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Abstract 

We mutated the focal adhesion kinase (FAK) catalytic domain to inhibit binding of the chaperone 

Cdc37 and ATP, mimicking the actions of a FAK kinase inhibitor. We re-expressed mutant and wild-

type FAK in squamous cell carcinoma (SCC) cells from which endogenous FAK had been deleted, 

genetically fixing one axis of a FAK inhibitor combination high-content phenotypic screen to discover 

drugs that may synergize with FAK inhibitors. Histone deacetylase (HDAC) inhibitors represented the 

major class of compounds that potently induced multiparametric phenotypic changes when FAK was 

rendered kinase-defective or inhibited pharmacologically in SCC cells. Combined FAK and HDAC 

inhibitors arrest proliferation and induce apoptosis in a sub-set of cancer cell lines in vitro and 

efficiently inhibit their growth as tumors in vivo. Mechanistically, HDAC inhibitors potentiate 

inhibitor-induced FAK inactivation and impair FAK-associated nuclear YAP in sensitive cancer cell 

lines. Here we report the discovery of a new, clinically actionable, synergistic combination between 

FAK and HDAC inhibitors. 
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Introduction 

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is frequently over-expressed in 

cancer, where it functions downstream of integrins and growth factor receptors to regulate a diverse 

range of cellular functions, including survival, proliferation, adhesion, migration, angiogenesis, 

stemness, and more recently, cytokine expression (1,2). FAK plays a pivotal role in transducing 

signals from the plasma membrane and the nucleus (2-8). It is recognized as a high-value druggable 

target for cancer therapy, resulting in the development of multiple FAK kinase inhibitors that are 

being tested in clinical trials (reviewed in (1)). We have argued that FAK inhibitors may best be used 

in combination with other agents because FAK is part of key survival pathways, including when 

cancer cells are exposed to stress or treated in combination with anti-cancer agents such as BRAF or 

autophagy inhibitors (4,5,9). Potent FAK inhibitors have been generated (BI 853520, GSK2256098, 

TAE226, VS-4718, VS-6062), with efficacy in clinical trials largely restricted to stabilized disease 

(10,11). The FAK inhibitors VS-6063 and GSK2256098 are currently being evaluated clinically in 

combination with inhibitors targeting Raf/MEK (RO5126766 and trametinib), the checkpoint 

blockade inhibitor anti-PD-1 (pembrolizumab), and the chemotherapeutic drugs paclitaxel, 

carboplatin, and gemcitabine (ClinicalTrials.gov). Here we report a new chemical-genetic phenotypic 

screening approach to identify combinations between FAK, and other, targeted inhibitors. 

Cdc37 is a protein kinase-specific co-chaperone for Hsp90 which binds to approximately 60% of 

kinases encoded by the mammalian kinome (12). The Hsp90-Cdc37 complex binds to inactive kinases 

to ensure their correct folding, transport, and degradation, and therefore targeting of this complex is 

being explored as a tractable therapeutic targeting strategy for the treatment of cancer (reviewed in 

(13)). Traditional ATP-competitive kinase inhibitors have been shown to inhibit the binding of Cdc37, 

resulting in kinase inhibition and degradation via the proteasome (14). Cdc37 prevents client kinases 

from binding ATP by interacting with the glycine-rich loop of the client kinase domain, which is 

essential for ATP binding, effectively inhibiting kinase activation (15,16). Mutation of the Cdc37 
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binding site in the client kinase domain glycine-rich loop also blocks ATP binding (14-16). Therefore, 

we used a mutant FAK protein that could not bind Cdc37 (see details below) as a means to mimic 

FAK bound to an inhibitor, and to genetically fix one axis of a chemical-genetic phenotypic screen. 

We used a multiparametric, high-content phenotypic screening approach that permits unbiased 

“morphometric profiling” of compound activity and quantification of functional similarities and 

dissimilarities between drug mechanisms of action (MOAs) across distinct cell types (17-20). 

Integration of information-rich phenotypic assays (as opposed to information-poor “black-box” 

phenotypic assays) with the latest advances in multiparametric image analysis, multivariate 

statistics, and new image informatics tools, permits the classification of compound-induced 

morphometric phenotypes (21,22). 

Phenotypic “fingerprints” derived from multiparametric, high-content morphometric measurements 

were used here to identify clusters enriched with specific compound MOA and target classes which, 

when perturbed, induced a characteristic phenotypic response between cell lines that differed only 

in FAK activity. In this way, we combined high-content phenotypic screening with cancer cells 

genetically modified to express a new discriminatory FAK mutant protein (described below) to 

identify synergistic FAK inhibitor combinations. For this, we generated a novel kinase-defective FAK 

protein (FAK-G431A,F433A) that abolished binding of the Cdc37 chaperone protein and ATP. This 

FAK-G431A,F433A mutant behaved, in many respects, including Cdc37 binding, more like FAK in the 

presence of a small-molecule FAK inhibitor when it was compared to a conventional kinase-defective 

FAK mutant (FAK-KD) (23). We re-expressed FAK-G431A,F433A in squamous cell carcinoma (SCC) 

cells from which the Fak gene (Ptk2) had been previously deleted by Cre-lox-mediated 

recombination (as we have described before (2,5,24)), allowing us to compare the loss of FAK’s 

kinase activity with cells that do not express FAK (FAK−/−) or that re-express wild-type FAK (FAK-

WT). This allowed us to genetically fix one axis of a multiparametric phenotypic screen; from this, we 

identified distinct phenotypic responses between cells expressing FAK-WT and FAK-G431A,F433A 
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after treatment with histone deacetylase (HDAC) inhibitors, indicative of synergism. This synergy was 

confirmed by combining pharmacological FAK kinase and HDAC inhibitors in subsequent dose-ratio 

combination matrix experiments. In screening multiple cell lines, we identified a sub-set of cancer 

cells in which FAK and HDAC inhibitors synergized to inhibit proliferation. In these, HDAC inhibitors 

enhanced FAK inhibitor-induced FAK inactivation as judged by FAK-Y397 autophosphorylation, and 

this was linked to enhanced nuclear exclusion of YES-associated protein (YAP) in vitro and in vivo, 

suggesting that combining FAK and HDAC inhibitors promotes dysregulation of Hippo/YAP signaling. 

 

Materials and Methods 

Compounds and antibodies 

VS-4718 (#S7653), VS-6063 (#S7654), PF-562,271 (#S2890), GSK2256098 (#S8523), vorinostat 

(#S1047), panobinostat (#S1030), staurosporine (#S1421), and paclitaxel (#S1150) were purchased 

from Selleck Chemicals. Chemical structures are shown for the FAK kinase inhibitors (VS-4718, VS-

6063, PF-562,271, and GSK2256098) and HDAC inhibitors (vorinostat and panobinostat) in 

Supplementary Fig. 1A. Compound libraries were from BioAscent. Antibodies used were purchased 

from Cell Signaling Technology (FAK phosphorylated tyrosine-(pY)397, #3283; FAK, #3285; GAPDH, 

#2118; YAP, #14074; YAP phosphorylated serine-(pS)127, #13008; histone H3, #9715; histone H3 

acetylated lysine-56 (K-Ac), #4243; Cdc37, #4793; Cdc37 pS13, #13248; Src, #2109; Axl #8661) or 

Abcam (YAP, #EP1674Y). 

Cell lines 

The murine SCC FAK cell model was generated, isolated, and grown as previously described (6). The 

Cdc37 binding site in the glycine-rich loop of the FAK kinase domain was mutated using previously 

published mutations of other published Cdc37 kinase binding sites (15,16). SCC FAK−/− cells stably 

re-expressing FAK-WT, FAK-KD, or FAK-G431A,F433A were maintained under selection using 0.25 
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mg/mL hygromycin (Invivogen; #ant-hg-1). Human cell lines were cultured in RPMI (Sigma-Aldrich; 

#R0883) supplemented with 2 mmol/L L-glutamine (Thermo Fisher Scientific; #25030081) and 10% 

FBS. Human cell lines were purchased from ATCC, and esophageal cells were a gift of T. R. Hupp 

(University of Edinburgh). Cell lines were routinely tested for mycoplasma (twice yearly) and cell line 

authenticity confirmed by STR profiling where appropriate. Primary dermal fibroblasts were cultured 

from skin punch biopsies in DMEM (Thermo Fisher Scientific; #11960044) supplemented with 10% 

FBS and 2 mmol/L L-glutamine and used for experiments at passages 3 and 4. 

Subcutaneous tumor growth 

Experiments involving animals were carried out in accordance with the UK Coordinating Committee 

on Cancer Research guidelines by approved protocol (HO PL 70/8897). SCC FAK-WT cells (0.25 × 106), 

A549 cells (5 × 106), or Flo1 cells (5 x 106) were injected subcutaneously on each flank of CD1-nude or 

NSG (Flo1) mice (5 per group). Established tumor-bearing mice were randomized into treatment 

groups and dosed with panobinostat (5 mg/kg) 5 days out of 7 by IP injection (for a total of 14 

injections) and twice daily with VS-4718 by oral gavage. Panobinostat was dissolved in DMSO and 

diluted in 10% PEG 400/1% Tween 80 immediately prior to injection. VS-4718 was prepared in 0.5% 

hydroxypropyl methylcellulose. Tumor growth was monitored by caliper measurements and tumor 

volume calculated using the formula V = (W2 × L)/2, where V is tumor volume, W is tumor width, and 

L is tumor length. Animals were sacrificed when tumors reached their maximum allowable size or 

when tumor ulceration occurred. 

Immunoprecipitation and immunoblot analyses 

Cell lysates were prepared for immunoblotting and immunoprecipitation as previously described 

(3,7). 

Reverse-phase protein array (RPPA) analysis 



8 
 

Flo1 cell lysates from 24-hour drug-treated cells were isolated in RIPA as described above and 

processed for RPPA (25) by the IGMM Protein and Antibody Microarray Facility (Cancer Research UK 

Edinburgh Centre, University of Edinburgh). 

Immunofluorescence 

Cells were grown on glass coverslips and processed as previously described (5). 

FAK mutant combination screen 

SCC cells were seeded in collagen I-coated 384-well optical bottom plates (Greiner; #781091) at 300 

cells per well. Cells were cultured for 24 hours before addition of compounds using a BioMek FX 

liquid handling station for a further 24 hours. Plates were fixed with 4% paraformaldehyde in PBS for 

20 minutes, followed by washing with PBS twice and incubation with blocking solution (0.2% Triton 

X-100, 1% BSA in PBS) for 30 minutes. Plates were incubated with Alexa Fluor 488-labeled phalloidin 

(1:250; Cell Signaling Technology; #8878) and Hoechst 33345 (2 µg/mL; Molecular Probes; #H1399) 

made up in blocking solution for 50 minutes. Finally, an equal volume of High-Content Screening 

(HCS) CellMask deep red (1:75,000; Molecular Probes; #H32721) diluted in blocking solution was 

added for 10 minutes. Plates were washed with PBS and plates sealed. Six images per well were 

acquired using an ImageXpress Micro XLS widefield microscope (Molecular Devices) with a 20× S 

Plan Fluor objective, with typically 150–200 cells per image of control wells. Each plate contained 32 

wells treated with 0.1% DMSO as a negative control and 16 wells treated with paclitaxel (300 

nmol/L) and 16 wells with staurosporine (300 nmol/L) as positive controls. Images were quantified 

using CellProfiler (26) and MetaXpress software (Molecular Devices) (Supplementary Text). 

YAP localization analysis 

Cells in 384-well plates were fixed with 4% paraformaldehyde for 20 minutes. Plates were washed 

with PBS and cells permeabilized and blocked (0.3% Triton X-100, 2.5% FBS in PBS) for 30 minutes. 

Plates were immunolabeled with anti-YAP antibody (Abcam; #EP1674Y) diluted in blocking buffer 
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and incubated at 4°C overnight. Plates were washed with PBS and labeled with anti-rabbit Alexa 

Fluor 594-conjugated secondary antibody and Hoechst (2 µg/mL) diluted in blocking buffer. Plates 

were washed in PBS and sealed. Nine images per well were acquired using an ImageXpress Micro XLS 

widefield microscope with a 20× S Plan Fluor objective, with typically 100–200 cells per image and 6 

replicate wells per condition per plate. Images were quantified using CellProfiler (Supplementary 

Text). 

Live-cell kinetic analysis of cell cycle 

SCC FAK-WT cells stably expressing the FUCCI cell cycle reporter (3) were seeded in 96-well collagen 

I-coated plates. Cells were treated with drug combinations in a dose matrix and plates monitored in 

an IncuCyte Zoom microscope (Essen BioScience) at 37°C over 5 days. Images were analyzed using 

the inbuilt analysis software. 

Apoptosis assay 

Cells were seeded in 96-well plates with IncuCyte Caspase-3/7 Green Apoptosis Assay reagent (Essen 

BioScience; #4440) and treated with compounds. Plates were imaged in an IncuCyte Zoom 

microscope, acquiring images every 3 hours over a 72-hour period using the ‘phase’ and ‘green’ 

channels. Images were analyzed using the IncuCyte Zoom software, and apoptosis was expressed as 

a percentage of the population. 

Generation of spheroids 

Cells were seeded in 96-well ultra-low-attachment “U” bottom plates (Corning; #7007) at 2000 cells 

per well in normal growth medium and centrifuged at 1000 × g. Cells were allowed to form a single 

spheroid per well over 3 days, after which they were drug treated and monitored over 14 days for 

using an ImageXpress Micro XLS widefield microscope. For assessment of spheroid viability, 

spheroids were incubated with calcein AM (4 µmol/L final concentration; Molecular Probes; #C3099) 

for 1 hour prior to imaging. 
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Immunohistochemistry 

For immunohistochemistry, reagents were from DAKO using standard procedures. Briefly, tumor 

sections (4 µm thickness) were rehydrated, and antigen retrieval was performed using boiling citrate 

buffer (pH 6.0) for 5 minutes. Endogenous peroxidase activity was blocked using peroxidase blocking 

solution (#S2023) and then sections were incubated with serum-free blocking solution (#X0909). 

Sections were incubated with diluted primary antibody overnight at 4°C. Sections were washed in 

TBS and incubated with secondary (#P0448) for 30 minutes. Sections were washed in TBS and 

incubated with DAB reagent (#K3468) for 5 minutes, and finally, sections were counter-stained with 

eosin, dehydrated, and mounted using DPX mounting medium (#44581). Images were acquired on a 

Hamamatsu NanoZoomer using a 40× objective, and tumors were analyzed using QuPath analysis 

software (27). Tumor margins were defined as a band of tumor cells 200 μm wide around the tumor 

edge. 

Cell viability assay 

Cells were seeded in 96-well plates at 2000 cells per well and incubated for 24 hours before 

treatment. Cells were incubated with compounds for 72 hours; untreated cells were incubated with 

0.1% DMSO. Alamar Blue (Invitrogen; #DAL1025) was added to each well and plates incubated for 3 

hours. Fluorescence emission was read on an EnVision 2101 multilabel plate reader (PerkinElmer; 

excitation = 540 nm, emission = 590 nm). All conditions were normalized to plate DMSO control 

wells. 

Colony formation assay 

Single cells (1000 per well) were seeded in six-well plates, treated with drugs, and allowed to grow 

over 7–10 days. Plates were washed with PBS and colonies stained with Coomassie Blue (0.25 g/L 

Coomassie Brilliant Blue R-250 (#27816) made up in 45% water, 45% acetic acid, and 10% methanol). 

The colony area covering the well was quantified using ImageJ (National Institutes of Health). 
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Synergy calculation 

Normalized measurements were averaged (n from ≥ 3 independent experiments) and analyzed using 

SynergyFinder (28) using the Bliss, Loewe, and ZIP synergy models. 

Metabolic labeling 

SCC cells were cultured in SILAC MEM (DC Biosciences) containing either L-[U-13C6]arginine and L-

[2H4]lysine (R6K4; medium label) or unlabeled L-arginine and unlabeled L-lysine (R0K0; light label) for 

more than six cell doublings. At time t = 0 h, cells were washed twice in warm PBS, and either 1 × 106 

light-labeled cells were re-plated in light-labeled medium or 1 × 106 medium-labeled cells were re-

plated in SILAC MEM containing L-[U-13C6,15N4]arginine and L-[U-13C6,15N2]lysine (R10K8; heavy label). 

SILAC MEM was supplemented with 10% dialyzed FBS, 2 mmol/L L-glutamine, 1 mmol/L sodium 

pyruvate, MEM vitamins, and MEM non-essential amino acids throughout the experiments. Cells 

were harvested and lysed in RIPA buffer (as above) at t = 0.5, 6, 20, 45, and 70 h. Light-labeled cell 

lysates were mixed with medium-/heavy-labeled cell lysates at 1:1 ratio by total protein amount, 

mixed lysates were resolved by polyacrylamide gel electrophoresis, and gels were stained with 

InstantBlue (Expedeon). 

Mass spectrometric analysis of immune complexes 

For analysis of immune complexes using label-free mass spectrometry, captured proteins were 

subjected to on-bead proteolytic digestion, desalting, and liquid chromatography–tandem mass 

spectrometry, as previously described (29). Mean label-free quantification intensities were 

calculated from technical-duplicate mass spectrometry runs for each of three biological replicates 

per experimental condition using MaxQuant (version 1.5.6.5) (30), and peptide and protein false 

discovery rates were set to 1%. Label-free quantification intensities were binary-logarithm 

transformed and sample-median subtracted, and proteins quantified in fewer than half of all 

samples were excluded. Missing values were imputed from a width-compressed, down-shifted 
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normal distribution using Perseus (version 1.5.2.6) (31). Statistical significance of differentially 

regulated FAK-binding proteins was determined by analysis of variance and two-tailed Student’s t-

tests with artificial within-groups variance set to 1 and a permutation-based false discovery rate 

threshold of 5% (applying 1000 randomizations). 

Mass spectrometric analysis of FAK turnover 

For FAK turnover profiling using SILAC-based mass spectrometry, gel portions spanning the 

molecular weight range 100–150 kDa of resolved mixed lysates (see above) were excised and 

subjected to in-gel proteolytic digestion, as previously described (32). Peptides were analyzed by 

liquid chromatography–tandem mass spectrometry, as previously described (33). Peptide and 

protein false discovery rates were set to 1%. SILAC ratios were calculated for each of three biological 

replicates per experimental condition. FAK synthesis and degradation curves were determined from 

normalized SILAC ratio profiles (heavy/light labels and medium/light labels, respectively) by 

nonlinear regression using Prism (GraphPad). Inferred FAK turnover time was calculated as the 

intersection between the synthesis and degradation curves (Supplementary Text). 

 

Results 

Characterization of a novel kinase-defective FAK that mimics pharmacological inhibition 

We initially identified the protein kinase chaperone Cdc37 as a FAK binding partner (Fig. 1A; 

Supplementary Fig. S1B) and found that mutation of the Cdc37 binding site in the glycine-rich loop of 

the FAK kinase domain at glycine-(G)431 and phenylalanine-(F)433 to alanine (FAK-G431A,F433A) 

abolished Cdc37 binding, while a previously described kinase-inactivating mutation of FAK (K454R, 

FAK-KD (23)) did not (Fig. 1A). This mimicked the effect of ATP-competitive FAK kinase inhibitors, 

four of which blocked Cdc37 binding to FAK-WT (Fig. 1B). We confirmed that FAK-G431A,F433A was 

completely defective in kinase activity as measured by lack of any visible autophosphorylation at 



13 
 

FAK-Y397 (Fig. 1C), presumably because the glycine-rich loop is required for ATP binding (14).  

Moreover, FAK-G431A,F433A impairs binding to Src (Fig. 1D), although it does not impair binding to 

kinase-independent partners, including the scaffold protein RACK1 (Supplementary Fig. S1C (8)). 

Further characterization revealed that Cdc37 co-localized with FAK at sites of focal adhesions, and 

loss of Cdc37 binding did not alter FAK’s localization to focal adhesions (Fig. 1E and F). We noted that 

stable re-expression of FAK-G431A,F433A in SCC cells repeatedly resulted in lower expression when 

compared with re-introduction of either FAK-WT or FAK-KD (Fig. 1A). If the FAK-G431A,F433A 

mutant was to be efficiently used to mimic effects of pharmacological FAK kinase inhibitors, it was 

important to determine whether the stability of FAK was affected by loss of Cdc37 binding, since 

Cdc37 is an Hsp90 co-chaperone protein that may influence protein turnover (12). Therefore, we 

quantified protein synthesis and degradation in SCC cells expressing FAK-WT and FAK-G431A,F433A 

using dynamic stable isotope labeling of amino acids in cell culture (SILAC) and mass spectrometry. 

We analyzed normalized SILAC ratio profiles derived from metabolically labeled FAK peptides, and 

inferred FAK turnover times indicated that loss of Cdc37 binding did not significantly affect FAK-

G431A,F433A protein turnover when compared to FAK-WT (Fig. 1G; Supplementary Fig. S1D). 

To assess the impact of the G431A,F433A mutations on binding partners of FAK, we isolated FAK 

protein complexes using immunoprecipitation and analyzed the interactomes using label-free mass 

spectrometry (Supplementary Fig. S1E–H). FAK-G431A,F433A exhibited impaired binding to all of the 

proteins for which binding to the more classical kinase-inactivating FAK-KD mutant was reduced (Fig. 

1H and I; Supplementary Table S1). In addition, the FAK-G431A,F433A mutant protein interactome 

did not contain protein interactors that were also disrupted by the ATP-competitive FAK kinase 

inhibitor VS-4718, most notably Cdc37 and Wdr6 (Fig. 1H and I; Supplementary Table S1), when 

compared to FAK-KD, further supporting the notion that FAK-G431A,F433A both behaves like the 

more commonly used catalytically-inactive FAK-KD mutant and therefore better represents the 

actions of pharmacologically inhibited FAK-WT protein in terms of its interactome. 
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Identifying synergistic combinations with FAK inhibitors 

A number of FAK inhibitors are currently undergoing clinical development (1). However, it is evident 

from studies to date that FAK inhibitors have limited effects on cancer cell growth and survival when 

used as a monotherapy. In contrast, FAK’s role as a key signaling mediator of survival under 

conditions of cellular stress (34), including upon treatment of tumors with chemotherapy (9,35), 

suggests that targeting FAK in combination with other agents (that induce stress) may be required. 

To identify potential drug combination partners for FAK inhibitors, we performed a chemical-genetic, 

multiparametric, high-content phenotypic screen with a small-molecule compound library and 

compared phenotypic responses between SCC cell lines expressing FAK-G431A,F433A, FAK-WT, or no 

FAK (FAK−/−). These genetically matched SCC cells differed only with regard to FAK status and the 

resultant consequences of modulating FAK kinase activity on compound responses. The cells were 

incubated for 24 hours with an annotated compound library consisting of FDA-approved drugs and a 

mechanistic toolbox of kinase, epigenetic, and protease inhibitors to cover a range of biological 

areas (1280 and 176 compounds, respectively; Supplementary Table S2; compounds used at a final 

concentration of 10 µM). After compound treatment, the cells were fixed and labeled with Hoechst, 

phalloidin, and HCS CellMask to provide unbiased morphological profiling of the compound-induced 

phenotype. We measured multiple cellular features at the single-cell level to enable multiparametric 

analysis of compound-induced phenotypic responses, including principal component analysis to 

interrogate major phenotypic differences between compound effects across cell types that differ in 

FAK status (Fig. 2A). 

We compared the SCC cells expressing FAK-G431A,F433A with cells expressing FAK-WT and 

compared FAK-deficient (−/−) cells with FAK-WT-expressing cells (Fig. 2A). Strikingly, the majority of 

compounds (69.2%; 9 compounds) whose phenotypes were influenced by FAK kinase activity were 

HDAC inhibitors (Fig. 2B). HDAC inhibitors induced morphological changes that required FAK kinase 

activity; representative images, while not conveying the multiple detailed readouts of the 
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multiparametric phenotypic analysis performed, display visually obvious phenotypic differences 

following treatment with the HDAC inhibitor SAHA (trade name vorinostat, used hereafter), which is 

shown as an exemplar (Fig. 2C). In response to treatment with the HDAC inhibitor, FAK-WT-

expressing SCC cells developed stress fiber-like F-actin structures and an enlarged cell area 

compared to untreated cells, which were not evident with the loss of either FAK or its kinase activity 

alone. Indeed, HDAC inhibitor treatment appeared to induce a distinct spindle cell morphology 

characterized by long thin cell protrusions in FAK−/− and FAK-G431A,F433A-expressing SCC cells 

relative to FAK-WT-expressing SCC cells (Fig. 2C). These data highlight the dependency of HDAC 

inhibitors on FAK signaling to induce strong phenotypic effects. 

We next tested whether the morphological phenotypes observed following treatment with the 

HDAC inhibitor could be replicated in SCC cells expressing FAK-WT by co-treatment with small-

molecule inhibitors of FAK and HDAC. We therefore selected vorinostat, the first HDAC inhibitor 

approved for clinical use, and panobinostat, a very potent HDAC inhibitor currently undergoing 

clinical trials (reviewed in (36)). Both vorinostat and panobinostat recapitulated the phenotypic 

response we observed using the FAK-G431A,F433A mutant (Supplementary Fig. S2A) when they 

were combined with the FAK inhibitor VS-4718, although this was not linked to a significant 

difference in cell proliferation in 2D cell culture when HDAC inhibitors were used to treat cells 

expressing the FAK-G431A,F433A mutant for 24 hours (Supplementary Fig. S2B). SCC cells expressing 

FAK-WT in the presence of the VS-4718 FAK inhibitor and treated with either HDAC inhibitor resulted 

in a weakly anti-proliferative effect after 72 hours of treatment (Supplementary Fig. S2C) and, in 

keeping with this, did not significantly alter the G1 cell cycle arrest induced by HDAC inhibitors in 2D 

culture (Supplementary Fig. S2D). 

However, since we previously showed that FAK activity is required for proliferation of SCC cells in 3D 

culture, but not in 2D (6), we next tested whether the phenotypic effects observed were associated 

with an anti-proliferative combination in 3D culture. We found that combining FAK and HDAC 
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inhibitors significantly and synergistically inhibited the growth and viability of spheroids composed 

of FAK-WT-expressing SCC cells, as quantified by measuring spheroid area and viability using calcein 

AM staining (Fig. 2D and E; Supplementary Fig. S2E–G), and resulted in a robust G1 cell cycle arrest 

(Fig. 2F and G). The inhibition of FAK and HDAC activity in SCC spheroids following 24 hours of 

compound treatment was assessed by measuring expression of phosphorylated FAK (pY397) and 

acetylated histone H3 (Fig. 2H). We assessed the effect of combining FAK and HDAC inhibitors on 

SCC tumors grown in CD-1 nude mice in vivo. We injected mice on both flanks with 2.5 × 105 SCC 

cells expressing FAK-WT and treated established tumors from day 0 with VS-4718 (75 mg/kg twice 

daily by oral gavage) and panobinostat (5 mg/kg, 5 out of 7 days by intraperitoneal injection), which 

as a combination was well tolerated as we observed no significant change in mouse body weight 

over the course of the experiment (Supplementary Fig. S2H). We found that mice bearing SCC 

tumors expressing FAK-WT that were treated with a combination of VS-4718 and panobinostat 

exhibited significantly reduced tumor growth compared with either drug alone, each of which had a 

modest effect on tumor growth when used as a single agent (Fig. 2I). 

Identification of cells that are sensitive to FAK and HDAC inhibitor combinations 

To determine whether additional cancer cells (other than the SCC cells we had used for the 

chemical-genetic phenotypic screen) were sensitive to FAK and HDAC inhibitor combinations, we 

screened a panel of 33 commonly used human cell lines from a variety of cancer types. Cell lines 

were treated for 24 hours with FAK and HDAC inhibitor combinations before fixation and 

quantification of the number of Hoechst-labeled nuclei. We surveyed these cell lines for synergistic 

response to the combinations of FAK and HDAC inhibitors by quantifying the number of nuclei 

following 24 hours of drug treatment (Supplementary Fig. S3A and B), identifying a number of cell 

lines (5 out of 33 tested); two of these sensitive cell lines were examined further, namely A549 (lung 

adenocarcinoma) and Flo1 (esophageal adenocarcinoma) cells. These cell lines exhibited a strong 

reduction in proliferation in response to the combination of VS-4718 with HDAC inhibitors even in 



17 
 

2D culture (Fig. 3A). The ability of both A549 and Flo1 cells to grow in a colony formation assay over 

7 days was visibly reduced by FAK and HDAC inhibitor combinations (Fig. 3B), and also when the cells 

were grown as spheroids (Supplementary Fig. S3C), when compared to either drug alone. These data 

confirmed that A549 and Flo1 cells were sensitive to the FAK and HDAC inhibitor combination, in 2D 

as well as 3D culture. In the case of these cells, the combination of the FAK inhibitor VS-4718 with 

either vorinostat or panobinostat synergistically reduced cell viability over a 3-day incubation period 

(Fig. 3C; Supplementary Fig. S4A–C) and significantly altered the cell cycle distribution, shifting cells 

into the G2/M phase, as quantified by DNA labeling with Hoechst (Fig. 3D). Apoptosis induced by 

each HDAC inhibitor in A549 and Flo1 cells was significantly increased by combining treatment with 

the FAK inhibitor VS-4718 (Fig. 3E). Importantly, the combination of FAK and HDAC inhibitors did not 

significantly attenuate the growth of human dermal fibroblasts as assessed by cell viability 

(Supplementary Fig. S4D).  Finally, the growth of either A549 tumors in CD-1 nude mice or Flo1 

tumors in NSG mice after subcutaneous injection was substantially impaired by combination 

treatment when compared to either treatment alone (Fig. 3F). These data show that, in a sub-set of 

cancer cell lines, treatment with a combination of FAK and HDAC inhibitors has synergistic and 

potent effects on tumor growth. 

HDAC and FAK inhibitors together abolish FAK activation and promote nuclear exclusion of YAP 

To understand the signaling events that occur in cells following treatment with the combination of 

FAK and HDAC inhibitors, we first assessed FAK-Y397 autophosphorylation. Although the FAK 

inhibitor VS-4718 was effective at partially inhibiting FAK’s autophosphorylation (and presumed 

activation – a finding we have made previously in 2D culture (7)), treatment with either HDAC 

inhibitor also inhibited FAK-Y397 autophosphorylation to some extent by unknown mechanisms (Fig. 

4A). When combined, VS-4718 together with either HDAC inhibitor significantly inhibited FAK-Y397 

autophosphorylation to a greater (visibly complete) extent than either VS-4718 or HDAC inhibitor 

alone. 
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To examine downstream changes in signaling pathways following exposure of Flo1 cells to an 

effective dose-ratio combination of FAK and HDAC inhibitors relative to each monotherapy, we 

performed RPPA analysis across a number of canonical cancer cell signaling pathways. We found 

that YAP expression and phosphorylation were altered by the inhibitor combination (Supplementary 

Fig. S4E). YAP is a co-transcriptional regulator whose activity and nuclear localization are regulated 

by HDAC activity and FAK signaling (37,38). Therefore, we tested the effect of combined HDAC and 

FAK inhibitors on YAP. The FAK inhibitor VS-4718 induced YAP phosphorylation on residue S127, and 

HDAC inhibitors suppressed YAP protein expression, which was enhanced when the FAK and HDAC 

inhibitors were combined in both A549 and Flo1 cells (Fig. 4B). Furthermore, in both A549 and Flo1 

cells, the FAK inhibitor significantly reduced nuclear localization of YAP, as judged by a reduction in 

YAP fluorescence intensity in the nucleus (Fig. 4C). Combining FAK and HDAC inhibitors reduced YAP 

nuclear localization to a greater extent than individual agents alone, as quantified by measurement 

of fluorescence intensity of anti-YAP cell labeling (Fig. 4D). Finally, we assessed the impact of 

combined FAK and HDAC inhibitor treatments on the expression of a YAP transcriptional target, Axl 

(39). We found that combination of FAK and HDAC inhibitors for 24 hours significantly reduced the 

expression of Axl in both A549 and Flo1 cell lines (Fig. 4E). 

To determine whether YAP’s localization was sensitive to the combination of FAK and HDAC 

inhibitors in cell lines in which synergistic anti-proliferative effects between FAK and HDAC inhibitors 

were not observed, we tested four combination-insensitive cancer cell lines. These did not display 

the same response with respect to YAP as the sensitive Flo1 or A549 cells, i.e. there was no 

significant anti-proliferative effects or any visible alteration of YAP nuclear localization in response to 

the combination of FAK and HDAC inhibitors (Supplementary Fig. S5A–C). Two of the non-responsive 

cell lines, SKGT4 and JH-Eso-AD1, displayed very little nuclear YAP, while the OAC-P4C and MFD1 cell 

lines displayed robust nuclear YAP localization that was not altered by the combination 

(Supplementary Fig. S5A). The combination of FAK and HDAC inhibitors in these four cell lines did 

not enhance anti-proliferative effects (as assessed by nuclear counts) or alter the nuclear localization 
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of YAP, compared to DMSO treatment (Supplementary Fig. S5A–C), indicating that the latter is a 

strong correlate with combination sensitivity.  

Finally, we examined the localization of YAP in vivo at the tumor margin (Fig. 5) as ECM contact is 

important for the activation of YAP (38,40). Here, we observed that YAP nuclear localization was 

reduced in tumors that were treated with the combination of the FAK inhibitor VS-4718 and the 

HDAC inhibitor panobinostat (Fig. 5A and B). Taken together, these data demonstrate that regulation 

of YAP correlates strongly with the morphological and synergistic anti-proliferative effects, and acts 

as a marker of cancer cells sensitive to the HDAC and FAK inhibitor combination. 

 

Discussion 

Here, we describe a completely novel and unbiased approach to identifying useful anti-cancer 

combinations of small-molecule inhibitors, which combines genetic modulation of cancer cells and 

high-content phenotypic screening to genetically fix one axis of combination screens. Using this 

strategy, we were able to capture phenotypic effects in 2D cell culture models that predicted anti-

tumor growth in vivo.  We discovered a novel combination of FAK and HDAC inhibitors that 

demonstrate synergistic effects in a cancer cell context-dependent manner. This is important 

because, while FAK is regarded as a high-value druggable target for cancer therapy, it is becoming 

evident that FAK inhibitors will best be used in combination as FAK is a key stress-induced survival 

pathway, including when cells are treated with anti-cancer therapies (2,5,9,41). In addition to HDAC 

inhibitors, which formed the predominant class of compounds that synergized with kinase-defective 

FAK, we identified a further 18 putative hits representing previously approved drugs that have not 

yet been studied further (Supplementary Table 2). These data imply that there are likely to be a 

number of useful co-vulnerabilities in cancer cells in which FAK mediates critical survival signaling. 

Because the FAK and HDAC inhibitor combination was effective in a sub-set of cancer cells, defined 

by co-promoted changes in the phosphorylation and nuclear localization of the transcriptional co-
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activator YAP, it will be important to continue to identify additional collaborating targets and 

inhibitors that are synergistic with FAK inhibitors. 

Regarding the value of the multiparametric phenotypic screening approach, we noted that the 

strongest FAK-dependent cell phenotypes following compound screening in 2D culture of SCC cells 

were not related to proliferation, but rather changes in morphometric phenotypes; SCC cells exhibit 

a mesenchymal-like morphology that, upon HDAC inhibitor treatment, resulted in enlargement of 

cell area and an increase in the number of F-actin stress fibers (Fig. 2C). FAK is a critical regulator of 

focal adhesions that links cellular attachment to the extracellular matrix to the actin cytoskeleton, 

providing adhesion-mediated survival signals (34,42). HDAC6 is cytoplasmic and has also been 

reported to regulate the dynamics of adhesions and cell spreading (43). Since vorinostat and 

panobinostat are broad-spectrum HDAC inhibitors, the FAK-dependent morphological changes we 

observe in SCC cells could operate through HDAC6 inhibition. We predict that the morphological 

changes following HDAC inhibitor treatment were indicative of cellular stress and that FAK kinase 

activity could mitigate against a stress response, thus providing a vulnerability that could be 

exploited using a the FAK/HDAC inhibitor drug combination. We have also shown that the 

morphometric phenotypes predicted a combination that inhibited tumor growth in mice. More 

traditional screening strategies generally employ single endpoint analysis, such as cytotoxic screens, 

where cell viability, or number, in 2D cultures. We have, here and previously (6), shown that FAK 

inhibition (either genetic or pharmacological) in SCC cells does not inhibit proliferation or viability in 

2D, but does so in 3D and in vivo. In the work presented here, prior knowledge of FAK biology in SCC 

cells (6) led us to predict that a phenotypic dependency on FAK kinase activity in 2D would prove to 

be an effective anti-proliferative combination in 3D assays and, potentially, in vivo, demonstrating 

the power of capturing an unbiased complete description of a compound’s morphometric effects. 

The wealth of information, and predictive value, contained in the cellular morphological fingerprints 

following perturbation has been well recognized, and their quantification is increasingly being used 
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as an unbiased method to profile compounds through multiparametric high-content microscopy, 

coupled to new emerging image-informatics and machine learning solutions (18-20,44-46).  

Regarding use of mutation of residues G431 and F433 of the glycine-rich loop in the FAK kinase 

domain, these are conservative substitutions that are not expected to affect the structure of the 

kinase domain as this loop is a highly mobile and unstructured part of the kinase domain (47). Hsp90 

and its co-chaperone Cdc37 interact with approximately 60% of the mammalian kinome (12), and so 

fixing one axis of a combination screen could provide a genetic and specific means to test the target 

validity of a particular kinase (rather than relying on the selectivity of a given compound), enabling 

targeting of kinases that do not currently have specific kinase inhibitors and reduces the off-target 

effects of polypharmacology in screens. Thus, the novel chemical-genetic phenotypic screening 

approach we describe here may represent a broader strategy for rapidly identifying novel kinase 

inhibitor combinations. 

HDACs are a widely studied class of epigenetic regulators that are frequently dysregulated in cancer 

and so have long been targets of therapeutic research (36). There are currently 169 recruiting or 

active clinical trials using HDAC inhibitors (ClinicalTrials.gov; 31 involving panobinostat and 63 

involving vorinostat), the majority of which are in combination with other agents (reviewed in (48)). 

The overall strategy of targeting HDACs for cancer therapy is to revert “cancerous” epigenetic 

changes towards a more “normal”-like cell state and to achieve the reactivation of tumor suppressor 

pathways, growth arrest, and apoptosis or cell death. These changes undoubtedly will cause cancer 

cells stress, and it may be that FAK is a key component of the pathways that mitigate against stress 

responses and cancer cell death. We note that cell shape (which FAK regulates via well-documented 

effects on actin and adhesion networks) can alter histone acetylation (49) and that gene expression 

profiling of HDAC inhibitor resistance in human myeloma cell lines identified actin cytoskeleton-

associated genes, and FAK itself, as part of a resistance gene signature (50). This supports the link 
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that we have identified here between the likely regulation of the cellular epigenetic state by HDAC 

activity and FAK activity, revealing a co-dependency in multiple cancer cell lines. 

Mechanistically, we have found that the combination of FAK and HDAC inhibitors results in complete 

abolition of FAK kinase activity, more so than the partial suppression of FAK kinase activity that is 

achieved with a FAK inhibitor alone, suggesting that residual adhesion signaling via FAK is performing 

a critical survival role in these cells. Since there is no apparent reason why HDAC inhibitors would act 

directly upon FAK kinase function – indeed, shorter periods of incubation with HDAC inhibitors do 

not affect FAK autophosphorylation (Fig. 4B) – we postulate that the effects of HDAC inhibitors are 

likely indirect, perhaps by regulating expression of gene products that influence FAK’s kinase activity. 

YAP and TAZ are transcriptional activators that regulate many cell responses by transducing 

mechanical, polarity, and growth factor signaling into a transcriptional response (51). YAP and TAZ 

activation correlates with grade, metastasis, and poor outcome in breast, lung, liver, pancreatic, and 

skin cancer (reviewed in (52)), and activation of YAP leads to drug resistance, for example, by 

increased cytoskeletal tension and/or ECM deposition from cancer-associated fibroblasts in 

melanoma cells (9,37,53-55). HDAC inhibitors reduce YAP expression in cancer cells (56,57), and FAK, 

and other focal adhesion proteins, are reported to regulate YAP phosphorylation by LATS1/2 kinase 

on S127, so preventing its nuclear translocation (37). In our studies, the combination of FAK and 

HDAC inhibitors collaboratively reinforced the inhibition of YAP activity; firstly, HDAC inhibition 

reduced YAP expression, and secondly, FAK inhibition impaired the nuclear translocation, and hence 

transcriptional activity, of YAP. Interestingly, FAK is implicated in an integrin α3–FAK signaling axis 

that drives YAP nuclear localization and proliferation of incisor stem cells (40); this pathway could be 

active in some tumor cells to regulate the proliferation of putative cancer stem cell-like populations, 

as is reported in triple-negative breast cancer (58). The FAK inhibitor used in our study, VS-4718, has 

been de-prioritized by Verastem and withdrawn from clinical development (ClinicalTrials.gov 

identifier NCT02651727); however, other FAK inhibitors (VS-6063 and GSK2256098) and various 
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HDAC inhibitors are currently under clinical development independently in several cancer types 

(36,42), and therefore the combination we have identified can be taken forward for clinical testing 

as a putative combination therapy.  
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Figure Legends 

Figure 1. Disruption of Cdc37 chaperone binding to FAK mimics FAK kinase inhibition. A, IP of FAK 

from SCC FAK-WT, FAK−/−, FAK-G431A,F433A, and FAK-KD cell lysates, immunoblotted for FAK, 

Cdc37, and phosphorylated Cdc37 (S13). B, IP of FAK from SCC FAK-WT cells treated with DMSO 

(0.1%) or 250 nM VS-4718, VS-6063, PF-562,271, or GSK2256098 for 24 h, immunoblotted for FAK, 

phosphorylated FAK (Y397), and Cdc37. C, Lysates from SCC FAK-WT, FAK−/−, FAK-G431A,F433A, and 

FAK-KD cells, immunoblotted for FAK and phosphorylated FAK (Y397). D, IP of FAK from SCC FAK-WT, 

FAK−/−, FAK-G431A,F433A, and FAK-KD cell lysates, immunoblotted for FAK and Src. E, SCC FAK-WT 

cells seeded on glass coverslips, fixed, and labeled with anti-FAK (green), anti-Cdc37 (red), and DAPI 

(blue). Inset (right) represents dashed boxed region of main image. Arrows and arrowheads (inset) 

indicate examples of regions of colocalization of FAK and Cdc37. Scale bar, 20 µm. F, SCC FAK-WT, 

FAK−/−, FAK-G431A,F433A, and FAK-KD cells seeded on glass coverslips, fixed, and labeled with anti-

FAK (green) and DAPI (blue). Scale bars, 20 µm. G, FAK synthesis and degradation profiles quantified 

by metabolic labeling and mass spectrometry. FAK-WT (green) and FAK-G431A,F433A (brown) 

synthesis and degradation curves were determined from normalized SILAC ratio profiles by nonlinear 

regression and plotted as means ± SEM with best fit curves and 95% confidence interval bands (n ≥ 5 

peptides; representative of three independent experiments). NS, not significant (extra sum-of-

squares F test). Bar chart inset summarizes inferred 50% protein turnover times for FAK-WT and 

FAK-G431A,F433A, plotted as means ± SD (n = 3 independent experiments). NS, not significant (two-

tailed Mann–Whitney U test). H, Label-free mass spectrometric characterization of FAK-interacting 

proteins isolated by IP of FAK from SCC FAK-WT and FAK-G431A,F433A cell lysates. Specific FAK-

binding proteins were determined versus IP from SCC FAK−/− cells (n = 3 independent experiments), 

satisfying Q < 0.05 (Student’s t-test with permutation-based FDR correction). Gray curves show the 

threshold for significant differential regulation (FDR, 5%; artificial within-groups variance, 1). 

Proteins satisfying P < 0.01 and fold change > 4 are labeled with gene names for clarity. I, Label-free 

mass spectrometric characterization of FAK-interacting proteins isolated by IP from SCC FAK-WT, 

FAK-KD, and FAK-G431A,F433A cell lysates and lysates from SCC FAK-WT cells treated with 250 nM 

VS-4718 (n = 3 independent experiments). Normalized label-free quantification of protein 

abundance for each protein was converted to a Z score. Differentially regulated, specific FAK-binding 

proteins satisfying Q < 0.05 (one-way ANOVA with permutation-based FDR correction) were 

hierarchically clustered and displayed as a heatmap. Proteins are labeled with gene names for 

clarity. 
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Figure 2. Identification of synergistic combinations with FAK kinase inhibitors. A, Summary of 

compound screen to identify drug sensitivity in the presence of reduced FAK kinase activity. To 

identify differential phenotypic effects between FAK-WT and FAK-mutant (FAK-G431A,F433A or 

FAK−/−) cells, for each image-based measurement Z-score, the FAK- WT value was subtracted from 

each FAK mutant value. Differential phenotypic effects were analyzed by principal component 

analysis. Principal components (PCs) 1 and 2 account for 51.3% and 22.1% of the total variance, 

respectively. Cellular features used in the phenotypic analysis are listed in the inset (right). B, Hit 

compounds identified in the phenotypic screen. Vorinostat is labeled as SAHA in A and B. C, SCC FAK-

WT, FAK-G431A,F433A, and FAK−/− cells treated with 10 µM vorinostat. Blue, nuclei; green, F-actin; 

red, HCS Cell Mask. Scale bar, 50 µm. D, Combination of vorinostat (top) or panobinostat (bottom) 

with VS-4718 inhibits spheroid growth. E, Dose matrices of spheroid area following treatment with 

vorinostat (top) or panobinostat (bottom) in combination with VS-4178 for 7 days. F, Quantification 

of RFP (G1 phase; top) and GFP (G2/M phase; bottom) FUCCI cell cycle reporter expression in SCC 

FAK-WT spheroids treated with vorinostat (left) or panobinostat (right) for 7 days. For combination 

treatments with VS-4718, 500 nM VS-4718 was used. RFI, relative fluorescence intensity. G, SCC FAK-

WT spheroids expressing FUCCI cell cycle reporter were treated for 7 days with vorinostat (Vorino.; 

1.25 µM) or panobinostat (Pano.; 6.25 nM) in combination with VS-4718 (500 nM). For D, E, and F, 

data are normalized to DMSO values and are displayed as means ± SEM (n = 3 independent 

experiments). *, P < 0.05; **, P < 0.01; ***, P < 0.001 (two-way ANOVA). H, Lysates from SCC FAK-

WT spheroids treated with VS-4718, vorinostat (Vorino.), or panobinostat (Pano.) for 24 hours and 

immunoblotted for FAK, phosphorylated FAK (Y397), histone H3, and acetylated (K-Ac) histone H3. I, 

Combination of panobinostat and VS-4718 inhibits SCC FAK-WT tumor growth. Mice were treated 

with drug(s) from day 0. Group tumor volumes are displayed as mean ± SEM [n = 5 mice per group (2 

tumors per mouse)]. ***, P < 0.001 (one-way ANOVA). 

 

Figure 3. Identification of cells that are sensitive to FAK and HDAC inhibitor combinations. A, Nuclei 

counts of A549 (left) and Flo1 (right) cells following treatment with vorinostat (5 µM), panobinostat 

(7.5 nM), and VS-4718 (500 nM) for 24 hours. Data are normalized to DMSO values and are 

displayed as mean ± SEM (n = 2 independent experiments). *, P < 0.05; **, P < 0.01; ***, P < 0.001 

(two-way ANOVA). B, Combined inhibition of FAK and HDAC blocks colony formation. Representative 

images are shown (top). Bar charts (bottom) are plotted as means ± SEM (n ≥ 3 independent 

experiments). C, Combination of FAK and HDAC inhibition reduces cell viability. Dose matrices of 

viability of A549 (top) and Flo1 (bottom) cells following treatment with vorinostat (µM; left) or 

panobinostat (nM; right). D, Cell cycle distribution in A549 (left) and Flo1 (right) cells following 
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treatment with the same drugs as used in B for 24 hours. Results in C and D are displayed as means 

(n ≥ 3 independent experiments). E, FAK and HDAC inhibition enhances the induction of apoptosis in 

A549 (left) and Flo1 (right) cells. Bar charts are plotted as means ± SEM (n ≥ 3 independent 

experiments). F, Combination of panobinostat and VS-4718 inhibits A549 (left) or Flo1 (right) tumor 

growth. Tumor volumes are plotted as means ± SEM [n ≥ 4 mice per group (2 tumors per mouse)]. 

Mice were treated from day 0 and accompanying body weights are shown (mean ± SD). For B, E, and 

F, *, P < 0.05; **, P < 0.01; ***, P < 0.001 (one-way ANOVA). 

 

Figure 4. Combined inhibition of HDAC and FAK abolishes FAK kinase activity and regulates YAP 

localization. A, Lysates from A549 (left) and Flo1 (right) cells treated as indicated were 

immunoblotted for FAK, phosphorylated FAK (Y397), GAPDH, histone H3, and acetylated (K-Ac) 

histone H3. Quantification of phosphorylated FAK (Y397) immunoblotting (bottom) is displayed as 

means ± SEM (n = 3 independent experiments). *, P < 0.05; **, P < 0.01 (one-way ANOVA). B, Lysates 

from A549 (left) and Flo1 (right) cells were immunoblotted for YAP, phosphorylated YAP (S127), FAK, 

phosphorylated FAK (Y397), and GAPDH at 5 and 24 hours post drug treatment. C, A549 (left) and 

Flo1 (right) cells were fixed and labeled with anti-YAP antibody after 24 hours of drug treatment. 

Scale bar, 50 µm. D, Quantification of nuclear and cytoplasmic anti-YAP labeling. Relative 

fluorescence intensity values of anti-YAP labeling in the nuclear (left) and cytoplasmic (right) cellular 

compartments were normalized to DMSO values and displayed as means ± SEM (n = 3 independent 

experiments). E, Lysates from Flo1 (top) and A549 (bottom) cells treated as indicated were 

immunoblotted for Axl and GAPDH. Quantification of Axl expression is displayed as means ± SEM (n 

= 3 independent experiments). *, P < 0.05; **, P < 0.01 (one-way ANOVA). 

 

Figure 5. Immunohistochemical analysis of YAP localization in tumors exposed to a FAK and HDAC 

inhibitor combination. A, YAP localization was analyzed by immunohistochemistry in SCC (left), Flo1 

(middle), and A549 (right) tumors. Tumor sections were labeled with anti-YAP antibody. Scale bar, 

100 µm. B, Quantification of YAP nuclear/cytoplasmic expression at tumor margins. Each symbol 

represents the average value per tumor, and horizontal black lines represent group means ± SEM [n 

≥ 4 mice per group (2 tumors per mouse)]. *, P < 0.05; **, P < 0.01; ***, P < 0.001 (one-way ANOVA). 
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