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Abstract

Numerical solutions of the Enskog-Vlasov (EV) equation are used to determine the velocity dis-

tribution function of atoms spontaneously evaporating into near-vacuum conditions. It is found

that an accurate approximation is provided by a half-Maxwellian including a drift velocity com-

bined with different characteristic temperatures for the velocity components normal and parallel to

the liquid-vapor interface. The drift velocity and the temperature anisotropy reduce as the liquid

bulk temperature decreases but persist for relatively low temperatures corresponding to a vapor be-

haviour which is only slightly non-ideal. Deviations from the undrifted isotropic half-Maxwellian are

shown to be consequences of collisions in the liquid-vapor interface which preferentially backscatter

atoms with lower normal-velocity component.

Keywords: Enskog-Vlasov equation; Evaporation into vacuum; Kinetic boundary conditions; Drifted

anisotropic half-Maxwellian.
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I. INTRODUCTION

Evaporation and condensation are ubiquitous processes which play crucial roles in dif-

ferent areas, from physics and chemistry to biology. The fundamental understanding of the

heat and mass transfer across the liquid-vapor interface is not only of theoretical interest

but also of considerable relevance to a wide range of applications. Examples include the

distillation process in high vacuum conditions [1, 2], the heating and evaporation of fuel

droplets [3], the thermal management of modern electronic devices [4], and the flash boiling

in gasoline direct-injection sprays [5].

The modelling of fluid flows with phase change is challenging since multiple characteristic

time and length scales are involved. The liquid and vapor bulk phases are well described at

the macroscopic scale by hydrodynamic equations, while the separating region has a more

complex structure, with sharp gradients in flow variables which manifest as jumps at the

macroscopic scale. In non-equilibrium conditions, the region between the two bulk phases

comprises two sub-regions, namely the liquid-vapor interface, whose characteristic length

is of the order of the molecular diameter [6], and the tipically larger Knudsen layer that

extends a few mean free paths into the vapor phase [7].

The standard kinetic theory studies on evaporation and condensation processes focus on

the vapor dynamics in the Knudsen layer next to the liquid phase. The liquid-vapor interface

is simplified to a structureless surface bounding the vapor and the molecular exchanges

with the liquid phase are dealt with using a phenomenological boundary condition. More

specifically, the molecular flux coming out of the liquid-vapor surface is assumed to have

two contributions: atoms spontaneously leaving the liquid bulk (evaporated atoms) and

atoms which are backscattered into the vapor after impinging on the liquid-vapor interface

(reflected atoms). The distribution function of evaporating atoms is usually described by

a half-Maxwellian while the Maxwell’s scattering kernel is the most widely used choice to

describe the molecular reflection from the liquid phase. Two phenomenological coefficients

are also introduced to weight the relative importance of the evaporation and condensation

fluxes.

In spite of the increasing number of experimental, theoretical and numerical studies,

the full understanding of evaporation processes is still lacking and numerous issues remain

unresolved. As an example, while the evaporation and condensation coefficients are generally
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accepted to be lower than unity, experimental measurements for water have provided values

that span three orders of magnitude [8]. Furthermore, a temperature discontinuity has

been experimentally found across the water liquid-vapor interface that is much larger in

magnitude and in the opposite direction to that predicted by classical kinetic theory or

nonequilibrium thermodynamics [9].

A lot of effort has been thus expended in assessing the physical appropriateness of kinetic

boundary conditions at the liquid-vapor interface mostly through molecular dynamics (MD)

simulations and mean-field kinetic approximations of simple liquids. These studies can be

roughly grouped into two categories depending on whether the liquid evaporation occurs into

vapor [10–17] or into near vacuum conditions [18–22]. In this latter process the backscattered

vapor component is virtually absent and, therefore, the distribution function of evaporated

atoms is evaluated without any ambiguity.

Accurate MD simulations of liquid argon evaporating into vapor have shown that atoms

leaving the liquid-vapor interface are distributed with excellent approximation according

to a half-Maxwellian while, separately, evaporated and reflected atoms are not [12, 13].

More specifically, the velocity distribution function of evaporated atoms shows a fatter tail

compared to a Maxwellian while the one of reflected atoms has a reduced tail and larger

density in the low velocity region. However, deviations are described differently, namely

through the dependency of the condensation/evaporation coefficient on the normal-velocity

component of atoms impinging on the liquid surface [12] or by a drifted half-Maxwellian [13].

Using MD simulations, deviations from a half-Maxwellian have also been revealed in the

case of n-dodecane, i.e. more complex molecules, but the distribution function of evaporated

atoms is fitted by an anisotropic half-Maxwellian (also referred to as bi-Maxwellian) with

the temperature normal to the liquid-vapor interface larger than the parallel one [14, 15].

The hypothesis that an anisotropic half-Maxwellian provides a better approximation of the

distribution function close to the evaporating surface was conjectured for the first time in

Ref. [10] and the theoretical analysis has been more recently extended to include the case

of an evaporation coefficient less than one [11].

According to review above, most of the MD studies of liquids evaporating into vapor agree

that the distribution function of evaporated atoms deviates from the half-Maxwellian, albeit

there is no consensus on the fitting function. The simulation results of liquids evaporating

into near vacuum conditions are even less conclusive in that deviations have not always been
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found.

In some MD studies, it has been shown that, in the limit of a low-density vapor, evapo-

rated argon atoms are distributed according to a half-Maxwellian [18, 23]. This conclusion

has been explained by the fact that atoms leave the condensed phase due to collisions from

the edge of the liquid-vapor interface where the binding energy is negligible, whence the

half-Maxwellian shape.

In other MD studies, the velocity distribution function of spontaneously evaporating

atoms has been determined to be nearly a half-Maxwellian at low temperatures, but a tail

fatter than the one of a half-Maxwellian has been found normal to the liquid-vapor interface

at high temperatures [19, 22].

The validity of standard kinetic boundary conditions at the liquid-vapor interface has

also been assessed based on the Enskog-Vlasov (EV) equation. This kinetic equation has

the capability of describing both the liquid and vapor phases, including the interface re-

gion and has many attractive features. Compare to MD simulations, its numerical solution

requires less computational effort and, unlike macroscopic approaches, such as diffuse inter-

face models and sharp interface methods, it can capture the nonequilibrium effects in the

liquid-vapor interface and in the Knudsen layer.

The EV equation has been used to study the evaporation into near vacuum of a thin

liquid film [20], the steady evaporation/condensation flow between two planar liquid films

kept at different temperatures [16], and, more recently, the evaporation of multi-component

substances into vapor and vacuum [17, 21].

Remarkably, in spite of the simplified treatment of pair correlations in the dense phase, the

results obtained by the EV equation closely resemble the ones provide by MD simulations.

More specifically, it is generally concluded that evaporated atoms are distributed according

to a half-Maxwellian with liquid bulk temperature even though a slight anisotropy between

the velocity components normal and parallel to the liquid-vapor interface has been found at

high evaporation temperatures.

The foregoing literature review shows that uncertainties remain on the statistical features

of atoms spontaneously emitted from the liquid phase. Most of the studies observed that

evaporated atoms are not distributed according to a half-Maxwellian but none has systemat-

ically evaluated the deviations as a function of the evaporation temperature. Furthermore,

the physical mechanism which leads the velocity distribution function of evaporated atoms

4



to differ from a half-Maxwellian has not been convincingly explained.

The aim of the present work is thus twofold. First, to accurately determine the distribu-

tion function of atoms evaporating into near-vacuum conditions by numerically solving the

EV equation. Compared to MD simulations, the numerical solution of this kinetic equa-

tion requires less computational effort and, therefore, permits one to get results with the

required level of accuracy for the analysis undertaken in this study [24]. Second, to provide

a convincing explanation of the deviations from the half-Maxwellian.

The rest of the paper is organised as follows. Section II outlines the mathematical formu-

lation of the evaporation of a monatomic single-component liquid into near-vacuum condition

based on the EV equation and outlines the particle method of solution. Section III contains

a brief description of the computational setup and presents the main results of the paper.

In particular, it is shown that the reduced distribution function of spontaneously evapo-

rated atoms are well approximated by a drifted anisotropic half-Maxwellian. Furthermore,

it is shown, by numerical evidence and a simple mathematical model, that deviations from

an isotropic half-Maxwellian are due to the atoms’ collisions in the liquid-vapor interface.

Section IV summarises and comments on the main findings of the paper.

II. MEAN-FIELD KINETIC THEORY APPROACH

A. The Enskog-Vlasov equation

Let us consider a fluid composed of spherical and identical atoms of mass m and diameter

a interacting through the Sutherland potential given by a superposition of a hard sphere

potential and an attractive soft potential tail:

φ(ρ) =

+∞ , ρ < a,

−φa
(ρ
a

)−γ
, ρ ≥ a,

(1)

where ρ = ||r1 − r|| is the distance between the atoms at position r1 and r while the two

positive constants φa and γ define the depth of the potential well and the range of the

soft interaction, respectively. Karkheck et al [25] derived the exact evolution equation for

the one-particle distribution function of this system of atoms, f(r,v, t), but this equation

is of little use since it involves the two-particle distribution function. In order to obtain
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a closed equation, two simplifying assumptions are introduced in the particle dynamics,

namely long-range particle correlations are neglected while short-range particle correlations

are approximated by following the Enskog theory originally derived for dense gases. By

adopting these assumptions, the following closed equation for the evolution of f(r,v, t) is

obtained:
∂f

∂t
+ v · ∇rf +

F [n]

m
· ∇vf = CE[f ], (2a)

where square brackets denote functional dependence. In Eq. (2a), F(r, t) is the self-

consistent force field generated by the soft attractive tail which reads:

F [n] =

∫
||r1−r||>a

dφa(ρ)

dρ

r1 − r

||r1 − r||
n(r1)dr1, (2b)

and the hard-sphere collision integral CE(f, f) is given by:

CE[f ] = a2

∫
(vr · k̂)+dv1d

2k̂
{
χ
[
n
(
r +

a

2
k̂, t
)]
f(r + ak̂,v∗1, t)f(r,v∗, t)−

χ
[
n
(
r − a

2
k̂, t
)]
f(r − ak̂,v1, t)f(r,v, t)

}
, (2c)

where (·)+ indicates that the surface integral is restricted to the half-sphere for which

vr · k̂ > 0 and χ[n] is the contact value of the pair correlation function in a hard-sphere

fluid in equilibrium with number density n. In the Standard Enskog Theory (SET), χ is

approximated by using the value of the pair correlation function in a fluid in uniform equi-

librium with the value of the density at the contact point of the two colliding atoms. An

approximate, but accurate expression for χSET can be obtained from the equation of state of

the hard-sphere fluid proposed by Carnahan and Starling [26], as:

χSET(n) =
1

nb

(
phs

nkBT
− 1

)
=

1

2

2− η
(1− η)3

, b =
2πa3

3
, η =

πa3n

6
. (3)

where phs is the pressure of a system of hard spheres and kB is the Boltzmann constant.

In the present work, following the Fischer-Methfessel approach [27], the actual value of the

density at the contact point is replaced with the value of the density field averaged over a

spherical volume of radius a, namely:

χ[n](r, r − ak̂) = χSET

(
n

(
r − a k̂

2

))
, (4a)

where

n(r, t) =
3

4πa3

∫
R3

n(r∗, t)w(r, r∗) dr∗, w(r, r∗) =

 1, ‖r∗ − r‖ < a,

0, ‖r∗ − r‖ > a.
(4b)
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The kinetic equation (2) is usually referred to as the Enskog-Vlasov (EV) equation [20, 25,

28–30]. This kinetic equation has been applied to investigate a wide range of two-phase

flows, including condensation/evaporation processes [16, 20, 31], liquid menisci in nano-

channels [32], and its mathematical properties have been extensively studied in connection

with the liquid-vapor transition [33, 34].

B. Particle method of solution

In this work, the EV equation is solved numerically by an extension of the original Direct

Simulation Monte-Carlo (DSMC) scheme to dense fluids [35]. A thorough description of the

numerical scheme and the analysis of its computational complexity is given in Ref. [31].

For EV simulations, the main framework of DSMC scheme used to solve the Boltzmann

equation is preserved, with modifications occurring in the collision algorithm due to the

nonlocal structure of the Enskog collision operator. The distribution function is represented

by N computational particles:

f(r,v, t) =
N∑
i=1

δ(r − ri(t))δ(v − vi(t)), (5)

where ri and vi are the position and the velocity of the ith particle at time t, respectively.

The distribution function is updated by a fractional-step method based on the time-

splitting of the evolution operator in two sub-steps, namely free streaming and collision. In

the first stage, the collisions between particles are neglected and the distribution function is

advanced from t to t+ ∆t by solving the equation:

∂f

∂t
+ v · ∇rf +

F [n]

m
· ∇vf = 0, (6)

which translates into updating the positions and velocities of the computational particles

according to:

ri(t+ ∆t) = ri(t) + vi∆t+
F [n(t)]

m

(∆t)2

2
, (7a)

vi(t+ ∆t) = vi(t) +
F [n(t)]

m
∆t. (7b)

In the second stage, the short range hard-sphere interactions are considered and the updating

rule is given by:

f(r,v, t+ ∆t) = f̃(r,v, t+ ∆t) + CE[f̃ ]∆t. (8)
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FIG. 1: Schematic of the computational setup. The simulation domain is a finite

symmetric interval with perfectly absorbing boundary conditions at z = ±60a. The initial

condition consists of a liquid slab in equilibrium with its vapor placed in the middle of the

simulation domain.

During this stage, particles’ positions xi are unchanged while their velocities vi are modified

according to stochastic rules which essentially correspond to the Monte Carlo evaluation of

the collision integral given by Eq. (2c).

The macroscopic quantities are obtained by time averaging the particles’ microscopic

states. Note that for steady flows simulations, as the ones considered below, the averaging

time can be long enough to obtain accurate results without the need of using a large number

of computational particles.
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III. EVAPORATION OF MONATOMIC LIQUID INTO NEAR VACUUM

A. Computational setup

The schematic of the computational setup is shown in Fig. 1. The simulation domain is a

finite symmetric interval z ∈ [−L,L] with L = 60a and homogeneous along the x and y axis.

Perfectly absorbing boundary conditions are assumed at z = ±L, namely computational

particles reaching the boundaries are removed from the simulation domain. Initially, a liquid

slab in equilibrium with its vapor is considered in the middle of the simulation domain. This

initial state has been obtained by placing a liquid slab in z ∈ [−Ls, Ls], with Ls = 50a, gas

elsewhere, and using periodic boundary conditions at z = ±L. Afterwards, the system has

been let to evolve until the equilibrium steady state is reached. The distance between the

liquid-vapor interfaces and the absorbing surfaces is about 10a, namely large enough not to

influence the interface but, at the same time, sufficiently small to minimise the backscattered

flow.

The system is clearly symmetric with respect to the z axis and, therefore, in principle, the

computational setup might be simplified by considering only half of the domain. However,

this would lead to the need of imposing a specular boundary condition at the center of

the liquid slab which, among other things, would require a tricky treatment of the mean

force field. Furthermore, results in the two halves of the domain can be superimposed and,

therefore, the larger computational effort of simulating all the system is used to reduce the

statistical noise.

The simulation domain is divided into 2400 cells with size ∆z = a/20 and the time step

is ∆t = 2 × 10−4 a/(RT0)1/2, where R = kB/m is the specific gas constant and T0 is the

reference temperature. The number of computational particles is set to 1.2× 106 and made

equal to the number of real atoms by a proper choice of the cross section normal to the non-

homogeneous direction z. The interaction parameters were chosen to be φa/(kBT0) = 1 and

γ = 6 so as to match the same far field behavior as the 12-6 Lennard-Jones potential [36].

The study of evaporation of a liquid slab is carried out at the following temperature values

T`/Tc = {0.53, 0.596, 0.663, 0.729}, where Tc is the critical temperature Tc/T0 = 0.754632

as a consequence of the interaction parameters chosen [20]. In this temperature range, the

vapor phase contains a number of particles sufficient to limit the statistical noise of the
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results (which are obtained by averaging particles’ properties) but, at the same time, is

dilute enough to behave as an ideal gas. The Andersen thermostat [37] is applied in the

central part of the liquid slab, 10a wide, to prevent the progressive cooling of the system and

keep its temperature to the constant value of T`. This thermostat is chosen for its simplicity

and computational efficiency.

Note that, in principle, during the evaporation into vacuum, the liquid slab is consumed

and the liquid-vapor interfaces slowly recede from the absorbing surfaces. The flow is thus

an unsteady process and the possibility to evaluate the macroscopic quantities by time-

averaging is jeopardized. In order to circumvent this difficulty, in the present work the

evaporation process is studied in a frame of reference fixed relative to the liquid-vapor inter-

face using the following procedure. The simulation advances until the number of particles

reaching the absorbing surfaces equals or exceeds 2N`, where N` is the average number of

particles per cell in the liquid bulk at temperature T`. When this happens, the simulation

stops. All particles are then moved by ∆z towards the closest absorbing surface and the

empty gap, which forms in the centre of the simulation domain, is filled with 2N` particles

sampled from a Maxwellian with temperature T`. Afterwards, the simulation is restarted.

Note that the interface movement is negligibly small during two successive applications of

this procedure. In this steady evaporation framework, simulations are run for the time

duration 2000 a/(RT0)1/2 (equivalent to 107 iterations).

B. Simulation results

1. Macroscopic quantities

A broad picture of a liquid slab evaporating into near-vacuum is provided by observing

the behaviour of the macroscopic quantities across the the liquid and vapor phases shown in

Fig. 2 for the lowest (T`/Tc = 0.53) and the highest (T`/Tc = 0.729) temperatures considered.

Due to the symmetry of the system, only half of the simulation domain is shown.

The minimum density in the liquid phase is found in the central part of the domain where

the liquid is thermostated, while the maximum is reached close to the liquid-vapor interface,

with an almost linear profile in between them. This behavior is due to the evaporation

cooling of the liquid slab, which causes a temperature decrease in the liquid region which is
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FIG. 2: Dimensionless density, na3, mean velocity in the z-direction, Vz/(RT0)1/2, normal,

T⊥/Tc, parallel, T‖/Tc, and total, T/Tc, temperatures for (a) the lowest and (b) the highest

liquid bulk temperatures considered in the simulation campaign.

not thermostated. After the drop in the liquid-vapor interface, the temperature in the vapor

phase levels off but still exhibits a small gradient. This clearly indicates that some collisions

between atoms occur in the gap region between the edge of the interface at the vapor side

and the absorbing surface.

The normal and parallel temperatures, which are defined based on the velocity compo-

nents normal and parallel to the liquid-vapor interface, superimpose up to a point located at

about half of the interface width. Their separation indicates that the local thermodynamic

quasi-equilibrium condition breaks down, marking the beginning of a transition layer which

extends a few molecular diameters into the low density region. In the following, we refer to

the point at which the separation of temperatures occurs as the ‘separation point’, denoted

zs, and the corresponding value of the temperature as the ‘separation temperature’, denoted

Ts. After the separation point the parallel temperature profile follows a similar slope as the

one in the liquid bulk, while the normal temperature exhibits a sharp drop coupled with an

increase in the mean velocity component normal to the liquid-vapor interface.
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Parameters Undrifted anisotropic Drifted isotropic Drifted anisotropic

T`/Tc = 0.530 ξ/(RT0)1/2 — 0.026366± 0.00388 0.03427± 0.01364

θ⊥/Tc 0.5278± 0.00254 0.51238± 0.00176 0.5072± 0.00852

θ‖/Tc 0.51238± 0.00176 0.51238± 0.00176 0.51238± 0.00176

χ2 0.03016 0.02866 0.02856

T`/Tc = 0.729 ξ/(RT0)1/2 — 0.10903± 0.00246 0.1628± 0.0056

θ⊥/Tc 0.66987± 0.00348 0.59937± 0.00087 0.55924± 0.00397

θ‖/Tc 0.59937± 0.00087 0.59937± 0.00087 0.59937± 0.00087

χ2 0.03911 0.01163 0.00688

TABLE I: Estimates of the fitting parameters, ξ, θ⊥, θ‖ alongside the asymptotic standard

error, and the residual sum of squares, χ2, of the three considered fitting velocity

distribution functions for the lowest and the highest liquid bulk temperatures considered in

the simulation campaign.

Note that the normal temperature and the mean velocity in the z-component show gra-

dients in a thin layer close to the boundary of the computational domain, especially for the

highest temperature case shown in Fig. 2(b). This behaviour is not a numerical artifact but

it is due to the the discontinuity of the density field at the absorbing surface, which results in

a mean force field directed towards the liquid acting on the atoms in this boundary region.

2. Velocity distribution function of evaporated atoms

The statistical features of spontaneously evaporated atoms have not been systematically

assessed until now. According to some studies their velocity distribution function can be

approximated by an anisotropic half-Maxwellian [19, 21, 38] while others pointed out the

presence of a velocity drift [13]. Here, the velocity distribution function of evaporated atoms

is evaluated based on the particles collected at the absorbing surfaces. As specified in

Sec. III A, these surfaces are placed at the edge of the liquid-vapor interface where kinetic

boundary conditions can be formulated. Three different Maxwellian-like functional forms
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are tested for fitting:

Undrifted Anisotropic: f(v‖, v⊥) =
C1

(2πR)3/2θ⊥θ
1/2
‖

exp

[
− v2

⊥
2Rθ⊥

−
v2
‖

2Rθ‖

]
, v⊥ > 0, (9a)

Drifted Isotropic: f(v‖, v⊥) =
C2

(2πRθ‖)3/2
exp

[
−(v⊥ − ξ)2

2Rθ‖
−

v2
‖

2Rθ‖

]
, v⊥ > 0, (9b)

Drifted Anisotropic: f(v‖, v⊥) =
C3

(2πR)3/2θ⊥θ
1/2
‖

exp

[
−(v⊥ − ξ)2

2Rθ⊥
−

v2
‖

2Rθ‖

]
, v⊥ > 0, (9c)

where Ci are constants which make the velocity distribution functions normalised to unity,

v⊥, v‖ are the velocity components normal and parallel to the liquid-vapor interface, and

ξ, θ⊥, θ‖ are the fitting free parameters. Note that ξ cannot be identified with the mean

velocity in the normal z-direction since the velocity distribution function is defined only for

v⊥ > 0. Likewise, θ⊥ and θ‖ cannot be identified with the normal and parallel temperatures.

The values of the fitting parameters are listed in Table I for the lowest and highest values

of the liquid bulk temperatures considered in the simulation campaign. The sum of squares

of residuals, χ2, which is an indicator of the goodness of the fit, is also reported. According

to χ2, the drifted anisotropic half-Maxwellian provides the best approximation, especially

for the highest temperature T`/Tc = 0.729.

The direct comparison between the fitting curves and the data is shown in Figs. 3 and 4

alongside their residuals and residuals Q-Q scatter plots which provide a more quantitative

assessment of the goodness of fit. More specifically, the Q-Q scatter plot compares the

quantiles of the residuals distribution functions against one another. The alignment along

the bisector of first quadrant indicates that residuals are normally distributed as it should

be for the ideal fitting.

In the lowest temperature case shown in Fig. 3, all the proposed distributions superim-

pose almost perfectly and their Q-Q scatter plots indicate a near normal distribution of

residuals. By contrast, in the highest temperature case shown in Figs. 4, deviations can be

observed between the different distributions, with the drifted anisotropic half-Maxwellian

clearly providing the best fit. The direct inspection of residuals distributions, Fig. 3b and

Fig. 4b, shows that the undrifted anisotropic half-Maxwellian and the drifted isotropic half-

Maxwellian do not provide a good fit in the peak and tail regions, while residuals of the

drifted anisotropic half-Maxwellian are randomly distributed except for the tail region where

a weak pattern is visible.
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FIG. 3: (a) Reduced normal molecular fluxes normalized to unity of evaporated molecules,

(b) residual distribution, and (c) corresponding Q-Q plots of the residuals for the lowest

liquid bulk temperature considered in the simulation campaign (T`/Tc = 0.53).

Dashed-dotted line: Fitted undrifted anisotropic half-Maxwellian; Dashed: Fitted isotropic

drifted half-Maxwellian; Solid line: Fitted drifted anisotropic half-Maxwellian. Inset: The

tail of the distributions in logarithmic scale, with x axis tick values matched to the ticks of

the plot.
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FIG. 4: (a) Reduced normal molecular fluxes normalized to unity of evaporated molecules,

(b) residual distribution, and (c) corresponding Q-Q plots of the residuals for the highest

liquid bulk temperature considered in the simulation campaign (T`/Tc = 0.729).

Dashed-dotted line: Fitted undrifted anisotropic half-Maxwellian; Dashed: Fitted isotropic

drifted half-Maxwellian; Solid line: Fitted drifted anisotropic half-Maxwellian. Inset: The

tail of the distributions in logarithmic scale, with x axis tick values matched to the ticks of

the plot.
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None of the fitting functions perfectly matches the data but the analysis above indicates

that the drifted anisotropic half-Maxwellian provides the best approximation, albeit at the

cost of an extra fitting parameter. In the considered range of temperatures, using a dis-

tribution function with only one fitting parameter leads to errors in the mean velocity and

temperature within one percent but errors rapidly increases if one considers higher-order

moments which are more sensitive to the accuracy of the fitting in the tail region. Accord-

ingly, for the remainder of the paper, we assume that the velocity distribution function of

evaporated atoms is an anisotropic drifted half-Maxwellian.

The reduced distribution function of the parallel velocity components vx and vy, denoted

fx,y, and the reduced flux of the normal-velocity component vz, denoted vzfz, are shown in

Fig. 5 while the values of ξ, θ⊥, and θ‖ are summarised in Table II and plotted in Fig. 6. It

can be observed from Fig. 6(b) that as the liquid bulk temperature increases, the difference

between the normal and parallel fitting parameters becomes larger. The drift velocity also

grows monotonically with the bulk temperature, as it can be seen in Fig. 6(a).

It is worth stressing that, the compressibility factor of the vapor is only slightly less than

one in the entire range of evaporation temperatures considered in the simulation campaign

(see Table II). Accordingly, the velocity drift and temperature anisotropy pointed out in

this study are expected to show up even in vapors whose behaviour is only slightly non-ideal.

Note that, in the previous molecular dynamics studies [13, 19, 38] the deviations from the

undrifted isotropic half-Maxwellian were generically attributed to the collisions of atoms in

the liquid-vapor interface. We will examine this argument in more depth in the next section.

C. Velocity drift and temperature anisotropy

1. Numerical study

In order to track the origin of the statistical properties of evaporated atoms, their tra-

jectories are traced backwards, to the points where they collide for the last time. The

spontaneously evaporating atoms can thus be identified as atoms that, coming from differ-

ent regions of the domain, reach the absorbing surfaces in free-molecular motion under the

action of the conservative mean force field. These atoms are then divided into two groups,

i.e. those whose last collision takes place before and after the separation point. Finally, the
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FIG. 5: Reduced velocity distribution function and molecular flux of evaporated molecules,

parallel and normal to the liquid-vapor interface, respectively, at different liquid bulk

temperatures. Coloured histograms are the numerical results of the EV equation

normalized to unity; solid and dashed lines are their best fits based on a drifted anisotropic

half-Maxwellian with parameters ξ, θ⊥, and θ‖.

distribution functions of these two groups of atoms and the corresponding fitting parameters

are evaluated. Figure 7 shows the histograms of the last collision cell of evaporated atoms

for T`/Tc = 0.53 and T`/Tc = 0.729. As reported in Table III, most of the atoms collected at

the absorbing surfaces had their last collision after the separation point, i.e. they represent

more than 80% of the total evaporated atoms. Herein, the total number of evaporated atoms
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T`/Tc Ts/Tc ξ/(RT0)1/2 θ⊥/Tc θ‖/Tc nva
3 Z

0.530 0.518 0.034 0.507 0.512 0.0008 0.990

0.596 0.561 0.081 0.526 0.547 0.0018 0.981

0.663 0.597 0.133 0.541 0.579 0.0028 0.971

0.729 0.628 0.163 0.559 0.599 0.0040 0.961

TABLE II: Separation temperature, Ts/Tc, velocity drift, ξ/(RT0)1/2, normal and parallel

temperature, θ⊥/Tc and θ‖/Tc, of the velocity distribution function of spontaneously

evaporated atoms, number density in the vapor region, nva
3, and vapor compressibility

index, Z = pv/(nvkBT`), being pv the pressure in the vapor phase and kB the Boltzmann

constant, as a function of the liquid bulk temperatures, T`/Tc.
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FIG. 6: Parameters of the velocity distribution function of spontaneously evaporating

atoms as a function of the liquid bulk temperature.

is denoted Ne. Remarkably, the velocity drift and temperature anisotropy is much larger for

atoms whose last collision was before zs, where the local velocity distribution functions are

undrifted and isotropic Maxwellians. It is thus reasonable to focus on this group of atoms

to shed light on the mechanism that leads to the velocity drift and temperature anisotropy.
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FIG. 7: Histogram of the last collision cell of evaporated atoms for the lowest and highest

liquid bulk temperatures considered in the simulation campaign. The peak of the

distribution is close to the separation point zs which is marked by the vertical black line.

Before zs After zs

T`/Tc ξ/(RT0)1/2 θ⊥/Tc θ‖/Tc Ne,z<zs/Ne ξ/(RT0)1/2 θ⊥/Tc θ‖/Tc Ne,z>zs/Ne

0.530 0.154 0.455 0.495 17.8% 0.036 0.512 0.518 82.2%

0.729 0.344 0.484 0.567 11.2% 0.161 0.559 0.602 88.8%

TABLE III: Parameters of the velocity distribution function of spontaneously evaporating

atoms before and after the separation temperature for the lowest and largest liquid bulk

temperatures considered.

In Fig. 8 we plot the isocontours of the velocity distribution functions of the evaporated

atoms originating before the separation point (group A) and of the ‘potentially’ evaporating

atoms (group B). This latter group comprises all the atoms coming from the same locations

of the ones of group A under the assumption that they can reach the absorbing surface

without suffering any backscattering due to collisions in the interface region. Both velocity

distribution functions are normalized to unity. The velocity distribution function of the
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FIG. 8: Isocontours of the distribution functions of evaporated atoms (dashed lines) and

‘potentially’ evaporating atoms (solid lines). Atoms originate from locations before the

separation point.

group B is an undrifted isotropic half-Maxwellian with the weighted average temperature

of the region where they originate. This is not unexpected, since, as also proved in Sec-

tion III C 2, an undrifted Maxwellian velocity distribution function of atoms moving in a

conservative force field remains Maxwellian with the same temperature. The comparison

clearly shows that the evaporated atoms have predominantly higher normal velocities and

lower parallel velocities. This result can be understood as the result of the interplay be-

tween normal and parallel velocities due to collisions in the liquid-vapor interface. Indeed,

the higher is the normal-velocity component, the less likely an atom suffers a collision in

the liquid-vapor interface because the lower is the time spent in that region. However, at

the same time, the larger is the speed, the greater becomes the probability of collisions (see

also Eq. (12b)). This interplay also explains why atoms coming from the region before the

separation point mostly contribute to the velocity drift and temperature anisotropy. Indeed,

these atoms must travel a larger distance before reaching the absorbing surface and are thus

more likely to be back-scattered by collisions. Likewise, the liquid-vapor interface gets wider

as the liquid bulk temperature increases and, therefore, the effect of preferential evaporation

of atoms with large normal and lower parallel velocity components is enhanced.
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T`/Tc d̄/a n̄a3 T̄ /Tc ∆U/(kBTs)

0.530 9.8 0.00157 0.44 0.01686

0.729 12.4 0.00554 0.497 0.04936

TABLE IV: Numerical values of the parameters which enter in the model for the lowest

and highest liquid bulk temperatures considered in the simulation campaign
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FIG. 9: Isocontours of distribution functions of evaporated particles for two evaporation

temperatures.

2. An instructive model

The results presented in the previous section suggest that the velocity drift and the

temperature anisotropy of spontaneously evaporating atoms is a consequence of the collisions

in the liquid-vapor interface which filter out atoms with a lower normal-velocity component.

In order to support this conclusion, here we approximately evaluate the distribution func-
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tion of atoms which, being initially at the separation point, cross the liquid-vapor interface,

and are collected at the absorbing surface placed at a distance d̄. For simplicity, it is assumed

that atoms move in a region of constant density, n̄, and temperature, T̄ . At the separation

point, atoms are supposed to be distributed according to an isotropic Maxwellian with zero

drift and temperature Ts:

fs
(
v‖, v⊥

)
=

ns

(2πRTs)
3/2

exp

(
−
v2
‖ + v2

⊥

2RTs

)
. (10)

Only a fraction of these atoms can reach the absorbing surface, namely the ones which (i)

have a speed sufficiently large to overcome the potential barrier of the mean force field which

pushes atoms towards the liquid phase and (ii) are not backscattered due to the collisions

with other atoms. Note that:

(i) The conservation of mechanical energy implies:

1

2
mv2

s + Us =
1

2
mv2

e + Ue =⇒ v2
⊥,s = v2

⊥,e + v2
⊥,min, v⊥,min =

(
2

∆U
m

)1/2

, (11)

where (vs,Us) and (ve,Ue) are the atom’s velocity and the potential energy of the

mean force field at the separation point and at the absorbing surface, respectively,

and ∆U = Ue − Us. In Eq. (11), it has been used that v‖,s = v‖,e since the mean force

field acts along the z-direction. It is plain that only atoms whose z-component of the

velocity is larger than v⊥,min can reach the absorbing surface, all the others turn back,

under the action of the force field.

(ii) The number of collisions experienced by an atom in the time interval ∆t can be

assumed to follow a Poisson distribution:

Pr(N Collisions in the time interval ∆t) =
(ν̄∆t)Ne−ν̄∆t

N !
, (12a)

where the collision rate ν̄ can be estimated as:

ν̄(v) = χ(n̄)
πa2n̄√
πβ

[
e−β

2v2

+

(
2βv +

1

βv

)
π

2
erf(βv)

]
, (12b)

where β2 = 1/(2RT̄ ) [39]. Accordingly, the probability that an atom reaches the

absorbing surface without suffering any collision is:

Pr(0 Collisions in the time interval ∆t) = e−ν̄(v)∆t = e
−ν̄(v) d̄

v⊥ , (12c)
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where it has been used that the time needed to cross the liquid-vapor interface is

∆t = d̄/v⊥.

By adopting cylindrical coordinates and using (i)-(ii), the net mass flux of atoms across the

liquid-vapor interface can be written as:∫ +∞

0

dv‖ v‖

∫ +∞

v⊥,min

dv⊥ fs
(
v‖, v⊥

)
v⊥ =

∫ +∞

0

dṽ‖ ṽ‖

∫ +∞

0

dṽ⊥fe
(
ṽ‖, ṽ⊥

)
ṽ⊥, (13)

where fe is given by Eq. (10) and fe is the unknown distribution function of evaporated

atoms, i.e. atoms collected at the absorbing surface. Note that in Eq. (13), the integral over

the azimuthal angle cancels out due to the symmetry of the system. The first integral on the

right hand side of Eq. (13) can be simplified by making the change of variables
(
v⊥, v‖

)
→(

(ṽ2
⊥ + ṽ2

⊥,min)1/2, ṽ‖
)

suggested by the conservation of mechanical energy, Eq. (11). The

distribution function of atoms collected at the absorbing surface can thus be readily obtained:

fe
(
ṽ‖, ṽ⊥

)
=

ns

(2πRTs)
3/2

exp

(
−
ṽ2
⊥,min

2RTs

)
exp

(
−
ṽ2
‖ + ṽ2

⊥

2RTs

)
exp

[
−
ν̄
(
(ṽ2 + v2

⊥,min)1/2
)
d̄(

ṽ2
⊥ + v2

⊥,min
)1/2

]
. (14)

Note that if one disregards collisions, ν̄ = 0, Eq. (14) simplifies to a half-Maxwellian with

the parameter density given by ns reduced by the Boltzmann factor exp [−∆U/(kBTs)].

The dimensionless values of the width of the liquid-vapor interface, d̄/a, the mean density,

n̄a3, and temperature, T̄ /Tc, of the liquid-vapor interface are estimated from the simulation

results presented in the previous sections. The potential jump ∆U/(kBTs) is the one that

occurs at the edge of a slab having length d̄/a and density n̄a3 placed next to vacuum. The

numerical values of all these parameters are listed in Table IV. Figure 9 shows the com-

parison between the normalised velocity distribution function of evaporated atoms obtained

by numerically solving the Enskog-Vlasov equation, and the predictions given by Eq. (14).

The very good qualitative agreement strongly suggests that the collisions in the liquid-vapor

interface may be responsible for deviations from the isotropic half-Maxwellian.

IV. CONCLUSIONS

The Enskog-Vlasov (EV) equation has been used to study the one-dimensional steady

evaporation of a monatomic liquid into near vacuum conditions. The main aim has been to
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elucidate the statistical features of atoms spontaneously emitted by the liquid bulk. This is

a key step in formulating kinetic boundary conditions at the liquid-vapor interface.

The mean-field kinetic theory approach is used in this study since it is by far less compu-

tationally demanding than molecular dynamics simulations and permits one to get results

with the required high level of accuracy.

The velocity distribution function of spontaneously evaporating atoms are commonly

assumed to be an half-Maxwellian at the temperature of the liquid-vapor interface. By

contrast, the main results of this work show that:

• Evaporated atoms are distributed according to a drifted anisotropic half-Maxwellian.

Deviations from the isotropic half-Maxwellian become more pronounced as the liquid

bulk temperature increases.

• The velocity drift and the temperature anisotropy are the results of collisions in

the liquid-vapor interface region which preferentially backscatter atoms with a lower

normal-velocity component.

Note that previous studies based on molecular dynamics simulations have already pointed

out that the distribution function of evaporating atoms deviate from an isotropic half-

Maxwellian but there hasn’t been unanimous agreement on the functional form, i.e. an

anisotropic half-Maxwellian [12, 19] or a drifted half-Maxwellian [13]. Furthermore, devia-

tions were noticed only for high evaporation temperatures and, accordingly, attributed to

the non-ideal vapor behaviour.

The novelty of the present work is thus threefold. First, it establishes that the drifted

anisotropic half-Maxwellian provides the best fitting out of the considered distributions.

Second, it shows that deviations from the half-Maxwellian occur even when the vapor is

only slightly non-ideal, namely in conditions where, in principle, the usual kinetic-theory

treatment of the evaporation process can still be used [31]. Third, it brings evidence, through

accurate numerical results and a simple model, that collisions in the interface may explain

the velocity drift and the temperature anisotropy.

It is worth stressing that the results above are expected to be valid even in presence of

net condensation since it is commonly assumed that the evaporation flux only depends on

the state of the fluid in the liquid phase. However, a more detailed study would be needed to
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assess to what extent the vapor dynamics affects the structure of the liquid-vapor interface

and, in turn, the evaporation mass flux.

This work paves the way to a reformulation of boundary conditions usually adopted at

the liquid-vapor interface in kinetic theory studies of evaporation/condensation processes.

In this respect, an interesting research perspective consists in determining the dependence of

the drift-velocity and temperature anisotropy on the properties of the liquid bulk by means

of the balance equations of mass, momentum, and energy derived from the EV equation.
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