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Automatic Recognition of Low-Back Chronic Pain Level and Protective
Movement Behaviour using Physical and Muscle Activity Information

Fasih Haider, Pierre Albert and Saturnino Luz
Usher Institute, University of Edinburgh, Scotland, United Kingdom

Abstract— Automatic recognition of low-back chronic pain
and movement behaviour in humans could be a useful tech-
nology in health monitoring and providing effective reha-
bilitation advice. Physical and muscle activity information
can be used in automating this process in combination with
machine learning and feature engineering methods. This paper
presents a method for automatic recognition of chronic pain and
movement behaviour using our recently proposed ‘Active Data
Representation’ (ADR) method, and applies it to two tasks of
the EmoPain 2020 Challenge using physical and muscle activity
features. The ADR method is used for the transformation of the
physical and muscle activity features for the classification tasks.
Our results show that ADR outperforms the LSTM challenge
baseline model in terms of Matthew correlation coefficient
(0.43) and F score (61.21) for the recognition of chronic pain
and movement behaviour respectively in hold-out validation
settings. Although a decrease in performance is observed on
the test dataset, ADR still outperforms the challenge baseline
for the recognition of chronic pain and movement behaviour
tasks.

I. INTRODUCTION

Chronic Low-Back Pain (CLBP) is a continuous pain
unrelated to a specific injury, with no existing lesion or
persisting past healing. Physical activity is essential for
rehabilitation [4] but subjective aspects (anxiety, perceived
exacerbation, etc.) can hamper regular practise with adver-
sarial consequences[14]. Patient’s engagement to physical
exercise plans need to take into consideration psychological
aspects and provide effective rehabilitation advises [13]. The
detection of the patient’s perception is essential in this effort
to improve care plans.

Avoidance of physical activity is expressed through pro-
tective behaviour, also referred as guarded movements -
body movement aimed at avoiding strain [14]. Automatic
detection of these movements can enable the development
of support tools complementing physiotherapists, in clinical
settings or for self-management. Movement-based automatic
recognition of protective behaviour is performed at different
temporal scopes: sequence labelling is interested in the
overall classification, and frame by frame labelling aims to
characterise specific movement. Posture and movements are
recorded using sensors on the whole body. Movements are
decomposed in frames, and joints angles and energy are
extracted for each time step.

In an overview of the literature, Aung et al. [2] found
that although pain expression classification has been studied,
body expression recognition has been neglected.

Classification of pain related expression from body move-
ment is based on the work in recognition of affective states

from body movements and posture [7].

Movement-based automatic recognition of protective be-
haviour is performed at different scopes: frame by frame
labelling to characterise the temporal structures and sequence
labelling for the classification of the overall movement.

Aung et al.[1] investigated Movement Behavior Classifi-
cation, classifying guarding in two movements: sit-to-stand
and one-leg-stand using posture and velocity based features.
A Random Forests classification was performed, with overall
F1-scores of 0.81 and 0.73.

This work was expanded in an exploratory study after
the collection of the EmoPain data set [2]. A Random
Forest classification was performed on the main combina-
tions of labels/exercises, suggesting contextual factors in the
differences observed between the combinations themselves
and between the type of exercise (instructed vs non in-
structed). In a follow-up study, a deep learning architecture
(BodyAttentionNet)[16] was developed to capture spatial and
temporal cues. Compared to the state of the art, the system
drastically improved the performances (Fl-score: 0.572 vs
0.844). Compared to other LSTM-based architectures[15],
the BodyAttentionNet neural network achieved a better F1-
score (0.812 vs 0.844), and required a much lower number of
hyperparameters (2.1k vs 40.9k). Separating the results of the
spatial and temporal subsystems suggested a more important
role for the former, although the combined performance hints
to their complementarity.

Pain classification is based on similar body features. Initial
classification using three pain levels (control, low, high) with
Support Vector Machine on body motion and muscular activ-
ity combined with feature selection [10] showed good results.
Feature sets of both modalities achieved similar F1 scores
(movement: 0.63, muscles: 0.69), while their combination
lead to a large improvement (F1 = 0.8). Investigation on the
inclusion of a depression score as an additional input feature
[11] did not improve the performances, however the results
further stressed the prominence of the context (movement
and type of exercise) in the classifier’s performance. In their
study on the relevance of features based on linear mixed
model analysis, Olugabe et al. [12] further investigated the
discriminative power of specific body features. The resulting
optimised feature set allowed further improvement. Addi-
tionally, the study investigated the potential of ubiquitous
monitoring through the use of a minimal set of features from
low-cost sensors. In this last experiment, they achieved an
F1-score of 0.78 on a reduced two-level pain classification.



II. DATA SET DESCRIPTION

The movement challenge data set used for the ‘Pain
Recognition’ and ‘Movement Behaviour Classification’ is
based on the EmoPain dataset [2]. It contains movements
from 30 participants carrying out physical activity, described
by two types of features: full body motion capture and
muscle activity. Body motion is tracked though bodily joints
(13 angles and corresponding energies) and the muscle
activity is tracked using Surface Electromyography (SEMG),
a non-invasive method to record the electric activity of
muscles. The dataset for pain recognition Task labels each
movement for chronic pain using three levels : none, low,
high. The dataset for the movement behaviour recognition
task is provided with continuous binary labels of protective
behaviour (PB) for each of the 180 frames constituting a
movement. PB labels were generated in the EmoPain data
set from the fusion of six (5 + null) behaviour categories
temporally segmented by experts in CLBP. The data set
is slightly imbalanced (=60/40) in terms of number of
subjects, featuring 18 participants with CLBP and 12 healthy
participants. The population was divided randomly into three
sets (see table I).

TABLE I
MOVEMENT CHALLENGE DATASET.

Set Participants - total | CLBP | Healthy
Training 16 10 6
Validation 7 4 3
Test 7 4 3

III. EXPERIMENTATION

This section describes the features sets of the of EmoPain
Data for pain and movement behaviour recognition tasks,
the training of the feature extraction model, the generation
of a feature vector for the recognition tasks, the classification
methods and the evaluation metrics.

A. Feature Sets

Each frame is a single data vector at each time step
containing 30 features: 13 joint angles, 13 joint energies and
4 electromyography from lower and upper back. In total the
data consists of 514545 frames (356107 and 158438 in the
training and validation sets respectively). The Classification
is performed on time intervals (T), i.e. sequences of frames.
The Challenge Organisers use a different time interval for
each task, as described below:

Pain Recognition from Movement: size=1xT xd

1) I = the total number of instances of exercise;

2) T = the number of frames in each segment =
variable, depends on the length of the exercise;

3) d = the number of dimensions of each frame = 30.

Movement Behavior Classification: size =W x T x d

1) W = the total number of window segments over all
exercise instances;

2) T = the number of frames in each segment = 180;

3) d = the number of dimensions of each frame = 30.

B. Active Data Representation

In this section, we describe our active data representation
method briefly [5], [6]. This is the first study which evaluates
the ADR using physical and muscle activity information.
Previous studies [5], [6] evaluates ADR using audio and
visual information only. It involves the following steps:

1) Clustering of frames: Self-Organising Maps (SOM) [8]
are employed for clustering of all the frames using
30 features. The number of clusters was determined
through a grid search hold-out-validation procedure
with a hyperparameter space of m € {5,10,...,100}.
An example of clustering (i.e. feature extraction model)
is shown in Figure 1.

2) Generation of the Active Data Representation
(ADRy;) vector is done by first calculating the
number of segments in each cluster for each I or W
(A1), that is, creating a histogram of the number of
frames (nADR ;) present in each of the m clusters
for each I/W. Then, to model temporal dynamics we
calculate the mean and standard deviation of the rate
of change with respect to the clusters associated with
the frames for each I/'W (cADR 4;), where the rate of
change is given by an approximation of derivative

8CADRAi
ADRy; = —————,
vaTA ot
with respect to time (%).
nADR 4;
NADR Ao = T 1 1)
A ||nADRAZH1 (

3) Fusion: the ADR,;, ., feature set encompasses the
features of nADR,;, ..., and vADR4;. Therefore a
feature vector with dimensionality of m+-2 is generated
to represent each instances (Worl) for classification.

C. Classification Methods

The classification experiments were performed using four
different methods, namely decision trees (DT, with leaf size
of 20), nearest neighbour (KNN with K=1), linear discrimi-
nant analysis (LDA) and Random Forest (RF, with leaf size
of 30 and 250 number of trees for pain recognition task, and
with leaf size of 2 and 12 number of trees for movement
behaviour recognition task). The classification methods are
implemented in MATLAB' using the statistics and machine
learning toolbox. A hold-out validation setting was adopted,
where the training data do not contain any information of
validation subjects. The pain recognition task is a three class
problem as follow:

1) 0: Healthy,

2) 1: Low-level pain,

3) 2: High-level pain.

The movement behaviour recognition task is a two class
problem as follow:

1) 0: Not protective,
2) 1: Protective.

Thttp:/fuk.mathworks.com/products/matlab/ (Jan 2020)



Hits

4 3.5 3 05 A1

25 2

1.5 1 0.5 0

Fig. 1.

SOM Neighbor Weight Distances

4 3.5 3 25 2 1.5 1 0.5 0o -05 -1

ADR feature extraction model with m = 10 which provides the best result of 0.43 (MCC) for Pain Recognition task with RF classifier. Left
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Fig. 2. Pain Recognition: Hold-out validation Results

D. Evaluation Matrices

To assess the classification results, we used the average of
Matthew Correlation coefficient (MCC) for pain recognition
task as shown in Equation 2 and Averaged Fls.,.. for
movement behaviour recognition task in hold-out-validation
setting.

TP xTN —FP x FN

MCC = 2
\/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

IV. RESULTS AND DISCUSSION

This section describes the results of machine learning
models for pain and movement behaviour recognition task
of EmoPain challenge.

A. Results: Pain Recognition

The results (i.e. MCC) of pain recognition task are shown
in Table II. The results indicate that the RF (the feature
extraction model is shown in Figure 1) provides better
averaged MCC of 0.43 than the other classifiers. The results
indicated that the LDA provides the best MCC of 0.47 for
class (1). The results also indicates that RF provides the best
results for class (0) and class (2) with an MCC of 0.45 and
0.42 respectively. For further insights, confusion matrices of
the best result is shown in Figure 2 along with precision,
recall of each class, overall accuracy, UAR and Kappa [9].
We have submitted top three results (i.e. RF, LDA and DT)
for test pupose to the challenge organisers and the results are
also shown in Table II.

TABLE 11
RESULTS OF PAIN RECOGNITION TASK IN HOLD OUT VALIDATION: MCC
Base-SVM  Base-KNN LDA KNN DT RF
m - - 10 10 35 10
class (0) - - 0.36 0.32 0.16 0.45
. class (1) - - 0.47 0.24 0.25 0.41
Valid. s 2) . ] 029 -006 0.1 042
average 0.19 0.05 0.38 0.16 0.18 043
class (0) - -0.04 0.14 - 0.16 0.23
et Class () B -0.06 0.03 - 2009 -0.01
class (2) - 0.16 0.03 - 0.16 0.14
average - 0.02 0.07 - 0.08  0.12

B. Results: Movement Behaviour Recognition

The results (i.e. Fscore) of movement behaviour task are
shown in Table III. The results indicate that the RF (0.6121)
provides better averaged F's.o. (the feature extraction model
is shown in Figure 3) than the other classifiers and the
challenge baseline of 0.4811 [3]. The results showed that
RF provides the best Figcore 0f 0.9677 and 0.2564 for class
(0) and class (1) respectively. For further insights, confusion
matrices of the best result is shown in Figure 4 along with
precision, recall of each class and overall accuracy, Fiscore
and Kappa [9]. We have submitted top three results (i.e. RF,
LDA and DT) for test purpose to the challenge organisers
and the results are also shown in Table III.

TABLE IIT
RESULTS OF MOVEMENT BEHAVIOUR RECOGNITION TASK ON
VALIDATION AND TEST DATA : Fseore (%)

Base-LSTM LDA  KNN DT RF

m - 75 25 15 25
class (0) 96.22 9598 9455 95.06 96.77
Valid.  class (1) - 25.13 2140 2301 2564
Averaged 48.11 60.56 5797 59.03 61.21
class (0) 90.29 92.01 - 91.64 93.40
test class (1) 24.65 21.63 - 2452 18.57
Averaged 57.45 56.82 - 58.08 5598
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(blue dots i.e. neurons) and darker color indicates greater distance between clusters. The red lines connect neighboring neurons.
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Fig. 4. Movement Behaviour Recognition: Hold-out Validation Results.

C. Discussion

To get further insight of results we draw a tree from the
RF classifier as shown in Figure 5. As the ADR is generated
with different number of clusters (m) and m = 10 provides
the best results (MCC of 0.43) for pain recognition task.
The dimensionlity of the ADR is m + 2 which is repre-
sented in Figure 5 as z1,22,23,...,x12. Where x11 and
212 represents the vADR4; and x1,22,...,210 represent
nADRa;,, ... -

In the baseline study [3], authors uses the KNN and SVM
classifiers for the pain recognition’s tasks. They reported
an MCC of 0.05 and 0.19 for KNN and SVM respectively
in LOSOCYV settings on training data. However a decrease
in MCC is observed for KNN (0.02) and SVM on test
data In this study, we used hold-out validation settings. For
movement behaviour recognition task, the authors uses the
hold-out-validation and uses the stacked-LSTM algorithm for
classification. The reported results are almost close to blind
guess (i.e. Fseore = 48.11% on validation and Fseore =
57.45% on test). However, It is a very challenging machine
learning problem as the classes of the data-set are highly
imbalanced.

2>=0.151

x1<0.407

x1 >= 0.407 x8 >=0.003

2

0>=0.175 x11<0.0 x11 >=0.022

Fig. 5. Pain Recognition: An example of a tree from the RF which provides
the best MCC of 0.43. In this case,the ADR has a dimensionality of 12 with
m =10.

V. CONCLUSIONS

This study demonstrate the results of ‘Active Data Rep-
resentation’ (ADR) method for ‘low-back chronic pain’
and ‘protective movement behaviour’ recognition tasks of
EmoPain challenge. The results reported in this paper out-
perform the baseline of EmoPain challenge with an MCC of
0.43 and averaged Fls.ore Oof 61.21% on validation dataset,
and an MCC of 0.12 and averaged Fg.oreL of 58.08% on
test data. In future we intend to evaluate the performance
of the ADR method for multiple feature sets and compare
the results with other feature extraction methods such as
VGGNet and GoogleNet.
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