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Abstract—Sniffing Bluetooth data sessions is considered a
difficult task, because of the frequency-hopping channel access
scheme this technology implements. In this paper we present
a novel open-source sniffer that can monitor Bluetooth Low
Energy (BLE) traffic on all channels in real time. The sniffer
builds on an Software-Defined Radio (SDR) framework to cap-
ture the entire BLE spectrum and exploits Graphics Processing
Unit (GPU) capabilities to channelise and process BLE traffic in
real-time. We show that our sniffer can easily and reliably detect
active BLE connections, and infer their properties, including
Access Address, CRC values and hopping sequences. From a
general standpoint, we show that tracking many BLE data
sessions at the same time becomes feasible even with relatively
inexpensive equipment, as we are able to discover up to 24
simultaneous sessions within 80 ms on average.

Index Terms—Bluetooth Low Energy, graphics processing
unit (GPU), real-time sniffer, software-defined radio (SDR)

I. INTRODUCTION

As the Internet of Things (IoT) gains popularity in many
application domains, the number of smart devices with wire-
less connectivity is soaring [1]. Bluetooth technology will
play a crucial role in the growing ecosystem of connected
devices, with market reports forecasting more than 4 billion
Bluetooth-powered devices shipped every year [2]. Starting
with version 4.0 of the Bluetooth Core Specification, the
Bluetooth Special Interest Group (SIG) introduced a new
version of the protocol called BLE, which is not backward-
compatible with the previous versions of the standard. BLE is
better suited for devices that have low data rate requirements
and strict constraints on power consumption, hence becoming
the de facto standard for many IoT applications.

Despite the commercial success of BLE, open-source tools
that provide a complete and efficient framework for sniffing
BLE communications over-the-air are yet to appear. BLE
technology operates in the unlicensed 2.4 GHz ISM (Indus-
trial, Scientific and Medical) band and employs an Adaptive
Frequency-Hopping Spread Spectrum (AFH) technique for
accessing the physical medium, which makes debugging BLE
data sessions a difficult endeavour. In fact, while AFH has
been adopted to combat interference from other wireless
devices, it also makes eavesdropping on radio signals difficult.

In general, we identify two challenges that arise when
attempting to snoop BLE communications: 1) the central
frequency of successive transmissions is not fixed but is
rapidly switched between a set 40 narrow-band channels,
according to a pseudo-random hopping sequence known only
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by the transmitter and the receiver; and 2) multiple data
sessions (i.e. connections between different devices) can be
active at the same time on different channels. Therefore, the
only way to reliably track all BLE sessions in a target area is
to capture a wide-band 80 MHz signal corresponding to the
entire 2.4 GHz ISM band and then recover the BLE traffic,
as we have demonstrated recently for the case of Bluetooth
Classic [3].

A. BLE Debugging Tools

The increasing interest towards BLE technology in the
last few years led to the development of a number of
sniffing platforms that differ in complexity, cost and sniffing
capabilities. Here, we briefly review the most popular ones,
highlighting their shortcomings.

The most common devices used to analyse BLE com-
munications are usually small USB dongles connected to a
host computer. The Ubertooth One for example—originally
designed for eavesdropping on Classic Bluetooth and recently
updated to partially support also BLE—has been used to
capture active data sessions in [4]. Both passive and active
attacks, such as connection hijacking, have been demonstrated
using the Micro:bit system [5]. Similar platforms that offer
the same capabilities are BLE development kits from Nordic
Semiconductor or the Adafruit Bluefruit LE sniffer [6].

These devices share the advantage of being inexpensive
and are well supported by the community, with many open-
source applications. Their main disadvantage, however, is that
they can only listen on a single channel, therefore it is hard
to discover connection parameters of existing data sessions
and impossible to track more than one connection at a time.
Moreover, since all use a commercial Bluetooth transceiver
embedded in the hardware platform, they cannot be updated
to support more recent versions of the standard. At the time
of writing, the latest version of the Core Specification is
5.2; BLE has changed drastically with version 5 (released
in 2018), introducing support for higher data rates and coded
physical layers for transmissions with improved reliability. It
is important to note that the transceivers used by all these
systems cannot support the new physical layers introduced
with BLE 5.

To overcome these limitations, we consider SDRs as the
radio front-end, which offer superior performance and more
flexibility. A framework specifically designed for sniffing
wireless protocols in the 2.4 GHz ISM band is presented in
[7]; however, the proposed system cannot operate in real-time
and requires to store large amounts of data before processing.
To our knowledge, no implementation capable of decoding all



USRP
B210

USRP
B210

Synchronisation
(Octoclock)

CPU GPU

Host Machine

Control
Data

Fig. 1. Overview of the proposed BLE sniffer architecture.

BLE channels concurrently in real-time has been developed
to date. One shortcoming of SDR-based applications is that
they are demanding in terms of computational power. A
common solution to ensure real-time operation would be
to employ an Field-Programmable Gate Array (FPGA) for
the processing stage. This in fact the approached used by
commercial products, such as the Ellisys [8], yet performance
comes with a substantial price tag, opaque design, and no
ability to customise the behaviour of the platform.

B. Contribution

To the best of our knowledge, we are the first to develop
a practical open-source framework based on SDRs that can
simultaneously track the traffic on all the 40 BLE channels
in real time. Rather than relying on complex FPGA designs
for processing the radio signal, we use a general-purpose
GPU, which can be easily installed on a host machine, can be
rapidly and fully re-programmed via software, and is imme-
diately available for any other processing task. We believe
that with this system developers and security researchers
will be able to debug BLE applications more efficiently.
Moreover, we explore the capabilities of GPUs in boosting
the performance of SDR-based applications.

C. Structure of the paper

The rest of the paper is organised as follows: in Section II
we present the hardware setup underpinning the system and
motivate the main design choices; in Section III we describe
in greater detail the signal processing chain and how BLE
packets are extracted from a sampled wide-band signal; in
Section IV we show preliminary results; finally, in Section V
we briefly discuss further implications of our work.

II. SYSTEM ARCHITECTURE

The sniffer, sketched in Fig. 1, can be logically divided
into three distinct parts:

• a radio front-end composed of multiple SDRs that when
operating together—i.e. joining their bandwidth—can
capture the entire 2.4 GHz ISM band;

• a processing back-end implemented on the host for 1)
separating narrow-band BLE channels from the wide-
band signal acquired by each SDR and 2) extracting
BLE packets from those channels;

• a synchronisation mechanism used to produce coherent
timestamps on channels acquired by different SDRs.

The system can operate in real-time. We assume that a
small latency due to buffering in the processing chain is
tolerated.

A. Radio Front-end

The radio interface of our system is composed of two
Ettus USRP B210 boards. Each USRP B210 can sample
up to 56 MHz of instantaneous bandwidth from 70 MHz
to 6 GHz and can acquire IQ samples with a “double”
floating point resolution of 64 bits per component. A single
B210 is clearly not sufficient to capture the entire 2.4 GHz
ISM band, therefore we need two of them. We tune them
respectively onto the 2,420 MHz and 2,462 MHz centre
frequencies and set an IQ sampling rate of 40 MHz on both
boards. This accounts for a total data rate towards the host
machine of approximately 640 MB/s. To provide enough
speed, the boards in the SDRs front-end are connected to
the host machine using two USB 3 controllers.

B. Processing Back-end

We develop our BLE sniffing system on a computer with
an Intel Core i7-7700K and 16 GB of memory, which run
the Ubuntu 16.04 operating system. The host computer is
also equipped with an Nvidia GTX 1080 GPU with 8 GB of
memory. The real-time operation of the system is achieved
by leveraging the parallel architecture of the GPU.

In general, GPU-based applications exhibit excellent per-
formance in terms of computational power but suffer from
repeated data transfers to/from host memory due to high
latency and limited bandwidth. To limit this problem, samples
are first stored in a temporary buffer (e.g. up to 1 s or 2 s)
and then transferred in batches between the host and the
GPU. Keeping in RAM samples from the wide-band signals
can require a large amount of memory—up to a few GB,
depending on the size of the temporary buffer. On the other
hand, since everything is kept in RAM, the footprint on the
hard drive is minimal and depends only on the number of
detected packets that will be added to the capture file. This
is a great advantage with respect to the work in [7], which
required substantial space to be available on the hard drive.

C. Time Synchronisation

The two USRP B210 boards in the radio-front end are
required to capture time-aligned IQ samples, in order to pro-
duce coherent timestamps for the BLE packets received in the
lower and higher portion of the spectrum. To synchronise the
operation of the SDRs in the time domain, we use an external
clock distribution module, namely the Ettus OctoClock. This
module provides both a 10 MHz reference clock signal and a
1 PPS signal, both of which are fed to the two B210 boards
and are used to discipline the IQ sampling.

Using a clock distribution module is the best solution
in terms of accuracy, but admittedly can prove relatively
expensive; therefore we also design a cheaper, yet less
accurate, alternative time synchronisation procedure. In this
latter case we can increase the bandwidth of the two SDR
in the radio front end, so that they overlap at the centre of
the 2.4 GHz ISM band. We can then program an inexpensive
BLE dongle (such as a Nordic nRF52840) to transmit beacons
at (known) regular time intervals on a fixed central frequency
that is captured by both radios. Using the timestamp of the
beacons, we are able to synchronise the timestamps of all the
BLE packets in a post-processing phase.
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III. BLE PROCESSING CHAIN

The sniffer is capable of processing all BLE sessions in
real time by offloading the most demanding operations of the
signal processing chain to the GPU. The processing chain is
illustrated in Fig. 2.

A. IQ Samples Processing

IQ samples captured by each SDR are temporarily stored
in a buffer on the host and then moved in batches to the GPU
memory. By using a double buffer, we ensure a continuous
flow of samples from the SDRs to the processing back-
end. A polyphase filter is used to channelise the wide-band
signal of each SDR into 20 narrow-band signals (this is done
on both the receiving chains). The resulting narrow-band
signals correspond to the 40 BLE channels. The structure
of polyphase filtering is well-suited for the highly-parallel
architecture of the GPU and the implementation is fairly
efficient [9].

All BLE transmissions use a binary Gaussian Frequency-
Shift Keying (GFSK) modulation. This is a very simple
modulation that encodes transmitted bits in the frequency
deviation of the signal from the carrier. For every channel we
convert the sequence of IQ samples into the corresponding
bitstream by discriminating the phase difference between
successive samples. In this case, all the operations can be
performed in parallel and again the GPU excels in boosting
the overall decoding speed.

B. Bitstream Processing and Packet Logging

At this point the system has to process the 40 bitstreams—
one for each channel—looking for new BLE packets. How-
ever, not all the 40 channels are ‘equal’ and in particular they
are divided into two categories: 3 advertising channels that
are reserved for discovering new devices and broadcasting
information, and the remaining 37 data channels that are
used when two or more devices are connected according
to a master/slave paradigm. We will show how to take this
difference into account when processing advertising and data
channels, but the procedure for detecting new BLE packets

is the same and is based on correlating the bitstreams with
some known fields of the packets.

The structure of a generic BLE packet is reported in Fig. 3.
A short preamble of alternating 1’s and 0’s precedes the
Access Address (AA), a pseudo-random sequence of 32 bits
used to identify a data session. The length of the payload
is encoded in the Header field. The header and payload are
protected by a 24-bit Cyclic Redundancy Check (CRC).

Given that the packet preamble is really short, we cannot
rely only on it to detect BLE packets because the number of
false positives is very high. We must correlate the bitstream
both with the preamble and the AA, i.e. with a 40-bit long
sequence, in order to be sufficiently confident that we have
detected a packet. Once a packet is detected, we can then
validate its reception by checking that the CRC received and
the one computed from the packet content match. This is
straightforward for Advertising Packets, where the AA and
the CRC initialisation value are known quantities, fixed by
the standard. However, when a master and a slave devices
form a piconet, these parameters are pseudo-random values
that are not known a priori.

Our sniffer can discover and track other BLE connections
in two distinct ways. In the first case, the sniffer is active and
intercepts a CONN_IND packet on one Advertising channel.
This packet, which signals the beginning of a new connection,
encodes in clear in its payload the AA and the CRC that will
be used in the connection. These parameters are added to a
list of known values and the discovery of subsequent data
packets works in the same way as for advertising packets. In
the second case, a target BLE connection has been established
before the startup of the sniffer or outside its range; in such
scenarios, the discovery of the same parameters requires a
little more effort. Here we exploit the fact that when devices
are connected, they shall continuously transmit packets—even
empty ones—in order to stay synchronised while hopping.
Packets from the master are often followed by a response
from the slave on the same channel after a short inter-
frame space. This implies that we will see the same 40-
bit sequence (Preamble and AA) repeating twice during a
short time window on the same data channel (it is worth
noting that the AA is never encrypted nor whitened). Even if
the payload is encrypted, we are still able to validate packet
reception because the header and the CRC are applied after
encryption. To recover the CRC initialisation value, one can
simply check which one of the possible 224 values matches
the CRC received. Obviously, with this method we can get the
correct initialisation value only if BLE packets are received
without errors; however, one can become more and more
confident about the result if multiple packets agree on the
same CRC initialisation value.

When we have identified all the BLE packets in a trace,
we still have to write them to a capture (pcap) file. At this
point it is not possible to save any data to file, because all
the information is still kept in the GPU memory. When a
GPU core identifies a valid BLE packet on one single-channel
bitstream, it marks the first bit of the packet with a flag. Note
that every bit in the bitstream is encoded as uint8_t and
we only use the least significant bit to represent its value.
This means that we have room for up to 7 flags if we use
for example a one-hot encoding for the control information.
With this method, when the 40 bitstreams are moved back to
the host memory, the host Central Processing Unit (CPU)
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within the range of the sniffer in the considered testbed.

can rapidly skim through them looking for specific flags
only, without double-checking if BLE packets are present and
correctly received. The only task for the host—quite easy at
this point—is to recover the payloads and produce a capture
file with all the packets properly ordered in time.

IV. PERFORMANCE EVALUATION

We set up two testbeds to evaluate the performance of our
system. In the first one, we implement a BLE transmitter on
a Nordic nRF51 development kit. The transmitter emulates
a target BLE connection hopping on all the channels and
sending 1,000 packets on each. The packets have the same
arbitrary AA and embed a sequence number in the payload.
We count how many packets our sniffing system detects
on every channel in order to extract statistical information
about the detection rate. Every packet needs to pass the
CRC verification in order to be counted as correctly received.
On each channel the system detects on average 99.65% of
the transmitted packets. The detection rate is 100% on 23
channels while the worst detection rate we measure on one
channel is 97%. It is important to notice that interference due
to Wi-Fi and other Bluetooth transmissions is present in our
testbed, hence some packets might be discarded during the
CRC verification stage.

The second testbed is dedicated to evaluating the ability of
our system to detect already existing BLE connections that
are less prescribed. Specifically, we establish multiple BLE
connections in a controlled environment, using 24 Raspberry
Pi 3B and 24 BLE dongles. We repeat the experiment three
times with 6, 12, and 24 connections in total. In each
experiment all the sessions are created before turning on the
sniffing system, which thus has no knowledge of the AAs
used. We infer the properties of each connection—AA and
CRC—and we count all the sessions detected. Even if we do
not show this, it is easy to recover also the hopping sequences
thanks to the multi-channel capture.

In Fig. 4 we report statistics about the time needed to
discover all the target connections. We see that while this
depends on the number of existing connections, even in the

most challenging scenario with 24 active sessions our system
detects all the connections in less than 200 ms. Another thing
to notice is that the distribution gets wider as the number
of connections increases. This can be due to the fact that
more active sessions have higher chances to collide, therefore
generating spurious packets that can be seen as noise and are
rejected by our system. Finally, it is interesting to observe
that the median of the detection time is almost constant in all
scenarios; this means that—irrespective of the actual number
of BLE devices—our system can discover all the connections
in less than 80 ms more than half of the times.

V. CONCLUSIONS

In this paper we presented a novel “software-defined” BLE
sniffer that achieves full-band packet capture capability, using
SDRs as the radio front-end and harnessing the computation
power of a GPU for the processing back-end. We discussed
the functionality of the system and showed that it can discover
and track multiple connections at the same time on all BLE
channels. Our work empirically proves that it is possible to
develop applications with high bandwidth in which radio and
decoding functionalities are fully implemented in software.

We believe that the benefits of our implementation are
twofold. On the one hand, our system lowers considerably
the complexity barrier for mounting efficient passive attacks
against wireless protocols that use frequency-hopping tech-
niques; on the other hand, we give a practical example on how
SDRs can overcome limitations of traditional radio systems
in debugging wireless standards.
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