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Abstract: State-switching models such as hidden Markov models or Markov-

switching regression models are routinely applied to analyse sequences of observa-
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tions that are driven by underlying non-observable states. Coupled state-switching

models extend these approaches to address the case of multiple observation se-

quences whose underlying state variables interact. In this paper, we provide an

overview of the modelling techniques related to coupling in state-switching mod-

els, thereby forming a rich and flexible statistical framework particularly useful

for modelling correlated time series. Simulation experiments demonstrate the rele-

vance of being able to account for an asynchronous evolution as well as interactions

between the underlying latent processes. The models are further illustrated using

two case studies related to a) interactions between a dolphin mother and her calf

as inferred from movement data; and b) electronic health record data collected on

696 patients within an intensive care unit.

Key words: hidden Markov model; time series; Markov-switching regression; an-

imal movement; disease progression

1 Introduction

Hidden Markov models (HMMs) are flexible statistical models for sequential data

in which the observations are assumed to depend on an underlying latent state pro-

cess. They have successfully been applied in various areas, starting with speech

recognition in the 1970s (Baker, 1975) and nowadays including fields such as psy-

chology (Visser et al., 2002), finance (Bulla and Bulla, 2006), medicine (Langrock
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et al., 2013), and ecology (Michelot et al., 2016). When modelling multiple ob-

served variables using HMMs, it is usually assumed to have either a) a single state

process underlying the observed variables (e.g. the speed and tortuosity of an an-

imal’s movement are both driven by its behavioural mode), or b) variable-specific

but independent state processes (e.g. multiple animals separated in space will have

independent behavioural modes; Langrock et al., 2012). However, there are also

scenarios in which neither of these assumptions is valid. For example, multiple

individuals may interact due to spatial proximity, the underlying volatilities of dif-

ferent financial markets may affect each other, and body functions may be coupled

through physiological mechanisms. In such cases, each process of interest will have

its own sequence of underlying states, but the different state processes are coupled.

Coupled hidden Markov models (CHMMs) extend the basic HMM framework by

assuming distinct but correlated state sequences that underlie the observed vari-

ables, hence “coupling” the state processes. Since their first appearance in Brand

(1997), they have been further developed and applied for example to classify elec-

troencephalography data (Michalopoulos and Bourbakis, 2014), to model inter-

actions of suspects in forensics (Brewer et al., 2006), and to detect bradycardia

events from electrocardiography data (Ghahjaverestan et al., 2016). CHMMs can

be considered as established tools within the engineering literature, where they

are commonly applied in classification tasks, e.g. emotion recognition from audio-

visual signals (Lin et al., 2012), or gesture recognition from hand tracking data

(Brand et al., 1997). As a full probabilistic model for sequential data, CHMMs can
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however also be useful for other inferential purposes, including forecasting future

observations as well as general inference on the data-generating process.

In this work, we argue that the full potential of CHMMs for such statistical mod-

elling challenges to date has not been recognised, as evidenced by the fact that

these models have only very rarely been used in such a context; some notable excep-

tions are Sherlock et al. (2013), Johnson et al. (2016), and Touloupou et al. (2020).

We set out to fill this gap, by introducing the CHMM formulation, in particular

discussing the various simplifying assumptions that one may or may not want

to make, and by presenting inferential tools available for CHMMs. Furthermore,

we discuss the inclusion of covariates and introduce a coupled Markov-switching

regression (CMSR) model which allows the observed variables to depend on co-

variates. Simulation studies are used to highlight practical issues that are relevant

when modelling multiple interacting processes, thereby showcasing the potential

benefits of the CHMM framework compared to more basic model formulations.

Finally, we illustrate the practical use of CHMMs in two case studies. First, we

consider a simple CHMM for studying the behaviour of a dolphin mother and calf

pair. Second, we apply a CMSR model to electronic health record data collected

by the University of California in Los Angeles (UCLA) to model the evolution of

important vital signs over time, controlling for age and sex of the patients.
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2 Hidden and coupled hidden Markov models

2.1 Hidden Markov models

2.1.1 Basic model formulation and inference

An HMM is a doubly stochastic process comprising an observable time series

{Yt}Tt=1 and an underlying latent state sequence {St}Tt=1. In the basic model formu-

lation, the state sequence is a first-order Markov chain, i.e. Pr(St|St−1, . . . , S1) =

Pr(St|St−1) with St ∈ {1, 2, . . . , N}. The state transition probabilities are sum-

marised in the transition probability matrix (TPM) Γ = (γij), with γij = Pr(St =

j|St−1 = i), i, j = 1, . . . , N . In case of stationarity, the initial distribution, δ =(
Pr(S1 = 1), . . . ,Pr(S1 = N)

)
, is the solution to δΓ = δ subject to

∑N
i=1 δi = 1

and δi ≥ 0, i = 1, . . . , N . Given St, the observation Yt is assumed to be condition-

ally independent of past observations and states — Yt is thus generated by one of

N state-dependent distributions, f1, . . . , fN , as selected by St.

The HMM likelihood can be written as L = δP1ΓP2 · · ·ΓPT1′, where Pt is an N×

N diagonal matrix with entries fi(yt), i = 1, . . . , N , and 1 is an N -dimensional row

vector of ones. This expression is a consequence of applying the forward algorithm,

which comes at a computational cost of order O(TN2). The maximum likelihood

estimate can be identified using either numerical likelihood optimisation or the

expectation-maximisation (EM) algorithm. Alternatively, Bayesian inference via

Markov chain Monte Carlo methods can be used (Rydén, 2008).
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2.1.2 HMMs for multivariate time series

We now consider multivariate time series {Yt}Tt=1, with Yt = (Y
(1)
t , . . . , Y

(M)
t ).

The state-dependent distributions within an HMM are then multivariate, e.g. M–

dimensional normal distributions. However, in practice the M variables often

have different scales of measurement, rendering it difficult to formulate a suitable

joint distribution. It is then often assumed that given the current state St, all M

variables are conditionally independent of each other, f(Yt|St) =
∏M

m=1 f(Y
(m)
t |St).

Under this contemporaneous conditional independence assumption, a suitable class

of univariate distributions is chosen separately for each of the M variables.

Since such multivariate HMMs assume the observed processes to be driven by a

single state sequence, the M variables evolve in lockstep regarding underlying state

switches (Brand, 1997). This is often adequate, e.g. when modelling an individual

animal’s movement, where a change of the behavioural state would be reflected

in both speed and tortuosity (Beumer et al. 2020), or in financial time series

modelling, where the volatility of multiple shares might be captured by a single

underlying state reflecting the nervousness of the market (Maruotti et al., 2019).

In contrast, if the M variables considered were to evolve completely independently

of each other, then it would be adequate to simply fit univariate HMMs separately

to each of the M time series. Coupled HMMs, as detailed in the subsequent

section, focus on scenarios that fit neither of these two extremes, and instead are

such that each of the different variables observed depends on its own underlying

state variable, but such that the state variables interact and influence each other.
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2.2 Coupled hidden Markov models

Consider M distinct time series {Y (m)
t }Tt=1, each depending on an underlying state

sequence {S(m)
t }Tt=1, m = 1, . . . ,M . For notational simplicity we restrict the pre-

sentation to the case where each of the M observed processes is univariate, but the

extension to multivariate processes is straightforward. CHMMs link the different

time series via the state process by allowing the underlying states S
(m)
t to interact:

in addition to assuming that S
(m)
t−1 affects S

(m)
t , we allow also S

(m′)
t−1 to affect S

(m)
t for

m′ 6= m. The dependence structure between the state variables is thus reflected

in the transition probabilities of the CHMM. The observed variables are again as-

sumed to be conditionally independent given the states. Next we discuss possible

assumptions regarding the exact dependence structure of the state processes within

a CHMM, which differ in terms of their flexibility and hence the dimensionality of

the parameter space (i.e. model complexity). To simplify notation, we assume the

state space for each state variable to be of the same dimension, N , i.e. |S(m)| = N

for m = 1, . . . ,M ; the extension to the more general case is straightforward.

2.2.1 Cartesian product model

Instead of modelling each state variable S
(m)
t separately, they can be summarised

in the M -dimensional state vector St = (S
(1)
t , . . . , S

(M)
t ). The CHMM can then be

defined as an HMM with the multivariate state sequence {St}Tt=1. The correspond-

ing state space S is built by the Cartesian product of all individual state spaces, i.e.

S = S(1) × . . .× S(M), with |S| = NM and the transition probabilities then refer-
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· · ·

S(1)
t−1 S(1)

t S(1)
t+1

· · ·

Y (1)
t−1 Y (1)

t Y (1)
t+1

S(2)
t−1 S(2)

t S(2)
t+1

Y (2)
t−1 Y (2)

t Y (2)
t+1

Figure 1: Dependence structure of the Cartesian product CHMM with M = 2
distinct time series.

ring to the state vectors, i.e. Pr(St|St−1) = Pr
(
(S

(1)
t , . . . , S

(M)
t )|(S(1)

t−1, . . . , S
(M)
t−1 )

)
(see Figure 1 for an illustration for the case M = 2). This model formulation is at-

tractive because there is no need to develop new estimation and inference methods:

all techniques available for basic HMMs can easily be transferred. The Cartesian

product formulation comprises two important special cases: 1) independent state

processes, corresponding to separately fitting HMMs to each of the M sequences,

and 2) multiple observed variables that depend on only a single state sequence, i.e.

a multivariate HMM. Importantly, it additionally captures the dependence struc-

tures in-between these extreme situations. However, this flexibility is associated

with a state space that grows exponentially with the number of state variables

M , and a corresponding TPM of dimension NM ×NM . The computational costs

for the likelihood evaluation are of order O(N2MT ) and thus can be high even

for moderate M and N . For instance, for M = 3 and N = 3, we would have

|S| = 33 = 27 and a TPM of dimension 27× 27 (with only 702 of the 729 entries
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to be estimated, due to the row constraints). This high number of parameters will

often lead to numerical problems in the optimisation (e.g. local maxima) and may

raise the risk of overfitting. Prior knowledge about the system being modelled,

for example with regard to impossible transitions, or transitions that can reason-

ably be grouped together (with shared parameters), can substantially reduce the

number of parameters to be estimated (Sherlock et al., 2013).

We note here that the use of the label “coupled HMM” is in fact not consistent

in the existing literature, and that the Cartesian product model is not always

regarded as a CHMM (see, for example, Brand, 1997, Brand et al., 1997, Nefian

et al., 2002). Other authors use the Cartesian product formulation as a convenient

framework for estimation (see, for example, Rezek et al. 2000; Ghosh et al. 2017).

In this contribution, the label CHMM refers to all models that couple several

HMMs via the state process, and we regard the Cartesian product model as one

way to specify such a CHMM.

2.2.2 CHMM with contemporaneous conditional independence assumption

The Cartesian product model contains instantaneous correlations between the

states, i.e. the transition probabilities Pr(St|St−1) cannot be factorised into simpler

expressions. Alternatively, the state variables S
(m)
t , m = 1, . . . ,M , can be assumed

to be contemporaneously conditionally independent given the state vector St−1:

Pr(St|St−1) =
M∏

m=1

Pr(S
(m)
t |St−1); (2.1)
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· · · S(1)
t−1 S(1)

t S(1)
t+1

· · ·

Y (1)
t−1 Y (1)

t Y (1)
t+1

· · · S(2)
t−1 S(2)

t S(2)
t+1

· · ·

Y (2)
t−1 Y (2)

t Y (2)
t+1

Figure 2: CHMM structure with contemporaneous conditional independence as-
sumption for M = 2 time series.

see Figure 2.

This model formulation involves MNM+1 transition probabilities describing the

state dynamics (e.g. for M = 3 and N = 3, this results in 243 transition prob-

abilities, 162 of them to be estimated due to sum constraints). Naturally, this

assumption reduces the flexibility of the model: for example, it cannot accommo-

date patterns where the M state variables tend to switch states simultaneously.

For parameter estimation, this CHMM formulation can be converted into a Carte-

sian product CHMM, thereby opening up the way for all standard HMM machin-

ery. The resulting model would again have a state space of dimension NM , but

with restrictions on the transition probabilities due to the states’ contemporaneous

conditional independence. For this model formulation it is particularly convenient

to use a Bayesian framework, within which the states of each sequence are sam-



Coupled state-switching models 11

pled conditionally on the states of the other sequences, e.g. using Gibbs sampling

(Sherlock et al., 2013; Touloupou et al., 2020).

2.2.3 CHMMs with explicit modelling of variable-to-variable effects

In the CHMM representations discussed above, there is no parameter explicitly

representing direct variable-to-variable effects, which makes interpretation difficult

(Brand, 1997). Saul and Jordan (1999) offer a remedy to this caveat by combining

the contemporaneous conditional independence assumption (2.1) with a mixture

representation for the marginal transition probabilities:

Pr(S
(m)
t |St−1) =

M∑
m′=1

w(m)(m′) Pr(S
(m)
t |S

(m′)
t−1 ),

with 0 ≤ w(m)(m′) ≤ 1 and
∑M

m′=1w
(m)(m′) = 1. The mixture weight w(m)(m′)

here reflects the strength of the effect of state S
(m′)
t−1 on S

(m)
t — independent state

processes would result in w(m)(m) = 1 for all m = 1, . . . ,M , and w(m)(m′) = 0

for all m′ 6= m. This model is similar in spirit to the mixture transition duration

higher-order Markov chain model suggested by Raftery (1985). It involves M2N2

marginal transition probabilities describing the interactions in the state processes,

in addition to M2 weights (e.g. for M = 3 and N = 3, this results in 90 parameters,

60 of them to be estimated due to sum constraints). While much reduced in terms

of its complexity, we found this model to be numerically unstable as the weights

w(m)(m′) are often estimated very close to zero for m′ 6= m. Estimation and further

inference can again be conducted based on a Cartesian product representation,
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or alternatively, to avoid the associated large state space, using a bespoke EM

algorithm (Saul and Jordan, 1999).

The CHMM originally proposed by Brand (1997) is described by a factorisation

based on contemporaneously conditionally independent state variables:

Pr(S
(m)
t |St−1) =

M∏
m′=1

Pr(S
(m)
t |S

(m′)
t−1 ).

This parameterisation reduces the number of transition parameters to M2N2, but

it does not yield properly defined transition probabilities for the state vector St

as it does not guarantee that
∑

St
Pr(St|St−1) = 1. As a consequence, there is

no unique conversion to the Cartesian product model, and it is difficult to obtain

valid inference. Therefore, we caution against the use of this model formulation.

In a Bayesian framework, Sherlock et al. (2013) propose to directly model the

influence of state S
(m′)
t−1 on S

(m)
t , m′ 6= m, by using it as a covariate for the state

transition probabilities Pr(S
(m)
t |S

(m)
t−1 ). This is possible only as the complete state

sequences are drawn within a Gibbs sampler, and the latent states then treated

as if they were known within the posterior conditional distribution. Furthermore,

in the applied setting described in Sherlock et al. (2013), namely the modelling

of interactions between diseases in a host, the relation between the states and

the observations is deterministic and the structure of the TPMs is known, which

greatly facilitates model building and estimation.
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2.3 Coupled Markov-switching regression

We now turn to models which account for the influence of covariates. For example,

the transition probabilities of the state process of an HMM can be expressed as a

function of covariates using an appropriate link function such as the multinomial

logit (Zucchini et al., 2016). While this approach can in principle be applied to

CHMMs, it will often be infeasible as even a basic CHMM typically involves a high

number of transition probabilities, such that model complexity can be prohibitive.

The incorporation of covariates into the observation process — often referred to as

Markov-switching regression (MSR; Langrock et al., 2017) — is more promising for

the CHMM setting. MSR models were first introduced for econometric time series,

in which case they can be used, for example, to investigate if covariate effects differ

between periods of high and low economic growth, respectively (Hamilton, 2008).

The MSR framework can be transferred to the CHMM setting by relating the M

observed variables to (variable-specific) covariates, for example as follows:

Y
(m)
t |S(m)

t = i ∼ N (µm,i,t, σ
2
m,i),

µm,i,t = β0,m,i + β1,m,i · x(m)
1,t + . . .+ βp,m,i · x(m)

p,t ,

m = 1, . . . ,M , t = 1, . . . , T . In this example model, each of the M variables

is conditionally normally distributed, with state- and variable-specific (constant)

variance and a state- and variable-specific linear predictor determining the mean.

In combining CHMMs and MSR models, this coupled Markov-switching regres-
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sion (CMSR) model takes into account possible interactions in the state processes

underlying the M observed variables, but also the influences of covariates on the

observation process. For parameter estimation, the state- and covariate-dependent

observation distributions can simply be plugged into the HMM-likelihood function,

such that once again the basic HMM machinery remains applicable. The exam-

ple model given above can easily be generalised to allow for other distributional

families for the observed variables (cf. Langrock et al. 2017).

3 Simulation study

We provide simulation experiments to illustrate the consequences of neglecting or

misspecifying the dependence structure in the state process. More specifically,

we simulate data from a CHMM as the true data-generating process — i.e. mul-

tiple time series with interacting underlying state processes — and demonstrate

the consequences of either completely neglecting the interaction (by fitting sep-

arate univariate HMMs) or incorrectly assuming full synchronicity (by fitting a

multivariate HMM).

The data-generating process we consider is a Cartesian product CHMM with M =

2 observed variables and N = 2 states per variable. The variables Y
(1)
t and Y

(2)
t

are thus driven by the underlying bivariate state sequence St = (S
(1)
t , S

(2)
t ) with

S
(1)
t , S

(2)
t ∈ {1, 2}, such that the Cartesian product state space is of dimension

|S| = 4. To simplify notation, we fix the order of the states to (1, 1) (state 1 of
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the process St), (1, 2) (state 2), (2, 1) (state 3) and (2, 2) (state 4), and refer to

this order when defining the TPM and the corresponding stationary distribution.

The TPM is chosen such that the random variables evolve synchronously most of

the time, i.e. the model is only slightly different from a multivariate HMM:

Γ =



0.90 0.02 0.02 0.06

0.09 0.80 0.02 0.09

0.09 0.02 0.80 0.09

0.06 0.02 0.02 0.90


.

The corresponding stationary distribution, δ = (0.41, 0.09, 0.09, 0.41), indicates

that the process is in either of the two states corresponding to synchronicity, i.e.

(1, 1) or (2, 2), 82% of the time. For the state-dependent distributions, we assume

Y
(1)
t |S

(1)
t ∼


N (2, 1.5) if S

(1)
t = 1

N (6, 1.5) if S
(1)
t = 2

, Y
(2)
t |S

(2)
t ∼


N (2, 1.5) if S

(2)
t = 1

N (5, 1.5) if S
(2)
t = 2

From the CHMM described above, we generate a training data set of size T = 1000,

and an additional test set comprising 100 observations. The following models are

fitted to the simulated data: two separate univariate 2-state HMMs, a multi-

variate 2-state HMM, and a 2 × 2 Cartesian product CHMM, in each case with

state-dependent normal distributions. All models are fitted using numerical max-

imisation of the likelihood. Subsequently, we compare the true and estimated pa-

rameters of the state-dependent distributions (estimation accuracy, Section 3.1),
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Figure 3: Estimated state-dependent densities obtained in 1000 simulation runs.
The upper panel displays the results of the fitted CHMMs, the middle panel cor-
responds to the multivariate HMMs, and the bottom panel to the estimated uni-
variate HMMs. The black lines show the true underlying densities.

the number of correctly decoded states based on the Viterbi algorithm (classifica-

tion performance, Section 3.2), and the conditional likelihood of the test set given

the training data (forecasting performance, Section 3.3). We repeat these steps

1000 times and compare the results across simulation runs.

3.1 Estimation accuracy

Figure 3 displays the state-dependent densities as obtained in the 1000 runs, for

each of the three model formulations considered. Under the correct CHMM spec-
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ification, but also under the incorrect model specification using two separate uni-

variate HMMs, the true state-dependent densities were generally well recovered in

the estimation. In other words, even when neglecting the correlation of the two

state processes the estimation is fairly accurate at the level of the observation pro-

cess. However, the situation is fundamentally different when the correlation of the

two state sequences is effectively overestimated, i.e. when using the multivariate

HMM formulation, which amounts to assuming the state processes to be com-

pletely synchronous. Whenever the simulated state variables S
(1)
t and S

(2)
t differ,

the multivariate HMM with its single underlying state process cannot correctly

identify the state combination anymore — it effectively distinguishes the pairs

(1, 1) and (2, 2). At those instances, the implicit state allocation is dominated by

the Y
(1)
t process with its more clearly distinct state-dependent distributions. As a

consequence, true state pairs (1, 2) and (2, 1) are effectively modelled as (1, 1) and

(2, 2) pairs, respectively, such that the estimators of the state-dependent distribu-

tions of the Y
(2)
t process are heavily biased (towards a middle ground).

3.2 Classification

The comparison of the classification performance is based on the globally decoded

Viterbi state sequences as obtained for both the training and test data, respec-

tively. Table 1 displays the average percentage of falsely decoded states across all

simulation runs under the univariate, multivariate and CHMMs, respectively. The

multivariate HMM has the largest classification error as it cannot correctly iden-
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data set CHMM multi. HMM uni. HMMs

training data set 5.7 19.7 8.1
test data set 6.0 19.7 8.3

Table 1: Average percentage of falsely decoded states in the Viterbi sequence.

tify the state pair if S
(1)
t 6= S

(2)
t . The CHMM outperforms the univariate HMMs

as the latter do not take into account the interaction dynamics between the two

state processes, which help to inform the decoding.

3.3 Forecasting performance

To compare the forecasting performance, we consider the conditional log-likelihood

of the test set given the training data, L(Ytest, θ̂|Ytraining). The CHMM had the

largest conditional log-likelihood in 85.4% of all runs (this number increases to

99.8% when increasing the sample size of the training set to 5000 and the size of

the test set to 500).

In summary, our simulations show that misspecifications of the dependence struc-

ture in the state process have various undesirable consequences. Erroneously mis-

taking two separate, highly correlated state sequences for a single state sequence

led to substantially biased estimators, a high classification error and poor forecast-

ing performance. Distinguishing two such state sequences but failing to account for

their correlation negatively affected the forecasting and classification performance.
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4 Case studies

We illustrate the application of CHMMs in two case studies. First, we analyse

movements of a dolphin mother and its calf using a Cartesian product CHMM.

Subsequently, we apply a CMSR model to data on vital signs of patients hospi-

talised in the intensive care unit (ICU), controlling for sex and age. Parameters

were estimated via numerical likelihood maximisation using the R function nlm (R

Core Team, 2018).

4.1 Movements of dolphin mother and calf

HMMs are routinely used to analyse animal movement data, with the model’s state

process interpreted as a proxy for an animal’s behavioural modes (e.g. resting, for-

aging or relocating) determining the observed movement patterns (Langrock et al.,

2012). Here we consider movement data from a bottlenose dolphin mother and calf

pair which was simultaneously tagged with 3D accelerometers and magnetometers

for ∼18 hours. Our analysis focuses on the tortuosity of the movement across

10-second intervals, i.e. a measure of how tortuous the dead-reckoned track of the

animal is. This results in T = 6546 tortuosity observations per animal. The values

lie in the interval [0, 1) with 0 corresponding to straight-line movement.

It is certain that the two animals interact, i.e. that the behaviour of mother and

calf influence each other. To account for these interactions, instead of fitting

two univariate HMMs separately to both individuals, we consider CHMMs within
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which the two animals’ separate behavioural state sequences are correlated. To

avoid restrictive assumptions regarding the interaction, we use a Cartesian product

CHMM with bivariate state vectors — indeed the AIC favoured this “full” CHMM

over the alternative model formulations that involve more restrictive assumptions

(an AIC-based model comparison is provided in the Online Supplementary Ma-

terial). Tortuosity was modelled using state-dependent beta distributions. The

observed zeros (2.5% for the mother, 0.2% for the calf) were shifted by very small

positive random numbers to avoid additional parameters corresponding to point

masses on zero — this procedure is clearly not generally advisable, and is used

here only to simplify the modelling exercise in this case study. We expect that

tortuosity in general might reflect multiple different behavioural regimes, from

directed resting and travel behaviours to more tortuous back-and-forth scanning

movements during biosonar-based foraging, to high tortuosity circling and rapid

turning behaviours in connection with prey capture. Thus, for each of the two

individuals we considered N = 3 states.

The estimated state-dependent beta distributions are displayed in Figure 4. For

both animals, the model identifies similar movement patterns, with state 1 cap-

turing low tortuosity values (approximate straight-line movement; means 0.004

and 0.005 for mother and calf, respectively), state 2 accommodating any moder-

ately large tortuosity values (0.026 and 0.029), and state 3 associated with the

most tortuous movements (0.228 and 0.231). According to the fitted CHMM, the

movement patterns evolve almost synchronously, with the bivariate states (1, 1),



Coupled state-switching models 21

0.0 0.2 0.4 0.6 0.8 1.0

0
1

5
20

tortuosity mother
de

ns
ity

state 1
state 2
state 3

0.0 0.2 0.4 0.6 0.8 1.0

0
1

5
20

tortuosity calf

de
ns

ity

Figure 4: Estimated state-dependent distributions for tortuosity of the dolphin
mother and calf, respectively, weighted by the stationary distribution of the bi-
variate Markov chain.

state (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

probability 0.339 0.013 0.002 0.004 0.404 0.015 0.001 0.004 0.218

Table 2: Steady-state (stationary) probabilities of the state process as implied by
the estimated TPM.

(2, 2) and (3, 3) clearly dominating the state process (Table 2). According to the

Viterbi-decoded state sequence, the dolphins occupied different behavioural modes

in only 4% of all 10-second intervals considered. The corresponding observations

are highlighted in Figure 5, indicating the calf’s movement to occasionally be more

tortuous than the mother’s movement towards the end of the time series (poten-

tially related to the calf foraging independently of the mother). The identification

of such differences can be used as a starting point for further biological inference.

For example, environmental covariates could be incorporated for further investi-
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Figure 5: Tortuosity time series of dolphin mother and calf, with states differing
between mother and calf highlighted in colour.

gations into the role and the causes of different state combinations. Overall, the

results suggest that the movement behaviour of mother and calf is well adapted

to each other.

4.2 Electronic health record data

In our second case study, we analyse electronic health record data of patients

hospitalised in the ICU of the Ronald Reagan UCLA medical center. We use a

subset of the data also considered in Alaa and van der Schaar (2018) and Alaa

et al. (2018). ICU patients usually suffer from severe illnesses and injuries and are

intensively observed by the nurses and physicians. However, as the patients un-

dergo an increased risk, it is important to understand the progression of diseases
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and to identify early indications of a forthcoming deterioration. Modelling and

analysing the physiological processes over time could help to detect critical devel-

opments early and support the decision-making of the physicians. State-switching

time series models provide an intuitive and convenient framework for modelling

the evolution of a system over time, and hence to quantify the risk of an impending

deterioration of a patient’s health state.

The data contain hourly measurements of four major vital signs: heart rate (in

beats per minute, bpm), respiratory rate (in breaths per minute, bpm), systolic and

diastolic blood pressure (in millimetre of mercury, mmHg). We did not consider

diastolic blood pressure as it is strongly correlated with systolic blood pressure

(Pearson correlation of 0.58). The data set further contains information about sex,

age, admission type and location for each patient. The medical diagnosis, however,

is omitted. In order to reduce the substantial patient heterogeneity caused by the

underlying diseases, in this case study we consider only the patients who undergo

dialysis, and restrict our analysis to patients with known sex and age who stayed

in the ICU for more than 24 hours. This results in a sample size of T = 110, 964

hourly observations from 696 hospitalised patients (44% female; age 17-89 with a

median of 62; 1-80 days in ICU with a median of 4 days).

The observed vital signs do not evolve synchronously over time — for example,

an increase in the heart rate is not necessarily accompanied by a change in blood

pressure (cf. Figure 6). To account for such asynchronous evolution of the vital

signs and the associated state of body functions, we consider a Cartesian product
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Figure 6: Example time series for heart rate and systolic blood pressure, respec-
tively. The red lines highlight intervals with an elevated heart rate that does not
seem in synchronity with the evolution of the observed systolic blood pressure.

CMSR model with three states per vital sign, thus 27 state combinations in total.

The model formulations with more restrictive dependence assumptions were again

inferior in terms of the AIC (a more detailed comparison is provided in the On-

line Supplementary Material). All vital signs are modelled using state-dependent

normal distributions, with the corresponding means additionally depending on the

covariates sex and age:

µm,i = β0,m,i + β1,m,i · I{female} + β2,m,i · age,

for vital sign m ∈ {HR,RR, sBP} and corresponding state i = 1, 2, 3 (the patient

index is omitted to simplify notation).
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Figure 7: Estimated state-dependent distributions for heart rate, respiratory rate
and systolic blood pressure, respectively, for 62-year-old males.

Figure 7 illustrates the estimated state-dependent distributions for male patients

with the median age 62. For each of the three vital signs, states 1, 2 and 3

effectively correspond to low, medium and high values, respectively. Some of the

vital signs’ underlying states allow for a direct interpretation: for example, the

third systolic blood pressure state captures high values which may indicate some

form of hypertension, the third respiratory rate state captures abnormally rapid

breathing. However, for other states, the interpretation is less clear. Figure 2 in

the Online Supplementary Material shows an example Viterbi state classification

under the model, illustrating that the model captures meaningful patterns..

Table 3 gives the estimates of the parameters associated with the state-dependent

process, showing only small effects of the covariates considered. According to the

model, we would expect to observe slightly lower heart rates, respiratory rates and

systolic blood pressures for older patients. In case of respiratory rate and systolic

blood pressure this is an unexpected result, which may be due to the exceptional

circumstance of the patients considered being treated in the ICU. The estimated
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effects of the sex are relatively small.

heart rate (m = 1) resp. rate (m = 2) blood press. (m = 3)

β0,m,1 70.40 (0.09) 15.09 (0.04) 95.50 (0.12)

β1,m,1 (female) -0.08 (0.12) -0.09 (0.05) 0.31 (0.15)

β2,m,1 (age) -1.31 (0.06) 0.09 (0.03) -1.60 (0.11)

σ2
m,1 7.85 (0.03) 3.38 (0.02) 11.53 (0.05)

β0,m,2 87.64 (0.08) 20.97 (0.05) 116.30 (0.15)

β1,m,2 (female) -0.09 (0.12) -0.22 (0.06) 0.46 (0.13)

β2,m,2 (age) -2.57 (0.05) -0.02 (0.04) -2.51 (0.10)

σ2
m,2 6.35 (0.03) 3.23 (0.02) 11.85 (0.06)

β0,m,3 108.97 (0.12) 27.82 (0.07) 145.63 (0.20)

β1,m,3 (female) -0.62 (0.15) 0.18 (0.10) 1.87 (0.22)

β2,m,3 (age) -3.42 (0.08) -0.23 (0.04) -3.28 (0.10)

σ2
m,3 11.57 (0.05) 5.22 (0.03) 18.02 (0.09)

Table 3: Estimated parameters (and standard errors) associated with the state-
dependent distributions for heart rate, respiratory rate and systolic blood pressure,
respectively.

The diagonal elements of the estimated 27 × 27 TPM, i.e. the probabilities to

remain in the current state, lie between 0.830 and 0.922, indicating persistence in

all bivariate states. The off-diagonal elements as displayed in Figure 8 illustrate

the estimated state dynamics. Most transition probabilities are estimated close to

zero, with only infrequent abrupt switches from ‘low value’ states to ‘high value’

states. In some instances, the heart rate’s state variable seems to dominate the

process. For instance, given state vector (1, 2, 2), the process is more likely to

switch to state (1, 1, 2) than (2, 2, 2), and given state (2, 1, 1), transitions to state

(2, 1, 2) or (2, 2, 1) are more likely than a switch to (1, 1, 1) — these could be

indications that the other state variables tend to adapt to the heart rate’s state
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Figure 8: Off-diagonal elements of the estimated transition probability matrix.
The diagonal entries lie between 0.830 and 0.922.

variable. Overall, according to the stationary distribution, the most probable state

combination is (2, 2, 2), hence the ‘medium value’ state for all vital signs.

The main advantage of the full Cartesian product CMSR model is that it allows us

to derive a completely data-driven dependence structure of how the multivariate

state process evolves over time. While our model is still somewhat simplistic,

e.g. with regard to the conditional independence assumption, it offers an idea of

the type of inference that can be gleaned on the joint evolution of heart rate,
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respiratory rate, and blood pressure. Such results could be used for example to

develop risk scores based on the probabilities to switch to deterioration states, or

to cluster the different courses of diseases based on the patients’ Viterbi sequences.

5 Discussion

CHMMs constitute a natural extension of basic HMMs to address scenarios with

multiple time series whose underlying state processes interact. The explicit mod-

elling of dependencies between the state variables can increase estimation accuracy,

may decrease state classification error, and generally provides new opportunities for

meaningful inference related to the correlation between processes. The potential

of CHMMs has already been recognised in particular in engineering, where these

models have been applied in various classification and signal processing tasks such

as action recognition (Brand et al., 1997), audio-visual speech recognition (Nefian

et al., 2002), bearing fault recognition (Zhou et al., 2016), and EEG, ECG and

PCG classification (Michalopoulos and Bourbakis, 2014; Oliveira et al., 2002). Due

to technological advances for example in animal tracking and in electronic health

recordings (as illustrated in Section 4), and generally the rapid growth in the

amount of multi-stream data collected, we anticipate CHMMs to gain popularity

also in other statistical modelling tasks such as forecasting or general inference on

data-generating processes. In addition to the application areas showcased in the

present paper, CHMMs could for example be useful to model the spread of infection
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Figure 9: Possible hierarchical model with a global state Gt determining the indi-
vidual states S

(1)
t and S

(2)
t , which in turn determine the distribution of the observed

variables, Y
(1)
t and Y

(2)
t .

in individual-based epidemic models (Touloupou et al., 2020), for exploiting de-

pendencies between different economic markets in financial risk management (Cao

et al., 2019), or to accommodate the spatio-temporal correlation of meteorological

and geophysical time series (Stoner and Economou, 2019).

The main barrier to CHMMs becoming much more widely used in applied statis-

tics is the models’ complexity arising from a curse of dimensionality: the number

of model parameters very rapidly increases as the number of state variables or

the number of states per variable increases, leading to high computational costs

and numerical problems. Without imposing constraints on the model structure,

CHMM-based analyses thus risk being limited to scenarios with only moderate

numbers of variables and states. One possible way forward may be `1 regularisa-

tion as suggested by Bolton et al. (2017), who use penalised estimation to arrive
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at a sparse dependence structure. We also expect alternative non-standard de-

pendence structures for modelling interactions to become of increasing interest.

For example, for interacting animals, it would be conceptually appealing (and

mathematically convenient) to formulate models that are built around a global

(“herd-level”) sequence of states G1, . . . , GT , such that at any time t the M in-

dividual states S
(m)
t , m = 1, . . . ,M , are drawn from a distribution determined

by Gt (see Figure 9 for an illustration with M = 2). Such a model would not

suffer from the curse of dimensionality, yet the global state process would still

induce correlation between individuals, with the individuals’ state processes oc-

casionally deviating from the dominant group pattern (similar in spirit to, e.g.,

Zhang et al., 2006, Langrock et al., 2014). Mathematically, this model is simply

an HMM with state-dependent mixture distributions, such that inference would

be straightforward. The investigation of such alternative dependence structures

as well as efficient and robust inferential approaches for conventional CHMMs are

promising avenues for future research.
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