

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Static compression of Fe4N to 77 GPa and its implications for nitrogen in the deep Earth

Citation for published version:

Breton, H, Komabayashi, T, Thompson, S, Potts, N, Mcguire, C, Suehiro, S, Anzellini, S & Ohishi, Y 2019, 'Static compression of Fe4N to 77 GPa and its implications for nitrogen in the deep Earth', *American Mineralogist*, vol. 104, no. 12. https://doi.org/10.2138/am-2019-7065

Digital Object Identifier (DOI):

10.2138/am-2019-7065

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: American Mineralogist

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

REVISION 1

Static compression of Fe4N to 77 GPa and its implications for nitrogen in the deep

Earth

Helene Breton¹, Tetsuya Komabayashi¹, Samuel Thompson¹, Nicola Potts¹, Chris McGuire¹, Sho Suehiro², Simone Anzellini³, and Yasuo Ohishi⁴

¹School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh EH9 3FE, UK

²Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan

³Diamond Light Source Ltd., Diamond House, Science & Innovation Campus, Didcot, OX11 0DE, UK.UK

⁴SPring-8, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan

*corresponding author: Helene Breton

E-mail: H.Breton@ed.ac.uk

ABSTRACT

2

Compression and decompression experiments on face-centred cubic (fcc) γ' -Fe₄N to 77 GPa 3 at room temperature were conducted in a diamond anvil cell with *in-situ* X-ray diffraction 4 (XRD) in order to examine its stability under high pressure. In the investigated pressure range, 5 γ' -Fe₄N did not show any structural transitions. However, a peak broadening was observed in 6 the XRD pattern above 60 GPa. The obtained pressure-volume data to 60 GPa were fitted to 7 the third-order Birch-Murnaghan equation of state (EoS), which yielded the following elastic 8 9 parameters: $K_0 = 169$ (6) GPa, K' = 4.1 (4), with a fixed $V_0 = 54.95$ Å at 1 bar. A quantitative Schreinemakers' web was obtained at 15-60 GPa and 300-1600 K by combining the EoS for 10 γ' -Fe₄N with reported phase stability data at low pressures. The web indicates the existence of 11 12 an invariant point at 41 GPa and 1000 K where γ' -Fe₄N, hexagonal closed-packed (hcp) ε -Fe₇N₃, double hexagonal closed-packed β -Fe₇N₃, and hcp Fe phases are stable. From the 13 invariant point, a reaction γ' -Fe₄N = β -Fe₇N₃ + hcp Fe originates towards the high pressure 14 side, which determines the high-pressure stability of γ' -Fe₄N at 56 GPa and 300 K. Therefore, 15 the γ' -Fe₄N phase observed in the experiments beyond this pressure must be metastable. The 16 obtained results support the existing idea that β -Fe₇N₃ would be the most nitrogen-rich iron 17 compound under core conditions. An iron carbonitride $Fe_7(C,N)_3$ found as a mantle-derived 18 diamond inclusion implies that β -Fe₇N₃ and Fe₇C₃ may form a continuous solid solution in 19 the mantle deeper than 1000 km depth. Diamond formation may be related to the presence of 20 fluids in the mantle and dehydration reactions of high-pressure hydrous phase D might have 21 supplied free fluids in the mantle at depths greater than 1000 km. As such, the existence of 22 $Fe_7(C,N)_3$ can be an indicator of water transportation to the deep mantle. 23

25 Key words

Iron nitrides, Earth's core, equation of state, diamond anvil cell, in situ X-ray diffraction,high-pressure

28

INTRODUCTION

Knowledge of the distribution of volatile elements within the solid Earth is a key to 29 understanding the origin and evolution of the Earth as well as those of terrestrial atmosphere. 30 One of the potential volatile storage sites in the deep Earth is considered to be the core, which 31 is linked to one of the major issues with the core, namely, light element in the core. The 32 comparison of geophysical observations and laboratory experiments shows that the Earth's 33 core is likely less dense than pure iron (or an iron-nickel alloy) (Birch 1952). The value for 34 35 the so-called core density deficit (cdd) has been revised based on high-pressure experimental measurement of iron density and recent estimates range from 3.6 to 4.6 % for the solid inner 36 core at 6000 K (Dewaele et al., 2006; Fei et al., 2016). The cdd has often been associated 37 with the presence of light element(s) including O, S, H, C, and Si (Poirier 1994). The 38 identification of the kind and amount of the light elements in the core places constraints on 39 40 the origin, formation, and evolution of the Earth because redistribution of light elements into an iron-rich core should depend on a number of thermodynamic conditions during core 41 formation. 42

As a major volatile element in the atmosphere, the presence of water/hydrogen in the core and its consequences have been discussed (e.g., Okuchi 1998; Nomura et al. 2014) as well as its circulation in the mantle (e.g., Komabayashi 2006). On the other hand, nitrogen which is another major component of the atmosphere has received less attention and its circulation and storage in the deep Earth were less studied (Mikhail et al. 2017; Minobe et al. 2015; Litasov et al. 2017; Bajgain et al. 2018) despite of its abundance in meteorite from thousand ppm (chondrites) to 1 wt% (iron meteorites) (see Litasov et al. (2017) and reference
therein). In order to discuss the storage of nitrogen in the core, phase relations in the system
Fe-N should first be elucidated.

Another potential storage site for nitrogen is the mantle. Mantle-derived diamonds are 52 contaminated by nitrogen up to 1500 ppm (Cartigny 2005). Various mineral inclusions were 53 found in those diamonds and their parageneses may indicate high pressure conditions of 54 formation in the deep mantle (Kaminsky and Wirth 2011). Minobe et al. (2015) discussed 55 that one of the inclusions, $Fe_7(C,N)_3$ phase, may indicate that its origin would be deeper than 56 1000 km based on the stability of Fe₇N₃ phases. On the other hand, diamond formation may 57 be related to the presence of C-H-N-O fluids in the mantle (Harte 2010). As such analyzing 58 the stability of iron nitride phases may enable us to place constraints on the presence of fluid 59 60 in the deep mantle.

Phase relations of the system Fe-N at 1 bar (e.g., Göhring et al. 2016) show that the 61 Fe-rich solid compounds in the system, which could be candidates for the inner core structure, 62 include γ' -Fe₄N and ε -Fe₃N_x with x = 0.75-1.4 (Leineweber et al. 1999; Niewa et al. 2009; 63 Widenmeyer et al. 2014). The γ' -Fe₄N phase has a cubic perovskite structure with a face-64 centered cubic (fcc) arrangement of Fe atoms along with a single N atom placed at the centre 65 of the structure (Jacobs et al. 1995). ϵ -Fe₃N_x has a hexagonal closed-packed (hcp) structure 66 similar to ε -Fe with N atoms occupying the octahedral interstices of the layered Fe atoms 67 (Jacobs et al. 1995). In contrast to γ' -Fe₄N, the crystallographic configuration of hcp ϵ -Fe₃N_x 68 allows a wide range of N stoichiometry ranging between ε -Fe₃N and ε -Fe₃N_{1.5} (~ ε -Fe₇N₃) 69 (Leineweber et al. 1999; Widenmeyer et al. 2014) with x changing as a function of 70 temperature (Litasov et al. 2013). 71

72 High-pressure-temperature (*P-T*) stability of ε -Fe₃N_x was studied by Minobe et al. (2015) who examined phase relations of Fe_7N_3 (i.e., x~1.3 in Fe_3N_x) in a laser-heated 73 diamond anvil cell (DAC). They showed that ε -Fe₇N₃ was transformed into double hexagonal 74 closed-packed β-Fe₇N₃ at 40 GPa and 1000 K which is stable at least to 150 GPa and 2720 K. 75 On the other hand, the stability of γ' -Fe₄N was examined to 30 GPa in multianvil apparatus. It 76 transforms to ε -Fe₃N_x at 1373 K and 8.5 GPa (x = 0.75, Guo et al. 2013), 1600 K and 15 GPa 77 (x = 0.95, Niewa et al. 2009), and at 1273 K and 30.5 GPa (x = 0.80, Litasov et al. 2013). The 78 stability of γ' -Fe₄N was poorly constrained above 30 GPa. Minobe et al. (2015) used γ' -Fe₄N 79 as a starting material and collected its XRD pattern at 99 GPa and 300 K. Then they 80 conducted laser heating on the sample and the following reaction took place, 81

82
$$3 \gamma' - Fe_4 N = \beta - Fe_7 N_3 + 5 \epsilon - Fe_{\dots}(1)$$

83 The temperature of reaction (1) was not well constrained as it was below the minimum temperature measurable by the spectroradiometric method (ca. 1300 K), but they considered 84 1000 ± 300 K (Minobe et al. 2015). As such, the stability of γ' -Fe₄N under high pressures 85 may not be tightly constrained by the laser-heated DAC technique. In addition, Adler and 86 Williams (2005) argued that the transition in γ' -Fe₄N might be kinetically impeded as they 87 observed gradual weakening of the diffraction peaks with increasing pressure. If reaction (1) 88 observed in Minobe et al. (2015) was due to the metastable existence of γ' -Fe₄N to 99 GPa. 89 the possibility that it might not be an equilibrium univariant reaction remains. One potential 90 approach to the thermodynamic stability of γ' -Fe₄N under high pressure is to construct a 91 Schreinemakers' web using existing phase equilibrium data under low pressure and predict 92 the possible location of reaction (1). Since Fe₄N is the most iron-rich compound in the system 93 Fe-N, whether reaction (1) is an equilibrium univariant reaction or not, and if it exists, its P-T 94

95 location should be constrained for the discussion about the constituent phase of the inner96 core.

Here we conducted static compression and decompression experiments of γ' -Fe₄N to 97 77 GPa with in-situ X-day diffraction (XRD) to examine its stability at 300 K. From the 98 collected pressure-volume (P-V) data, we evaluated its equation of state (EoS) and the dP/dT 99 slope of reaction (1) from the Clausius-Clapevron relation. The elastic properties of γ' -Fe₄N 100 were only studied to 32 GPa (Adler and Williams 2005), while those of β -Fe₇N₃ were to 132 101 GPa (Minobe et al. 2015). We constructed a quantitative Schreinemakers' web for the phase 102 relations involving Fe₄N, Fe₇N₃, and Fe and discuss the thermodynamic stability of γ' -Fe₄N 103 and its implications for Earth's core and the origin of carbonitrides found in diamond 104 inclusions. 105

106

107

EXPERIMENTAL PROCEDURE

108

Compression experiments were performed in a DAC. High pressures were generated 109 with a pair of diamond anvils with a 300 µm culet. Rhenium gaskets were pre-indented to a 110 thickness of 30 µm before a hole with a diameter of 100 µm was drilled to form a sample 111 chamber. The starting material was powdered Fe₄N (Kojundo Chemical Lab. Co. Ltd.). The 112 commercially available powder contained a slight amount of pure Fe. An XRD measurement 113 at 1 bar and 300 K on the starting material was employed at the University of Edinburgh. 114 Rietveld refinement on the XRD pattern revealed the sample is a mixture of 91 % γ' -Fe₄N 115 and 9 % Fe. The sample was sandwiched between 10-um-thick layers of KCl, which served 116 as pressure transmitting medium and pressure marker (Dewaele et al. 2012). To remove air 117

moisture, the DAC was dried in a vacuum oven at 383 K for 8 hours prior to pressurization atroom temperature.

In-situ XRD experiments were conducted at beamline I15 (Anzellini et al. 2018) at 120 the Diamond Light Source synchrotron facility, UK, using monochromatic X-rays with a 121 wavelength of 0.4246 Å. The X-ray beam size at the sample position was 9 µm x 6 µm (full-122 width at half maximum, FWHM). The XRD data collected on a 2-D detector (Perkin Elmer) 123 was integrated into one-dimensional pattern with the Fit2d program (Hammersley et al. 124 1996). Another series of compression experiments were made at beamline BL10XU, SPring-125 8 (Ohishi et al., 2008). Monochromatic incident X-rays were focused and collimated to an 126 area of 6-um (FWHM) at the sample position with a wavelength of 0.4146 Å. A 2-D flat 127 panel detector (Perkin Elmer XRD 0822) collected the XRD data. At both beamlines, the 128 typical exposure time was 1 second. In all the runs, pressures were calculated from the unit-129 cell volume of the internal pressure calibrant KCl according to the EoS proposed by Dewaele 130 et al. (2012). 131

132

133

RESULTS

134 Compression behaviour of γ'-Fe₄N

Four separate sets of compression/decompression experiments of γ' -Fe₄N were performed between 22 and 77 GPa at 300 K. A representative XRD pattern of the sample is shown in Figure 1. The unit-cell volume of γ' -Fe₄N was obtained based on the (111) diffraction line as the (200) diffraction peak was not always present in the diffraction patterns. The experimental conditions are summarized in Table 1. 140 The runs 1-3 were conducted at I15 and the run 4 was at BL10XU. In the first run, we started collecting XRD patterns at 38 GPa and compressed the sample to 72 GPa. Then a 141 decompression cycle was performed to 39 GPa. The P-V data in both compression and 142 decompression cycles overlap (Fig. 2). In the second and third runs, the samples were directly 143 compressed to 33 and 75 GPa respectively. In the fourth run, a one-way compression run was 144 conducted from 22 to 77 GPa. Figure 2 plots results from this study and Adler and Williams 145 (2005). When one compares different datasets, the consistency between pressure scales used 146 in each study needs to be critically evaluated. Adler and Williams (2005) used ruby as a 147 148 pressure calibrant while we used KCl. We recalculated the pressure values in Adler and Williams (2005) based on the lattice constant of Au embedded in their sample chamber, using 149 the pressure scale by Sokolova et al. (2016). The pressure scales set by Sokolova et al. (2016) 150 151 is consistent with the EoS of KCl by Dewaele et al. (2012) which is used as the pressure marker in this study. As such the plots in Figure 2 are based on the consistent pressure scales. 152 Our results are consistent with Adler and Williams (2005) at 20-30 GPa where the data 153 overlap. 154

In all the runs, to the highest pressure of 77 GPa, γ' -Fe₄N sustained its structure 155 without a pressure-induced phase transformation, which reproduced the results of Minobe et 156 al. (2015) who observed γ' -Fe₄N to 99 GPa at 300 K. In order to closely examine the effect of 157 158 pressure on the structure of γ' -Fe₄N, we plotted the FWHM of the peak (111) as a function of 159 pressure (Fig. 3). The FWHM of γ' -Fe₄N was normalised to that of KCl as the peak width is sensitive to the stress state in the sample chamber (Komabayashi et al., 2007). While the error 160 bars of several data points are fairly large, a peak broadening is clearly observed above 60 161 162 GPa, suggesting that the structure of γ' -Fe₄N might not be stable under those pressures.

163 The isothermal compression and decompression data were fitted to the third-order164 Birch-Murnaghan (BM) EoS:

165
$$P = \frac{3K_0}{2} \left[\left(\frac{V_0}{V} \right)^{7/3} - \left(\frac{V_0}{V} \right)^{5/3} \right] \left\{ 1 - \frac{3}{4} \left(4 - K' \right) \left[\left(\frac{V_0}{V} \right)^{2/3} - 1 \right] \right\} \dots (2)$$

where V_0 , K_0 , and K' are the unit-cell volume, isothermal bulk modulus, and its pressure derivative at 1 bar and 300 K. We considered only the data up to 60 GPa as the data collected at greater pressures showed the peak broadening as mentioned above. We also adopted the data by Adler and Williams (2005) since their data coverage was complementary to ours at higher pressures (Fig. 2). A least squares fit yields $K_0 = 169$ (6) GPa and K' = 4.10 (4) with a fixed $V_0 = 54.95$ Å (Adler and Williams 2005). The resulting compression curve is illustrated in Figure 2.

173 The normalized volume, V/V_0 , of γ' -Fe₄N as a function of pressure is plotted in Fig. 4 together with existing data (ϵ -Fe₇N₃, Adler and Williams 2005; β -Fe₇N₃, Minobe et al. 2015). 174 For comparison, other iron-alloys systems are also shown (ɛ-Fe-9wt%Si, Tateno et al. 2015; 175 ε-Fe₇C₃, Nakajima et al. 2011; γ-Fe, Komabayashi 2014; ε-Fe, Fei et al. 2016). The hcp 176 structure (ϵ) of Fe becomes less compressible with the addition of Si, C, or N. In contrast, the 177 fcc structure (γ) increases its compressibility when nitrogen is added to iron, which is similar 178 to the case of hydrogen (Narygina et al. 2011). Note that γ' -Fe₄N does not form a solid 179 solution with γ -Fe at 1 bar (Göhring et al. 2016) as it occurs only as a stoichiometric 180 compound (Jacobs et al. 1995) and therefore, the comparison made here is exclusively 181 qualitative. 182

183

184 Subsolidus phase relations of the system Fe-N

185 The present experiments did not observe any decomposition/transformation of γ' -Fe₄N to 77 GPa although a peak broadening for the sample was seen above 60 GPa. Minobe 186 et al. (2015) showed that the structure was immediately decomposed upon laser heating at 99 187 188 GPa. They reported the temperature for the reaction was 1000 ± 300 K. The large uncertainty came from the difficulty in measuring low temperature by the spectroradiometric method and 189 implies that constraining its *P*-*T* location in a laser heating experiment is difficult. The phase 190 equilibria of γ' -Fe₄N were therefore assessed from the construction of a Schreinemakers' web 191 at 20-60 GPa in the system Fe-N. An invariant point in a binary system consists of four 192 193 phases from the Gibbs phase rule. Existing experiments reported γ' -Fe₄N, ϵ -Fe₇N₃, β -Fe₇N₃, ϵ -Fe, and γ -Fe in this pressure range (Niewa et al. 2009; Komabayashi et al. 2009; Litasov et 194 al. 2013; Minobe et al. 2015). Since five phases are present, at least two invariant points need 195 196 to be recognised. From the reported experimental data, we identified the following invariant 197 points: (i) ε -Fe, γ -Fe, ε -Fe₇N₃, and γ' -Fe₄N; (ii) ε -Fe, β -Fe₇N₃, ε -Fe₇N₃, and γ' -Fe₄N (Fig. 5). Then a web of reactions was constructed; three univariant reactions originate from each 198 invariant point. The *P*-*T* locations of reactions were then constrained by experimental phase 199 equilibrium data (Niewa et al. 2009; Komabayashi et al. 2009; Litasov et al. 2013; Minobe et 200 al. 2015). Results show that invariant point (i) is located at 29 GPa and 1310 K and invariant 201 point (ii) is at 41 GPa and 1000 K. All the reactions originating from each invariant point are 202 listed in Table 2. Reaction (1) γ' -Fe₄N = ϵ -Fe + β -Fe₇N₃ that determines the stability of γ' -203 204 Fe₄N originates from invariant point (ii) towards the high pressure side.

In order to predict the *P*-*T* location of reaction (1), the Clausius-Clapeyron relation for each reaction in the constructed Schreinemakers' web was assessed. The Clausius-Clapeyron equation is expressed as:

where ΔS and ΔV are the change in entropy and volume of the reaction respectively. For ε -Fe-N alloys, (i.e., Fe₃N_x) we assumed the same x of 1.3 (i.e., Fe₇N₃) for the *P*-*T* condition studied.

The following reactions from invariant point (i) were first assessed:

213
$$\gamma'$$
-Fe₄N = γ -Fe + ϵ -Fe₇N₃(4)

214
$$\gamma$$
-Fe = ε -Fe.....(5)

215 γ' -Fe₄N = ε -Fe₇N₃.....(6)

The values for ΔS , ΔV and slope for reaction (5) were provided by Komabayashi (2014). The *P-T* locations and slopes for reactions 4 and 6 were each constrained by one experimental data point; ΔV were calculated at 300 K using the EoS constructed above for γ' -Fe₄N together with the EoS of Alder and Williams (2005) for ε -Fe₇N₃. Then we optimised their dP/dTvalues and ΔS simultaneously so that the calculations reproduce the experimental data (Fig. 5). For invariant point (ii), we assumed the same ΔS , ΔV and dP/dT slope for reaction (6). The slope and ΔV for the reaction:

223 ϵ -Fe₇N₃ = β -Fe₇N₃....(7)

were given in Minobe et al. (2015) and ΔS was evaluated in this study. Then ΔS for reaction (1) was obtained through reactions (6) and (7) and the dP/dT value was calculated from equation (3). The optimised parameters set for all the reactions is given in Table 2 and the calculated boundaries are shown in Figure 5.

Figure 5 illustrates that the reactions involving γ' -Fe₄N have negative d*P*/d*T* slopes, which indicates that the entropy differences are positive. Table 2 shows that those reactions are indeed characterised by large positive entropy differences, which is caused by a larger entropy of Fe₇N₃ compared to γ' -Fe₄N. This would be due to the different dissolution mechanisms of nitrogen in the structures. As mentioned earlier, nitrogen goes into interstitial sites in ϵ -Fe₃N_x structure and therefore the configurational entropy should be larger than for γ' -Fe₄N where nitrogen substitutes for iron. A recent computational study revealed the structure of β -Fe₇N₃ which is characterised by the absence of a close-packed arrangement of iron unlike ϵ -Fe₃N_x and γ' -Fe₄N (Gavryushkin et al., 2018). This may also explain the high entropy of β -Fe₇N₃.

238 Recently Gavryushkin et al. (2018) predicted a new form of Fe₇N₃ which take an 239 orthorhombic structure with the space group of *Amm2*. *Amm2*-Fe₇N₃ may be stable between 240 ϵ -Fe₇N₃ and β -Fe₇N₃ at 0K. They suggested that the *Amm2* phase might not be stable at high 241 temperature, which should be clarified in the near future.

Figure 5 shows that reaction (1) originating from the invariant point (ii) is located at 56 GPa at 300 K. This indicates that γ' -Fe₄N observed at higher pressures in this study and Minobe et al. (2015) should be metastable. Indeed, we observed a peak broadening in the XRD pattern for γ' -Fe₄N at pressures higher than 60 GPa (Fig. 3). Therefore, the instantaneous decomposition of γ' -Fe₄N upon laser heating at 99 GPa observed in Minobe et al. (2015) was due to the metastable presence of the phase at 300 K and their reported temperature of 1000 ± 300 K for its decomposition is for the kinetic boundary.

249

250

IMPLICATIONS

In the present study, the high-pressure stability of γ' -Fe₄N was defined by reaction (1) which takes place at 56 GPa and 300 K. Here we extend the discussion further to very high pressures, examining the relative stability of each side of reaction (1) under core pressures based on the volume, which expresses the pressure dependence of the Gibbs free energy. A

similar argument was made earlier by Adler and Williams (2005) with ε-Fe₇N₃ instead of β-255 Fe₇N₃ on reaction (1) because the high-pressure form, β -Fe₇N₃ was not known at that time 256 (Minobe et al. 2015). Figure 6 shows the molar volume of each side of reaction (1) as a 257 function of pressure to 400 GPa based on the latest EoS for each phase (γ' -Fe₄N, this study; 258 Fe, Fei et al. (2016); β -Fe₇N₃, Minobe et al. (2015)). The assemblage of β -Fe₇N₃ + 5 ϵ -Fe 259 shows a smaller volume than 3 γ' -Fe₄N at all the pressures, similar to the case in Adler and 260 Williams (2005) with ε -Fe₇N₃. This means that once the assemblage of β -Fe₇N₃ + 5 ε -Fe has 261 been stabilised, γ' -Fe₄N will never be stabilised with increasing pressure. As such, γ' -Fe₄N 262 263 cannot be a candidate for Earth's inner core. As Minobe et al. (2015) suggested, therefore, the likely stable nitride in Earth's inner core would be β -Fe₇N₃, although the presence of a further 264 phase transition of β -Fe₇N₃ above 150 GPa and 2720 K cannot be ruled out. 265

266 Minobe et al. (2015) and Litasov et al. (2017) argued that the nitrogen content in the inner core to account for a 10% cdd assuming a mixture of hcp Fe + β -Fe₇N₃ would be 9.5 267 wt%. Minobe et al. (2015) however discussed that the maximum nitrogen content in the core 268 should be about 1 wt% from its abundance in CI chondrites. From the first principles 269 calculations of the sound velocity and density of the Fe-N liquids, Bajgain et al. (2018) 270 concluded that the nitrogen content in the outer core would be less than 2 wt%. As such, the 271 estimated nitrogen content in the core is not high and there must be some other light elements 272 273 in there. Due to the low nitrogen content in the core, β -Fe₇N₃ could only be formed if the eutectic composition is very Fe-rich and direct measurements of the melting phase relation of 274 the system Fe-N under inner conditions should be studied in the future. 275

Whether β-Fe₇N₃ would sink or float in the outer core is another important issue when it is precipitated from the liquid outer core. Minobe et al. (2015) reported that the compression behaviours and molar volumes of β-Fe₇N₃ and Fe₇C₃ are very similar to core pressures. Hence we here assume the same thermal parameters for β -Fe₇N₃ as for Fe₇C₃ (Nakajima et al., 2011). The calculated density of β -Fe₇N₃ at 5000 K and 330 GPa is 12.47 g/cm³, which is denser than the outer core (12.17 g/cm³) and less dense than the inner core (12.76 g/cm³). As such it should sink in the outer core although Fe₇N₃ alone cannot meet the inner core density.

The stability of nitrides under high-P-T conditions can place constraints on the origin 284 of mantle-derived diamonds. Here we make a case study of mineral inclusions found in 285 diamonds from Juina, Brazil (Kaminsky and Wirth 2011). From mineral parageneses of the 286 inclusions, Kaminsky and Wirth (2011) suggested that the origin of these diamonds might be 287 in the deep Earth. The list of mineral inclusions they found included an $Fe_7(C,N)_3$ phase with 288 N/N+C = 0.27. From its nitrogen:carbon ratio, Minobe et al. (2015) argued the possibility of 289 290 the formation of a continuous solid solution between β -Fe₇N₃ and Fe₇C₃ as they have the same or very similar structures (Nakajima et al 2011; Minobe et al. 2015). If this is the case, 291 the stability of β -Fe₇N₃ indicates a deep mantle origin. On the other hand, diamond formation 292 may be related to the presence of fluids in the mantle and dehydration reactions in subducting 293 slabs in the mantle should be important (Harte 2010). There are expected major dehydration 294 zones along the subduction of a slab: ~300 km (10 GPa) depth and ~700 km depth (25 GPa) 295 (Komabayashi 2006). Those depths are however, in the stability field of ϵ -Fe₇N₃ which would 296 297 not form a solid solution with Fe₇C₃. High-pressure hydrous phase D may be a water carrier 298 into the deep lower mantle (Komabayashi 2006). Dehydration reactions of phase D is expected to occur at depths greater than 1000 km (40 GPa) if the slab temperature is lower 299 than 1300 K (Nishi et al. 2014), which is in the stability field of β-Fe₇N₃. As such the 300 301 presence of the Fe₇(C,N)₃ phase in diamonds may indicate the water transportation to the 302 deep lower mantle.

ACKNOWLEDGEMENTS

Synchrotron XRD measurements were carried out at beamlines BLI15 at the Diamond Light
Source (ref number: ee17683-1) and BL10XU at the SPring-8 (ref number: 2018B1464). We
thank K. Litasov and an anonymous reviewer for their helpful comments on the manuscript.
This work is supported by the Natural Environment Research Council (NERC) (No.
NE/M000346/1) and by the European Research Council (ERC) Consolidator Grant to T.K.
(No. 647723).

References

314	Adler, J.F., and Williams, Q. (2005) A high-pressure X-ray diffraction study of iron nitrides:
315	Implications for Earth's core. Journal of Geophysical Research, 110, 1-11.
316	Anzellini, S., Kleppe, A.K., Daisenberger, D., Wharmby, M.T., Giampaoli, R., Broccato, S.,
317	Baron, M.A., Miozzi, F., Keeble, D.S., Ross, A., Gurney, S., Thompson, J., Knap, G.,
318	Booth, M., Hudson, L., Hawkins, D., Walter, M.J., Wilhelm, H. (2018) Laser-heating
319	system for high-pressure X-ray diffraction at the extreme conditions beamline I15 at
320	Diamond Light Source. Journal of Synchrotron radiation, 25, 1860-1868.
321 322	Bajgain, S., Mookherjee, M., Dasgupta, R., Gosh, D.B., and Karki, B.B. (2018) Nitrogen content in the Earth's outer. Geophysical Research Letter, 46, 89-98.
323 324	Birch, F. (1952) Elasticity and constitution of the Earth's interior. Journal of Geophysical Research, 57, 227-286.
325	Cartigny, P. (2005) Stable isotopes and the origin of diamond. Elements, 1(2), 79-84.
326	Dewaele, A., Loubeyre, P., Occelli, F., Mezouar, M., Dorogokupets P.I., and Torrent M.
327	(2006) Quasihydrostatic equation of state of iron above 2Mbar. Physical Review
328	Letters, 97, 215504.
329	Dewaele, A., Belonoshko, A.B., Garbarino, G., Occelli, F., Bouvier, P., Hanfland, M., and
330	Mezouar, M. (2012) High-pressure-high-temperature equation of state of KCl and

331 KBr. Physical Review B, 85, 214105.

- Fei, Y., Murphy, C., Shibazaki, Y., Shahar, A., and Huang, H. (2016) Thermal equation of
 state of hcp-iron: Constraint on the density deficit of Earth's solid inner core.
 Geophysical Research Letters, 43, 6837-6843.
- Gavryushkin P.N., Sagatov N.E., Popov Z.I., Bekhtenova A.E., Inerbaev T.M., Litasov K.D.
 (2018) Structure and properties of new high-pressure phase of Fe7N3. JETP Letters,
 107(6), 379-383.
- Göhring, H., Fabrichnaya, O., Leineweber, A., and Mittemeijer, E.J. (2016) Thermodynamics
 of the Fe-N and Fe-N-C systems: the Fe-N and Fe-N-C phase diagrams revisited.
 Metallurgical and materials transactions A, 47 A, 6173-6186.
- Guo, K., Rau, D., Von Appen, J., Prots Y., Schnelle, W., Dronkowski, R., Niewa, R., and
 Schwarz, U. (2013) High pressure high-temperature behavior and magnetic properties
 of Fe4N: experiment and theory. High Pressure Research, 33, 684-696.
- Hammersley, A.P. (1996) FIT2D: a multi-purpose data reduction, analysis and visualization
 program. Journal of Applied Crystallography, 49, 646-652.
- Harte, B. (2010) Diamond formation in the deep mantle: the record of mineral inclusions and
 their distribution in relation to mantle dehydration zones. Mineralogical Magazine, 74,
 189-215.
- Jacobs, H., Rechenbach, D., and Zachwieja, U. (1995) Structure determination of γ'-Fe4N
 and ε-Fe3N. Journal of Alloys and Compounds, 227, 10-17.
- Kaminsky, F., and Wirth, R. (2011) Iron carbide inclusions in lower-mantle diamond from
 Juina, Brazil, The Canadian Mineralogist, 49, 555-572.

- Komabayashi, T. (2006) Phase relations of hydrous peridotite: implications for water
 circulation in the Earth's mantle. In AGU monograph 168 *Earth's Deep Water Cycle*(eds: S. Jacobsen and S. van der Lee), AGU, 29-43.
- Komabayashi, T., Hirose, K., Sata, N., Ohishi, Y., and Dubronsky, L.S. (2007) Phase
 transition in CaSiO₃ perovskite. Earth and Planetary Science Letters, 260, 564-569.
- Komabayashi, T., Fei, Y., Meng, Y., and Prakapenka, V. (2009) In-situ X-ray diffraction
 measurements of the γ-ε transition boundary of iron in an internally-heated diamond
 anvil cell. Earth and Planetary Science Letters, 282, 252-257.
- Komabayashi, T. (2014) Thermodynamics of melting relations in the system Fe-FeO at high
 pressure: Implication for oxygen in the Earth's core. Journal of Geophysical
 Research, 119, 4164-4177.
- Leineweber, A., Jacobs, H., Hüning, F., Lueken, H., Schilder, H., and Kockelmann, W.
 (1999) ε-Fe3N: magnetic structure, magnetization and temperature dependent disorder
 of nitrogen. Journal of Alloys and Compounds, 288, 79-87.
- Litasov, K.D., Shatskiy, A.F., Ovchinnikov, S.G., Popov, Z.I., Ponomarev, D.S., and Ohtani,
 E. (2013) Phase Transformations of Fe3N–Fe4N Iron Nitrides at Pressures up to 30
 GPa Studied by In Situ X-ray Diffractometry. JETP Letters, 98, 805-808.
- Litasov, K.D., Shatskiy, A.F., Ponomarev, D.S., and Gavryushkin, P.N. (2017) Equations of
 state of iron nitrides ε-Fe3Nx and γ-Fe4Ny to 30 GPa and 1200 K and implication for
 nitrogen in the Earth's core. Journal of Geophysical Research: Solid Earth, 122, 35743584.
- Marty, B., Avice, G., Sano, Y., Altwegg, K., Balsiger, H., Hassig, M., Morbidelli, A.,
 Mousis, O., and Rubin, M. (2016) Origins of volatile elements (H, C, N, noble gases)

- on Earth and Mars in light of recent results from the ROSETTA cometary mission.
 Earth and Planetary Science Letters, 441, 91-102.
- Mikhail, S., Barry, P.H., and Sverjensky, D.A. (2017) The relationship between mantle pH
 and the deep nitrogen cycle. Geochimica et Cosmochimica Acta, 209, 149-160.
- Minobe, S., Nakajima, Y., Hirose, K., and Ohishi, Y. (2015) Stability and compressibility of
 a new iron-nitride β-Fe7N3 to core pressures. Geophysical Research Letters, 42,
 5206-5211
- Nakajima, Y., Takahashi, E., Sata, N., Nishihara, Y., Hirose, K., Funakoshi, k.-I., and Ohishi,
 Y. (2011) Thermoelastic property and high-pressure stability of Fe7C3: Implication
 for iron-carbide in the Earth's core. American Mineralogist, 96, 1158–1165.
- Niewa, R., Rau, D., Wosylus, A., Meier, K., Wessel, M., Hanfland, M., Dronskowski, R.,
 Schwarz, U. (2009) High-pressure high-temperature phase transition of γ'-Fe4N.
 Journal of Alloys and Compounds, 480, 76-80.
- Nishi, M., Irifune, T., Tsuchiya, J., Tange, Y., Nishihara, Y., Fujino, K., Higo, Y. (2014)
 Stability of hydrous silicate at high pressures and water transport to the deep lower
 mantle. Nature Geoscience, doi:10.1038/NGEO2074.
- Nomura, R., Hirose, K., Uesugi, K., Ohishi, Y., Tsuchiyama, A., Miyake, A., Ueno, Y.
 (2014) Low Core-Mantle Boundary Temperature Inferred from the Solidus of Pyrolite.
 Science, 343, 522-525.
- Ohishi, Y., Hirao, N., Sata, N., Hirose, K., and Takata, M. (2008) Highly intense
 monochromatic X-ray diffraction facility for high-pressure research at spring-8. High
 Pressure Research, 28, 163-173.

- Okuchi, T. (1997) Hydrogen partitioning into molten iron at high pressure: Implications for
 Earth's core. Science, 278, 1781-1784.
- 400 Poirier, J.-P. (1994) Light elements in the Earth's outer core: A critical review. Physics of the
 401 Earth and Planetary Interiors, 85, 319-337.
- Sokolova T.S, Dorogokupets P.I., Dymshits A.M., Danilov B.S., Litasov K.D., Microsoft
 excel spreadsheets for calculation of PVT relations and thermodynamic properties
 from equations of state of MgO, diamond and nine metals as pressure markers in
 high-pressure and high-temperature experiments. Computers and Geosciences, 94,
 162-169.
- Tateno, S., Kuwayama, Y., Hirose, K., and Ohishi, Y. (2015) The structure of Fe–Si alloy in
 Earth's inner core. Earth and Planetary Science Letters, 418, 11-19.
- Widenmeyer, M., Hansen, T.C., Meissner, E., and Niewa, R. (2014) Formation and
 Decomposition of Iron Nitrides Observed by in situ Powder Neutron Diffraction and
 Thermal Analysis. Journal of Inorganic and General Chemistry, 640, 1265-1274.

		4.
120	HIGHERA	contione
420	I'IZUIU	vanuvns

Figure 1. Representative XRD pattern of γ' -Fe₄N together with Fe (initially present in the starting material) and KCl at 75 GPa and 300 K.

- Figure 2. Unit-cell volume of γ' -Fe₄N as a function of pressure at 300 K. The solid and 424 dashed lines are calculated compression curves from EoS based on a combination of our data 425 and those of Adler and Williams (2005) and the result of Adler and Williams (2005) 426 427 respectively. Only the compression data of Adler and Williams (2005) were used. For comparison, a compression curve for y-Fe at 300 K (Komabayashi 2014) is shown. The data 428 taken up to 60 GPa were used for the fitting to the EoS of γ' -Fe₄N. 429 430 Figure 3. Full width at half maximum (FWHM) of the dominant (111) peak of γ' -Fe₄N 431 normalized to that of the (110) peak of KCl. Above 60 GPa, a peak broadening was observed. 432 The grey line is a guide to the eye. 433 434 Figure 4. Compression curves of iron nitrides, iron and other iron alloys (γ' -Fe₄N, this study; 435 ε-Fe, Fei et al. (2016); ε-Fe₇C₃, Nakajima et al. (2011); ε-Fe₇N₃, Adler and Williams (2005); 436 β-Fe₇N₃, Minobe et al. (2015); ε-Fe-9wt%Si, Tateno et al. (2015)). 437 438 Figure 5. Schreinemakers' web for phase relations of the Fe-rich side of the Fe-N system. 439 The squares are experimental constraints on reactions (Niewa et al. 2009; Litasov et al. 2013). 440 Two invariant points are recognised: (i) at 29 GPa and 1310 K involving ε -Fe, γ -Fe, γ '-Fe₄N 441
 - 442 and ϵ -Fe₇N₃ and (ii) at 41 GPa and 1000 K involving ϵ -Fe, γ' -Fe₄N, ϵ -Fe₇N₃ and β -Fe₇N₃.

The high-pressure stability of γ' -Fe₄N is determined by the reaction of γ' -Fe₄N = β -Fe₇N₃ + ϵ -Fe at 56 GPa and 300 K (the coefficients are omitted for clarity). The uncertainty range of the reaction is due to the uncertainty in the EoS fitting.

447	Figure 6. Molar volumes of 3 γ' -Fe ₄ N and its isochemical assemblage of β -Fe ₇ N ₃ + 5 ϵ -Fe as
448	a function of pressure. The volume of the assemblage of β -Fe ₇ N ₃ + 5 ϵ -Fe (red) is smaller
449	than that of 3 γ' -Fe ₄ N (blue) implying that once transformed, γ' -Fe ₄ N will not be stabilised
450	anymore upon further compression.
451	
452	
453	
454	
455	
456	
457	
458	
459	
460	
461	
462	
463	
464	
465	
466	
467	
468	
469	

Run	Beam	Compression/	a of KCl	Р	V of γ'-Fe4N
	line	Decompression ²	(Å)	(GPa)	$(Å^3)$
#1	I15	С	3.182	38.32	47.05
		С	3.179	39.74	46.74
		С	3.132	46.98	45.82
		С	3.107	52.22	44.85
		С	3.078	58.49	44.42
		С	3.059	63.01	43.87
		С	3.031	70.55	43.04
		С	3.025	72.07	42.73
		D	3.032	70.25	43.11
		D	3.088	56.32	44.22
		D	3.085	57.03	44.38
		D	3.109	51.79	44.70
		D	3.148	44.13	45.61
		D	3.178	38.96	46.28
#2	I15	С	3.216	33.13	47.48
#3	I15	С	3.014	75.22	42.16
#4	BL10XU	С	3.305	22.32	49.46
		С	3.305	22.35	49.45
		С	3.305	22.35	49.42
		С	3.234	30.62	48.38
		С	3.234	30.66	48.20
		С	3.187	37.48	46.84
		С	3.148	44.13	46.01
		С	3.115	50.43	44.95
		С	3.087	56.47	44.06
		С	3.066	61.43	43.20
		С	3.050	65.36	42.81
		С	3.029	70.96	41.88
		С	3.020	73.63	41.61
		С	3.007	77.39	40.82

Table 1. Experimental conditions and unit-cell volume of γ' -Fe₄N

470 ¹C, compression; D, decompression

Reaction	dP/dT,	ΔV , cm ³ /mol	ΔS , J/K/mol
	GPa/K		
Invariant point at 29 GPa and 1310 K			
$3 \gamma'$ -Fe ₄ N = ϵ -Fe ₇ N ₃ + 5γ -Fe	- 0.0486	- 3.123	151.86
γ -Fe = ϵ -Fe ¹	0.0394	-0.0679	-2.67
$3 \gamma'$ -Fe ₄ N = ε -Fe ₇ N ₃ + 5 ε -Fe	- 0.0399	- 3.462	138.51
Invariant point at 41 GPa and 1000 K			
$3 \gamma'$ -Fe ₄ N = ϵ -Fe ₇ N ₃ + 5 ϵ -Fe	- 0.0399	- 3.462	138.51
$\varepsilon - Fe_7N_3 = \beta - Fe_7N_3^2$	0.0029	- 2.670	- 7.628
$3 \gamma'$ -Fe ₄ N = β -Fe ₇ N ₃ + 5 ϵ -Fe	- 0.0213	- 6.132	130.88

Table 2. Clausius-Clapeyron equation for chemical reactions

478 $^{-1}$ All the parameters are from Komabayashi (2014).

479 ² The d*P*/d*T* slope and volume for β-Fe₇N₃ are from Minobe et al. (2015).

Figure 1

Figure 3

Figure 6