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Abstract Survival is a key demographic characteristic in many areas including both human
demography and population ecology. However, it is often the case that data collection proto-
cols are different in these areas, resulting in different models and methods of analysis. This
paper is motivated for the different emphasis given to the elicitation of the temporal scale
(and consequently, on the origin time) in ecological and medical survival studies. Specifi-
cally, in medical studies, the origin time is often determined in advance with individuals fol-
lowed over a period of time at regular (or irregular) intervals, thus focusing on time within
study (or age to a given reference point). However, in ecological capture-recapture studies,
the capture occasions are typically fixed in advance, with an imperfect detection process ob-
serving individuals at these times. Moreover, the temporal scale is often primarily specified
at the capture occasion level. In this work we focus on an ecological capture-recapture study
related to guillemots and compare and contrast two different temporal scales: (i) calendar
(or capture occasion); and (ii) age (or time within study), in terms of the way the data may be
represented and in relation to the ecological Cormack-Jolly-Seber-type model. The different
temporal scales provides insights into the different underlying structures, which can then be
combined into a joint (calendar and age) dependence model.

Keywords Age scale · Bayesian inference · Calendar scale · Capture-recapture · Temporal
scale · Survival analysis

1 Introduction

Survival analysis is an area of research of special relevance in many fields such as agronomy,
ecology, engineering and medicine (among others). Although in all these fields the final
objective is often the same, consisting of the estimation of time to the occurrence of events,
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differences on the way data are collected often result in different models and associated
statistical methods. We discuss the different ideas associated within the application areas of
medicine and ecology, and in particular focus on the natural temporal scales that arise from
the different data collection processes, with the aim of borrowing ideas from medicine to
better understand the representation and modelling of ecological capture-recapture data.

In the context of medical survival studies, one of the main requirements which is com-
monly performed at the beginning of the experiment, is that the origin time (time zero)
must be unambiguously defined for each individual. The time scale of the study also needs
to be specified. See Table 1 for different choices of origin time and time scales. Indeed,
the use of different temporal scales may result in different inferences and interpretations
(28; 29; 8; 49).

Table 1: Examples of possible choices of origin time and time scales in medical studies extracted from (20).

Time zero Time scale

Birth Age
Diagnosis of disease Duration
Entry into state Waiting time
Bleeding Duration of pregnancy
Start of treatment Length of treatment
Baseline measurement Calendar time

In ecological studies, survival probabilities (and hence time to death) are often the main
interest and monitoring data are frequently obtained using a capture-recapture protocol (al-
though there are other data collection methods). This involves a series of capture occasions
whereby at each occasion individuals are observed, uniquely identified (possibly by artificial
means such as tag or ring) and released. For simplicity, we assume a single capture occasion
each calendar year. The data correspond to the capture histories of each individual observed
within the study. A large class of associated capture-recapture models have been developed
over many decades to estimate the survival probabilities of interest (31; 42; 27; 26; 47). In
particular, the Cormack-Jolly-Seber (CJS) model (11; 21; 46) is the basis for many open pop-
ulation capture-recapture-type models, including, for example, capture-recapture-recovery
models (with the inclusion of additional dead recoveries; 5; 6; 44), multi-state (Arnason-
Schwarz) models (for discrete time-varying individual states; 4; 45; 23; 25), multi-event
models (that allow for additional state-uncertainty; 39), continuous time-varying individual
covariate models (1; 24; 30); spatially explicit capture-recapture models (including addi-
tional spatial information; 2); random effect models (42); and stopover models (modelling
recruitment into the population; 37).

In the traditional CJS-type models, the (apparent) survival probabilities (referred as ap-
parent since death and unavailable for recapture are usually confounded) are estimated and
expressed in terms of annual survival (or survival between capture occasions) due to, in gen-
eral, wild animals having a natural yearly life-cycle. However, more importantly, the elicita-
tion of the temporal scale is not always addressed in such studies, the standard choice often
being the capture-occasion (or calendar) scale. In this context, for standard CJS models, the
time zero for a given observed individual naturally corresponds to the capture-occasion on
which the individual is marked (and hence enters into the study at this time), and the model
conditions on this initial capture time for the given individual. This can be extended when
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age at capture is recorded, leading to time zero corresponding to “age 0” (which may be
prior to the initial capture occasion), and the development of age-dependent models which
often include a “first-year” or “immature” dependence to account for young individuals
typically having a higher mortality rate than older birds (34; 33). Stopover models further
extend these ideas, by treating time zero as unknown within the model so that the time of
arrival in the study may be before their first capture, also extending the set of parameters to
include arrival probabilities, and removing the conditioning on the initial capture time for
each individual.

In this work we present a comparison between two different temporal scales (age and
calendar) and discuss the presentation of the data using the different scales in the context of
ecological capture-recapture models. We illustrate the usefulness of age scale in this context
(typically used in medical studies) as well as describe both the differences and similarities
in the notation and interpretation of parameters depending on the scale used. In particular,
we present the CJS model in the alternative age scale (both in state-space and multinomial
model formulation) before incorporating both age and time dependence. We apply the mod-
els to the largest colony of common guillemot (Uria aalge) in the Baltic Sea (Stora Karlsö,
Sweden) to estimate the juvenile survival probability of interest.

After this introduction, the remaining of the paper is as follows. Section 2 presents
the notation associated with capture-recapture studies and the different parameterisations
depending on the scales, while in Section 3 we extend the dependence structure to age
and time and discuss the general expression of the CJS models in both state-space and
multinomial formulations. Section 4 presents the application of the model in a real example,
and finally Section 5 concludes.

2 Notation

In this section we present the notation associated with capture-recapture studies, and in
particular focus on the different parameterisations based on the different temporal scales
of the model parameters (i.e. capture occasion or age). Further we discuss the associated
representation of the data for the different temporal scales.

Let i= 1, . . . ,N denote the individuals observed within the study period; and t = 1, . . . ,T
the associated capture occasions. For notational simplicity we assume that the capture oc-
casions correspond to an occasion within a calendar year, so that we refer to the temporal
scale of the capture occasion to be (calendar) year (but this is clearly more general). Further,
we define A= {0, . . . ,A} to be the set of possible (natural) ages for an individual within the
study period (age 0 corresponds to individuals in their first year of life). Note that in prac-
tice (as for our case study) the upper limit, A, will often correspond to an individual of at
least age A (for example, when it becomes an adult). We let ai0 denote the age of individual
i at initial capture; and a0 = {ai0 : i = 1, . . . ,N} the set of initial ages for the individuals
observed within the study. Further we let A0 = {0, . . . ,A0} denote the set of initial ages. If
ai0 = 0 for all i = 1, . . . ,N (i.e. all individuals enter into the study at age 0), then their age
at each subsequent capture occasion is equal to the length of time an individual would have
been in the study, akin to the temporal scale of medical studies of time (so that A0 = 0 and
A = T �1). Alternatively, if individuals may be observed at different ages at initial capture,
the combination of their initial age at capture and time since initial capture corresponds to
their (natural) age at any given capture occasion (and the maximum age of an individual
within the study is equal to A = A0 +T �1).
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2.1 Data representation

The data correspond to the set of observed capture histories of each individual observed
within the study. This is typically expressed in terms of the capture occasion as the temporal
scale. We let:

yit =

⇢
0 individual i is not observed at capture occasion t;
1 individual i is observed at capture occasion t.

The capture history of individual i is then denoted yi = {yit : t = 1, . . . ,T}; and full set of
capture histories by y = {yi : i = 1, . . . ,N}. If individuals can be observed at different ages,
this is also recorded as an observed (discrete) covariate for each individual. Further we let fi
denote the capture occasion on which individual i is first observed; and set f = { f1, . . . , fN}.
Finally we introduce the idea of cohort w = 1, . . . ,T � 1 such that individual i belongs to
cohort w if fi = w (i.e. individual i is observed for the first time on capture occasion w).
Thus, although other options are possible, in this work cohort is defined on the capture
occasion (or calendar year) scale. We consider the general case where individuals may enter
into the study at different ages so that individuals belonging to the same cohort may be of
different ages; if all individuals are observed at the same age at initial capture, then cohort
and age are interchangeable.

Alternatively, and akin to how such studies are recorded within medical studies, we can
present the data in terms of the age of an individual (which in turn can be sub-divided into
the initial age of an individual combined with length of time in the study). This represents a
focus on the (natural) age of an individual as a primary factor within the study, for example,
due to the life cycle of the given species. We note that the transforming of the data to the
age scale, if this is the relevant temporal scale within the study, may provide a more useful
representation. For example, the capture histories can be equivalently presented in terms of
the capture histories from only the initial capture, corresponding to yi = {yit : t = fi, . . . ,T :
i = 1, . . . ,N} (thus removing the trailing zeroes), combined with the initial age ai0. The
corresponding capture histories will then be of different lengths, dependent on time of first
capture. If all individuals are observed at initial age 0, this presentation of the data highlights,
for example, the decreasing sample size of individuals as age increases. The difference in
representations between the calendar year and age temporal scales of the capture histories
is illustrated in the toy example presented in Figures 1 and 2. Figure 1 on the left shows
capture-histories in the standard calendar scale, and on the right the same individual histories
but in age scale. In order to highlight the differences between the temporal scales, in this
simple case we assume that all individuals are age 0 at their initial capture (i.e. ai0 = 0 for all
i). If individuals differ in (natural) age at initial capture then there will be additional “steps”
observed in the right hand plot of Figure 1 with age and “time in study” not equivalent
to each other. Figure 2 shows cohorts 1, 2 and 3 in age (top) and calendar scale (bottom)
corresponding to the same individuals in Figure 1. Note that the later the cohort, the smaller
the number of occasions or the maximum “time in study” value (in calendar and age scale,
respectively). This can be explained since as the cohort number increases, the number of
possible capture occasions after initial capture decreases.

2.2 Parameter dependence

The commonly used Cormack-Jolly-Seber model has two sets of parameters corresponding
to the survival probabilities and observation (or capture) probabilities. These parameters are
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Fig. 1: Toy example representing the different structure of the same individual capture-recapture histories in
calendar (on the left) and age scale (on the right) assuming all individuals are zero years old at the beginning
of the study (i.e. ai0 = 0). Rows represent individuals (n=300), orange lines represent non information, red
lines indicate that individual has not been seen, and black lines represent that the individual has been seen.
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Fig. 2: Capture-histories of cohorts 1, 2 and 3 in age (top) and calendar scale (bottom) of individuals of
the toy example in Figure 1. Rows represent individuals, orange lines represent non information, red lines
indicate that individual has not been seen, and black lines represent that the individual has been seen. In this
toy example we assume the initial age is zero years old for all the individuals (i.e. ai0 = 0).
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typically assumed to be dependent on the capture occasion. In particular the model parame-
ters (allowing for additional individual heterogeneity) are given by:

fi,t = P(individual i is alive at time t +1 | alive at time t); and
pi,t+1 = P(individual i observed at time t +1 | alive at time t +1),

for i = 1, . . . ,N and t = 1, . . . ,T � 1. Survival from one capture occasion to the next may
change temporally due to, for example, weather conditions, food availability etc. Similarly,
the capture probability may be dependent on the effort at the given occasion, or local con-
ditions for observing individuals. For a more detailed explanation of the CJS models in
calendar scale, see for example, (31), (3), (16), (27), (33) and (47), among many others.

Alternatively, the age (or time in study) scale suggests the analogous parameters given
by:

yi,a = P(individual i is alive at age a+1 | alive at age a); and
hi,a+1 = P(individual i observed at age a+1 | alive at age a+1),

for i= 1, . . . ,N and a= 0, . . . ,A�1. The parameters typically reflect the life cycle of an indi-
vidual, for example, from juvenile to breeding adult where the different life stages (i.e. ages)
may affect both their survival and capture probabilities based on age-related behaviour. Age
has been incorporated into capture-recapture analyses, with the first-year survival probabil-
ity often a key component for biologically realistic models (14; 7).

The differences between both scales can be easily visualised in Table 2, where we
present a particular example of an individual marked as a chick in 2009 (i.e., ai0 = 0),
observed in years 2011, 2012 and 2014 (red = observed, orange = not observed), that dies
in 2016 (green = alive, black = dead). Table 2 includes both scales and the associated model
parameters along with the different possible values for t and a. As mentioned above, the age
scale provides a more intuitive interpretation of the parameters when age is the main focus,
as they are directly indicating the age of the individual: the probability that an individual
aged a survives one year (instead of the probability that an individual in year t survives un-
til the next year) and the probability that an alive individual aged a is seen (instead of the
probability that an alive individual is seen on occasion t).

Clearly parameterising the model parameters in terms of the different temporal scales
leads to very different interpretations (as it can be appreciated at Table 2). Both forms of
dependence may be appropriate dependent on the system; and in particular both temporal
scales may be important. We describe how we can incorporate both temporal scales by
extending the dependence structure of the parameters (and also consider the implications
for the data representation).

3 CJS models with year and age temporal scales

We present the general formulation of the CJS models with combined year and age as
the reference temporal scales. The year-only or age-only models can then be seen as spe-
cial cases of this general case. We present two (equivalent) formulations: state-space and
multinomial. The state-space formulation provides an intuitive model formulation (42; 22);
whereas the multinomial formulation is mathematically efficient and permits additional ab-
solute goodness-of-fit tests to be applied (33).
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State-Space formulation

Assuming that capture occasions are annual, let Zi,a,t be the latent variable that describes the
true state of individual i at age a and time t = fi +a�ai0 for a = ai0, . . . ,ai0 +T � fi for all
i = 1, . . . ,N. We note that given the initial capture time ( fi), associated age at initial capture
(ai0) and subsequent age of the individual (a), the capture occasion (t) is deterministically
calculated. However we retain the notation on both age (a) and capture occasion (t) for
ease of comparison between the age and temporal scales. The possible states are alive and
available for capture, Zi,a,t = 1, and dead and not available for capture (i.e. dead or migrated
from study), Zi,a,t = 0.

The corresponding survival process is given by,

Zi,a+1,t+1|Zi,a,t = zi,a,t ⇠ Bernoulli(zi,a,tyi,a,t), (1)

for i= 1, . . . ,N and a= ai0, . . . ,ai0+T � fi�1 such that t = fi+a�ai0, where yi,a,t denotes
the annual survival probability of individual i aged a at time t to time t+1. When the interest
is focused on the survival at different ages, this parameter has an intuitive interpretation, as
it represents the probability that an individual aged a at time t survives one year.

Let Yi,a,t denote a binary variable that describes whether individual i = 1, . . . ,N is ob-
served or not at age a and time t = fi +a�ai0, given it is alive and available for capture at
time t for a = ai0 + 1, . . . ,ai0 +T � fi . The possible observations are seen (Yi,a,t = 1), and
not seen (Yi,a,t = 0). The observation process is then given by,

Yi,a,t |Zi,a,t = zi,a,t ⇠ Bernoulli(zi,a,thi,a,t), (2)

for i= 1, . . . ,N, and a= ai0+1, . . . ,ai0+T � fi such that t = fi+a�ai0, where hi,a,t denotes
the recapture probability of individual i at age a and time t given it is alive (i.e. available for
capture).

Assuming independence between individuals, and conditional on the first capture, the
associated likelihood function of the survival and observation states is equal to the product
over each individual of the corresponding survival and observation likelihood components:

`(Y,Z|q) =
N

’
i=1

" 
ai0+T� fi�1

’
a=ai0

pz(Zi,a+1, fi+a�ai0+1|Zi,a, fi+a�ai0 ,q)

!

| {z }
`state

⇥
 

ai0+T� fi

’
a=ai0+1

py(Yi,a, fi+a�ai0 |Zi,a, fi+a�ai0 ,q)

| {z }
`obs

!#
,

(3)

where q = {y,h} represents the vector of all the parameters of the model, pz and py are
the (Bernoulli) probability functions of the state and observation processes respectively, and
`state and `obs the likelihood terms related to the state and observation process for each
individual, respectively. The observed data likelihood, `(Y |q), is obtained by summing out
over the Z values.

Alternatively in calendar scale, if we extend the dependence structure to incorporate
both temporal scales (age and time), model parameters have the same interpretation as in
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age scale:

fi,t,a = P(individual i is alive at time t +1 and at age a+1 | alive at time t and at age a);
pi,t+1,a+1 = P(individual i observed at time t +1 and at age a+1 |

alive at time t +1 and at age a+1),

for i= 1, . . . ,N and t = fi, . . . ,T �1 such that a= t� fi+a0, and fi,t,a =yi,a,t , and pi,t+1,a+1 =
hi,a+1,t+1).

Multinomial formulation

Capture-recapture data are often summarised in the form of m-arrays (33). The m-array sum-
marizes the number of individuals released at each capture occasion and subsequently next
observed again at each future capture occasion, or are unobserved again within the study, and
are thus typically specified in the calendar scales. When there is additional age dependence,
separate m-arrays are constructed for each age, in terms of age at release. This m-array for-
mulation is often preferred as it leads to an efficient multinomial likelihood specification, as
opposed to a product over multiple Bernoulli functions, with an associated significant reduc-
tion in computing time (31). However, a particular disadvantage of this formulation is that
not all models can be fitted within this framework, such as individual random effect models,
as the individual capture histories are not retained in this structure. In what follows, we will
explain in detail the m-arrays specified in age scale, however, for a detailed description of
m-arrays in calendar scale see for example, (27; 31; 33; 47).

The m-arrays in age scale summarizes, in the form of sufficient statistics, the number of
individuals released at each given age that are next captured at each subsequent age, or not
observed again within the study, for each cohort within the study and age at first capture.
The corresponding summary statistics correspond to an upper triangular matrix in which
rows (denoted by a) correspond to age of release and columns (denoted by c) to age at next
recapture. We note that the number of rows and columns within an m-array will depend
on the cohort, as this determines how many future capture occasions are available for an
individual to be released or recaptured (recall that a cohort is defined in terms of initial
capture time).

We note that presenting the m-arrays in the different temporal scales an immediate differ-
ence appears: the number of m-arrays needed. In age scale, the number of m-arrays needed
will differ depending on whether individuals enter into the study at different ages (general
scenario) or they have a common initial age (simplest case), independently of the model
used. In particular, the number of m-arrays per cohort is equal to the number of different
initial ages observed. Alternatively, specifying the m-arrays within the calendar scale, only
one m-array per age is required. Nevertheless, we note that for the age-scale in the simplest
scenario where all the individuals have a common initial age, the number of m-arrays needed
and their construction is arguably simpler, with only one m-array required for each separate
cohort. Further, the number of rows and columns of each m-array in age scale also depends
on the given associated cohort. In particular, for cohort w = 1, . . . ,T � 1, and initial age at
capture, a0, the rows are labelled by age, a, such that a= a0, . . . ,T �w+a0, and the columns
labelled by age at next recapture, c, such that c = a0+1, . . . ,T �w+a0+1. Hence, the later
the cohort the smaller the number of rows and columns of the associated m-array. As usual,
each m-array contains an additional column corresponding to individuals never recaptured
(column number T �w+a0 +1 in age scale).
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In age scale, the element (a,c) of the age m-array of cohort w and initial age a0, denoted
ma,c,w,a0 , represents the number of individuals with initial age a0 that belong to cohort w
and which were released at age a and next captured at age c, for a = a0, . . . ,T �w+a0 �1
and c = a0, . . . ,T �w+ a0. By construction, ma,c,w,a0 = 0 for c  a (the matrix is upper
triangular). Further, ma,(T�w+a0+1),w,a0 denotes the number of individuals that enter the study
at initial age a0 that belong to cohort w that were released at age a and subsequently not
observed again during the study (final column of the m-array). Further Ra,w,a0 = Âc ma,c,w,a0
represents the number of individuals with initial age a0 that belong to cohort w, which were
released at age a (i.e Ra,w,a0 corresponds to the sum of the elements in row a from cohort w
and initial age a0). Clearly,

ma,(T�w+a0+1),w,a0 = Ra,w,a0 �
T�w+a0

Â
c=a0+1

ma,c,w,a0 ,

for a = a0, . . . ,T � w + a0 � 1. Denoting qa,c,w,a0 the corresponding cell probabilities of
the m-arrays, the expected values of the entries of the m-array (equal to Ra,w,a0 ⇥ qa,c,w,a0 )
are a function of the model parameters and the observed number of released individuals
(Ra,w,a0 ). Finally, we note that necessarily, for each cohort, w and initial age of release a0, the
row sums of the given cell probabilities sum to unity, i.e. ÂT�w+a0+1

c=a0+1 qa,c,w,a0 = 1, for each
a = a0, . . . ,T �w+ a0 � 1. Alternatively, and for similarity with standard notation within
the statistical ecology literature, we let ca,w,a0 (= qa,T�w+a0+1,w,a0) denote the probability
that an individual from cohort w, aged a0 at initial capture is not observed again following
their release at age a.

By contrast for calendar scale the rows and the columns of the m-array (for a given age)
correspond to release occasions (denoted by j = 1, . . . ,T �1) and next subsequent recapture
occasion (denoted by t = 2, . . . ,T ), respectively. As before, there is an additional column,
( j = T + 1), corresponding to individuals not observed again within the study following
their final release. The cell entries are typically denoted by m j,t , for j = 1, . . . ,T � 1 and
t = 2, . . . ,T + 1; with associated probabilities q j,t , where once again c j = q j,T+1. If addi-
tional age dependence is included, we require an m-array for each age a, but note that the
number of rows and columns in each corresponding m-array remain constant; notationally,
this may be represented by an additional subscript for age, a, added to the associated cell
entries/probabilities.

In order to clarify these concepts, Tables 3 and 4 present the m-arrays corresponding to
individuals with initial age a0 = 0 of cohorts 1 and 2, respectively, in a toy example where
individuals can have different initial ages, and the number of capture occasions is T = 6. For
comparison, Tables 5 and 6 present m-arrays corresponding to individuals from cohort 1 in
an example where all the individuals have a common initial age of 1 (a0 = 1) or 2 (a0 = 2)
years, respectively, once again with T = 6. Finally, in Table 7 we present the corresponding
m-array in calendar scale assuming no age dependence.

The multinomial cell probabilities differ depending on the model considered. Here we
present the likelihood related to the CJS model with age and time dependent model parame-
ters. Conditional on the numbers released and assuming independence between individuals
the likelihood is,

`(Y |q) µ
T�1

’
w=1

A0

’
a0=0

T�w+a0�1

’
a=a0

(
T�w+a0

’
c=a+1

⇣
qa,c,w,ao

⌘ma,c,w,a0

)
�
ca,w,a0

⌘ma,T�w+a0+1,w,a0 , (4)
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where, for a = a0, . . . ,T �w+a0 �1 and c = a+1, . . . ,T �w+a0,

qa,c,w,a0 =
c�1

’
k=a

yk,k+w�a0 ⇥
c�2

’
k=a

⇥�
1�hk+1,k+w�a+1

�⇤
hc,c+w�a,

and for c  a, qa,c,w,a0 = 0. We note that we specify the product over the null set to be equal
to 1, i.e. ’a�1

k=a ⌘ 1; and that the calendar time (corresponding to the second subscript of the
y and h parameters) is expressed as a function of the initial age (a0), the age of release
(a) and cohort (w). The first product in the above expression for qa,c,w,a0 corresponds to an
individual surviving from age a to age c; the second product to not being observed between
times a and c�1, before being subsequently observed at time c. For completeness we note
that the probability an individual from cohort w, with initial age a0 at age that is released at
age a is not observed again within the study can be expressed as,

ca,w,a0 = 1�
T�w+a0

Â
c=a+1

(qa,c,w,a0).

Finally we note that, further restrictions may be specified on these parameters to represent
age classes, rather than distinct ages.

Therefore, in the capture-recapture framework this model can be fitted in both calendar
and/or age scales. However, working with this model and under multinomial formulation,
the differences between scales are more remarkable regarding the presentation of the data
on the age or time scales (i.e. number of m-arrays needed).

We note that when the (full) age and/or time dependence is included in both the recapture
and survival probabilities, the corresponding CJS model is intrinsically parameter redundant
(33; 15). In particular, two parameters are confounded and not uniquely estimable, and only
their product is estimable. The non identifiable parameters are fT�1 and pT (in calendar
scale), and yA�1 and hA (in age scale, assuming the maximum age, A, is a single age, and
not a set of ages). Further identifiability issues can arise due to the observed data (when 0
cell entries are observed), for further discussion of these issues see for example, (10).

4 Survival analysis of a colony of common guillemot

In order to illustrate the differences and similarities between the age and calendar temporal
scales, we consider two models applied to a real data set. In particular we focus on (i) the
year-only and age-only models in calendar and age scale, respectively, and (ii) the time
and age dependent model (equivalent for both the age and calendar scales). We present the
analysis of a database obtained from monitoring programs carried out by the Baltic Seabird
Project from 2006 until 2016 (so that T = 11) in the largest colony of common guillemot
in the Baltic Sea (Stora Karlsö, Sweden). For each year of the study chicks were captured
and individually ringed (with metallic and plastic rings) after jumping from the ledges at
an age of about 20 days. Thus, for this study all the individuals were ringed at a common
initial age of zero years old, i.e. ai0 = 0 for i = 1, . . . ,N. The total number of individuals
ringed during this study period was N = 28 930. During their reproductive period (May to
July), resightings with telescopes and binoculars were made from above the breeding ledges
with minimal disturbance in order to identify marked individuals through the reading of
the metallic and/or plastic ring codes (recaptures). We note that for this example we work
with the simplest scenario where we need only construct one m-array per cohort (a total
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Table 7: General m-array in calendar scale: released (R j), observed individuals (m j,t ) and cell probabilities
(q j,t and c j), for T = 6

First Recapture occasion

2 3 4 5 6 Never seen

1
R1 m1,2 m1,3 m1,4 m1,5 m1,6 m1,7

(q1,2) (q1,3) (q1,4) (q1,5) (q1,6) (c1)

2
R2 � m2,3 m2,4 m2,5 m2,6 m2,7

(q2,3) (q2,4) (q2,5) (q2,6) (c2)

R
e
le

a
s
e

o
c
c
.

...
...

...

5
R5 � � � � m3,6 m3,7

(q3,6) (c5)

of T � 1 = 10) for the age scale representation; for the calendar scale we construct one m-
array for each possible age a bird is released within the study (which without age groups
corresponds to a maximum of T �1 = 10 ages).

In order to highlight differences between temporal scales, we will not establish age
classes in the age-only or time-only CJS models. Nevertheless, we do establish age classes
in the CJS model where both temporal scales are considered. We let a = 0,1,2,3+ denote
the age classes, being those related to individuals in their first year of life, second, third and
finally, individuals in their fourth or more years of life (adults), respectively. To illustrate
the differences in data presentation when using the different temporal scales we present the
cohort m-arrays and the age m-arrays related to age and calendar scales (for conciseness, we
present the calendar scale for the age classes given above), in Appendix A.

The set of parameters will differ for each model proposed and the temporal scale consid-
ered (for the age-only or time-only models). The model parameters of the full time (or age)
dependent CJS models are, y = {y0,y1, . . . ,y9} and h = {h1,h2, . . . ,h10}, in age scale;
and f = {f1,f2, . . . ,f10} and p= {p2, p3, . . . , p11}, in calendar time scale. However, param-
eters y9 and h10 in age scale; and similarly, f10 and p11 in calendar scale, are confounded
(i.e. we can estimate the product of the corresponding parameters but not each one sepa-
rately). For the age and time dependent model we specify additive age and time effects (on
the logit scale) for both survival and recapture probabilities such that logit(ya,t) = aa +bt ,
and logit(ha+1,t+1) = a 0

a +b 0
t , for a = 0, . . . ,3+ and t = 1, . . . ,T �1. Thus, the correspond-

ing set of model parameters for the CJS model with age and time dependence are, a =
{a0, . . . ,a3+} and b = {b1, . . . ,b10} (for the survival probabilities) and a 0 = {a 0

0, . . . ,a 0
3+}

and b 0 = {b 0
1, . . . ,b 0

10} (for the capture probabilities). Finally, for identifiability, we set
a0 = a 0

0 = 0, and subsequently note that aa and a 0
a, for a = 1,2,3+ are interpreted as

the effect for age a, relative to age 0; and that the corresponding bt and b 0
t terms are thus

interpreted as the associated (baseline) time effects for an individual of age 0.

Bayesian inference

Maximum likelihood estimation or Bayesian methods can be used to fit the CJS models
to the capture-recapture data to obtain inference on the model parameters (27; 36; 33; 47,
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and references therein). In our case, we apply a Bayesian approach, as this permits us to
make probabilistic statements about the model parameters and, more generally, provides
the mechanism for explicitly incorporating available prior knowledge about the unknown
parameters into the inferential process; see for example, (32; 27; 9; 17).

The resulting posterior distribution of the parameters, given the data, contains all the
information about the system but is not available in closed form. Thus we apply a Markov
chain Monte Carlo (MCMC) approach (41) to learn about the posterior distribution. For our
application, we implemented the MCMC algorithm via the jags software (38) within the R
program (40). As no prior knowledge about the parameters was available, we specified non
informative prior distributions for all the parameters of the model. In particular, we spec-
ify Uniform(0,1) prior distributions for all survival and recapture probabilities in the CJS
models with only-time or only-age dependence; and Normal(0,10) prior distributions for
the age (aa and a 0

a) and time (bt and b 0
t ) effect parameters in the CJS model with age and

time dependence. To avoid identifiability issues, we set a0 = a 0
0 = 0. Finally, initial values

are specified for the model parameters, these are simulated from Uniform(0,1) distributions
for the recapture probabilities and Normal(0,10) distributions for the aa, a 0

a, bt and b 0
t pa-

rameters. Three independent chains are run, each for 200,000 iterations, discarding the first
20,000 as burn-in (to ensure that the Markov chain has reached the stationary distribution)
and thinning every 100 of the iterations for the memory storage purposes and to reduce auto
correlation. The R code is available from the author on request.

Results

Figure 3 provides a graphical representation of posterior distribution of survival (cyan) and
recapture (blue) probabilities for both temporal scales considering full time dependence (on
age or time). Due to the identifiability problem mentioned, in this Figure we only present
the estimable parameters. As can be seen from Figure 3 (and highlighted in Table 2), if we
only incorporate time or age dependence the model parameters differ significantly between
the different temporal scales. In particular, for the age scale model parameters represent
differences in survival and recapture probabilities corresponding to the age of individuals,
whereas conversely, in calendar scale the parameters represent interannual variations in sur-
vival and resighting probabilities.

If we extend the dependence to age and time, the corresponding model parameters are
equivalent in both temporal scales, as there are both age and time components. Figure 4
provides the corresponding estimated posterior means and associated 95% credible intervals
for the survival probabilities (on the left) and recapture probabilities (on the right) for each
year in the study and possible age class. We note that, unsurprisingly, the lowest survival
probabilities correspond to individuals in their first year of life (i.e. age a = 0). These results
agree with previous studies that show that first year survival is lower than older individuals
(18), and that survival probabilities typically vary inter-annually due to variation in food
availability and environmental conditions (48; 19). Our results are in line with these studies,
showing a marked variation between years. Similarly, age is commonly a very important
factor affecting survival and recapture probabilities (see for example, 12; 18; 35). However,
it is noticeable the (unrealistic) high estimates obtained for the survival probability at age
2 as well as the (unexpected) high recapture probabilities and low survival probabilities
estimated for ages 3+. Further investigation suggests that the high survival probability at
age 2 is an consequence and artefact of the low number of individuals observed age 1 (i.e.
the year following their initial capture). We note that the lowest recapture probability occurs
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Fig. 3: Graphical representation of the marginal posterior distributions for the annual survival (cyan) and
resighting probabilities (blue) probabilities in the full time dependent CJS model in age scale (left) and
calendar time scale (right). The final box (for age 9 or time 10), corresponds to the product of the associated
confounded final survival and recapture probabilities.

at age 1 (see Figures 4 and 3), due to the relatively small number of birds recaptured at this
time. This aspect is common for this species, which, after fledging, immature birds spend
several years at sea until they can back to the colony (13; 12). However, in this colony a large
number of individuals are subsequently observed aged 2. As a consequence, we estimate a
reduced first-year survival probability (and hence expected number of birds at age 1), which
to then account for the large number of birds observed at age 2 leads to the very large
(and unrealistic) second year survival probabilities. Finally, the recapture and the survival
probabilities for individuals aged 3+ (i.e. adults) generally appear to be an overestimate and
underestimate, respectively. The primary reason for these issues appears to be a result of
the capture-recapture protocol at the colony-level in terms of the partial monitoring system
implemenetd for recapturing individuals. For further discussion of this issue (and others),
and associated additional modelling approaches to address these issues see (43; 44).

5 Conclusions

Measuring time to the occurrence of events, typical for survival analysis, is often an area
of particular interest. In this paper we connect two distinct areas in the context of survival
analysis: human demography and population ecology. For these different areas, there is of-
ten a different emphasis given to the elicitation of the temporal scale. In medical studies the
origin time and consequently, the temporal scale, must be defined at the beginning of the
study. In this context, there are several time scales defined in relation to the possible times
zero (20). However, in ecology these procedures are not performed, and consequently, the
default is the capture-occasion (or calendar) scale. In this work, we adopt the approach and
data presentation used in medical studies and apply this to the ecological capture-recapture
framework. By doing so we present the individual capture-histories in an alternative tem-
poral scale, corresponding to age (as opposed to capture occasion). Typically, age is an
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Fig. 4: Mean and 95% symmetric credible interval of the marginal posterior distributions of the annual
survival probabilities (left) and recapture probabilities (right) for each year of the study for each age class for
the combined age and time CJS model.

important factor affecting survival probabilities in animal populations and consequently, the
survival and recapture probabilities may be expressed as a function of age, in addition to
time. Additionally, in many capture-recapture protocols (as for the real example presented
in this work) individuals are marked days after they are born (as it may be easier to capture
such individuals from their breeding sites), with time zero then set equal to birth time. From
medical framework perspective, if time zero is birth time the ‘natural’ temporal scale is then
simply age.

In ecology, different models can be used to estimate survival and recapture probabilities
from capture-recapture data. Although it can be easily extended to other models, we consider
the important Cormack-Jolly-Seber (CJS) model. We present the general notation of the CJS
model and the associated likelihood function in terms of both the comonly used state-space
and multinomial formulations using age as the temporal scale. We consider a real database
corresponding to a large colony of common guillemots in the Baltic Sea and fit the data to:
(i) the CJS model with full time dependence (being age or time, depending on the temporal
scale used), and (ii) the CJS model with the model parameters both age and time dependent.

The natural presentation of the observed capture histories can be regarded as dependent
on the temporal scale considered. For the calendar scale, the capture histories are typically
specified to be of length T (i.e. the number of capture occasions) for all individuals; whereas
for the age scale, the trailing zeroes may be omitted in which case the capture histories will
be of different lengths (where the length is dependent on the cohort). In addition the age at
initial capture is also required to complete the data specification. Alternatively, if we present
the data in terms of the m-array summary statistics, further differences can be noted. One of
the interesting differences between temporal scales is the number of m-arrays needed in the
multinomial formulation. In particular in calendar scale, when no age dependence is present
in any of the parameters of the model, we only need to construct one general m-array to
summarize the whole data set; alternatively, if age-dependence is present, we need a m-array
for each age class. However, when presenting the m-arrays using the age scale, the number
of m-arrays depends on the number of different initial ages observed for the individuals,
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irrespective of whether or not the parameters are age dependent. If the individuals have
different ages at the beginning of the study, this temporal age scale leads to one m-array for
each initial age per cohort; thus if all the individuals have a common initial age, only one
m-array per cohort is needed.

In the medical framework, it is well known that changes in temporal scales may lead
to different inferences and parameter interpretations (29; 8; 49). In the ecological capture-
recapture framework, when model parameters are only time or age dependent they have a
different interpretation depending on the temporal scale used. The alternative temporal scale
presented in this work directly takes into account the age effect in survival and resighting
probabilities, providing a more understandable interpretation of the age-dependent model
parameters. Indeed, due to the data are more naturally associated with the model on the
same temporal scale, we consider that the age scale should be taken into consideration in
studies where age is one of the main concerns or whether inter-annual variations in survival
are not considered (e.g. in cases where the population trajectory is stable). However, when
calendar time is under consideration, either the model formulation or m-arrays construction
in calendar time scale are simpler to perform. However, if we generalize this model, extend-
ing the temporal structure to both age and time, then both scales are incorporated within the
analysis and there is no distinction between scales.

To conclude, medical and ecological survival studies are often assumed very distant ar-
eas particularly in terms of temporal scales but in this work we bring these ideas together. We
present an alternative temporal representation for the ecological capture-recapture frame-
work. The methodology presented in this paper can be easily extended to other models
within the capture-recapture framework. In particular, when age is the main interest in the
study, this alternative scale may provide a better insight into the data representation in ad-
dition to the model parameters. Further comparisons between the application of survival
analysis ideas across the medical and ecological application areas are likely to provide fur-
ther advances. An example of this can be seen, for example, with the application of the
ideas associated with competing risk models in medical studies, applied to spatially explicit
capture-recapture in terms of which trap an individual is observed by given an individual is
observed (2).
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A Appendix

In order to highlight differences in data presentation when using both temporal scales and for reproducibility
issues, here we present the ten cohort m-arrays in age scale (Tables 8 to 17) and the four age m-arrays in
calendar scale (Tables 18 to 21), corresponding to the study database.
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