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Accelerating proximal Markov chain Monte Carlo by using an
explicit stabilised method

Luis Vargas1,2,3 Marcelo Pereyra2,3 Konstantinos C. Zygalakis1,3

March 20, 2020

Abstract

We present a highly efficient proximal Markov chain Monte Carlo methodology to perform Bayesian computa-
tion in imaging problems. Similarly to previous proximal Monte Carlo approaches, the proposed method is derived
from an approximation of the Langevin diffusion. However, instead of the conventional Euler-Maruyama approx-
imation that underpins existing proximal Monte Carlo methods, here we use a state-of-the-art orthogonal Runge-
Kutta-Chebyshev stochastic approximation [2] that combines several gradient evaluations to significantly accelerate
its convergence speed, similarly to accelerated gradient optimisation methods. The proposed methodology is demon-
strated via a range of numerical experiments, including non-blind image deconvolution, hyperspectral unmixing, and
tomographic reconstruction, with total-variation and ℓ1-type priors. Comparisons with Euler-type proximal Monte
Carlo methods confirm that the Markov chains generated with our method exhibit significantly faster convergence
speeds, achieve larger effective sample sizes, and produce lower mean square estimation errors at equal computa-
tional budget.

1 Introduction

Imaging sciences study theory, methods, models, and algorithms to solve imaging problems, such as image denoising
[29], deblurring [9, 5], compressive sensing reconstruction [34], super-resolution [44], tomographic reconstruction
[5], inpainting [52], source separation [30], and phase retrieval [21].

There are currently three main formal paradigms to formulate and solve imaging problems: the variational frame-
work [16], machine learning [6], and the Bayesian statistical framework [42]. In this paper we focus on the Bayesian
framework, which is an intrinsically probabilistic paradigm where the data observation process and the prior knowl-
edge available are represented by using statistical models, and where solutions are derived by using inference tech-
niques stemming from Bayesian decision theory [42]. The Bayesian framework is particularly well equipped to address
imaging problems in which uncertainty plays an important role, such as medical imaging or remote sensing problems
where it is necessary or desirable to quantify the uncertainty in the delivered solutions to inform decisions or con-
clusions, see, e.g., [39, 41]. The framework is also well adapted to blind, semi-blind, and unsupervised problems
involving partially unknown models (e.g., unspecified regularisation parameters or observation operators) [51, 23].
Bayesian model selection technique also allows the objective comparison of several potential models to analyse the
observed imaging data, even in cases where there is no ground truth available [19].

In this paper we focus on the computational aspects of performing Bayesian inferences in imaging problems.
Modern Bayesian computation methods suitable for imaging sciences can be broadly grouped in three categories:
stochastic Markov chain Monte Carlo (MCMC) methods that are computationally expensive but robust, and which
can be applied to a wide range of models and inferences; optimisation methods that are significantly more efficient
by comparison, but which are only useful for point estimation and some other specific inferences; and deterministic
approximation methods such as variational Bayes and message passing methods, which are efficient and support more

1School of Mathematics, University of Edinburgh, Edinburgh, Scotland
2School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, Scotland
3Maxwell Institute for Mathematical Sciences, Bayes Centre, 47 Potterrow, Edinburgh, Scotland
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complex inferences, but can only be applied to specific models, have little theory, and often exhibit convergence issues,
see [40] for a recent survey on the topic. Recently, there have been significant advances in MCMC methodology for
imaging, particularly for Bayesian models that are log-concave w.r.t. the unknown image, for which maximum-a-
posteriori estimation is a convex optimisation problem. This paper seeks to further improve MCMC methodology for
imaging.

MCMC methods were already actively studied in the imaging literature two decades ago, and have regained atten-
tion lately because of their capacity to address challenging imaging problems that are beyond the scope of optimisation-
based and machine learning techniques. In particular, the interface between MCMC and optimisation has become a
very active research area, especially around the so-called proximal MCMC algorithms [19] that combine ideas from
high-dimensional stochastic simulation with techniques from convex analysis and proximal optimisation to achieve
better computational efficiency. Despite being relatively recent, proximal MCMC methods have already been success-
fully applied to a range of Bayesian inference problems, for example, image deconvolution with total-variation and
wavelet priors [19, 48], inpainting [48], tomographic reconstruction [19], astronomical imaging [12], restoration of
images corrupted by Poisson noise [47], ultrasound imaging [35], image coding [22], sparse binary logistic regression
[46], and graph processing [10].

This paper seeks to exploit recent developments in stochastic numerical analysis to significantly improve the com-
putational efficiency of proximal MCMC methodology. More precisely, we propose to use a state-of-the-art orthogonal
Runge-Kutta-Chebyshev stochastic approximation of the Langevin diffusion process [2] that is significantly more com-
putationally efficient than the conventional Euler-Maruyama approximation used by existing proximal MCMC meth-
ods. In particular, we present a new proximal MCMC method that applies this approximation to the Moreau-Yosida
regularised Langevin diffusion underpinning the Moreau-Yosida unadjusted Langevin algorithm [19], and show both
theoretically and empirically that this leads to dramatic improvements in convergence speed and estimation accuracy.

The remainder of the paper is organised as follows: Section 2 defines notation, introduces the class of models
considered, and recalls the Moreau-Yosida unadjusted Langevin algorithm that is the basis of our method. In Section
3, we introduce the proposed proximal MCMC method and study its convergence properties. For tractability, we focus
on the case of Gaussian target densities, which enables the derivation of explicit convergence results in the Wasserstein
distance that we compare with those of the conventional Euler-Maruyama approximation. Section 4 illustrates the
methodology in two one-dimensional toy problems, as well as three experiments related to image deconvolution,
hyper-spectral unmixing and tomographic reconstruction, containing ℓ1 and TV priors. Conclusions and perspectives
for future work are reported in Section 5. Proofs are finally reported in Appendices A and B.

2 Problem statement

2.1 Bayesian inference for imaging inverse problems

We consider imaging problems involving an unknown image x ∈ Rd and some observed data y ∈ Cp, related to x
through a statistical model with likelihood function p(y|x). In particular, we are interested in problems where the
recovery of x from y is ill-conditioned or ill-posed (i.e., either the problem does not admit a unique solution that
changes continuously with y, or there exists a unique solution but it is not stable w.r.t. small perturbations in y).
For example, problems of the form y = Ax + w with w ∼ N (0, σ2Ip) and σ > 0 where the observation operator
A ∈ Cn×p is rank deficient, or problems where A⊤A is full rank but has a poor condition number. As mentioned
previously, such problems are ubiquitous in imaging sciences and have been the focus of significant research efforts
[16, 31].

In this paper we adopt a Bayesian approach to regularise the estimation problem and deliver meaningful estimates
of x, as well as uncertainty quantification for the solutions delivered. More precisely, we represent x as a random
quantity with prior distribution p(x) promoting expected properties (e.g., sparsity, piecewise-regularity, smoothness,
etc.), and base our inferences on the posterior distribution [31]

π(x) , p(x|y) = p(y|x)p(x)∫
Rd p(y|x)p(x)dx

, (2.1)
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henceforth denoted by π. We focus on log-concave models of the following form

π(x) =
e−f(x)−g(x)

∫
Rd e−f(s)−g(s)ds

, (2.2)

where f : Rd → R and g : Rd → (−∞,∞] are two lower bounded functions satisfying the following conditions:

1. f is convex and Lipschitz continuously differentiable with constant Lf , i.e.,

‖∇f(x)−∇f(y)‖2 ≤ Lf‖x− y‖2, ∀x, y ∈ R
d ;

2. g is proper, convex, and lower semi continuous, but potentially non-smooth.

This class of models is widely used in imaging sciences, and includes, for instance, analysis models of the form
f(x) = ‖y−Ax‖2/2σ2 and g(x) = θ‖Ψx‖† + ιS(x) some dictionary or representation Ψ and norm or pseudo-norm
‖ · ‖†, and a hard constraint S ⊂ Rd on the solution space1. Also note that we do not assume that p(x|y) belongs to
the exponential family.

As mentioned previously, posterior distributions of the form (2.2) are log-concave, which is an important property
for Bayesian inference because it guarantees the existence of all posterior moments and hence of moment-based
estimators such as the minimum mean square error (MMSE) estimator. Log-concavity also plays a central role in
maximum-a-posteriori (MAP) estimation, given by

x̂MAP = argmax
x

π(x) ,

= argmin
x

f(x) + g(x) ,

which is the main estimation strategy in imaging sciences. The popularity of MAP estimation stems from the fact
that it is a convex optimisation problem that can be efficiently solved by using modern proximal splitting optimisation
techniques [16]. Some forms of approximate uncertainty quantification can be also computed by using proximal
splitting techniques (see [41] and references therein).

However, most Bayesian analyses require using specialised computational statistics techniques to calculate expec-
tations and probabilities w.r.t. π. For example, computing Bayesian estimators (e.g., MMSE estimation), calibrating
unknown model parameters (e.g., regularisation parameters), performing Bayesian model selection and predictive
model checks, and reporting (exact) credible regions and hypothesis tests. From a Bayesian computation viewpoint,
this typically requires using a high-dimensional Markov chain Monte Carlo (MCMC) method to simulate samples from
x|y followed by Monte Carlo integration [40]. Unfortunately, this approach has been traditionally computationally too
expensive for wide adoption in imaging sciences, limiting the impact of Bayesian statistics in this field. Alternatively,
one can also perform approximate inferences by using deterministic surrogate methods [40]. However, these can
exhibit convergence issues and have little theoretical guarantees, and hence they have not been widely adopted either.

Recent works have sought to addressed these limitations of Bayesian computation methodology by developing new
and highly efficient MCMC methods tailored for imaging sciences, particularly by using techniques from proximal
optimisation that are already widely adopted in the field. These so-called proximal MCMC methods [19, 48, 10]
have been an important step towards promoting Bayesian imaging techniques, as they are easy to implement, have
significantly reduced computing times, and improve theoretical guarantees on the solutions delivered. However, there
remain some fundamental features of modern optimisation methodology that have not yet been replicated in proximal
MCMC approaches. In particular, modern optimisation methods rely strongly on acceleration techniques to achieve
faster convergence rates and improve their robustness to poor conditioning [50]. In this paper, we accelerate proximal
MCMC methods to improve their convergence properties.

2.2 Bayesian computation for imaging inverse problems

2.2.1 Langevin Markov chain Monte Carlo methods

Proximal MCMC methods are derived from the overdamped Langevin diffusion, which we recall bellow. For clarity
we first introduce the approach for models that are smooth, and then explain the generalisation to non-smooth models.

1For any S ⊂ Rd, the indicator ιS takes value ιS(x) = 0 if x ∈ S , and ιS(x) = +∞ otherwise.
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Suppose the need to sample from a high-dimensional density π̄ that is continuously differentiable on Rd. Langevin
MCMC methods address this task by using the overdamped Langevin stochastic differential equation (SDE), given by

dXt = ∇ log π̄(Xt)dt+
√
2dWt , (2.3)

where (Wt)t≥0 is a d-dimensional Brownian motion. Under mild regularity assumptions, this SDE has an unique
strong solution and admits π̄ as unique invariant distribution. Consequently, if we could solve (2.3) and let t →
∞, this would provide Monte Carlo samples from π̄ useful for Bayesian computation. This strategy is particularly
computationally efficient when π̄ is log-concave because in that case Xt converges in distribution to π̄ exponentially
fast with a good rate [18].

Unfortunately, it is generally not possible to exactly solve (2.3), and discrete approximations of Xt need to be
considered instead. In particular, most algorithms use the Euler-Maruyama (EM) discretization [33]:

Xn+1 = Xn + δ∇ log π̄(Xn) +
√
2δZn+1, (2.4)

where δ > 0 is a given stepsize and (Zn)n≥1 is a sequence of i.i.d. d-dimensional standard Gaussian random variables.
This MCMC method is known as the unadjusted Langevin algorithm (ULA) [43].

Under some regularity assumptions, namely L̄-Lipschitz continuity of ∇ log π̄ and δ < 2/L̄, the Markov chain
(Xn)n≥0 is ergodic with stationary distribution π̄δ(x) close to π̄ [18]. Additionally, when π̄ is log-concave, ULA
inherits the favourable properties of (2.3) and converges to π̄δ(x) geometrically fast with good convergence rates,
offering an efficient Bayesian computation methodology for large problems [18].

The estimation bias [4] associated with targeting π̄δ(x) instead of π̄ can be reduced by decreasing δ, and vanishes
as δ → 0. However, decreasing δ deteriorates the convergence properties of the chain and amplifies the associated
non-asymptotic bias and variance. Therefore, to apply ULA to large problems in a computationally efficient way it is
necessary to use values of δ that are close to the stability limit 2/L̄, at the expense of some asymptotic bias. Notice
that it is also possible to remove the asymptotic bias by combining ULA with a Metrolopolis Hastings correction step
targeting π̄, leading to the so-called Metropolis adjusted Langevin algorithm (MALA) [43]. This strategy is widely
used in computational statistics for medium-sized problems. However, in large problems such as imaging problems,
using a Metropolis-Hastings correction may dramatically deteriorate the convergence speed [19].

2.2.2 Proximal Markov chain Monte Carlo methods

We now consider the class of models π given by (2.2), which are not smooth. Unfortunately, ULA and MALA
cannot be directly applied to such models, as they require Lipschitz differentiability of log π. Proximal MCMC
methods address this difficulty by carefully constructing a smooth approximation πλ that by construction satisfies all
the regularity conditions required by ULA and MALA, and which can be made arbitrarily close to the original model π
by tuning a regularisation parameter λ > 0. This strategy, originally proposed in [38], can be implemented in different
ways. In particular, [19] replaces the non-smooth term g in (2.2) with its Moreau-Yosida (MY) envelope

gλ(x) = min
y∈Rd

{
g(y) +

1

2λ
‖x− y‖2

}
,

to construct the approximation

πλ(x) =
e−f(x)−gλ(x)

∫
Rd e−f(s)−gλ(s)ds

,

which has the following key properties that are useful for Bayesian computation [19]:

• For all λ > 0, πλ defines a proper density on Rd.

• For all λ > 0, πλ is log-concave and Lipschitz continuously differentiable with

∇ log πλ = −∇f(x)−∇gλ(x) ,

= −∇f(x)− 1

λ

(
x− proxλg (x)

)
,

(2.5)
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with Lipschitz constant L = Lf + 1/λ, and where for all x ∈ Rd

proxλg (x) = argmin
u∈Rd

g(u) +
1

2λ
‖x− u‖2.

• The approximation πλ converges to π in total-variation norm; i.e.,

lim
λ→0

‖πλ − π‖TV = 0 .

Given the smooth approximation πλ, we define the auxiliary Langevin SDE

dXt = ∇ log πλ(Xt)dt+
√
2dWt , (2.6)

and derive the MYULA Markov chain by discretising this SDE by the EM method

Xn+1 = Xn − δ∇f(Xn)−
δ

λ

(
Xn − proxλg (Xn)

)
+
√
2δZn+1 . (2.7)

If necessary, the asymptotic bias can then be removed by complementing MYULA with a Metropolis-Hastings step
[38], which is useful for benchmarking purposes [19, 12]. Notice that one can also consider other approximations con-
structed by applying the Moreau-Yosida envelope directly to f + g [38], or by replacing the Moreau-Yosida envelope
with a forward-backward envelope [38, 7]. It is also possible to apply the Moreau-Yosida envelope separately to f and
g and integrate MYULA (with or without Metropolisation) within an auxiliary-variable Gibbs sampling scheme, see
[48].

As mentioned previously, despite being relatively recent, proximal MCMC methods have already been successfully
applied to a many large-scale inference problems related to imaging sciences [19, 12, 48, 35], and machine learning
[22, 46, 10, 11].

2.2.3 Limitations of proximal Markov chain Monte Carlo methods and recent improvements

A main limitation of ULA, MALA and their proximal variants is that they are all derived from the EM approxima-
tion (2.4) of the Langevin SDE. This approximation is mainly used because it is computationally efficient in high-
dimensions, it is easy to implement, and it can be rigorously theoretically analysed. However, the EM approximation
is not particularly suitable for problems that are ill-conditioned or ill-posed as its performance is very sensitive to
the anisotropy of the target density, which is a common feature of imaging problems. More precisely, in order to
be useful for Bayesian computation, the EM approximation of the Langevin SDE (2.6) has to be numerically stable.
For MYULA, this requires using a stepsize δ < 2/L with L = Lf + 1/λ, where we recall that Lf is the Lipschitz
constant of ∇f and that λ controls the quality of the approximation πλ of π. This restriction essentially guarantees
that the chain moves slowly enough to follow changes in ∇ log πλ in a numerically stable manner, particularly along
directions of fast change. However, this is problematic when πλ has some directions or regions of the parameter space
that change relatively very slowly, as the chain will struggle to properly explore the solution space and will require
a very large number of iterations to converge. In imaging models, this typically arises when the likelihood p(y|x)
has identifiability issues (e.g, if it involves an observation operator A for which A⊤A is badly conditioned or rank
deficient), or if we seek to use a small value of λ to bring πλ close to π.

To highlight this issue, we report below two simple illustrative experiments where MYULA is applied to a two-
dimensional Gaussian distribution. In this case there is no non-smooth term g and the time-step restriction is dictated
by the Lipschitz constant of f , but the same phenomenon arises in more general models. In the first experiment
we consider µ1 = (0, 0) and Σ1 = diag(1, 10−2) (i.e., Lf = 102); whereas in the second experiment we use
µ2 = (0, 0) and Σ2 = diag(1, 10−4) (i.e., Lf = 104). The results are presented in Figure 1. Notice that in the first
case MYULA explores the distribution very well, showing a good rate of decay in the autocorrelation functions of both
components. However, in the second case, MYULA exhibits poor convergence properties as it struggles to explore the
first component.
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Figure 1: Two-dimensional Gaussian distribution: (a) 103 samples generated by MYULA using the target distributions
N (µ1,Σ1) with δ = 2/(L + ℓ) = 1.98 × 10−2 where L = 1/σ2

11 = 100 and ℓ = 1/σ2
22 = 1; and (d) 5 × 103

samples generated by MYULA using the target distributions N (µ2,Σ2) with δ = 2/(L + ℓ) = 1.99 × 10−4 where
L = 1/σ2

11 = 104 and ℓ = 1/σ2
22 = 1. Autocorrelation functions of the (b)-(e) first and (c)-(f) second component (i.e.,

x1 and x2) of the samples generated by the ULA algorithm, having N (µ1,Σ1) and N (µ2,Σ2) as target distributions,
respectively.

This limitation of the EM approximation could be partially mitigated by preconditioning the gradient ∇ log πλ by
considering a Langevin SDE on an appropriate Riemannian manifold, as recommended in [26], and in a spirit akin
to natural gradient descent and Newton optimisation methods. The preconditioning procedure proposed in [26] is
very effective but too expensive for imaging models because it requires evaluating quantities related to second and
third order derivatives of log πλ and performing expensive matrix operations. Conversely, simple procedures such
as preconditioning with a pseudo-inverse of the Hessian matrix of the log-likelihood function are computationally
efficient but do not typically lead to significant improvements in performance because they do not take into account
the geometry of the log-prior. The development of computationally efficient yet effective preconditioning strategies
for imaging models is an active research topic, see, e.g., [37, 36].

Moreover, a different strategy to improve the convergence rate of the EM approximation is to substitute both f and
g by their regularised envelopes fλ and gλ so that the Lipschitz constant of ∇ log πλ is bounded by 2/λ, at the expense
of additional bias. One can then use a single MYULA kernel targeting πλ, or alternatively a splitting scheme involving
two MYULA kernels with λ = δ to separately address fλ and gλ as recommended recently in [48]. That splitting
leads to a Markov chain that is by construction numerically stable and potentially much faster than MYULA at the
expense of some further estimation bias. Note that splitting schemes that combine Gibbs sampling with relaxations are
a highly promising direction of research as they could potentially lead to algorithms with dimension-free convergence
rates [49].

It is worth mentioning at this point that one can also consider other dynamics to derive Markov chains with
potentially better convergence properties, namely the Hamiltonian dynamic which leads to the Hamiltonian Monte
Carlo (HMC) algorithm [40, 14]. However, HMC uses a Verlet integrator that, despite being superior in other ways,
has the same stepsize restrictions as the Euler method and hence also struggles to address problems that are poorly
conditioned. Also, HMC uses a Metropolis correction that can be dramatically inefficient in large problems such as
imaging problems.

In this paper we propose to fundamentally improve proximal MCMC methods for imaging by using state-of-the-art
numerical SDE approximation strategies that significantly outperform the conventional EM scheme. More precisely,
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we focus on a class of explicit stabilised methods that are specifically designed to deal with the time-step restriction,
called stochastic orthogonal Runge-Kutta-Chebyshev methods (SK-ROCK) [2]. The idea, in a nutshell, is to cleverly
combine several evaluations of the gradient ∇ log πλ(x) in a way that allows for taking larger time-steps, and thus
breaking the stability barrier of MYULA. As mentioned previously, the same strategy can then be applied to other
MCMC methods that internally use MYULA (e.g., [48]), or variants of MYULA with other approximations of π (e.g.,
[38, 7]), although this is beyond the scope of this paper and will be investigated in future works.

3 Proposed Bayesian computation method

3.1 Stochastic orthogonal Runge-Kutta-Chebyshev methods

We propose to significantly accelerate Bayesian computation for imaging problems by using the state-of-the-art explic-
itly stabilised SK-ROCK scheme [2] to approximate the Langevin SDE (2.6) associated with πλ, instead of the basic
EM discretisation scheme that underpins MYULA and other proximal MCMC methods. From a numerical analysis
viewpoint, this is a highly advanced Runge-Kutta stochastic integration scheme that extends the deterministic Cheby-
shev method [1] to SDEs, and uses a damping strategy to stabilise the stochastic term. Crucially, its implementation
is straightforward as it only requires knowledge of the gradient operator ∇ log πλ(x) given by (2.5), which is also
used in MYULA. However, unlike MYULA that uses a single evaluation of ∇ log πλ(x) per iteration, the considered
Runge-Kutta scheme performs s ∈ N

∗ evaluations of ∇ log πλ(x) at carefully chosen extrapolated points determined
by Chebyshev polynomials. In this regard, the stochastic integration scheme is morally similar to accelerated optimi-
sation methods that also use several gradient evaluations and extrapolation techniques to significantly improve their
convergence properties. In fact, the deterministic Runge-Kutta-Chebyshev method was recently shown to have similar
theoretical convergence properties to Nesterov’s accelerated optimisation algorithms in the case of strongly convex
functions [20].

The proposed proximal SK-ROCK method is presented in Algorithm 1 below, where Ts denotes the Chebyshev
polynomial of order s of the first kind, defined recursively by Tk+1 = 2xTk(x) − Tk−1(x) with T0(x) = 1 and
T1(x) = x. The two main parameters of the algorithm are the number of stages s ∈ N

∗ and the step-size δ ∈ (0, δmax
s ].

Notice that the range of admissible values for δ is controlled by s: for any s ∈ N∗, the maximum allowed step-size is
given by δmax

s = ls/(Lf +1/λ) with ls = [(s− 0.5)2(2− 4/3η)− 1.5] and η = 0.05 [2]. Violating this upper bound
leads to a potentially explosive Markov chain. Also note that in the case of s = 1 the method reduces to MYULA.

The values of δ and s are subject to standard bias-variance trade-offs. On the one hand, to optimise the mixing
properties of the algorithm one would like to choose δ as large as possible. MYULA, based on the EM method,
requires setting δ < δmax

1 = 1/(Lf + 1/λ) for stability, but in SK-ROCK one can in principle take δ arbitrarily large
by increasing the value of s. However, this would also increase the asymptotic bias and the computational cost per
iteration. In our numerical experiments we found that a good trade-off in terms of bias, variance, and computational
cost per iteration is achieved by setting 3 < s < 15 and using a value of δ that is close to the maximum allowed step-
size δmax

s . As a general rule for imaging problems, we recommend using s = 15 in problems that are strongly log-
concave, and s = 10 otherwise. Lastly, it is worth mentioning at this point that we also considered other alternatives
to the EM scheme, namely the Runge-Kutta scheme of [3], but found that SK-ROCK delivers the best performance
for imaging models (the results with alternative schemes are not reported in the paper because of lack of space).

To illustrate the benefits of using the proximal SK-ROCK method instead of MYULA, we repeat the two Gaussian
experiments reported in Figure 1 with Algorithm 1. The results are shown in Figure 2, and where we have set the
number of s optimally by using (3.7). Observe that because the SK-ROCK method is allowed to use a larger stepsize
δ in a stable manner, it produces, for the same computational cost (i.e., number of gradient evaluations), samples that
are significantly less correlated than MYULA with respect to the slow component. We also observe in Figure 2 that
this allows SK-ROCK to explore the target distribution more accurately.

3.1.1 Computational Complexity

To the best of our knowledge, it is not possible to establish general complexity results for Runge-Kutta-Chebyshev
methods by using existing analysis techniques, and we are currently investigating new bespoke techniques to study
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Algorithm 1 SK-ROCK algorithm

Set X0 ∈ Rd, λ > 0, n ∈ N, s ∈ {3, . . . , 15}, η = 0.05
Compute ls = (s− 0.5)2(2 − 4/3η)− 1.5
Compute

ω0 = 1 +
η

s2
, ω1 =

Ts(ω0)

T ′

s(ω0)
, µ1 =

ω1

ω0
, ν1 = sω1/2, k1 = sω1/ω0

Choose δ ∈ (0, δmax
s ], where δmax

s = ls/(Lf + 1/λ)
for i = 0 : n do

Zi+1 ∼ N (0, Id)
K0 = Xi

K1 = Xi + µ1δ∇ log πλ(Xi + ν1
√
2δZi+1) + k1

√
2δZi+1

for j = 2 : s do

Compute

µj =
2ω1Tj−1(ω0)

Tj(ω0)
, νj =

2ω0Tj−1(ω0)

Tj(ω0)
, kj = −Tj−2(ω0)

Tj(ω0)
= 1− νj

Kj = µjδ∇ log πλ(Kj−1) + νjKj−1 + kjKj−2

end for

Xi+1 = Ks

end for
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(d) SK-ROCK, N (µ2,Σ2)
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Figure 2: Two-dimensional Gaussian distribution: (a) 103/s samples generated by the SK-ROCK algorithm (s =
2) using the target distribution N (µ1,Σ1) with δ = 4.82 × 10−2 and (d) 5 × 103/s samples (s = 16) using the
target distribution N (µ2,Σ2) with δ = 4.84 × 10−2. Autocorrelation functions of the (b)-(e) first and (c)-(f) second
component (i.e., x1 and x2) of the samples generated by the SK-ROCK algorithm, having N (µ1,Σ1) and N (µ2,Σ2)
as target distributions, respectively.
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SK-ROCK. This is an important difference w.r.t. the EM scheme used in MYULA, for which there are detailed
non-asymptotic convergence results available that can be used to characterise its computational complexity [18]. Nev-
ertheless, it is possible to get an intuition for the computational complexity of SK-ROCK by theoretically analysing
its convergence properties for a d-dimensional Gaussian target distribution with density π(x) ∝ exp (−0.5x⊤Σ−1x),
and Σ = diag(σ2

1 , ..., σ
2
d). More precisely, we study the convergence of SK-ROCK in the 2-Wasserstein distance,

as a function of the number of gradient evaluations and the condition number κ = σ2
max/σ

2
min, and compare it with

MYULA. This is achieved by analysing in full generality the numerical solution of the Langevin SDE associated with
π, given by

dXt = −Σ−1Xtdt+
√
2dWt , (3.1)

by a one step numerical integrator, which yields (in general) a recurrence of the form

X i
n+1 = R1(zi)X

i
n +

√
2δR2(zi)ξ

i
n+1, ξin+1 ∼ N(0, 1), (3.2)

where zi = −δ/σ2
i and X0 = (x1

0, ..., x
d
0)

T is a deterministic initial condition. For the EM scheme used in MYULA
we have R1(z) = 1 + z and R2(z) = 1, and for the SK-ROCK we have that [2]

R1(z) =
Ts(ω0 + ω1z)

Ts(ω0)
, R2(z) =

Us−1(ω0 + ω1z)

Us−1(ω0)

(
1 +

ω1

2
z
)
, (3.3)

where Ts, Us are Chebyshev polynomials of first and second kind respectively and

ω0 = 1 +
η

s2
, ω1 =

Ts(ω0)

T ′

s(ω0)
.

By using the fact that Gaussian distributions are closed under linear transformations, and assuming that the initial
condition X0 is deterministic, we derive the distribution of Xn for any δ > 0 and obtain the following general result
that holds for the EM (MYULA) method and for SK-ROCK. The proof is reported in Appedix A.

Proposition 3.1. Let π(x) ∝ exp (−0.5xTΣ−1x) with Σ = diag(σ2
1 , ..., σ

2
d), and let Qn be the probability measure

associated with n iterations of the generic Markov kernel (3.2). Then the 2-Wasserstein distance between π and Qn is

given by

W2(π;Qn)
2 =

d∑

i=1

(
Dn(zi, x

i
0) +Bn(zi, σi)

)
(3.4)

where

Dn(x, u) = (R1(x))
2nu2, Bn(x, u) =

[
u−

√
2δR2(x)

(
1− (R1(x))

2n

1− (R1(x))2

)1/2
]2

.

In addition the following bound holds

W2(π;Qn+1)
2 ≤ W2(π; π̃)

2 + CW2(π̃, Qn)
2 (3.5)

where

π̃ = N
(
0, 2δ(R2(z))

[
1

1− R2
1(z)

])
,

is the numerical invariant measure and

C = max
1≤i≤d

R1(zi)
2. (3.6)

The bound (3.5) can now be used to compare the EM and the SKROCK method in terms of how many gradient
evaluations are required to achieveW2(π;Qn) < ε for some desired accuracy level ε > 0. We see that the W 2

2 distance
between π and Qn involves two terms. The first term W2(π; π̃)

2 relates directly to the asymptotic bias of the method
[4] (recall that without a Metropolis correction step, any generic approximation of (3.1) will have some asymptotic
bias because it will not exactly converge to π). The second term CW2(π̃, Qn)

2 related to the convergence of the chain
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Figure 3: Wasserstein distance bounds, Gaussian analysis: Minimum number of gradient evaluations of the EM and
SK-ROCK methods in order to have W2(P ;Qn)

2 < ε2W2(P ;Q0)
2, given different condition numbers κ.

to the stationary distribution π̃, with the C controlling the convergence rate. In imaging problems, the computational
complexity is usually largely dominated by the second term in (3.5) because of the dimensionality involved.

For the case of the EM (MYULA) method it is known [17] that, with a suitable choice of δ, the number of
gradient evaluations that one needs to take in order to achieve W2(π;Qn) < ε is of order O(κ), where we recall
that κ = σ2

max/σ
2
min is the condition number of Σ. For SK-ROCK, the number of gradient evaluations depends on

the choice of s and δ. Our focus is on problems where κ is large, where the optimal performance is achieved by
minimising C by setting the number of internals stages s of each step to be

s =

[√
η

2
(κ− 1)

]
, (3.7)

with η = 0.05, and

δ =
ω0 − 1

ℓsω1
, ℓs =

1

σ2
max

, (3.8)

so that C ≈ (
√
κ− 1)2/(

√
κ+ 1)2 (see [20] and Appendix B for details). In that case, and under the assumption that

W2(π, π̃) ≪ ǫ so that W2(π;Qn) is dominated by the term CW2(π̃, Qn)
2 related to convergence to π̃, we observe

that the number of gradient evaluations required to achieve W2(π;Qn) < ε is of the order of O(
√
κ) instead of O(κ),

similarly to the behaviour of accelerated algorithms in optimization [13]. These convergence results are illustrated in
Figure 3, where we plot the number of gradient evaluations required to achieve W2(π;Qn) < ε as a function of the
conditioning number κ for the EM method and for SK-ROCK, where π is a 100-dimensional Gaussian distribution
with mean zero and covariance Σ = diag(σ2

1 , ..., σ
2
d), with decreasing diagonal elements uniformly spread between

σ1 = 1 and σd = 1/κ.
One can also simplify the non-asymptotic W 2

2 results of Appendix A to obtain non-asymptotic results for the
estimation bias of the EM and SK-ROCK methods for the mean of Gaussian target densities (this is a weaker analysis
than convergence in W 2

2 ). As in the case of the W 2
2 analysis, the number of gradient evaluations to attain a prescribed

non-asymptotic bias for the mean is of order O(
√
κ) for SK-ROCK, whereas it is of order O(κ) for the EM method.

Both methods are asymptotically unbiased for the mean for Gaussian models.
We emphasise at this point that there are situations where one would not observe any acceleration by using SK-

ROCK, namely situations in which a very accurate solution is required and the bound (3.5) is dominated by the
asymptotic bias term W2(π, π̃). In that case, instead of using MYULA or SK-ROCK with a very small δ, we would
recommend using the P-MALA method described in [38], which combines an EM approximation with a MH correc-
tion.
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3.2 Mean-square stability analysis

We conclude this section by discussing the mean-square stability properties of SK-ROCK and the EM method. In
particular, we consider the following test equation that is widely used in the numerical analysis literature [27, 28] to
benchmark SDE solvers

dX(t) = γX(t)dt+ µX(t)dW (t), X(0) = 1, (3.9)

where γ, µ ∈ R, which has the solution X(t) = exp[(γ − 1/2µ2)t + µW (t)]. It is easy to show using Ito calculus
that when 2γ + µ2 < 0

lim
t→∞

E(|X(t)|2) = 0.

We want to understand for what range of time-steps δ would a numerical discretisation Xn of (3.9) behave in a similar
manner as n → ∞, i.e. E(|Xn|2) → 0. In the case of EM one has that

Xn+1 = Xn + δγXn +
√
δµXnZn+1,

and hence
E(|Xn+1|2) = R(p, q)E(|Xn|2), R(p, q) = (1 + p)2 + q2, p = δγ, q =

√
δµ.

In order to have E(|Xn|2) → 0 one needs that R(p, q) < 1. We visualise the values of admissible p, q for the EM
method in Figure 4(a), where we can see that there is only a very small portion of the true mean-square stability
domain (2p + q2 < 0) covered by it (anything on the left hand side of the dotted line in Figure 4(a)-(b) belongs to
the true stability domain). This implies that when one or both of the parameters γ, µ are large one needs to choose a
very small δ in order to be stable (for example when µ = 0 one recovers the stability condition δ < −2γ−1 for the
Langevin SDE). In the case of SK-ROCK one has that

R(p, q) = R1(p)
2 +R2(p)

2q2,

where R1 and R2 are given by (3.3).
Similarly to the case of the EM method, we now plot the mean-square stability domain of SK-ROCK in Figure 4(b).

As we can see, a significantly larger portion of the true mean-square stability domain is now covered when compared
to the EM method. One can show, using the properties of Chebyshev polynomials [2], that for SK-ROCK the coverage
of the mean-square stability domain increases quadratically in s; i.e., that if (p, q) ∈ {2p+q2 < 0 ∩ p < C(η)s2} then
R(p, q) < 1 for the SK-ROCK method. In contrast, if for comparison one would consider s-steps of the EM method,
the corresponding coverage of the mean-square stability domain would be linear in s. This means that for the same
number of gradient evaluations s, one can choose a much larger time-step δ for SK-ROCK and still integrate equation
(3.9) in a stable manner. The spikes observed in 4(b) at specific values of p correspond to roots of the polynomial
R2(p) defined in (3.3); these are determined by the values of s and η, and by the roots of the Chebyshev polynomial
of second kind Us−1.

4 Numerical experiments

In this section we demonstrate the proposed SK-ROCK proximal MCMC methodology with a range of numerical
experiments related to image deconvolution, tomographic reconstruction, and hyper-spectral unmixing. We have se-
lected these experiments to represent a wide variety of configurations in terms of ill-posedness and ill-conditioning,
strict and strong log-concavity, and dimensionality of y and x. Following our previous recommendation, in the ex-
periments related to image deconvolution and hyper-spectral unmixing the model is strongly log-concave so we use
s = 15, whereas for the tomography experiment we use s = 10. We report comparisons with the MYULA method [19]
to highlight the benefits of using the SK-ROCK discretization as opposed to the conventional EM discretization used
in Langevin and Hamiltonian algorithms [40], and because MYULA underpins other proximal MCMC algorithms
such as the auxiliary Gibbs sampler of [48].

To make the comparisons fair, in all experiments we use the same number of gradient (and proximal operator)
evaluations for MYULA and SK-ROCK, and compare their computational efficiency in several ways (the efficiency
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Figure 4: Mean-square stability domains for (a) EM and and (b) SK-ROCK (with s = 10) in the p − q2 plane. The
dashed line represents the upper boundary of the true mean-square stability domain.

of an MCMC method is not an absolute quantity as it depends on the estimator considered). Because our aim is to
illustrate the performance of SK-ROCK in Bayesian imaging problems, here we use the MYULA and SK-ROCK
samples to compute the following quantities: 1) the minimum mean square error solution given by the posterior
mean E(x|y), which is a classic image point estimator; 2) the marginal posterior variances or standard deviations
for the image pixels, which provide an indication of the performance of the methods in uncertainty quantification
tasks; 3) the effective sample size (ESS) of the fastest mixing component of the chain, calculated in stationarity2;
and 4) the ESS of the slowest mixing component of the chain, also calculated in stationarity. These fast and slow
components correspond to the one-dimensional subspaces where the Markov chains achieve their highest and lowest
convergence rates respectively, and that we have identified via an estimate of the first and last eigenvectors of the
samples posterior covariance. We choose to report ESS values because these are intuitive quantities that are directly
related to the variance of the Monte Carlo estimators, and hence provide an indication of the accuracy of the methods,
up to estimation bias3.

In addition to reporting estimates, we use autocorrelation plots to visually compare the convergence properties
of both methods (again, we report the autocorrelation function for the fastest and the slowest components of the
Markov chains). We also show the evolution of the estimation MSE across iterations, and display the estimates of the
marginal (pixelwise) standard deviations. These latter are useful for illustrating the differences in the performance of
the methods, as second order moments are more difficult to estimate by Monte Carlo integration than the posterior
mean.

Notice that because the methods are compared at equal computational budget they do not produce the same number
of samples, as their complexity per iteration is different. More precisely, if the MYULA chain has n-samples, then
the SK-ROCK chain has only n/s samples, which is considerably lower. However, experiments show that SK-ROCK

2Recall that ESS = n{1 + 2
∑

k
ρ(k)}−1 , where n is the total number of samples and

∑
k
ρ(k) is the sum of the K monotone sample

auto-correlations which we estimated with the initial monotone sequence estimator [25].
3Note that the computation of ESS values is well-posed because p(x|y) is log-concave. If p(x|y) were heavy-tailed or multi-modal then we

would need to consider robust efficiency indicators [24].
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Table 1: Values of the stepsize δ, effective sample sizes (ESS) and KL-divergence of the EM and SK-ROCK algorithms
for the one dimensional Laplace distribution.

Stages s Method Stepsize δ ESS KL-Divergence Speed-up

- MYULA 1.0× 10−5 3.6× 101 4.8× 10−2 -
s = 10 SK-ROCK 1.7× 10−3 6.0× 102 1.4× 10−2 16.67
s = 15 SK-ROCK 4.0× 10−3 9.5× 102 1.0× 10−2 26.39

Table 2: Values of the stepsize δ, effective sample sizes (ESS) and KL-divergence of the EM and SK-ROCK algorithms
for the one dimensional uniform distribution.

Stages s Method Stepsize δ ESS KL-Divergence Speed-up

- MYULA 1.0× 10−5 1.7× 102 1.3× 10−2 -
s = 10 SK-ROCK 1.7× 10−3 3.4× 103 3.2× 10−2 20
s = 15 SK-ROCK 4.0× 10−3 4.9× 103 3.9× 10−2 28.82

usually delivers higher ESS values because of its superior convergence properties. Similarly, to make the comparison
of autocorrelation plots fair with regards to computational complexity, in all autocorrelation plots we apply a 1-in-s
thinning to the MYULA chain to artificially boost its autocorrelation function decay rate by a factor of s.

4.1 One dimensional distributions

We start our numerical experiments by studying two simple one dimensional distributions, namely the Laplace dis-
tribution and the uniform distribution in [−1, 1], for which we can also perform computations exactly. Since both of
these distributions are not Lipschitz differentiable we employ the corresponding Moreau-Yosida approximation using
λ = 10−5 to bring πλ very close to π and deliver a good approximation. This implies that the largest stepsize δ
that can be used for MYULA is 2 × 10−5, which is dramatically small. We set δ = 10−5 for MYULA and run the
corresponding chain for n = 15 × 106 iterations to create a situation where MYULA struggles to deliver a good
approximation and that highlights the superior performance of SK-ROCK.

For SK-ROCK we use s = 15 and set δ as it is explained in Algorithm 1. Notice that we choose the (regularised)
Laplace and the uniform distributions to illustrate the performance of the methods in two different scenarios: the
regularised Laplace distribution is strongly log-concave near the mode and only strictly log-concave in the tails, which
is problematic for the Langevin diffusion because the gradient remains constant as |x| grows, whereas the regularised
uniform distribution is flat over [−1, 1] and hence has most of its mass in regions where the gradient is zero, and then
strongly log-concave in the tails.

Figures 5 and 6 display the histogram approximations of the distributions obtained with the two methods, as well
as the autocorrelation functions of the generated Markov chains. Observe that in both cases SK-ROCK significantly
outperforms MYULA, which struggles to deliver a good approximation due to the stepsize limitation and the limited
number of iterations (this phenomenon is particularly clearly captured by the difference in decay speed in the auto-
correlation plots). These results are quantitatively summarised in Tables 1 and 2 respectively, where we highlight
that SK-ROCK delivers an ESS that is over 25 times larger than MYULA, while also achieving higher accuracy as
measured by the Kullback-Leibler (KL) divergence between the empirical distribution and πλ. For completeness, we
also report the results using SK-ROCK with s = 10.

It is worth emphasising at this point that we could improve the ESS performance of both methods by increasing
the value of λ, at the expense of some additional bias. In the case of the uniform distribution this would lead to a
considerable number of samples outside the true support [−1, 1].
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Figure 5: One-dimensional Laplace distribution: Histograms computed with (a) 15 × 106 samples generated by
MYULA and (b) 15 × 106/s samples generated by SK-ROCK from the approximated Laplace distribution, using
an approximation parameter λ = 10−5 and s = 15 for the SK-ROCK method. (c) Autocorrelation functions of the
samples.
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Figure 6: One-dimensional uniform distribution: Histograms computed with (a) 15 × 106 samples generated by
MYULA and (b) 15 × 106/s samples generated by SK-ROCK from the approximated uniform distribution, using
an approximation parameter λ = 10−5 and s = 15 for the SK-ROCK method. (c) Autocorrelation functions of the
samples.
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4.2 Image deconvolution with total-variation prior

We now consider a non-blind image deconvolution problem, where we seek to recover a high-resolution image x ∈ Rd

from a blurred and noisy observation y = Hx+ǫ, whereH is a known blur operator and ǫ ∼ N (0, σ2Id). This problem
is ill-conditioned i.e., H is nearly singular, thus yielding highly noise-sensitive solutions. To make the estimation
problem well posed, we use a total-variation norm prior that promotes solutions with spatial regularity. The resulting
posterior distribution is given by

p(x|y) ∝ exp
(
−‖y −Hx‖2/2σ2 − βTV (x)

)
, (4.1)

where TV (x) represents the total-variation pseudo-norm [45, 15], and σ, β ∈ R+ are model hyper-parameters that we
assume fixed (in this experiment we use β = 0.047, determined using the method of [23]).

Figure 7 presents an experiment with the cameraman test image of size d = 256 × 256 pixels, depicted in
Figure7(a). Figure 7(b) shows an artificially blurred and noisy observation y, generated by using a 5× 5 uniform blur
and σ = 0.47, related to a blurred signal-to-noise ratio of 40dB. We use MYULA and SK-ROCK to draw Monte Carlo
samples from (4.1) using λ = L−1

f = 0.21. To make the comparison fair, we generate 103 samples using MYULA

and 103/s samples using SK-ROCK for s = 15. We then use the generated samples to compute two quantities: 1) the
minimum mean square error (MMSE) estimator of x|y, given by the posterior mean; and 2) the pixel-wise (marginal)
posterior standard deviation, which provides an indication of the level of confidence in each pixel value, as measured
by the model. This quantity is useful to highlight features in the image that are difficult to accurately determine; in
the case of in image deconvolution problems these are the exact locations of edges and contours in the image. Notice
that computing standard deviations requires computing second order statistical moments, which is more difficult than
estimating the posterior mean, and hence requires a larger number of effective samples to produce stable estimates.

Observe in Figures 7(c)-(f) that while the estimates of the posterior mean obtained with MYULA and SK-ROCK
are visually similar, the estimates of the pixel-wise standard deviations obtained with SK-ROCK are noticeably more
accurate and in agreement with the results obtained by sampling the true posterior with an asymptotically unbiased
Metropolised algorithm, see [38, Example 4.1]. In particular, the standard deviations estimated with SK-ROCK ac-
curately capture the uncertainty in the location of the contours in the image, whereas MYULA produces very noisy
results as it struggles to estimate second order moments because of the stepsize limitation and limited computation
budget (with a sufficiently large number of iterations, MYULA would produce similar results to SK-ROCK).

Moreover, to rigorously analyse the convergence properties of the two methods and compute autocorrelation func-
tions, we generated 107 samples with MYULA and 107/s samples using SK-ROCK (s = 15). We then used these
samples to determine the fastest and slowest components of each chain4 and measured their autocorrelation functions.
We also computed trace plots for the chains by using T (x) = log πλ(x|y) as scalar statistic, which is particularly in-
teresting because it determines the typical set of x|y [39]. These trace plots clearly illustrate how the methods behave
during their transient regime, and then how they behave once the chains have converged to the typical set.

Figure 8(a) shows the convergence of the Markov chains to the typical set {x : T (x) ≈ E[T (x)|y]}. Moreover,
Figure 8(b) shows the last 105 samples of the chains (again with a 1-in-s thinning for MYULA). Additionally, we have
included the summary statistic E(T (X)) calculated by a very long run of the P-MALA algorithm [38], which targets
(4.1) exactly, in order to study the bias of the methods5. We can see that, for this experiment, the bias of SK-ROCK is
slightly increased in comparison to MYULA, however, it has significantly better mixing properties that result in a better
exploration of the typical set. Lastly, the superior convergence properties of SK-ROCK are also clearly illustrated by
the autocorrelation plots of Figure 8(c), which shows the autocorrelation functions for the slowest components of the
chains, and where again we observe a dramatic improvement in decay rate (we have again used a 1-in-s thinning for
MYULA for fair comparison). Table 3 reports the associated ESS values for this experiment, where we note that
SK-ROCK with s = 15 outperforms MYULA by a factor of 21.77 in terms of computational efficiency for the slowest
component (see Table 3).

We conclude this experiment by comparing the two methods in terms of estimation of the MSE against the true
image. Figure 9 shows the evolution of the estimation error for the MMSE solution, as estimated by MYULA and

4The chain’s slowest (fastest) component was identified by computing the approximated singular value decomposition of the chain’s covariance
matrix and choosing on the samples the component with the largest (smallest) singular value.

5The statistics T (x) = log p(x|y) is very useful for analysing the bias of high-dimensional log-concave distributions because these concentrate
sharply on the typical set T (x) ≈ E(T (X)) [39].
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Figure 7: Cameraman experiment: (a) Original image of dimension 256 × 256 pixels; (b) blurred observation with
SNR= 40. (c) Mean of 103 samples generated by MYULA and (d) mean of 103/s samples generated by SK-ROCK.
(e) Standard deviation of the samples generated by MYULA and (f) SK-ROCK.
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Figure 8: Cameraman experiment: (a) Convergence to the typical set of the posterior distribution (4.1) for the first
2 × 103 MYULA samples and the first 2 × 103/s SK-ROCK (s = 15) samples. (b) Last 105 values of log π(x). (c)
Autocorrelation function for the slowest component.

Table 3: Cameraman experiment: Summary of the results after generating 107 samples with MYULA and 107/s
samples with SK-ROCK with s = 15. Computing time 35 hours per method.

Method Stepsize ESS ESS Speed-up Speed-up

δ slow comp. fast comp. slow comp. fast comp.

MYULA 0.106 2.88× 103 1.00× 106 - -
SK-ROCK (s = 10) 14.65 4.00× 104 2.63× 104 13.89 2.63× 10−2

SK-ROCK (s = 15) 34.30 6.27× 104 6.92× 104 21.77 6.92× 10−2

SK-ROCK, and as a function of the number of gradient and proximal operator evaluations. Again, observe that the
acceleration properties of SK-ROCK lead to dramatic improvement in convergence speed, and consequently to a
significantly more accurate computation of the MMSE estimator for given computational budget.

4.3 Hyperspectral Unmixing

We now present an application to hyperspectral unmixing [32]. Given a hyperspectral image y ∈ Rm×d with m
spectral bands and d pixels, the unmixing problem assumes that the observed scene is composed of k materials or
endmembers, each with a characteristic spectral response aj ∈ Rm for j ∈ {1, . . . , k}, and seeks to determine the
proportions or abundances xj,i of each material j ∈ {1, . . . , k} in each image pixel i ∈ {1, . . . , d}. Here we consider
the widely used linear mixing model y = Ax + w, where A = {a1, . . . , ak} ∈ Rm×k is a spectral library gathering
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Figure 9: Cameraman experiment: Mean squared error (MSE) between the mean of the algorithms and the true
image, measured using 15 × 103 samples from MYULA and 15 × 103/s samples from SK-ROCK (s = 15), in
stationary regime.
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Table 4: Hyperspectral experiment: Summary of the results after generating 5× 106 samples with MYULA and
5× 106/s samples with SK-ROCK. Computing time 88 hours per method.

Method Stepsize ESS ESS Speed-up Speed-up

δ slow comp. fast comp. slow comp. fast comp.

MYULA 1.79× 10−9 1.50× 102 0.63× 104 - -
SK-ROCK (s = 10) 3.11× 10−7 2.90× 103 1.70× 104 19.33 2.69
SK-ROCK (s = 15) 7.28× 10−7 5.69× 103 3.63× 104 37.93 5.76

the spectral responses of the materials, x ∈ Rk×d gathers the abundance maps, and w ∼ N(0, σ2Im×d) is additive
Gaussian noise. Moreover, following [30], we expect x to be sparse since most image pixels contain only a subset
of the materials. Also, we expect materials to exhibit some degree of spatial coherence and regularity. In order to
promote solutions with these characteristics, we use the ℓ1-TV prior proposed in [30] for this type of problem

p(x) ∝ exp{−α‖x‖1 − βTV (x)}1R
n

+
(x),

where α > 0 and β > 0 are hyper-parameters that we assume fixed (in this experiment we use α = 25 and β = 185,
determined using the method of [23]). The resulting posterior distribution is given by [30]

p(x|y) ∝ exp
[
−‖y −Ax‖2/2σ2 − α‖x‖1 − βTV (x)

]
1R

n

+
(x). (4.2)

Figure 10 presents an experiment with a synthetic dataset from [30] of size n = 75× 75 = 5625, with 5 materials,
and noise amplitude σ = 8.4 × 10−4 related to a signal-to-noise-ratio of 40dB, see [30] for details. Figure 10(a)
presents the evolution of the estimation MSE between the true abundance maps and the posterior mean as estimated by
MYULA and SK-ROCK (with s = 15), and as a function of the number of gradient and proximal operator evaluations
(using λ = 7.08 × 10−7 which is in the order of L−1

f , as it is recommended in [19, Section 3.3]). As in previous
experiments, observe that the posterior means estimated with SK-ROCK converge dramatically faster than the ones
calculated with MYULA, clearly exhibiting the benefits of the proposed methodology. Moreover, for illustration,
Figures 10(c)-(e) respectively show the estimated abundance maps for the fourth endmember for MYULA (5 × 105

samples) and SK-ROCK (5× 105/s samples, s = 15), as well as the pixel-wise (marginal) standard deviations for the
abundances of this material. Again, as in previous experiments, we notice that the estimates obtained with SK-ROCK
are noticeably more precise than the ones of MYULA, which would require a larger number of iterations to accurately
estimate these second order statistical moments.

To further compare the convergence properties of the two methods we repeated the experiment and generated
5 × 106 samples with MYULA and 5 × 106/s samples with SK-ROCK for s = 15 to make the comparisons fair.
Figure 11(a) presents trace plots for the two chains during their transient regimes using T (x) = log p(x|y) as summary
statistic, as a function of the number of gradient and proximal operator evaluations; observe that SK-ROCK attains
the typical set of x|y significantly faster than MYULA, similarly to the previous experiments. Figure 11(b) presents
similar trace plots for the two chains in stationarity. Additionally, as we did in cameraman experiment, we have
included the summary statistic E(T (X)) calculated by a very long run of the P-MALA algorithm, which targets (4.2)
exactly, in order to study the bias of the methods. As can be seen clearly, SK-ROCK presents a lower bias than
MYULA, and also exhibits better mixing properties. The good convergence properties of SK-ROCK can be clearly
observed in the autocorrelation plots of Figure 11(c), which correspond to the slowest components of the chains as
determined by their covariance structure, and where we have again applied the 1-in-15 thinning to the MYULA chain
for fairness of comparison. Table 4 reports the ESS values for this experiment. In particular, observe that SK-ROCK
outperforms MYULA by a factor of 37.9 in terms of ESS for the slowest component of the chain, and by a factor of
5.76 for the fastest component.

4.4 Tomographic image reconstruction

We conclude this section with a tomographic image reconstruction experiment. We have selected this problem to
illustrate the proposed methodology in a setting where the posterior distribution is strictly log-concave. The lack of

18



(a) MSE

20 40 60

20

40

60

(b) true image x

20 40 60

20

40

60

(c) MYULA: posterior mean

20 40 60

20

40

60

(d) SK-ROCK: posterior mean (s = 15)

20 40 60

20

40

60

0

1

2

3

4

5

6
10-3

(e) MYULA: standard deviation

20 40 60

20

40

60

0

1

2

3

4

5

6
10-3

(f) SK-ROCK: standard deviation (s = 15)

Figure 10: Hyperspectral experiment: (a) Mean squared error (MSE) between the mean of the algorithms and
the true image (fractional abundances of endmembers 1 to 5) measured using 104 samples from MYULA (solid line)
and 104/s samples from SK-ROCK (dash-dot line, s = 15), in logarithmic scale. (b) True fractional abundances
of the endmember 4 (75 × 75 pixels), (c) posterior mean as estimated with 105 samples generated with MYULA
and (d) 105/s samples generated by SK-ROCK. (e) Standard deviation of the samples generated by MYULA and (f)
SK-ROCK.
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Figure 11: Hyperspectral experiment: (a) Convergence to the typical set of the posterior distribution (4.2) for the
first 3 × 104 MYULA samples and the first 3 × 104/s SK-ROCK (s = 15) samples. (b) Last 105 values of log π(x).
(c) Autocorrelation function for the slowest component.

strong log-concavity has a clear negative impact on the convergence properties of the continuous-time Langevin SDE
(2.3) [18], and also impacts the convergence properties of the MYULA and SK-ROCK approximations.

In tomographic image reconstruction we seek to recover an image x ∈ Rd from an observation y ∈ Cp related to
x by a linear Fourier model y = AFx + ξ, where F is the discrete Fourier transform operator on Cd, A ∈ Cp×d is
a (sparse) tomographic subsampling mask and ξ ∼ N(0, σ2

I2p). Typically d ≫ p, making the estimation problem
strongly ill-posed. We address this difficulty by using a total-variation prior to regularise the estimation problem and
promote solutions with certain spatial regularity properties. From Bayes’ theorem, the posterior p(x|y) is given by:

p(x|y) ∝ exp
[
−‖y −AFx‖2/2σ2 − βTV (x)

]
, (4.3)

with hyper-parameters σ, β ∈ R+ assumed fixed (in this experiment we use β = 102).
Figure 12 presents an experiment with the Shepp-Logan phantom test image of size d = 128 × 128 pixels,

which we use to generate a noisy observation y by measuring 15% of the original Fourier coefficients, corrupted
with additive Gaussian noise with σ = 10−2 (to improve visibility, Figure 12(b) shows the amplitude of the Fourier
coefficients in logarithmic scale, unobserved coefficients are depicted in black). Following on from this, we use
MYULA and SK-ROCK with s = 10 to generate 104 and 103 samples respectively from p(x|y) with λ = 0.2× 10−4

which is in the order of L−1
f , as it is recommended in [19, Section 3.3]. We then use these samples to compute two

quantities: 1) the MMSE estimators - displayed in Figures 12(c)-(d); and 2) the (marginal) standard deviations of
the amplitude of the Fourier coefficients of x|y, depicted in Figures 12(e)-(f) in logarithmic scale. Observe that, in
this experiment, both methods deliver good and similar results with the number of samples available, with MYULA
producing slightly less accurate standard deviation estimates. More interestingly, notice from Figures 12(e)-(f) that
in this tomographic experiment the uncertainty is concentrated in the unobserved medium frequencies, whereas in the
deconvolution experiment uncertainty was predominant in the high-frequencies.

Moreover, to analyse the convergence properties of the two methods we compute autocorrelation functions by
generating 5× 106 samples with MYULA and 5× 106/s samples using SK-ROCK with s = 10. We use said samples
to determine the fastest and slowest components of each chain and measure their autocorrelation functions. Table 5
reports the associated ESS, which show that the SK-ROCK outperform MYULA by a factor of 20.23 in terms of ESS
for the slowest component of the chain.

These superior convergence properties can be clearly observed in Figure 13(c), which presents the autocorrelation
plots for the slowest components of the chains. For completeness, Table 5 also reports the values obtained with
SK-ROCK with s = 5.

Finally, as in previous experiments, Figure 13(a) presents trace plots for the two chains during their burn-in stages;
again we can see that SK-ROCK reaches the typical set of x|y significantly faster than MYULA. Figure 13(b) shows
the log π(x) trace of both methods in stationary regime, and similarly to the cameraman and hyperspectral experiments
we have also included the entropyE(T (X)) of the distribution calculated by a very long run of the P-MALA algorithm,
which targets (4.3) exactly. As can be seen clearly, SK-ROCK presents a lower bias than MYULA.
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Figure 12: Tomography experiment: (a) Shepp-Logan phantom image (128× 128 pixels), (b) tomographic obser-
vation y (amplitude of Fourier coefficients in logarithmic scale). Posterior mean of x|y as estimated with (c) MYULA
(104 samples) and (d) SK-ROCK (103 samples, s = 10). Standard deviations of the amplitude of the Fourier coeffi-
cients of x|y as estimated with (e) MYULA (104 samples) and (f) SK-ROCK (103 samples, s = 10).
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Table 5: Tomography experiment: Summary of the results after generating 5 × 106 samples with MYULA and
5× 106/s samples with SK-ROCK. Computing time 20 hours per method.

Method Stepsize ESS ESS Speed-up Speed-up

δ slow comp. fast comp. slow comp. fast comp.

MYULA 1.67× 10−5 1.31× 104 1.64× 105 - -
SK-ROCK (s = 5) 5.02× 10−4 5.31× 104 2.56× 105 4.05 1.56

SK-ROCK (s = 10) 2.30× 10−3 2.65× 105 1.33× 105 20.23 0.81
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Figure 13: Tomography experiment: (a) Convergence to the typical set of the posterior distribution (4.3) for the first
3× 104 MYULA samples and the first 3× 104/s SK-ROCK (s = 10). (b) Last 105 values of log π(x) from MYULA
and SK-ROCK (s = 10) chains. (c) Autocorrelation function for the slowest component.

5 Discussion and conclusion

This paper presented a new proximal MCMC method to perform Bayesian computation in inverse problems related to
imaging sciences. Similarly to previous proximal MCMC methods, the methodology is derived from a Moreau-Yosida
regularised overdamped Langevin diffusion process. However, instead of the conventional EM discrete approximation
of the Langevin diffusion, the proposed method employs a significantly more advanced discrete approximation that
has better convergence properties in problems that are ill-posed and ill-conditioned.

The explicit EM approximation struggles in problems that are ill-posed or ill-conditioned because of the corre-
sponding severe time-step restrictions. These same issues arise in the case of gradient descent and proximal gradient
optimisation algorithms that also suffer from time-step restrictions. In optimisation, this has been successfully ad-
dressed by using accelerated proximal optimisation algorithms [8]. The SK-ROCK approximation used in this paper
achieves a similar acceleration quality. For Gaussian models, we prove rigorously the acceleration of the Markov
chains in the 2-Wasserstein distance as a function of the condition number κ when moderate accuracy is required. The
superior behaviour of our method is further demonstrated with a range of numerical experiments, including non-blind
image deconvolution, tomographic reconstruction, and hyperspectral unmixing, with total-variation and ℓ1 priors. The
generated Markov chains exhibit faster mixing, achieve larger effective sample sizes, and produce lower mean square
estimation errors at equal computational budget. This allows, for example, to accurately estimate high order statistical
moments and perform uncertainty quantification analyses in a more computationally efficient way.

Furthermore, this paper opens a number of interesting directions for future research. For example, as mentioned
previously, the poor performance of EM approximations can also be mitigated by using auxiliary variable Gibbs
splitting schemes [48] that have similarities with the ADMM optimisation algorithm, at the expense of additional es-
timation bias. Given that ADMM optimisation can be accelerated, it would be interesting to study sampling methods
that combine SK-ROCK with splitting schemes to reduce that bias or achieve greater computational efficiency. An-
other important perspective is to theoretically analyse the non-asymptotic convergence properties of SK-ROCK for
non-Gaussian log-concave models and derive bounds in total-variation and Wassertein metrics; this is highly technical
and will require developing new analysis techniques. It would also be interesting to explore possible Metropolis-
adjusted variants of the stochastic Runge-Kutta-Chebyshev methods discussed in this paper, and to investigate empiri-
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cal Bayesian computation algorithms that combine SK-ROCK with stochastic gradient descent, which could be useful
for estimating unknown model parameters such as regularisation parameters [23].

A Wasserstein distance - Gaussian process

We begin computing the distribution Qn of the n samples generated by the approximation (3.2). We will work in the
one dimensional case but the results easily extend to higher dimensions, as can be seen later. First, we can notice that
the solution of (3.2) can be expressed by the following recursive formula:

Xn = (R1(z))
nX0 +

√
2δ

n∑

i=1

(R1(z))
n−i(R2(z))ξi,

where X0 is the initial condition of the problem. Computing expectations on both sides of the latter equation, we have:

E(Xn) = (R1(z))
nX0.

Then, we compute the variance as follows:

E(X2
n)− E(Xn)

2 = 2δ

n∑

i=1

(R1(z))
2(n−i)(R2(z))

2,

= 2δ(R1(z))
2n(R2(z))

2
n∑

i=1

1

(R1(z))2i
,

= 2δ(R1(z))
2n(R2(z))

2 1

(R1(z))2

[
1− 1

(R1(z))2n

1− 1
(R1(z))2

]
,

= 2δ(R2(z))
2

[
(R1(z))

2n − 1

(R1(z))2 − 1

]
,

thus, the approximated distribution Qn of the n-th sample produced by the numerical scheme (3.2) is defined, as
follows:

Qn = N
(
(R1(z))

nX0, 2δ(R2(z))
2

[
(R1(z))

2n − 1

(R1(z))2 − 1

])
.

We can now compute the Wasserstein distance between the two univariate Gaussian distributions P and Qn:

W2(P ;Qn)
2 = (R1(z))

2nX2
0 +

[
σ −

√
2δR2(z)

(
1− (R1(z))

2n

1− (R1(z))2

)1/2
]2

.

As we mentioned at the beginning of this Appendix, we can trivially extend the last result for a d-dimensional Gaussian
distribution i.e. let P ∼ N(0,Σ) where Σ = diag(σ2

1 , ..., σ
2
d) and X0 = (x1

0, ..., x
d
0)

T and obtain the following
expression for the Wasserstein distance:

W2(P ;Qn)
2 =

d∑

i=1

(R1(zi))
2n(xi

0)
2 +

d∑

i=1

[
σi −

√
2δR2(zi)

(
1− (R1(zi))

2n

1− (R1(zi))2

)1/2
]2

,

where zi = −δ/σ2
i . This concludes the proof.

B Explicit bound for the Wasserstein distance

We begin applying the triangle inequality to W2(P ;Qn+1)
2 as follows:

W2(P ;Qn+1)
2 ≤ W2(P ; Q̃)2 +W2(Q̃;Qn+1)

2, (B.1)

23



where Q̃ is the unique invariant distribution to which (3.2) converges when n → ∞ and it is defined as:

Q̃ = N
(
0, 2δ(R2(z))

2

[
1

1− (R1(z))2

])
,

thus, we have that:

W2(Q̃;Qn+1)
2 =

d∑

i=1

R1(zi)
2n+2(xi

0)
2 +

d∑

i=1

[(
2δR2(zi)

2

1−R1(zi)2

)1/2

−
√
2δR2(zi)

(
1−R1(zi)

2n+2

1−R1(zi)2

)1/2
]2

,

=
d∑

i=1

[
R1(zi)

2n+2(xi
0)

2 +
2δR2(zi)

2

1−R1(zi)2

(√
1−

√
1−R1(zi)2n+2

)2
]
. (B.2)

It is easy to prove the following property:

1−
√
1− x2n+2

1−
√
1− x2n

x2 ≤ x2, (B.3)

for x ∈ (0, 1). Thus, applying the latter in (B.2) we have:

W2(Q̃;Qn+1)
2 ≤

d∑

i=1

R1(zi)
2n+2(xi

0)
2 +

d∑

i=1

2δR2(zi)
2

1−R1(zi)2

(
R1(zi)

2
[
1−

√
1−R1(zi)2n

])2

,

≤
d∑

i=1

[
R1(zi)

2n(xi
0)

2 +
2δR2(zi)

2

1−R1(zi)2

(
1−

√
1−R1(zi)2n

)2
]
R1(zi)

2,

≤ max
1≤i≤d

R1(zi)
2W2(Q̃;Qn)

2.

Thus, (B.1) becomes:
W2(P ;Qn+1)

2 ≤ W2(P ; Q̃)2 + max
1≤i≤d

R1(zi)
2W2(Q̃;Qn)

2.

Let:
C = max

1≤i≤d
R1(zi)

2,

applying (B.3) n+ 1 times, we finally have that:

W2(P ;Qn+1)
2 ≤ W2(P ; Q̃)2 + Cn+1W2(Q̃;Q0)

2,

concluding the proof.
As an attempt to minimise the bound found in the latter expression, we will try to accelerate the decay of the

constant C composed by R1(z) in the stochastic ROCK methods. This approach follows closely the approach in [20].
In particular, in order to bound R1(z) by one, we need that |ω0 + ω1z| ≤ 1, in other words we need that:

−1 ≤ ω0 − ω1
δ

σ2
i

≤ 1.

Let L := 1/σ2
min and ℓ := 1/σ2

max, so we have that:

−1 ≤ ω0 − ω1Lδ ≤ ω0 − ω1ℓδ ≤ 1,

which it is the same as:
−1 ≤ ω1ℓδ − ω0 ≤ ω1Lδ − ω0 ≤ 1.
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Working with the first two members on the left-hand side of the latter inequality, we have that:

δ ≥ ω0 − 1

ℓω1
. (B.4)

We choose the smallest δ to have an efficient algorithm i.e., δ = (ω0 − 1)/ℓω1 and now working with the last two
members on the right-hand side of the previous inequality, we have that:

κ :=
L

ℓ
≤ ω0 + 1

ω0 − 1
= 1 +

2s2

η
,

where κ is the condition number of our Gaussian problem. We choose the smallest s to have an efficient algorithm and
the latter expression determines the parameter s as:

s =

[√
η

2
(κ− 1)

]
, (B.5)

where [x] is the notation for the integer rounding of real numbers.
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