = 0, (2.7)



October 16, 2020 Geophysical and Astrophysical Fluid Dynamics ”Attached file- GGAF-2019-0045-Gilbert-v2”

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 5

using the generalised Stokes theorem (corresponding to the usual divergence theorem in this
instance). The focus on the magnetic flux B is natural in a geometric setting since 2-form
fields are naturally integrated over surfaces. In ideal MHD, magnetic field is transported in
the fluid flow, as per Alfvén’s theorem, and in the general setting this corresponds to requiring
that B be Lie dragged in the fluid flow (Tur and Yanovsky 1993),

∂tB + LuB = 0. (2.8)

This preserves the condition dB = 0 since d commutes with Lie and time derivatives.
We are often more used to thinking of magnetic field as a magnetic vector field b rather

than a 2-form field B, and b is easily defined using the volume 3-form via byµ = B. In this
case it follows from (2.8) that b is transported according to

∂tb+ Lu b+ b div u = 0, (2.9)

where div u is the divergence of the flow field u given by

Lu µ = d(uyµ) = µdiv u. (2.10)

This transport of b takes into account the action of compressible flow on the field through the
b div u term, and for this reason b is sometimes referred to as a ‘tensor of weight −1’ (Roberts
and Soward 2006a). The solenoidal property of b, namely div b = 0, follows from dB = 0.

Other transported quantities include the entropy s which is a scalar field obeying

∂ts+ Lu s = 0, (2.11)

and density ρ. Again, more fundamental than density itself is the mass 3-form m, in that
integration of m over a volume gives the mass contained therein. The mass form is again Lie
dragged via

∂tm+ Lum = 0, (2.12)

giving mass conservation, while the density ρ, now defined by m = ρµ, is a scalar of weight
−1 obeying

∂tρ+ Lu ρ+ ρ div u = 0. (2.13)

In short, in an ideal setting the fundamental quantities of magnetic flux B, entropy s and
mass m are all Lie dragged in the flow field in the same way via (2.8), (2.11) and (2.12), while
the derived quantities of magnetic vector field b and density ρ obey the slightly more complex
equations (2.9) and (2.13), bringing in the divergence of the flow field u. This latter effect can
also be absorbed by dividing b by ρ; see Arter (2013a) for a development along these lines,
and see Tur and Yanovsky (1993) for discussion of Lie-dragging and how ideal invariants are
systematically formulated within this framework.

2.3. Ideal MHD from an action principle

We now derive the equations for the flow u starting with an action principle (Newcomb 1962,
Morrison 1998, Webb 2018). We follow the geometrical discussion in Gilbert and Vanneste
(2018) with an additional magnetic field; see Holm et al. (1998) for an equivalent derivation
in the more general framework of Euler–Poincaré systems, and Arnold and Khesin (1998) for
the treatment of incompressibility case. For this we need the Lagrangian flow map φ ≡ φt
(we drop the subscript t) a time-dependent diffeomorphism of M which takes fluid elements
from their positions x at time t = 0 to their current position φ(x, t). This map is assumed
to be invertible and differentiable as much as is needed. In terms of φ the flow u, which is a
time-dependent vector field on M, is given by

u = φ̇ ◦ φ−1. (2.14)
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The kinetic energy of the fluid may then be expressed in terms of an integral over the initial
particle locations (i.e. at t = 0), used as Lagrangian labels, by

K =

∫
M

1
2g(φ̇, φ̇)m0, (2.15)

where m0 = ρ0µ is the initial mass distribution, or in terms of the current positions and
current mass distribution m (i.e. at a general time t) by

K =

∫
M

1
2g(u, u)m. (2.16)

The full action, in terms of current positions, is then

A[φ] =

∫
dt

∫
M

[
1
2g(u, u)m− ρe(ρ, s)µ− 1

2g(b, b)µ
]
. (2.17)

Here the fields m, s, B, ρ and b depend on the flow map since they are obtained from their
initial values by the push forwards,

m = φ∗m0, s = φ∗s0, B = φ∗B0, (2.18)

and as above m = ρµ and B = byµ. For magnetic field this corresponds to the Cauchy
solution. In the action, e(ρ, s) is the internal energy per unit mass, and it is notable that this
and the kinetic energy are weighted with mass m = ρµ, whereas the magnetic energy involves
the vector field b rather than the flux 2-form B, and is weighted with volume µ.

Using Hamilton’s principle, we require that the action is stationary under variations in the
paths of the fluid particles over some time interval. We achieve this in the present framework
by replacing the flow map φ in the above by the perturbed flow map φε = ψε ◦φ. Here ψε is a
family of diffeomorphisms ofM dependent on time and on a scalar parameter ε, equal to the
identity for ε = 0. We require that the action be stationary with respect to such variations,

d

dε

∣∣∣∣
ε=0

A[φε] = 0. (2.19)

If we fix time t and vary ε around ε = 0 the family of maps ψε gives a vector field w, formally
defined by

w =
dψε
dε
◦ ψ−1

ε

∣∣∣∣
ε=0

, (2.20)

and this field is parallel to the boundary of M. On the other hand if we fix ε and vary t we
obtain the flow velocity under φε as in (2.14) with

uε = φ̇ε ◦ φ−1
ε . (2.21)

Key is the relationship between uε and w, how a variation in the map affects the resulting
particle velocities, and this is

d

dε

∣∣∣∣
ε=0

uε = ∂tw + Luw = ∂tw − Lw u. (2.22)

This key identity is easily shown using coordinates (or more abstractly in Gilbert and Vanneste
2018, appendix B) by writing from (2.20), (2.21)

uε(φε(x, t), t) = ∂tφε(x, t), wε(φε(x, t), t) = ∂εφε(x, t), (2.23)

and equating ∂t∂εφε = ∂ε∂tφε to give

∂εu
i
ε + (∂ju

i
ε)(∂εφ

j
ε) = ∂tw

i
ε + (∂jw

i
ε)(∂tφ

j
ε), (2.24)
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or

∂εu
i
ε + (∂ju

i
ε)w

j
ε = ∂tw

i
ε + (∂jw

i
ε)u

j
ε, (2.25)

which, evaluated at ε = 0, amounts to (2.22).
For other quantities in the action, we have from the earlier transport equations (2.8)–(2.13)

that

d

dε

∣∣∣∣
ε=0

mε = −Lwm = −Lw(ρµ) = −div(ρw)µ, (2.26)

d

dε

∣∣∣∣
ε=0

bε = −Lw b− (divw)b, (2.27)

d

dε

∣∣∣∣
ε=0

sε = −Lw s, (2.28)

d

dε

∣∣∣∣
ε=0

ρε = −div(ρw), (2.29)

where the ε subscript denotes their values under transport by φε from the same initial condi-
tions in (2.18).

The requirement (2.19) that the action A[φε] be stationary at ε = 0 becomes∫
dt

∫
M

[
g(u,∂tw + Luw)m− 1

2g(u, u)Lwm+ (ρe)ρ div(ρw)µ+ ρes(Lw s)µ

+ g(b,Lw b+ (divw)b)µ
]

= 0. (2.30)

We need to pull out the arbitrary vector field w from this. First we take w to be identically
zero outside some time interval, which we do not need to give explicitly, so we can apply
integration by parts with respect to time. Secondly we can use integration by parts in space.
Let γ be any 3-form, then for any vector field parallel to the boundary of M (such as u, w,
b) we have ∫

M
Luγ =

∫
M

d(uyγ) =

∫
∂M

uyγ = 0. (2.31)

Together with the Leibniz rule for Lie derivatives, this means that we can integrate by parts
and shift the Lie derivative from a term in a product to the remaining terms, while introducing
a minus sign.

Using these and similar rules we can replace quantities in the above integral by their equiv-
alents. To keep notation light we denote this by '. We define the key quantities, the 1-forms,

ν = g(u, ·) = u[, (2.32)

and

β = g(b, ·) = b[ = ?B, (2.33)

where ? is the Hodge star operator. We then have for the kinetic energy terms,

g(u,∂tw)m = µρνy∂tw ' −wy∂t(ρν)µ = −wyν (∂tρ)µ− wy(∂tν) ρµ, (2.34)

g(u,Luw)m = µρνyLuw ' −wyLu(ρν)µ− ρwyν Lu µ

= −wyLu(ρν)µ− ρwyν (div u)µ

= −wy(Lu ν)ρµ+ wyν (∂tρ)µ, (2.35)

−1
2g(u, u)Lwm ' mLw 1

2g(u, u) = mwy1
2dg(u, u) = wy1

2ρdg(u, u)µ, (2.36)
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using (2.13) for (2.35). For the internal energy terms we have

(ρe)ρ div(ρw)µ+ ρes(Lw s)µ = (ρe)ρ Lw(ρµ) + ρes(Lw s)µ

' −Lw[(ρe)ρ]ρµ+ ρes(Lw s)µ

= −wyd[(ρe)ρ]ρµ+ wy(ρes ds)µ

= wy(−ρ dh+ ρT ds)µ

= −wydpµ, (2.37)

where we have used thermodynamic relations for pressure p, temperature T and enthalpy h,

h = (ρe)ρ = e+ p/ρ, T = es, dh = ρ−1dp+ Tds. (2.38)

Finally, for the magnetic terms we have

g(b,Lw b)µ = −µβyLbw ' wy(Lb β)µ+ wyβ Lb µ = wy(Lb β)µ, (2.39)

g(b, (divw)b)µ = g(b, b)Lw µ ' −Lw[g(b, b)]µ = −wydg(b, b)µ, (2.40)

using that Lb µ = d(byµ) = dB = 0. These expressions are inserted into (2.30) which must
hold for arbitrary w, and from this we obtain the momentum equation in the form

ρ[∂tν + Lu ν − 1
2dg(u, u)] + dp = Lb β − dg(b, b), (2.41)

for ideal MHD flow in a general setting.

2.4. Discussion

Several remarks are in order. First, using Cartan’s formula (2.6) and noting that g(u, u) = νyu,
g(b, b) = byβ, (2.41) may be expressed as

ρ[∂tν + uydν + 1
2dg(u, u)] + dp = bydβ, (2.42)

which is equivalent to (2.1) where we identify

ζ = dν and j = dβ (2.43)

as the vorticity and current 2-forms. Both of these can be converted to vector fields in the
same way that byµ = B relates the magnetic flux 2-form B to the corresponding vector field
b. Likewise equation (2.8) for evolution of magnetic field may be rewritten as

∂tB + d(uyB) = 0, (2.44)

which is analogous to (2.2) for η = 0, with the exterior derivative playing the role of the curl.
Secondly, in the momentum equation we have found that terms emerge for the transport,

not of the velocity vector u, but for the corresponding 1-form momentum ν = u[ (strictly the
momentum is ρν). Although these two are very similar, and in relativity would more-or-less be
identified, in the context of geometrical fluid dynamics it is important to keep the distinction
between the two quantities. Likewise in determining the Lorentz force term we are driven
to introduce the 1-form β. Both b and β are related back to the fundamental magnetic flux
2-form B since byµ = B and β = b[, but it is convenient to distinguish them using different
symbols. It is not clear that there is a good name for the magnetic 1-form field β (we have
the magnetic vector field b and the magnetic flux 2-form B) but the distinction between the
two quantities b and β and their properties has been stressed in Holm (2002a) and Roberts
and Soward (2006a), for reasons that become apparent in section 3.

Thirdly, note that a vorticity equation can be obtained in terms of Lie derivatives (Arter
2013a) by dividing (2.41) by ρ to give

∂tν + Lu ν − 1
2dg(u, u) + ρ−1dp = ρ−1bydβ, (2.45)
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then applying d to obtain

∂tζ + Lu ζ − ρ−2dρ ∧ dp = d(ρ−1byj) = Lb/ρ j, (2.46)

using (2.43) and Cartan’s formula (2.6). The quantity ζ is referred to as the potential vorticity
by Arter (2013a). This should not be confused with the (Rossby–Ertel) potential vorticity
3-form ζ ∧ ds, or the potential vorticity scalar Q defined by ρQµ = ζ ∧ ds, both of which are
Lie transported by u in the absence of magnetic field.

Perhaps a more familiar route for some readers is to express the momentum and induction
equations in terms of the covariant derivative. Here we write the components of u as ui and
those of ν as ui, etc. Using standard results, in particular that

Lu ν = (∇uu)[ + 1
2dg(u, u) (2.47)

(Arnold and Khesin 1998), the momentum equation (2.41) may be written as

ρ
(
∂tui + uj∇jui

)
+∇i

(
p+ 1

2gjkb
jbk
)

= bj∇jbi. (2.48)

In this formulation it is interesting to see the magnetic pressure term 1
2gjkb

jbk emerge, with no

corresponding term involving 1
2gjku

juk. For magnetic field, equation (2.9) can be reexpressed
as a familiar form of the induction equation,

∂tb
i + uj∇jbi − bj∇jui + (∇juj)bi = 0, (2.49)

for η = 0, and similarly for equations such as (2.11), (2.13). We have considered the com-
pressible case, as it does allow a clear emergence of the magnetic pressure term. For the
incompressible case one drops the internal energy e(ρ, s) and in its place uses a Lagrange mul-
tiplier to enforce that the flow map conserves volumes, φ∗µ = µ. The theory can be developed
further from Lagrangian to Hamiltonian mechanics, using a non-canonical Poisson bracket as
discussed in Morrison (1982, 1998), Morrison, Andreussi and Pegoraro (2020) and reviewed in
Webb (2018), with extensions to relativistic MHD (D’Avignon, Morrison and Pegoraro 2015)
and two-fluid MHD (Lingam, Miloshevich and Morrison 2016).

2.5. Helicity

Ideal fluid mechanics, MHD and extensions involve the Lie transport of vector fields in a
flow, and resulting conserved quantities are the helicities that give the linkages between the
integral curves or field lines of the various vector fields (see, e.g. Arnold and Khesin 1998,
Fukumoto 2008, Lingam, Miloshevich and Morrison 2016, Moffatt and Dormy 2019, and ref-
erences therein). Helicities result from Noether’s theorem under the symmetry of relabelling
Lagrangian coordinates (Padhiye and Morrison 1996), and Enciso, Peralta–Salas and Torres
de Lizaur (2016) show that helicity is the only integral invariant of a general vector field trans-
ported in volume-preserving flows. Extensions to helicity and linkage in relativistic MHD are
given by Yoshida, Kawazura and Yokoyama (2014), and related to the relabelling symmetry
in Kawazura, Yoshida and Fukumoto (2014).

In ideal (non-relativistic) MHD we have conservation of magnetic helicity given by the
integral of the helicity 3-form hM = α ∧ dα over M with appropriate boundary conditions.
Here α is a 1-form potential for B so that B = dα and, from (2.8) and in a suitable gauge,

∂tα+ Lu α = 0. (2.50)

For this gauge the helicity form is conserved on fluid parcels

∂t(α ∧B) + Lu(α ∧B) = 0, (2.51)
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and its integral overM is independent of gauge with suitable boundary conditions. Explicitly,
if we set

HM =

∫
M
α ∧B, (2.52)

then we have

dHM

dt
= −

∫
M
Lu (α ∧B) = −

∫
M

d[uy(α ∧B)] = −
∫
∂M

uy(α ∧B) = 0 (2.53)

for u parallel to the boundary ∂M. See Arnold and Khesin (1998), Moffatt and Dormy (2019)
for more discussion, for example of gauge invariance. If the magnetic helicity density hM =
α ∧ B vanishes everywhere, the resulting Pfaff integrability condition means that locally α
defines a family of surfaces Φ = const., with α ∝ dΦ, and a further Godbillon–Vey helicity
invariant may be defined, as discussed by Webb (2018), Webb et al. (2019) and Machon (2020).

For the cross helicity, the appropriate 3-form is hC = ν ∧B (in traditional terms u · b) and
is conserved in incompressible, constant density flow. To see this here, scale out ρ and write
the momentum and induction equations as

∂tν + Lu ν = −dπ + Lb β, (2.54)

∂tB + LuB = 0, (2.55)

where π absorbs terms such as the magnetic pressure. Then we have

∂t(ν ∧B) + Lu(ν ∧B) = −dπ ∧B + (Lb β) ∧B (2.56)

= −d(πB) + Lb(β ∧B) (2.57)

= −d(πB) + d[by(β ∧B)], (2.58)

using dB = 0, LbB = 0 (as Lbb = 0, Lbµ = 0 and byµ = B), and Cartan’s formula. Again this
leads to a conservation law; if we set

HC =

∫
M
ν ∧B, (2.59)

we have

dHC

dt
= −

∫
∂M

[−uy(ν ∧B)− πbyµ+ by(β ∧B)] = 0, (2.60)

given that u, b ‖ ∂M.
In MHD the kinetic helicity, the integral of u ·ω in everyday terms, or here the integral of

hK = ν ∧ ζ with ζ = dν, is not conserved, but in incompressible flow obeys

∂t(ν ∧ ζ) + Lu(ν ∧ ζ) = −dπ ∧ ζ + (Lb β) ∧ ζ + ν ∧ (Lb dβ) (2.61)

' 2(Lb β) ∧ ζ ' 2ν ∧ (Lb dβ), (2.62)

using ' to discard d(·) terms. The two versions follow from

d(Lb β ∧ ν) = d(Lb β) ∧ ν − (Lb β) ∧ dν (2.63)

= (Lb dβ) ∧ ν − (Lb β) ∧ dν (2.64)

= ν ∧ (Lb dβ)− (Lb β) ∧ ζ. (2.65)
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3. Pull backs and Alfvén waves

3.1. Transformation under a mapping

In this section we again consider incompressible fluid flow of constant density ρ; we rescale
the pressure p and magnetic field B so as to absorb this quantity, effectively setting ρ = 1.
We restate the governing equations as

∂tν + Lu ν + dπ =Lb β, (3.1)

∂tb+ Lu b = 0, (3.2)

with

ν = u[, β = b[, (3.3)

π = p− 1
2g(u, u) + g(b, b), (3.4)

div u = 0, div b = 0. (3.5)

In incompressible flow, both field b and flux B are Lie dragged from their initial conditions b0
and B0 by the flow map φ which preserves volume:

b = φ∗b0, B = φ∗B0, φ∗µ = µ. (3.6)

We will focus primarily on b below rather than B.
We now decompose the flow map φ as a composition of volume-preserving maps (Marsden

and Shkoller 2001),

φ = ξ ◦ φ̄. (3.7)

We have in mind a situation where there are waves on a background flow, in which case φ̄
gives the Lagrangian mapping for the background flow ū with

ū = ˙̄φ ◦ φ̄−1 (3.8)

and the map ξ is the fluctuating flow map moving particles from the background flow to their
final positions, with the velocity field w defined for ξ by

w = ξ̇ ◦ ξ−1. (3.9)

We stress that as far as the mathematical development is concerned φ̄ and ξ are simply
two mappings, volume-preserving diffeomorphisms of M, neither being required to have any
further properties; in particular the map ξ can be of finite amplitude. Note with this that the
bar over φ̄ is at present just a label — it is not a mean map here in that we do not need to
define any averaging process — we prefer the adjective background for this reason, rather than
mean. We are considering a single fluctuating map ξ; this will be replaced by a family of maps
ξι labelled by ι in due course, but at present it is a single map. We note that in the literature
the decomposition (3.7) is sometimes referred to as the use of hybrid Eulerian–Lagrangian
(HEL) coordinates (e.g. Roberts and Soward 2006a, Soward and Roberts 2014), in that the
background fluid flow ū (from the map φ̄) captures the Eulerian motion, while the family of
maps ξι captures subsequent Lagrangian displacements, which we refer to as fluctuations for
brevity.

We can apply the pull back ξ∗ to carry fluid parcels from their positions given by φ at
time t, to their positions in the background flow, given by φ̄. This carries magnetic quantities
according to the Cauchy solution and likewise for forms such as B and ν. For magnetic field
we can define

b̄ = ξ∗b = φ̄∗b0, B̄ = ξ∗B = φ̄∗B0, (3.10)
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where the second equalities, stemming from (3.6), indicate that the pulled back fields b̄ and
B̄ are just the push forwards of the initial condition by the background flow map φ̄ and so
are independent of ξ. For the flow, differentiating (3.7) shows that

u = ξ∗ū+ w, ū = ξ∗(u− w). (3.11)

Thus the background flow ū, pushed forward by ξ, and the fluctuation velocity w sum to give
the flow velocity at any point.

For other quantities we set

ν̃ = ξ∗ν, π̃ = ξ∗π, β̃ = ξ∗β, g̃ = ξ∗g, µ̃ = ξ∗µ, (3.12)

so that the tilde is a label for these and other quantities obtained by applying ξ∗. Note that the
background fields ū and b̄ depend only on the background flow map φ̄ (and for b̄ the initial
condition), but this is not the case for ν̃, π̃, β̃, hence the distinct notation. This becomes
relevant below when we have an ensemble of maps, say ξι.

Applying ξ∗ to the equations for ν and b and using standard identities (Gilbert and Vanneste
2018) gives

∂tν̃ + Lūν̃ + dπ̃ =Lb̄ β̃, (3.13)

∂tb̄+ Lūb̄ = 0. (3.14)

The induction equation just simplifies to (3.14), namely motion of the background field b̄ in
the background flow ū, in other words all trace of the fluctuations has vanished. However
for the momentum equation, originally in (3.1) we had transport of ν = u[ in the flow u:
momentum ν and velocity u were simply related by the metric g at each point. Now, in (3.13)
the momentum and flow are not so easily related. We have instead that

ν̃ = ξ∗ν = ξ∗[g(u, ·)] = ξ∗[g(ξ∗ū+ w, ·)] = g̃(ū, ·) + g̃(w̃, ·), (3.15)

and for β,

β̃ = ξ∗β = ξ∗[g(b, ·)] = g̃(b̄, ·), (3.16)

and so the relation involves the background flow for ν̃ and the pulled-back metric g̃ = ξ∗g
for both. Thus, the momentum equation involves transport, not of the momentum of the
background flow which would be (ū)[ but transport of a quantity ν̃ that differs from this, and
likewise for (b̄)[ and β̃. For the magnetic field, the difference g̃(b̄, ·) − (b̄)[ between the two
expressions captures the difference between turning the vector field b̄ into a 1-form field using
the metric g or the pulled back metric g̃. For the momentum ν̃, there is an additional term
arising from the fluctuating flow itself.

3.2. Lagrangian averaging

In this section we will make some comments about how the above framework is used for
Lagrangian averaging, with an emphasis on MHD (see Holm 2002a and Gilbert and Vanneste
2018, for further discussion). We suppose that we have an ensemble of fluctuating maps ξι,
labelled by ι, on the same background flow given by φ̄ or ū. We also assume that we have the
same initial magnetic field in each realisation of the ensemble, so that barred quantities such
as ū, B̄ and b̄ are independent of ι. On the other hand, tilded quantities do depend on ι and
we can label these with an ι to stress this if we need to (we do this sparingly). For any tensor
quantity, say τ ι. we can define its Lagrangian average as

τL = 〈ξι∗τ ι〉, (3.17)



October 16, 2020 Geophysical and Astrophysical Fluid Dynamics ”Attached file- GGAF-2019-0045-Gilbert-v2”

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 13

where 〈·〉 denotes an ensemble average. For barred quantities, we have

b
L

= b̄ and B
L

= B̄, (3.18)

by virtue of (3.10). In contrast,

uL 6= ū, (3.19)

in general, since ū is defined in terms of the map φ̄ by (3.8) and not in terms of a Lagrangian
average; as argued by Gilbert and Vanneste (2018), the equality cannot hold for any useful
definition of the mean flow map φ̄. Note that in (3.17) any tensor quantity is transported from
the locations φι(x) of a single Lagrangian parcel in each realisation to a single point φ̄(x) inM
and then averaged. Thus averaging always takes place in the tangent space, co-tangent space
and tensor spaces at each point. We never attempt to average vectors and tensors located
at different points of M, as this cannot be defined in general. (The generalised Lagrangian
mean theory of Andrews and McIntyre (1978a,b) (see also Bühler 2009) assumes a Euclidean
structure to average vectors based at different points using parallel translation.)

Applying this Lagrangian average to the incompressible MHD equations (3.13), (3.14), and
letting barred quantities come out of any averaging, we have

∂tν
L + LūνL + dπL =Lb̄ β

L
, (3.20)

∂tb̄+ Lūb̄ = 0. (3.21)

The Lagrangian averaged momentum νL and β
L

differ from the similar background quantities
by what are known as the pseudomomentum p and the pseudofield h respectively; these are
given by

−p = νL − (ū)[, −h = β
L − (b̄)[. (3.22)

(the minus sign for p is a convention; see Andrews and McIntyre 1978a). In the context of
GLM theory, Holm (2002a) also identifies h and refers to its average, over an ensemble of flows,
as the magnetization induced by Lagrangian averaging. The pseudomomentum and pseudofield
capture the effect of the fluctuations on the background flow; explicit expressions in terms of
ξι can be obtained by averaging (3.15), (3.16). We give an example in the next section.

We finally consider the effect of a pull back and Lagrangian averaging on the various helicities
discussed in section 2.5. We consider first cross helicity (Holm 2002a), applying a pull back
to equation (2.58) to obtain

∂t(ν̃ ∧ B̄) + Lū(ν̃ ∧ B̄) = −d(π̃B̄) + d[b̄y(β̃ ∧ B̄)]; (3.23)

taking an average gives

∂t(ν
L ∧ B̄) + Lū(νL ∧ B̄) = −d(πLB̄) + d[b̄y(β

L ∧ B̄)]. (3.24)

Thus we can define the Lagrangian averaged cross helicity form by hC
L

= νL ∧ B̄ and note
that it differs from that of the background fields, namely (ū)[ ∧ B̄ by a term involving the
pseudomomentum, namely −p∧B̄. The cross helicity form obeys the above transport equation.
This means that for any subvolume V ofM we can account for the change of cross helicity in
V by fluxes across the boundary S = ∂V

∂t

∫
V
νL ∧ B̄ =

∫
S

[
−ūy(νL ∧ B̄)− πLB̄ + b̄y(β

L ∧ B̄)
]
. (3.25)

Applying a Lagrangian average to the magnetic helicity simply gives hM
L

= ᾱ∧dᾱ, since the
potential α is transported by the flow: ξ∗α = ᾱ = φ̄∗α0, so nothing is gained by Lagrangian
averaging: no linkages are changed in ideal evolution. Applying a Lagrangian average to the
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kinetic helicity gives hK
L

= ν ∧ ζL
, which does not seem open to any useful simplifications in

MHD, as ζ = dν is no longer given by the Cauchy solution. In pure hydrodynamics (B = 0), if
all realisations in the ensemble have the same initial vorticity field (maybe only locally, if not

globally) we can write ξ∗ζ = ζ̄ = φ̄∗ζ0 and so hK
L

= νL∧ ζ̄. Again this differs from the kinetic
helicity of the background fields, namely (ū)[ ∧ ζ̄, by a term involving the pseudomomentum,
−p ∧ ζ̄, Helicity conservation is expressed by

∂t

∫
V
νL ∧ ζ̄ =

∫
S

[
−ūy(νL ∧ ζ̄)− πLζ̄

]
, (3.26)

which is zero if the background vorticity ζ̄ vanishes on S. Thus, for cross helicity in MHD
and for kinetic helicity in hydrodynamics, the helicity ‘hidden’ in the fluctuations is easily
expressed in terms of the pseudomomentum.

3.3. Alfvén waves

As a fundamental example we consider how a pull back can be employed for an Alfvén wave
on a uniform magnetic field in Euclidean geometry, M = R3 with coordinates (x, y, z) =
(x1, x2, x3) and the usual metric g = dx2+dy2+dz2. In ideal MHD with a uniform background
magnetic field, waves of arbitrary shape can propagate without change, with the velocity and
disturbance magnetic field proportional to each other, as found by Walén (1944) (see, e.g.
Alfvén and Falthammar 1950). We consider a flow and magnetic field giving such a travelling
wave by setting

f = f(z − ct), h = h(z − ct), (3.27)

and then

u = f ∂x + h∂y + U ∂z, b = ± f ∂x ± h∂y + B ∂z, (3.28)

ν = f dx+ hdy + U dz, β = ± f dx± hdy + B dz, (3.29)

where U and B are constant uniform flow and field respectively, f and h are arbitrary
functions, and the wave speed

c = U ∓B. (3.30)

It is easy to check that this satisfies (3.1), (3.2) with π = 0 by manipulating the 1-forms ν
and β directly, using the commutation of Lie and exterior derivatives:

∂tν + Luν = − c(f ′ dx+ h′ dy) + Luf dx+ Luhdy + LuU dz

+ f d(Lux) + hd(Luy) + U d(Luz)

= (U − c)f ′ dx+ (U − c)h′ dy + f df + hdh, (3.31)

Lbβ = ± Lbf dx± Lbhdy + LbB dz ± f d(Lbx)± hd(Lby) + B d(Lbz)

= ±Bf ′ dx±Bh′ dy + f df + hdh. (3.32)

We now map the vector field u in (3.28) onto a background flow chosen as ū = U ∂z; in other
words, we remove the Alfvén wave by the pull back. This is achieved with fluctuations of the
form

ξ(x, y, z, t) = (x+ F (z − ct), y +H(z − ct), z). (3.33)

and associated velocity

w = −cF ′ ∂x − cH ′ ∂y. (3.34)



October 16, 2020 Geophysical and Astrophysical Fluid Dynamics ”Attached file- GGAF-2019-0045-Gilbert-v2”

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 15

We can use (3.11), that is, ū = ξ∗(u− w), to compute ū. Noting that

∂̃x = ξ∗∂x = ∂x, ∂̃y = ξ∗∂y = ∂y, ∂̃z = ξ∗∂z = −F ′ ∂x −H ′∂y + ∂z, (3.35)

we find

ū = (f ∓BF ′)∂x + (h∓BH ′)∂y + U ∂z, (3.36)

hence we choose

F ′ = ±B−1f, H ′ = ±B−1h. (3.37)

With this choice, the background magnetic field, obtained from (3.10) as

b̄ = (±f −BF ′)∂x + (±h−BH ′)∂y + B ∂z, (3.38)

also simplifies, leading to the uniform background vector fields

ū = U ∂z, b̄ = B ∂z, (3.39)

which trivially satisfy the induction equation (3.14). The corresponding 1-forms, in contrast,
are more complicated. Using that

d̃x = ξ∗dx = d(ξ∗x) = dx+ F ′ dz, (3.40a)

d̃y = ξ∗dy = d(ξ∗y) = dy +H ′ dz, (3.40b)

d̃z = ξ∗dz = d(ξ∗z) = dz, (3.40c)

we obtain

ν̃ = f dx+ hdy + [U ±B−1(f2 + h2)] dz, (3.41)

β̃ = ±f dx± hdy + [B + B−1(f2 + h2)] dz, (3.42)

which depend explicitly on the waves through f and h. It can be checked that (3.41), (3.42)
solve the pulled-back momentum equation (3.13).

If we have a sea of Alfvén waves with random phases such that 〈f〉 = 〈h〉 = 0, then we
can take a Lagrangian average as outlined above to replace previously tilded quantities, and
obtain

νL = [U ±B−1〈f2 + h2〉] dz, β
L

= [B + B−1〈f2 + h2〉] dz, (3.43)

−p = ±B−1〈f2 + h2〉dz, −h = B−1〈f2 + h2〉 dz. (3.44)

Thus we gain a correction to the z-directed momentum of the background flow (ū)[ = U dz
and to the mean 1-form field (b̄)[ = B dz that parameterises these waves, and we identify the
pseudomomentum and pseudofield as quantities that are quadratic in the wave amplitude,
and have only a z component. The cross helicity carried by the waves (with the background
contribution subtracted out) is

−p ∧ B̄ = ±〈f2 + h2〉dx ∧ dy ∧ dz. (3.45)

The above example is straightforward since the Alfvén waves are wholly transverse and the
nonlinear terms cancel out; the results are equivalent to what would be obtained by GLM
theory and averaging over the phases of the waves. Nonetheless this example does capture
how a mapping can straighten out magnetic field lines and encode the disturbance in the
pseudo-quantities. Extension to non-uniform magnetic fields and compressible flows, in order
to understand wave–mean flow/field interactions (see Bühler 2009), are the subject of future
study, beyond the scope of the present paper.
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4. The Braginsky dynamo

As a second example of the use of a geometric approach to MHD, we consider the Braginsky
dynamo. We will allow for compressible flow u in this section. As a kinematic dynamo, the
flow field u is specified and for non-zero, uniform magnetic diffusion η > 0, the induction
equation (2.8) becomes

∂tB + LuB = η∇2B. (4.1)

Here, the operator ∇2 is (minus) the Laplace–de Rham operator,

−∇2 = δd + dδ, (4.2)

where δ ≡ ?d? is the codifferential operator, here mapping the 2-form B to a 1-form. We have
already identified j = dβ = d?B as the current 2-form, and thus the operator d? corresponds
to a curl. Since dB = 0,

∇2B = −dδB = −d?d?B (4.3)

is equivalent to the two curls in (2.2), (2.3).
In kinematic dynamo theory, the aim is to show that growing solutions exist for a particular

choice of flow and diffusivity η > 0. Our goal is to obtain formulae for the transport term
known as the α-effect, by exploiting the machinery of pull-backs and operators in a general
setting, rather than the explicit construction of αω-dynamos, or explicit calculation of α for
particular families of fluctuations or waves. We stress that the overarching ideas behind the
α-effect and αω-dynamos are well established and it is only our approach that is novel; for
comprehensive discussion, as well as solutions in particular examples, we refer to the book
Moffatt and Dormy (2019).

4.1. Informal approach: an αω dynamo

We first illustrate the ideas underlying the Braginsky dynamo and their geometric formulation
by considering a specific scenario. We use coordinates (x1, x2, x3) = (x, y, z); these need not be
Cartesian, nor need (x, y) even be orthogonal, but we do assume that the metric is independent
of z taking the form

g(x, y) =

 g11 g12 0
g21 g22 0
0 0 g33

 . (4.4)

Thus g is invariant under translations in the z-direction and under the transformation z → −z;
examples include spherical polar coordinates (r, θ, φ) with z ≡ φ the azimuthal angle or
longitude. The volume form µ = |g|1/2 dx∧ dy ∧ dz is also z-independent. For convenience we
set ς(x, y) = |g|−1/2, with |g| the determinant of g, so that the induced volume form is

µ = ς−1 dx ∧ dy ∧ dz. (4.5)

We let the magnetic flux 2-form B be written as

B = B1 dy ∧ dz +B2 dz ∧ dx+B3 dx ∧ dy. (4.6)

Note that when we use index notation below we will also use Bij with B1 = B23 = −B32

etc., that is B = 1
2Bij dxi ∧ dxj , there being little risk of confusion. The condition that B is

solenoidal, dB = 0, amounts simply to

∂xB1 + ∂yB2 + ∂zB3 = 0, (4.7)
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valid for any coordinates. We need the Hodge star operator ?, which in three dimensions gives
an isomorphism between 1-forms and 2-forms involving the metric and volume form. Starting
with the basis 2-forms, we readily find

dy ∧ dz
?←→ g11ς dx+ g21ς dy, (4.8a)

dz ∧ dx
?←→ g12ς dx+ g22ς dy, (4.8b)

dx ∧ dy
?←→ g33ς dz. (4.8c)

We are now ready to discuss the operation of an αω-dynamo, which we build step by step.
First consider a flow in the z-direction only, of the form

u = u3(x, y)∂z. (4.9)

The induction equation (4.1) with η = 0 becomes

0 = (∂t + Lu)(B1 dy ∧ dz +B2 dz ∧ dx+B3 dx ∧ dy)

= [(∂t + u3∂z)B1] dy ∧ dz +B1 dy ∧ du3

+ [(∂t + u3∂z)B2] dz ∧ dx+B2 du3 ∧ dx

+ [(∂t + u3∂z)B3] dx ∧ dy, (4.10)

hence, in components,

(∂t + u3∂z)B1 = 0, (4.11a)

(∂t + u3∂z)B2 = 0, (4.11b)

(∂t + u3∂z)B3 = (B1∂x +B2∂y)u
3. (4.11c)

On the left-hand side we have transport of field components in the flow u, and on the right-
hand side of the final equation we observe the well-known ω-effect, namely the generation of
the azimuthal B3 component from transverse components B1 and B2. Given the simplicity of
the flow field, there is no term that regenerates B1 and B2 field.

We now include diffusion η > 0 and see what diffusive processes can convert B3(x, y) field
into B1, B2 components. Making use of (4.8), we calculate the right-hand side of (3.21) applied
only to this component as follows:

B =B3(x, y) dx ∧ dy, (4.12)

?B = g33ςB3 dz, (4.13)

d?B = (g33ςB3)y dy ∧ dz − (g33ςB3)x dz ∧ dx, (4.14)

δB = ?d?B = [g11ς(g33ςB3)y − g12ς(g33ςB3)x] dx

+ [g21ς(g33ςB3)y − g22ς(g33ςB3)x] dy, (4.15)

dδB = d?d?B =
[
[g21ς(g33ςB3)y − g22ς(g33ςB3)x]x

− [g11ς(g33ςB3)y − g12ς(g33ςB3)x]y
]

dx ∧ dy. (4.16)

Thus, the diffusion of B3(x, y) field in this geometry does not lead to B1, B2 components as
defined in (4.6).

If the B3 field depends additionally on z then there is the generation of B1, B2 components,
but a field depending on z is liable to enhanced diffusion because of the effect of u3(x, y)
in (4.9) in reducing transverse scales and enhancing dissipation. Instead, aiming for an αω-
dynamo in the traditional formulation, we specify a field B3(x, y) that is independent of z
and so robust to this process, and seek other mechanisms. In the Braginsky dynamo, the idea
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is to replace the flow in (4.9) by something more complicated, namely by adding some finite
amplitude z-dependent motion to the flow field.

Within the context of our geometric approach, we consider now the flow map φ for the
velocity field u to be written as

φ = ξ ◦ φ̄, (4.17)

where the background flow ū = ˙̄φ ◦ φ̄−1 again takes the simple form

ū = ū3(x, y)∂z, (4.18)

and ξ is a general, time-dependent, finite amplitude map; in particular ξ can have arbitrary z-
dependence. We can have in mind for example that the full flow u consists of finite-amplitude
waves on a simple background shear flow ū. Applying ξ∗ to the induction equation (4.1) gives
us the pulled back version

∂tB̃ + Lū B̃ = −η ξ∗(dδB). (4.19)

We use B̃ = ξ∗B rather than B̄ in an earlier section, since with diffusion η > 0 we no longer
have the Cauchy solution to relate the magnetic field to its initial condition. Equations (4.11)
are now relevant for the effect of the flow ū (4.18) on the field B̃ in the absence of dissipation,
η = 0, and we have the ω-effect acting on the B̃1 and B̃2 components to generate a B̃3

component; the effect of the distortions to the flow via ξ has completely vanished from the
left hand side. The effect though is present on the right-hand side as the Hodge star operator
involves the volume form and metric (as in (4.8)), and under the pull back we can write

ξ∗(dδB) = ξ∗(d?d?B) = d?̃d?̃B̃, (4.20)

where ?̃ applies the star using the pulled back metric g̃ and volume form µ̃. We recall how
the Hodge star operator works, here in this pulled-back version. We take a 2-form field B̃ and
generate the corresponding vector field b̃ via b̃yµ̃ = B̃. We then use the flat operator to give
us a 1-form field β̃ via β̃ = g̃(b̃, ·). This field is β̃ = ?̃B̃ and provided the pulled back metric
g̃ is sufficiently complicated, i.e. the fluctuations coded in ξ break enough symmetry, then we
would expect (4.20) in (4.19) to generate B̃1 and B̃2 components from B̃3(x, y) – the origin
of the α-effect.

To make further progress we write these Hodge star calculations in coordinates as:

b̃i ς̃−1 εijk = B̃jk, b̃i = ς̃ 1
2 ε

ijk B̃jk, β̃i = g̃ij b̃
j , β̃i = g̃ij ς̃

1
2 ε

jkl B̃kl, (4.21)

where εijk or εijk is the usual Levi–Civita alternating symbol, and we recall the discussion

below (4.6) about components written as B̃i versus B̃jk. Also we have for the action of d on
any 1-form λ,

(dλ)ij = 2∂[iλj] = ∂iλ− ∂jλ, (4.22)

where [·] is antisymmetrisation. With this we can write (for any magnetic flux 2-form B̃) the
components of the (pulled back) electromotive force1 (emf) Ẽ , defined by

Ẽ = −η ξ∗(δB) = −η ?̃d?̃B̃, (4.23)

as

Ẽi = −η g̃ij ς̃ εjkl ∂[k(g̃l]m ς̃
1
2 ε

mnp B̃np) (4.24)

= −η g̃ij ς̃ εjkl ∂k(g̃lm ς̃) 1
2 ε

mnp B̃np − η g̃ij ς̃ εjkl ς̃ g̃lm 1
2ε
mnp ∂kB̃np (4.25)

1This should perhaps be referred to as an effective emf as it emerges from the current as a component of the magnetic
diffusion term, with E = −η ?j, Ẽ = −η ?̃̃, and so includes all the usual diffusive effects, rather than being defined from
taking the average of u× b in the traditional formulation (see Soward and Roberts 2014).
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(in the last line the antisymmetrisation is dropped, being redundant because of the εjkl term).
So far this is exact, providing the diffusion operator for any distortion ξ of the coordinate
system taking the background flow ū and field B̃ to the actual, wavey fields, u and B. All the
complexity is of course hidden in the pull back ξ∗, giving the tilde fields, as it involves the
coordinate map and its derivatives.

We now consider as input a field B̃ = B̃3(x, y) dz, with B̃12 = −B̃21 = B̃3, etc. This
corresponds to taking m = 3 in the above equation (and n, p are 1 or 2). We are also
interested in sources of field for the transverse B̃1 and B̃2 components, which corresponds to
taking i = 3 in the above, as we shall see. Thus, our focus is on

Ẽ3 = −η (?̃d?̃ B̃)3 = −η g̃3j ς̃ ε
jkl ∂k(g̃l3 ς̃) B̃3 − η g̃3j ς̃ ε

jkl ς̃ g̃l3 ∂kB̃3 (4.26)

= −η g̃3j ς̃ ε
jkl ∂k(g̃l3 ς̃) B̃3. (4.27)

The second term on the right-hand side of (4.26) vanishes by symmetry to leave (4.27); the
remaining term in (4.27) vanishes if the metric g̃ takes the unperturbed form (4.4), as indeed
it must, but in the presence of some non-trivial distortion of the coordinate system ξ will
generally be non-zero. Suppose finally that we have a family of such waves, given by ξι, that
are translation invariant in z (while B̃3 is independent of z as above). Then if we average the
term over such waves we obtain a quantity in (4.26), (4.27) that is z-independent and takes
the form

Ẽ3 = −η 〈(?̃d?̃ B̃)3〉 = αB̃3, (4.28)

with

α(x, y) = −η 〈 g̃3j ς̃ ε
jkl ∂k(g̃l3 ς̃)〉. (4.29)

Since

d(Ẽ3 dz) = d(αB̃3 dz) = (αB̃3)y dy ∧ dz − (αB̃3)x dz ∧ dx, (4.30)

this α-effect term gives the required coupling from the B̃3 field to the B̃1 and B̃2 components
(and note that the other components i = 1, 2 of Ẽi = −η 〈?̃d?̃ B̃〉i would not, since the average
yields a quantity independent of z).

If we take all the magnetic field components to be independent of z we gain the governing
equations as

∂tB̃1 = (αB̃3)y − ηD1, (4.31)

∂tB̃2 = −(αB̃3)x − ηD2, (4.32)

∂tB̃3 = (B̃1∂x + B̃2∂y)u
3 − ηD3. (4.33)

where the terms Di are the remaining diffusion terms, as discussed further below. Several
remarks are in order in relating our results to the usual theory of kinematic dynamos. First
we have extracted the α-effect generating B̃1 and B̃2 components from the B̃3 component
of the magnetic flux: these α-effect terms are crucial because they give the feedback loop
that enables an αω-dynamo to function. We have not sought coupling terms that for example
generate a B̃3 component from a B̃1 or B̃2 component, but this is not really necessary as
we are assuming an ω-effect, the terms (B̃1∂x + B̃2∂y)u

3 in the B̃3 equation (4.33), to be
present already. Typically in an αω-dynamo the α-effect is relatively weak, giving components
B̃1, B̃2 � B̃3 and so any additional α type couplings would be a subdominant effect; if this
is not the case then one can develop the theory of α2- or α2ω-dynamos, in which case these
couplings need to be quantified.

The key point of this approach, as recognised by earlier authors going back to Soward
(1972), is that applying a pull back keeps the structure of the advection and stretching terms
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in (4.19) (those not involving η) and it is not necessary to average these: all the averaging is
done in the diffusion term. Expanding the diffusion term allows an α-effect to emerge that
is not present in the original equations and that parameterises how fluctuations superposed
on a background flow diffusively generate other magnetic flux components. Of course the
identification of an α-effect was a key contribution to dynamo theory, in this context in the
seminal papers of Braginsky (1964a,b) with parallel work by Parker, Steenbeck, Krause and
Rädler as reviewed in Moffatt and Dormy (2019). In short, introducing the above α-effect and
ignoring other effects of the fluctuating flow leads to the classic induction equation augmented
by the α term (4.29), as (4.31)–(4.33) or

∂tB̃ + Lū B̃ = d(αB̃3 dz)− η d?d?B̃. (4.34)

4.2. General case

Let us now return to the general setting of the induction equation

∂tB + LuB = −η dδB = dE , E = −η δB, (4.35)

with any metric g and flow u, where E is again the 1-form emf. We apply the earlier decom-
position φ = ξ ◦ φ̄ in (4.17) and apply a pull back ξ∗ to the equation so as to remove some
fluctuating component of the flow — as usual we have in mind waves on a simpler background
flow ū generated by φ̄. The resulting equation is as in (4.19):

∂tB̃ + Lū B̃ = dẼ . (4.36)

Here as above Ẽ is the pulled-back emf given by

Ẽ = ξ∗E = −η ξ∗(δB) = −η ξ∗[δ(ξ∗B̃)] = −η δ̃B̃, (4.37)

where we recall that B̃ = ξ∗B is the pulled back field and where the second equality here
defines the pullback δ̃ = ξ∗δξ∗ = ?̃d?̃ of the codifferential operator δ.

We now follow this by averaging over a family ξι of fluctuations to obtain

∂tB
L

+ LūB
L

= dEL
, EL

= −η 〈δ̃B̃〉 = −η δBL
, (4.38)

where

B
L

= 〈B̃〉 = 〈ξ∗B〉. (4.39)

There is no approximation up to this point. This expression for the mean emf EL
involves

both the magnetic field B̃ and the fluctuations through δ̃ and in an exact development the

product δB
L

generally cannot be broken up into the product of two averages. We therefore
write B̃ as the sum of its (Lagrangian) mean and fluctuating component, setting

B̃ = B
L

+ B̃`, B = ξ∗B
L

+B`, B̃` = ξ∗B`, (4.40)

and writing

EL
= −η δL

B
L − η δB`

L
. (4.41)

Of these two terms, the first, −η δL
B

L
, represents a transport effect: the effect of the operator

δ
L

on a mean field B
L
, as discussed informally in the previous section. Our aim is to obtain

expressions for this operator, which includes an α-effect and effective diffusivity. We will not

consider the second term, η δB`
L

as it would usually be handled separately in a dynamo
calculation and be neglected at leading order. As in any transport problem, one calculates
the coefficients or operators governing the transport of a mean field, and this is then fed into
a more global calculation which involves further assumptions, such as scale separation, or a
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parameter being large or small, in order to neglect some terms. In the case of the Braginsky
dynamo, a limit of large magnetic Reynolds number, here η � 1, results in the fluctuating

fields B̃` being negligible, even for large Lagrangian displacements encoded in ξ and so in δ
L
.

For these reasons we will neglect the second term in (4.41) and focus on the first, our

aim being to elucidate the structure of the averaged operator δ
L
. To avoid introducing new

quantities we will use
.
= to signal that the second term in (4.41) has been dropped, and write

EL .
= −η δL

B
L
. (4.42)

The operator δ
L

= 〈δ̃〉 involves derivatives and we will expand this shortly as

EL .
= −η δL

B
L

= αyB
L

+ γy∇BL
(4.43)

or, in coordinates,

EL
i
.
= αnpi B

L
np + γknpi ∇kB

L
np. (4.44)

Here the αnpi are the components of the α tensor, and the γknpi are the components of the

effective difusivity tensor. Our approach below will be to work first with the pull back Ẽ = δ̃B̃

and then ensemble average: at that point we can replace B̃ with B
L

and extract the α-effect
and γ tensor.

We now derive an explicit expression for Ẽ in a way that sidesteps much of the coordinate
computations of section 4.1. This relies on two observations. First, we use the relation between
the codifferential δ and the covariant derivative ∇ of differential forms (Frankel 1997, Theorem
14.15) which, when applied to the 2-form B, gives

(δB)i = gjk∇kBij . (4.45)

For completeness we establish this property in Appendix A. It makes it possible to rewrite Ẽ
in (4.37) as

Ẽi = −η g̃jk ∇̃kB̃ij , (4.46)

where we have introduced the pull back ∇̃ = ξ∗∇ of the covariant derivative ∇. This is defined
in a coordinate-free way by

∇̃uτ ≡ (ξ∗∇)uτ = ξ∗ [∇ξ∗u(ξ∗τ)] (4.47)

(Stein 2017). In other words on the right-hand side we push u and τ forwards, apply ∇ and
then pull the result back. This gives ∇̃ as the covariant derivative with respect to the pulled
back metric g̃. Rewriting (4.46) as

Ẽi = −η g̃jk (∇̃k −∇k)B̃ij − η g̃jk∇kB̃ij , (4.48)

we make the second observation: the difference of covariant derivatives, applied to any ten-
sor, just returns a tensor (no derivatives are involved) involving connection coefficients Cijk
(symmetric in j and k) with, for example,

(∇̃k −∇k)vj = Cjlk v
l, (∇̃k −∇k)λj = −C ljk λl, (4.49)

for a vector field v and a 1-form field σ (Stein 2017). Here the coefficients Cijk are the difference
between the Christoffel symbols for the two metrics g̃ and g,

Cijk = Γ̃ijk − Γijk. (4.50)

Using these and noting that

(∇̃k −∇k)B̃ij = −Cski B̃sj − Cskj B̃is, (4.51)
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we write

Ẽi = η g̃jk (Cski B̃sj + Cskj B̃is − g̃pk∇kB̃ip). (4.52)

Bearing in mind (4.44) and the discussion there, we now replace B̃ by the mean field B
L

and
ensemble average, meaning we only average over the metric g̃ and the connection coefficients
Cijk and not the field, to identify the tensors α and γ as

αnpi = η 〈C [n
ki g̃

p]k + g̃jk δ
[n
i C

p]
jk〉 (4.53)

γknpi = −η δ[n
i 〈g̃

p]k〉 (4.54)

(the [np] antisymmetrisation is optional as the np indices are to be contracted against the
2-form magnetic field). This gives an equation for the α tensor as derived from the tensor Cijk
giving the difference between the connection coefficients of the covariant derivative and the
pulled back covariant derivative. This fundamental geometric formulation of α is new as far
as we are aware.

We stress that formula (4.53) for the general tensor components αnpi is exact and covers
finite amplitude fluctuations. It includes compressible or incompressible flow, this being the
principal benefit of working with the magnetic flux 2-form B rather than the vector field b
here. In appendix B we confirm that (4.53) gives the correct α-effect for the case of a simple
helical wave. In appendix C we relate our approach to some well-established formulae in the
literature, for example given in Moffatt and Dormy (2019). We start by stating an alternative,
more classical expression for αnpi , given as (C.2), which holds with the same generality as
(4.53). We verify the equivalence of this expression with (4.53) and use it to recover the
Euclidean results of Roberts and Soward (2006a,b).

4.3. Perturbative calculation of the α-effect

All the above discussion is for finite amplitude maps ξ and requires no small parameter in
order to write down formulae for the α-effect and effective diffusivity. In a realistic application
the waves or fluctuations encoded in ξ would be developed in powers of a small parameter
ε � 1 as far as needed to obtain the leading non-zero α-effect, together with the limit of
small diffusivity, here η � 1, in the full dynamo calculation (Soward and Roberts 2014). We
can take two approaches to calculate α perturbatively for small amplitude ε � 1. The first
(§4.3.1) is to take the pulled-back codifferential δ̃ = ?̃d?̃, and to expand the pulled-back Hodge
star operator ?̃ = ξ∗? as a power series in the amplitude of the fluctuations, this involving
the Lie derivative of ? in a vector field q used to generate the fluctuation map ξ at any
time. The second approach (§4.3.2) works from (4.48), which employs a pulled-back covariant
derivative ∇̃ in the difference (∇̃k−∇k)B̃ij . This difference of derivatives, which relates to the
conection coefficient tensor Cijk, can likewise be expanded as a power series in the amplitude
of the fluctuating map ξ. These two approaches give different but equivalent formulae for the
α-effect corresponding to perturbative expansions of (C.2) and (4.53), respectively.

4.3.1. Perturbative calculation based on δ

Let us return to the more abstract setting, and write the emf as

EL .
= −η δL

B
L

= −η 〈δ̃〉BL
= −η 〈?̃d?̃〉BL

= αyB
L

+ γy∇BL
. (4.55)

Here the derivatives in 〈δ〉 and the 〈?d?〉 act on quantities to their right, including the mean

magnetic field B
L
. We can develop ξ(x) as a perturbation series, writing

ξi(x) = xi + εqi(x) + 1
2ε

2qj(x)∂jq
i(x) + · · · (4.56)
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(we suppress the dependence of all these quantities on time t). Here q is a vector field defined
on M (generally depending on time) which, when integrated over a fictitious time variable s
from ‘time’ s = 0 to s = ε (at any fixed time t), effects the map ξ (Soward and Roberts 2010,
Gilbert and Vanneste 2018), or formally ξ = exp(εq). For simplicity we take q to depend on
(x, t) but not on s: it is steady in fictitious time. At leading order a pull back is then given
for any tensor τ by

ξ∗τ = τ + εLq τ + 1
2ε

2LqLq τ + · · · , (4.57)

from the definition of the Lie derivative. Now suppose we expand (4.55) in powers of ε to
obtain

EL .
= −η 〈?̃d?̃〉BL

= −η
[
?d?+ ε〈Lq?〉d?+ ε ?d〈Lq?〉

+ 1
2ε

2〈LqLq?〉d?+ ε2〈Lq? dLq?〉+ 1
2ε

2 ?d〈LqLq?〉+ · · ·
]
B

L
, (4.58)

where we can think of the star operator as simply the tensor with components ?kli = 1
2gij µ

jkl

giving the map from 2-forms to 1-forms in this context; see (4.21).
There is a proliferation of terms in (4.58); however in typical applications many will be zero

by virtue of the symmetry of the underlying system. For example in our sketch αω-dynamo we
restricted to a metric with a simple structure (4.4), independent of the third coordinate, and
extracted an α-effect taking B3 field to E3, needed to close the dynamo loop. In a ‘working’
dynamo model specific choices would need to be made, and if the fluctuations encoded in
q lead to averages such as 〈Lq?〉 and 〈LqLq?〉 retaining a simple structure then the terms
involving these averages above may well be zero, or not contribute to the components of the
α tensor needed in that dynamo. For example in the informal approach of section 4.1, the key
term is (4.29) and involves an average with the exterior derivative d sandwiched between two
quantities. Bearing in mind that this would need to be checked on a case-by-case basis, we
will calculate just the key term involving d similarly sandwiched inside the average, writing

EL .
= −η ε2〈Lq? dLq?〉B

L
. (4.59)

To calculate Lq? we follow the development in Trautman (1984). Define the tensor h by

Lq g = hg or (Lqg)ij = h ki gkj . (4.60)

Then we have

Lq µijk = −1
2(trh)µijk, trh = h ii , (4.61)

and bearing in mind that ?kli = 1
2gij µ

jkl, it follows that

Lq ? = (h− 1
2 trh) ? or (Lq ?)jki = (h li − 1

2δ
l
i trh) 1

2glm µ
mjk. (4.62)

From (4.60), the tensor h is plainly linked to the deformation tensor σ, that is the rate of
change (Lie derivative) of the metric in the flow q, with

σ ≡ hg = Lq g = ∇q[+(∇q[)T or σij ≡ h ki gkj = (Lq g)ij = ∇iqj +∇jqi. (4.63)

We also need the fact that in the definition of d acting on a 1-form in (4.22) partial deriva-
tives may be replaced by covariant derivatives (given that there is no torsion for a covariant
derivative induced by a metric), and so we have for any 1-form λ

(dλ)ij = 2∇[iλj] = ∇iλj −∇jλi. (4.64)
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With these definitions, the α tensor can be written in a variety of ways,

αnpi = −η ε2 grj µ
jkl gsm

1
2 µ

mnp〈(h ri − 1
2δ
r
i trh)∇k(h sl − 1

2δ
s
l trh)〉 (4.65)

= −η ε2 µjkl 1
2 µ

mnp〈(σij − 1
2 gij trσ)∇k(σlm − 1

2 glm trσ)〉 (4.66)

= −η ε2 µjkl 1
2 µ

mnp〈(∇iqj +∇jqi − gij div q)∇k(∇lqm +∇mql − glm div q)〉, (4.67)

with trσ = σij g
ij = 2 div q = 2∇iqi. Thus the α-effect is expressed in a general form either

in terms of the deformation tensor σ or the vector field q (and the corresponding 1-form q[)
generating the fluctuations and so the family of maps ξ. Note that if all maps are volume-
preserving and flows incompressible we have trσ = 0 and then we can write α compactly
as

αnpi = −η ε2 µjkl 1
2 µ

mnp〈σij ∇k σlm〉, (trσ = 0). (4.68)

There do not seem to be many general simplifications beyond this point, except to note that
the term µjkl∇k∇lqm in (4.67) involves the Riemann tensor and so vanishes if M is flat.

4.3.2. Perturbative calculation based on ∇

An alternative approach is to apply techniques in Stein (2017) to write down forms of the
α tensor based on (4.48), namely,

αnpi B
L
np = −η 〈g̃jk(∇̃k −∇k)〉B

L
ij . (4.69)

Since the averaged field B
L

acts here as just a test field on which to do calculations, we replace
it in this section only by B, to lighten notation:

αnpi Bnp = −η 〈g̃jk(∇̃k −∇k)〉Bij . (4.70)

We introduce a series expansion for the α tensor,

αnpi = εαnp(1)i + ε2αnp(2)i + · · · , (4.71)

with

αnp(m)iBnp = − η

m!

dm

dsm

∣∣∣∣
s=0

〈
(ξ∗gjk) ξ∗(∇kξ∗Bij)− (ξ∗gjk)∇kBij

〉
. (4.72)

Here, as above we suppose that the map ξ is effected by a vector field q over an interval of
fictitious time 0 ≤ s ≤ ε; q generally depends on time but not on s. We have for any tensor τ ,

Lq ξ∗τ =
d

ds
ξ∗τ, L−q ξ∗τ =

d

ds
ξ∗τ. (4.73)

Using these with (4.72) for m = 1 and m = 2, and averaging with 〈·〉 gives after some algebra,

αnp(1)iBnp = −η gjk [〈Lq〉,∇k]Bij , (4.74)

αnp(2)iBnp = −η 〈(Lq gjk) [Lq,∇k]〉Bij − η 1
2g
jk〈[Lq, [Lq,∇k]]〉Bij , (4.75)

where the square brackets denote a commutator, for example [Lq,∇k]Bij = Lq∇kBij −
∇kLqBij . All the terms in (4.58) are included here though, as mentioned above, in typical
applications one would have αnp(1)i = 0 and many terms vanishing from αnp(2)i.

4.4. Summary

We summarise the key results of section 4: we recall that these are stated using the magnetic
field as a 2-form, and that the tilde annotation denotes any pulled-back quantity, that is



October 16, 2020 Geophysical and Astrophysical Fluid Dynamics ”Attached file- GGAF-2019-0045-Gilbert-v2”

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 25

transported from the flow with fluctuations or waves, to the background flow. The first, exact
result is (4.48), (4.53), which express the α-effect

αnpi B
L
np = −η 〈g̃jk (∇̃k −∇k)〉B

L
ij = η 〈g̃jk Cski〉B

L
sj + η 〈g̃jk Cskj〉B

L
is, (4.76)

in terms of the difference between the covariant derivatives ∇̃ and ∇, or in terms of the
connection coefficients Cijk, the difference in the connections between the metric g and the
pulled-back metric g̃. This formula can be applied in space of any number of dimensions; an
alternative expression for αnpi , more closely related to earlier literature but restricted to three
dimensions, is given in (C.2).

We give a variety of approximate formulae for the α tensor in sections 4.3.1 and 4.3.2 using
a small-amplitude expansion in the magnitude ε of the fluctuations. In particular (4.66),

αnpi B
L
np = −η ε2 µjkl 1

2 µ
mnp〈(σij − 1

2 gij trσ)∇k(σlm − 1
2 glm trσ)〉BL

np, (4.77)

expresses the α-effect in terms of the deformation tensor σ = Lq g, that is the Lie derivative
of the metric in the flow q generating the fluctuations.

Note that we have preferred to work with the closed magnetic 2-form B with dB = 0
rather than the solenoidal magnetic vector field b with div b = 0, noting that byµ = B and
d(byµ) = µ div b. For the general case of compressible flow dB = 0 translates into dB̃ = 0 and

so a solenoidal mean field dB
L

= 0. However in terms of b we only obtain that d(byµ
L
) = 0

and so generally div b
L 6= 0, in other words d(b

L
yµ) 6= 0: the Lagrangian average of b is not

solenoidal. This could be cured by recognising that b transforms as a tensor of weight −1,
but that is equivalent to using B in any case. If all flows and maps are volume preserving,

µ = µ̃ = µL, this issue evaporates, div b
L

= 0 and in the calculations above we can easily

express the α-effect in terms of the mean magnetic vector field b
L

by replacing

1
2 µ

mnpB
L
np = (b

L
)m, (4.78)

in equations such as (4.77) above.

5. Concluding remarks

In this paper, we have looked at MHD from a geometric perspective, both to derive the
governing equations and their properties, and to revisit some basic applications, to Alfvén
waves on a uniform field and to the analysis of the Braginsky dynamo. There are many
attractions of a geometric approach. In concrete terms, results are valid for any coordinate
system, and so no changes need to be made when going from, say, Cartesian coordinates to
cylindrical polar coordinates, whereas otherwise this requires special consideration (Soward
and Roberts 2014). Furthermore results remain correct even when one might find it helpful
to adopt a non-orthogonal coordinate system, for example to use a buoyancy or pressure
coordinate instead of a vertical coordinate in a geophysical or astrophysical setting. This
flexibility is convenient even when working in R3; in fact there is no difference in the theoretical
development up to the point where second derivatives come in and curvature plays a role
through the Riemann tensor, for example in a diffusion operator (Gilbert, Riedinger and
Thuburn 2014). For theoretical developments, the machinery of pull backs and push forwards
allows one to apply mappings to equations while preserving their structure as much as possible.
Essentially, a neighbourhood of any point in the interior of M is much like any other point
from the viewpoint of the basic operations L, d, y of differential geometry: we can take a
calculation performed at one point and move it to another, provided we take the fields and
all the necessary extra structure, that is the metric g and volume form µ, with us. This fact
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makes it possible to pin down why certain finite-amplitude approximations work, even if in
real applications perturbation theory may well be needed for concrete calculations.

There are some disadvantages; for example we have defined B, b and β, which are all the
magnetic field in one version or another! To move between these we use the metric and/or
volume form, and this allows the careful tracking of how quantities transform under mappings,
pull backs or push forwards, applied to equations written in the form (2.8) and (2.41). Note
that using the ‘general relativity’ notation (2.48), (2.49), while it introduces fewer quantities,
hides the underlying differential geometric structure, and applying a pull back risks becoming
entangled in transformations of Christoffel symbols, something generally worth avoiding.

Concerning Alfvén waves, we addressed only the most fundamental model, and we plan
to look into compressible waves, and waves on non-uniform fields, to see how these can be
parameterised within the present framework, in parallel with similar developments in the
literature of geophysical fluid dynamics (see, for example, Bühler 2009). One important point
to note, as discussed in more detail in Gilbert and Vanneste (2018), and which emerges in
other studies such as Soward and Roberts (2010), is that given a family of flows with waves,
there is no imperative need to define what the ‘mean flow’ is at the outset. Although we use
a bar (e.g. ū, b̄), we refer to such fields as background fields. In the decomposition (3.7) which
underlies all the work using pull backs, or equivalently hybrid Euler–Lagrangian coordinates
or GLM-type theories, the choice of the mean map φ̄ and flow ū is open, free to choose
depending on applications. In our development, no assumption has been made along the lines
that some sort of average of the fluctuations is zero, and in fact such assumptions are not easy
to deploy in a general setting. Several possible choices of a mean flow can be made, generally,
and correspond to different divisions between mean flow and fluctuations, typically important
at quadratic order in fluctuation amplitude. The issues are discussed in Soward and Roberts
(2010) and Gilbert and Vanneste (2018), with references to related literature.

For the Braginsky dynamo, we gave a sketch of the classic dynamo set-up in a general geom-
etry. Here there is a background flow giving an ω-effect, converting transverse field components
B1, B2 to azimuthal field B3, but there is no feedback from the background geometry or flow
that can regenerate the transverse field, even with diffusion η > 0. In short, we restricted
attention to a limited, but still wide, family of possible metrics g(x, y) and background flows
ū(x, y). We then introduced some waves or fluctuations, giving z-dependence by means of
a Lagrangian map ξ and showed how the pull back of the equations under ξ preserves the
structure of the ideal terms, while the diffusion term, present for η > 0, can be understood in
terms of the pull back of the codifferential operator δ. Averaging over a family of such waves,
we then obtained the α-effect, written in various forms in (4.53), (4.65)–(4.68) and (4.74),
(4.75), (C.2), that can close the dynamo loop and lead to a sustained or growing field.

We stress that our study is a sketch, aiming at exposing the geometry behind the origin
and definition of the α-tensor. Nonetheless the approach using the compact notation and
identities of differential geometry allows us to interpret the α-effect in terms of pull backs
and connections, derive established formulae and give new expressions, all valid for arbitrary
coordinate systems. We note though that writing down formulae for the α tensor is just
one element of the bigger picture, which requires the scaling of field component magnitudes
in terms of the magnetic Reynolds number, setting up a suitable eigenvalue problem, and
keeping track of the order of the errors involved. However this is already well studied in the
literature and we refer the reader to Soward and Roberts (2014) for detailed discussion.
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Appendix A: Derivation of (4.45)

We establish (4.45) in three dimensions, using the coordinate expression

(?B)i = 1
2gijµ

jklBkl (A.1)
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for the Hodge ? operator applied to a 2-form B (see (4.21)). Noting (4.64), we have

(δB)i = (?d?B)i = gij µ
jkl∇k(glm 1

2 µ
mnpBnp), (A.2)

= gij µ
jkl glm

1
2 µ

mnp∇kBnp (A.3)

= gpk∇kBip, (A.4)

using that

µjkl glm µ
mnp = gjn gpk − gjp gnk = 2 gj[n gp]k, (A.5)

to obtain the last line. This gives δB as minus the divergence of the 2-form B as defined by
Frankel (1997).

Appendix B: The α-effect from helical waves

As a basic example of the calculation of α in sections 4.1 and 4.2, and to link with well-
established theory, suppose we take a situation similar to that in section 3.3, with g = dx2 +
dy2 + dz2, and some waves given by Lagrangian displacements of the form

ξ(x, y, z, t) = (x+ F (z − ct), y +H(z − ct), z). (B.1)

Using (3.40), the pulled back metric and its inverse are

g̃ij =

 1 0 F ′

0 1 H ′

F ′ H ′ 1 + F ′2 +H ′2

 , g̃ij =

 1 + F ′2 H ′F ′ −F ′
H ′F ′ 1 +H ′2 −H ′
−F ′ −H ′ 1

 , (B.2)

and have determinant 1 so that ς̃ = 1 also (the map ξ is volume-preserving). Here we find
from (4.29) that

α = η 〈g̃31∂z g̃23 − g̃32∂z g̃13〉 = η 〈F ′H ′′ −H ′F ′′〉. (B.3)

Thus for example if we take a case with no background flow ū = 0 and a wave with

u = w = U sin(k(z − ct))∂x + U cos(k(z − ct))∂y, (B.4)

then we have the fluctuating map given by

F (s) = Uω−1 cos ks, H(s) = −Uω−1 sin ks, c ≡ ω/k, (B.5)

and

α = −ηU2k3ω−2. (B.6)

Note that the (kinetic) helicity of the wave is given by the integral of the helicity form defined
by

hK = ν ∧ dν = −k−2ω2 〈F ′H ′′ −H ′F ′′〉 dx ∧ dy ∧ dz = U2k dx ∧ dy ∧ dz, (B.7)

and so here positive helicity gives rise to a negative cofficient, α = −ηk2ω−2hK; this is in
keeping with the traditional sign convention in the literature. In this example there is no
background flow and so the displacements given by ξ are easily related to the flow field, with
u = w. If there is a background flow then this needs to be taken into account via (3.11).

As a check it is interesting to calculate the α tensor components from (4.53). The Christoffel
symbols Γijk for g are all zero and so we compute the Γ̃ijk for g̃. We have then using standard
notation

Γ̃133 = F ′′, Γ̃233 = H ′′, Γ̃333 = F ′F ′′ +H ′H ′′, (B.8)

C1
33 = Γ̃1

33 = F ′′, C2
33 = Γ̃2

33 = H ′′, (B.9)



October 16, 2020 Geophysical and Astrophysical Fluid Dynamics ”Attached file- GGAF-2019-0045-Gilbert-v2”

30 A.D. GILBERT AND J. VANNESTE

other terms being zero. This gives the only non-zero terms for αjki as α12
3 = −α21

3 = 1
2α with

α given in (B.6). Referring to the calculations of section 4.3.1, in this example εq1 = εq1 = F ,
εq2 = εq2 = H and there is agreement between the formulae for the α tensor here and in that
section.

Appendix C: Explicit calculations of the α-effect

In this appendix we relate our calculations of the α-effect to formulae found in the literature.
To do so, we first give an expression for the α tensor alternative to (4.53) and closer to those
found elsewhere. This formula is obtained from (4.25) rewritten as

Ẽi = −η g̃ij µ̃jkl∇k(g̃lm 1
2 µ̃

mnp B̃np), (C.1)

making the effect of the pull back on the metric and volume form explicit. Here we have used
the pulled back volume form µ̃ = ς̃−1dx1∧dx2∧dx3 with covariant components µ̃ijk = ς̃−1εijk
and the corresponding contravariant tensor µ̃ijk = ς̃εijk, together with (4.64). Comparing
(C.1) with (4.52) gives the alternative to (4.53), (4.54),

αnpi = −η 〈12 g̃ij µ̃
jkl∇k(g̃lm µ̃mnp)〉, (C.2)

γknpi = −η 〈12 g̃ij µ̃
jkl g̃lm µ̃

mnp〉, (C.3)

It is instructive to show that (C.2), (C.3) are equivalent to (4.53), (4.54) in a direct manner.
For γ, this is immediate using (A.5). For α, we compute

−g̃ij µ̃jkl∇k(g̃lm µ̃mnp) = g̃ij µ̃
jkl (∇̃k −∇k)(g̃lm µ̃mnp) (C.4)

= g̃ij µ̃
jkl
(
Cnks g̃lmµ̃

msp + Cpks g̃lmµ̃
mns − Cskl g̃smµ̃mnp

)
, (C.5)

using that ∇̃g̃ = 0 and ∇̃µ̃ = 0 and (4.49). The last term vanishes by (anti)symmetry. From
(A.5) we then find

−g̃ij µ̃jkl∇k(g̃lm µ̃mnp) = g̃kpCnki − g̃ksCnksδ
p
i + g̃ksCpksδ

n
i − C

p
kig̃

kn (C.6)

= 2g̃k[pC
n]
ki + 2g̃ksC

[p
ksδ

n]
i , (C.7)

and using this in (C.2) recovers (4.53), as expected.
We now turn to concrete calculations, recalling that in each realisation of one of our flows,

the fluctuating map is x→ ξ(x), so if the point with coordinates xi marks a Lagrangian parcel
in the background flow at some time, ξi(x) are its coordinates in the full flow. The pull back
from ξ(x) to x for vectors and 1-forms is simply the Cauchy solution, namely

ṽ(x)i =
∂xi

∂ξj
v(ξ)j , σ̃(x)i =

∂ξj

∂xi
σ(ξ)j . (C.8)

We also need the pull back of the metric, which is a twice covariant tensor g = gij dxi ⊗ dxj .
This is given by

g̃(x)ij = [(ξ∗g)(x)]ij =
∂ξk

∂xi
∂ξl

∂xj
gkl(ξ). (C.9)

Correspondingly, ς̃ defined by ς̃(x)−2 = det g̃(x) is given by

ς̃(x)−1 = ς−1(ξ) det

(
∂ξi

∂xj

)
, (C.10)

Substituting these into (C.2) and using µ̃ijk = ς̃ εijk gives an explicit formula for the α tensor
in terms of derivatives of the map ξ. Note that we are not assuming incompressible flow here;



October 16, 2020 Geophysical and Astrophysical Fluid Dynamics ”Attached file- GGAF-2019-0045-Gilbert-v2”

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 31

if we do then ς̃ = ς and (C.10) becomes the condition that the map ξ must satisfy to be
volume preserving (assuming the actual flow and background flow are incompressible also).

To relate this to formulae in the literature, suppose that we are in Euclidean space with the
underlying metric g = dx2 + dy2 + dz2 and so µ = dx ∧ dy ∧ dz, ς = 1, and allow the maps ξ
to be compressible. Then the α-effect formula (C.2) becomes

αnpi = −η
〈
∂ξq

∂xi
∂ξq

∂xj
ς̃ εjkl

∂

∂xk

(
∂ξr

∂xl
∂ξr

∂xm
ς̃

)
1
2 ε

mnp

〉
, (C.11)

with

ς̃(x) = det

(
∂xi

∂ξj

)
. (C.12)

In (C.11) the term ∂ξr/∂xl can come out of the differentation with respect to xk and from
(C.12) it follows that

εjkl
∂ξq

∂xj
∂ξr

∂xl
= ς̃−1 εqsr

∂xk

∂ξs
, (C.13)

so that (C.11) becomes

αnpi = −η
〈
∂ξq

∂xi
εqsr

∂

∂ξs

(
∂ξr

∂xm
ς̃ 1

2 ε
mnp

)〉
. (C.14)

Both equations (C.11) and (C.14) are given in Roberts and Soward (2006a,b) (with ς̃ → J −1,
ξi → x∗i , x

i → xi, to map our notation to theirs).
While the formulae (C.11) and (C.14) may be derived without reference to the framework

we present, by following standard rules of multivariate calculus, they simply correspond to
applying pull backs and push forwards at different points of the same calculation. We now
illustrate this, noting that notation here becomes awkward. Let us temporarily write g as an
operator to give gb = b[, and µ as an operator with µB = b for byµ = B, and likewise for g̃
and µ̃. Then we can expand the diffusion operator −∇2 as

d?d?B = dgµdgµB. (C.15)

We set B̃ = ξ∗B, B = ξ∗B̃, and apply ξ∗ to (C.15); The term we then have in our pulled back
induction equation can be written as

ξ∗(dgµdgµB) = ξ∗(dgµdgµ ξ∗B̃) (C.16)

= dg̃µ̃dg̃µ̃B̃, (C.17)

corresponding to the structure (C.11) for the α-effect, or as

ξ∗(dgµdgµB) = dξ∗[gµdg ξ∗(µ̃B̃)], (C.18)

in line with (C.14). There is flexibility to undertake operations at different points onM, and
this is clarified by the language of pull backs and push forwards, albeit that it is not easy to
write out cleanly in this calculation. On the other hand the differential geometric setting does
avoid explicit repeated use of the chain rule and properties of determinants; these are built
in.


