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The Skorokhod embedding problem for inhomogeneous
diffusions

Stefan Ankirchner ! Stefan Engelhardt  Alexander Fromm ¥ Gongalo dos Reis

15h56, 22/05/2019

Abstract

We solve the Skorokhod embedding problem for a class of stochastic processes satisfying
an inhomogeneous stochastic differential equation (SDE) of the form dA; = u(t, A;) dt +
o(t,Ay) dW,. We provide sufficient conditions guaranteeing that for a given probability
measure v on R there exists a bounded stopping time 7 and a real a such that the solu-
tion (A;) of the SDE with initial value « satisfies A, ~ v. We hereby distinguish the cases
where (A;) is a solution of the SDE in a weak or strong sense. Our construction of embed-
ding stopping times is based on a solution of a fully coupled forward-backward SDE. We use
the so-called method of decoupling fields for verifying that the FBSDE has a unique solution.
Finally, we sketch an algorithm for putting our theoretical construction into practice and
illustrate it with a numerical experiment.

Keywords: Skorokhod embedding, decoupling fields, FBSDE.
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1 Introduction

Let v be a probability measure on R, let 4,0 : [0,00) x R — R be continuous in both arguments
and let (A;)¢>0 be a stochastic process satisfying the inhomogeneous stochastic differential equa-
tion (SDE)

dA; = M(t,At) dt + O'(lf7 At) dWs, (1.1)

where W is a Brownian motion. In this article we consider the Skorokhod embedding problem
(SEP) for v in (A;). More precisely, we provide sufficient conditions on y, o and v guaranteeing
the existence of a stopping time 7 and a real number «a such that the solution of the SDE (I.1)),
in a weak or strong sense, with initial condition Ay = a satisfies A, ~ v.
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We solve the embedding problem by reducing it to the forward-backward stochastic differ-
ential equation (FBSDE)

Xé(l) = M4 W

@ _ @,z
XS( | w4 § 02(X,(<2>),YT+X£3)>?: , (1.2)
3 2 3 Z2 '
XY =+ a7 Y, + X607 Sy dr

Vo= g(xM) = x® 'z, aw,

for s € [0,1] and (z(1), 2(® 2(3) e R3, where ¢ is a real function chosen such that g(W;) ~ v.
Notice that the FBSDE is fully coupled, i.e. the second and third forward equation depend
on the solution components Y and Z of the backward equation; and, vice versa, the backward
equation depends on the forward components X ) and X ).

It is a longstanding challenge to find conditions guaranteeing that a fully coupled FBSDE pos-
sesses a solution. Sufficient conditions are provided e.g. in [MPY94], [PT99], [MY99], [PW99],
[Del02], [MWZZ15] (see also references therein). The method of decoupling fields, developed
in [Frol5] (see also the precursor articles [MYZ12], [FI13] and [MWZZ15]]), is convenient for
determining whether a solution exists. A decoupling field describes the functional dependence
of the backward part Y on the forward component X. The decoupling field for the particular
FBSDE is, roughly speaking, a function u such that for all s € [0, 1]

U(S7X§1)7X§2)7X§3)) =Y. (1.3)

Under some nice conditions on the parameters of the FBSDE, there exists a maximal non-
vanishing interval possessing a solution triplet (X,Y, Z) and a decoupling field with nice reg-
ularity properties. The method of decoupling fields consists in analyzing the dynamics of the
decoupling field’s gradient in order to determine whether the FBSDE has a solution on the whole
time interval [0, 1].

We use the method of decoupling fields to prove that, under some suitable conditions on p,
o and g, the FBSDE has a unique solution on [0, 1] for every initial value. By using the
particular solution with initial value (z(), z(®), (3)) = 0, we then construct a weak solution of
the SDE and a stopping time 7 embedding v. Indeed, the second component X of the
forward part in can be interpreted as a random time change. One can show that the time
change is invertible, say with inverse clock ~(¢). Moreover, there exists a filtration (G;) and a
(G¢)-Brownian motion B such that, first, X£2) is a (G;)-stopping time and, second, under the
inverse clock the solution component Y together with B solve the SDE in a weak sense.

By the very construction the time changed process Y, at XfQ) is equal to g(W7), and hence

X £2) is a stopping time embedding v into a weak solution of (I.1)).

In a further step we characterize the embedding stopping time X {2) in terms of a four di-
mensional Lipschitz SDE driven by the constructed Brownian motion B. The SDE establishes a
mapping from the paths of B to X 52), and hence allows to find stopping times embedding v into
strong solutions of the SDE (I.1)).

A major idea of our approach for solving the SEP is to change the time of a stochastic process
that has the wanted distribution at the deterministic time 1. This idea goes back to Bass [[Bas83|]
who solves the SEP for Brownian motion. Indeed, our approach generalizes Bass’s solution
method. If 44 is zero and o constant equal to one, then the component X () of vanishes
and the solution part Y of the backward equation coincides with the martingale of conditional
expectations of g(W;), which is the process used by Bass. Moreover, the time change X (%

coincides with the quadratic variation of Y, the time change used in [Bas83].
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The time change idea has been employed in several further articles. In [AHIO8] the solution
of a quadratic BSDE is time changed in order to solve the SEP for the Brownian motion with
drift. The FBSDE simplifies to the BSDE of [AHIO8] if A is a Brownian motion with
drift. [[AHS15] uses a time change argument to construct stopping times embedding a given
distribution into a stochastic process solving a homogeneous SDE. In [FIP15] a fully coupled
FBSDE is solved and then time changed to obtain a stopping time embedding a distribution into
a Gaussian process satisfying an SDE with deterministic coefficients. [FIP15] also relies on the
method for decoupling fields for proving existence of a solution of the FBSDE.

There are more recent articles that are inspired by or related to Bass‘ time-change approach
for solving the SEP for the Brownian motion. E.g. the article [BCHK17] proves optimality of the
Bass solution, among all solutions of the SEP for Brownian motion, for some minimization prob-
lems formulated in terms of associated measure-valued martingales. [DGPR17|] solve the SEP
for a class of Levy processes via an analytic approach and by extending Bass’ time-change argu-
ments. The process of conditional expectations of g(X fl)), used by Bass, is shown in [VBHK19]
to minimize a martingale transport problem.

To the best of our knowledge there do not exist any articles that consider the SEP for general
inhomogeneous diffusions of the type (1.1). There are various contributions to the SEP for
homogeneous diffusions. The article [PPO1] classifies the distributions that can be embedded
into homogeneous diffusions. The survey [[Obt04] collects results on the SEP, including results
for homogeneous diffusions. We remark that in the homogeneous case where the coefficients of
the SDE do not depend on time, the FBSDE can be decoupled. We explain this in
Section [8 below.

The manuscript is organized as follows: In Section [2] we present our main results. In Section
we explain the decoupling fields technique. In Sections |4| and |5/ we compute the dynamics
of the decoupling field gradient process and derive some estimates allowing to conclude the
existence of an FBSDE on the whole interval. In Sections[6]and [7]we present the weak and
strong solution for the SEP. Illustrative numerical results can be found in Section

2 Main results

Our goal is to solve the Skorokhod embedding problem (SEP) for a stochastic process A solving
the SDE (1.I). More precisely, for a given probability measure v on R we aim at finding an
integrable stopping time 7 and a real a such that the solution A of (I.1I)), in a weak or strong
sense, with intial condition Ag = a fulfills A, ~ v. Let F,, be the cumulative distribution function
of v. We set

g:=0qy ::Fy_loq),

where ® is the cumulative distribution function of the standard normal distribution and F,!
the right-continuous generalized inverse of F,,. In the following, for a differentiable function
f:R™ — R we denote by 0, f its partial derivate with respect to the ith coordinate.

Assumption 2.1. Let g, 1 and o be differentiable, 0 > ¢ > 0 and ¢/, L, any ‘%‘, aff"

‘9‘;7" be bounded. Furthermore, let

as well as

0 Oglt — 2040 - 1 1

00> "3 @D

inf 3
(9,1‘)E]R,+ xR ag

and one of the following conditions be satisfied:

i) 0,0=0



ii) 040 20,200 -u—0-0t =0 or
iii) 0,0 <0, 200 -p—o0 -0 <0.
Our main results are the following theorems.

Theorem 2.2. Let Assumption be satisfied. Then there exists a complete filtered probability
space (2, F, (Gt)t=0, P), a (Gi)-Brownian motion (B;), a bounded (G;)-stopping time T and a real
number a such that for the strong solution A of the SDE with driving Brownian motion B
and initial condition Ag = a we have A, ~ v. Furthermore, T can be chosen such that

1 Ot — 2040 - -1
<e?( —5 +2minJ0, inf 7 Oapt = 2000 - (0, x) a.s. (2.2)
lg'1% (0,2)eR+ xR o3

Remark 2.3. In the following we refer to the tupel ((G;), (By),T,a) as a weak solution of the SEP.

Theorem 2.4. Let Assumption |2.1|be satisfied and assume furthermore that o, % the first, second
and third derivatives of g, u and o are bounded. Let B be a Brownian motion on a probability space
(Q, F, P) and denote by (F;) the augmented Brownian filtration. Then there exists a € R and a
bounded (F;)-stopping time T satisfying such that for the strong solution A of the SDE
with driving Brownian motion B and initial condition Ay = a we have A, ~ v.

Remark 2.5. We refer to the pair (7,a) as a strong solution of the SEP.

Remark 2.6. Note that the combination of Assumption and o being bounded already implies
that p is bounded as well.

Remark 2.7. We now comment on Assumption 2.1} In particular, we relate the assumption to some
conditions appearing in the literature that have been shown to be sufficient for a bounded solution
of the SEP to exist.

a) The assumption that ¢’ is bounded entails that there exists a compact set outside of which the tails
of v are dominated by the tails of a normal distribution. If, as in Theorem we additionally
have that ¢’ is bounded from below by a positive constant, then the tails of v also dominate the
tails of a normal distribution. For a precise statement, see Lemma in the appendix.

Furthermore, observe that the left hand side of Condition (2.1) is equal to 0, (X;) and in the

cases ii) and iii) the term 20,0 - j1 — o - Oy equals —o30; (L3); hence Assumption imposes
conditions on the growth of 1.

b) Theorem 3.1 in [[AS11] states that the boundedness of ¢’ is sufficient for the SEP for the BM,
possibly with a constant drift, to possess a bounded solution. Notice that for o = 1 and constant

w Inequality (2.2) simplifies to
S

and hence coincides with the estimate on the embedding stopping time provided in Theorem
3.1 in [AS11]]. Moreover, observe that if o and p are constant, then all the other properties of
Assumption [2.1| are satisfied trivially.

c¢) The ratio on the left-hand side of (2.1) is equal to 0, (%) Thus, (2.1) is somewhat weaker than
requiring that % is non-decreasing in x. For some mean-reversion processes, e.g. the Ornstein-
Uhlenbeck process, 0, (%) is unbounded from below. A mean reversion effect can imply that
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at any time the tails of the diffusion A are lighter than the tails of v; in this case v can not be
embedded into A in bounded time.

A condition related to appears in Theorem 6 of the article [AHS15|] studying the SEP in
the special case where i and o do only depend on x. The theorem states that if —%“ + o’ is non-
increasing and %;) is bounded, then there exists a bounded solution of the SEP. Note that if, in
addition, o is constant, the assumption of Theorem 6, [AHS15]], coincides with our Assumption

21

d) In [FIP15] the authors consider the special case when p, o do not depend on a, but on time only.
To obtain weak solutions for the SEP using the FBSDE approach the authors of that work assume

that o is bounded away from zero as well as that ¢’ and ¢" are bounded, where ¢'(r) = %

and where H~' is the inverse of the mapping t — Sé 0%(s)ds. This boundedness of §'(r) is
equivalent to our assumption that % is bounded.

In order to derive Theorem and we consider the FBSDE (1.2). To this end let W
be a Brownian motion on a probability space ({2, 7,P) and denote by (F;);>¢ the associated
augmented Brownian filtration. In Section 4] and [5| we show that under Assumption there
exists a unique solution of the FBSDE with initial condition (X(()l), Xé2),Xé?’)) = (0,0,0).
We then use this solution and a time transformation to prove Theorem [2.2] (see Section|6]and in
particular Theorem [6.1)). More precisely, we construct a filtration (G;), a (G;)-Brownian motion
(B¢), abounded (G;)-stopping time 7 and find a real number a such that for the strong solution A
of the SDE with driving Brownian motion B and initial condition Ay = a we have A, ~ v.

In order to find a strong solution of the SEP, we transform the FBSDE via a time change
into an SDE driven by the new Brownian motion B. The new SDE allows to characterize the
stopping time 7 as a path functional of B, and hence to prove Theorem (see Section [7|and
in particular Theorem [7.1]and Proposition [7.7).

In Section [8| we show that solving the system

s (2 3)
U(XT Yr + Xp )
s = B
W, L Z d x@
S 2
X0 = f r dr
0 o2(X, Y, + X))
@ _ [ o 3) z;
X = f :U(Xr Y+ X, ) - dr
0 o2(XP Y, + xV)
1
Y, =g(Wy) — X — f Z, AW, (2.3)

for all s € [0,1] and setting 7 := X £2) also yields a strong solution. Furthermore, we propose a
scheme, based on the system (2.3), to numerically simulate a solution of the SEP (see Section
[8).

In the next section we recall some facts concerning decoupling fields and explain the method
we use for proving the existence of a unique solution for the FBSDE (1.2).

3 The method of decoupling fields

In this section we briefly summarize the key results of the abstract theory of Markovian decoup-
ling fields, we rely on later in the paper. The presented theory is derived from the SLC theory
(standing for Standard Lipschitz Conditions) of Chapter 2 of [Frol5]] and is proven in [FIP15].



We consider families (M, X, f) of measurable functions, more precisely
M :[0,T] x R" x R™ x R™*¢ — R",

¥ :[0,T] x R" x R™ x R™*¢ — R4,
f:[0,T] x R® x R™ x R™4 — R™,

where n,m,d € IN and 7' > 0. Let further (2, 7, P) be a probability space with a d-dimensional
Brownian motion (W;)e[o,7] and denote by (F:)e[o,r] the augmented Brownian filtration.
For z € R™ and measurable £ : R® — R™ we consider the FBSDE

t t
X = ac—i—f M(s,XS,Y;,ZS)ds—&—J Y(s, Xs, Yy, Zs) AW
0 0
T

T
Yt=§(XT>+f f(s,Xs,Ys,Zs)ds—f Z,dw,.
t t

The aim is to study existence and uniqueness properties of the above FBSDE. The basic idea
is to find a ”good” function u such that Y; = u(t, X;), thereby establishing a pathwise relation
between the processes X and Y.

Note that contrary to Chapter 2 of [Frol5] we allow deterministic mappings M, Y, f and
& : R" — R™ only. In this, so-called Markovian, case we can somewhat relax the Lipschitz
continuity assumptions of Chapter 2 of [[Frol5|]] and still obtain local existence together with
uniqueness. What makes the Markovian case so special is the property

”ZS = u$(87X8> : 2(S7X87§/:97 ZS)77

which comes from the fact that « will also be deterministic. This property allows us to bound Z
by a constant if we assume that ¥ and u, are bounded. This boundedness of Z in the Markovian
case motivates the following definition, which allows to develop a theory for non-Lipschitz prob-
lems.

For a stochastic process A : Q x I — RY, where I is an interval in [0,7] and N € IN, we
introduce the norm

| Alloo,1 := esssup(, y)erxa [As(w)]
with regard to the product measure A x P and for a function f : I x RN — RM with N,M € N
we define
| flloo,r := sup sup [f(s,-)].

sel zeRN

We simply write |Al.c., and ||, if 7 = [t1, 7] and |A]c and | f] if = [0,7].

Definition 3.1. Let £ : R" — R™ be measurable and let ¢t € [0,T]. We call a function u :
[t,T] x R" — R™ with u(T,-) = £ a Markovian decoupling field for (¢, (M,3, f)) on [t,T] if
for all ty,ts € [t,T] with t; < ty and any Fy, - measurable X;, : Q — R" there exist progressive
processes X,Y, Z on [t1,to] such that

© Xy =Xy +§, M(r, X,.,Y,, Z,) dr + § 2(r, X, Y, Z,) AW, as,
© Yo=Y, =0 f0r X0, Yy, Zp) dr = §7 Z, AW, as,

* Y, =u(s, Xs) as.



for all s € [t1,t2] and such that |Z| 4, +,) < oo holds. In particular; we want all integrals to be
well-defined and X,Y, Z to have values in R™, R™ and R™*? respectively.
Furthermore, we call a function u : (¢, T]xR"™ — R™ a Markovian decoupling field for (¢, (M, %, f))
on (t,T] if u restricted to [t', T'] is a Markovian decoupling field for all t' € (¢, T].

We refer to the stated property that Y = u(s, X;) a.s. as the decoupling condition.

In the following we work with weak derivatives. This allows us to obtain variational differ-
entiability (i.e. w.r.t. the initial value x € R"™) of the processes X, Y, Z for Lipschitz (or locally
Lipschitz) continuous M, ¥, f, . We start by fixing notation and giving some definitions:

If z € R™*4 or + € R™™9, the expression |z| denotes the Frobenius norm of the linear
operator z, i.e. the square root of the sum of the squares of its matrix coefficients.
We denote by S"! := {z € R"||z| = 1} the (n — 1) - dimensional sphere. If z € R"*" or
r € R™*™ or x € R™*¥*" or 2 € R"*¥*" we define |z|, := |z - v| for all v € S"~!, where - is
the application of the linear operator z to the vector v such that z - v is in R or R™ or R™*¢ or
R"™* respectively. We refer to sup,cgn—1 ||, as the operator norm of z.

For a measurable map £ : R” — R™ we define

Le :=inf {L > 0][¢(z) — £(2")| < L|z — o/ for all z, 2" € R"},

where inf (§ := o0. We also set L¢ := o0 if £ is not measurable. L < co implies that £ is Lipschitz
continuous. For a map u : [¢t,T] x R" — R™ we define Ly, 1= supep, 1 Lu(s,)-

Now, consider a mapping X : M x A — R, where (M, A, p) is some measure space with
finite measure p and A € R" is open, N € IN. We say that X is weakly differentiable w.r.t. the
parameter \ € A, if for almost all w € M the mapping X (w, ) : A — R is weakly differentiable.
This means that there exists a mapping 0y X : M x A — R"™¥ such that

J V(A)OHX (w,\)dA = j X (w, \)orp(A) dA, (3.1
A A

for any real valued test function ¢ € C(A), for almost all w € M. In particular, X (w,-) and
the weak derivative 0, X (w, -) have to be locally integrable for a.a. w. This of course includes
measurability w.r.t. A for almost every fixed w.

We remark that weak differentiability for vector valued mappings is defined component-wise.
We refer to Section 2.1.2 of [[Frol5|] for more on weak derivatives.

Note that if L, , < oo is satisfied and, therefore, u is Lipschitz continuous in x then u is
weakly differentiable in z (see e.g. Lemma A.3.1. of [Frol5]) and even classically differentiable
almost everywhere. If not otherwise specified we refer to d,u : [t,7] x R" — R™*" as the
particular version of the weak derivative which is identical to the classical derivative in all
points for which a classical derivative exists and is zero in all other points. See for instance the
statement and proof of Lemma A.3.1. of [[Frol5] for details.

We denote by Ly , the Lipschitz constant of ¥ w.r.t. the dependence on the last component
z (and w.r.t. the Frobenius norms on R™*¢ and R"*%), by which we mean the minimum of all
Lipschitz constants or co in case ¥ is not Lipschitz continuous in z. In case Ly, , < oo we denote
by L3, = ﬁ the value L;,z if Ly, > 0 and o otherwise.

We write E; [ X] for esssup E[X|F;] in the following definition:

Definition 3.2. Let u : [t,T] x R™ — R™ be a Markovian decoupling field to (&, (M, %, f)). We
call w weakly regular, if L, , < Lilz and sup e, |u(s, 0)| < oo.

Furthermore, we call a weakly regular u strongly regular if for all fixed t1,ts € [t,T], t1 < to,
the processes X, Y, Z arising in the defining property of a Markovian decoupling field are a.e. unique
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for each constant initial value X;, = x € R" and satisfy
to
sup Ep oof| Xs* 1+ sup Ey oo[[Vs]*] + Ety o0 [f ZSQdS] <w VYreR". (3.2)
se[t1,t2] SE[tl,tQ] t1

In addition X, Y, Z must be measurable as functions of (x, s,w) and even weakly differentiable w.r:t.
x € R™ such that for every s € [t1,t2] the mappings X and Y, are measurable functions of (z,w)
and even weakly differentiable w.r.t. x such that

2
< 00,
v
essSUpgern SUP  sup Eg o
vesSn—1 SE[tl,tQ]

vesSn—1 se [tl ,tz]

essSUpgern SUP  sup Eg o U%Xs

-

2

— 7, ds]<oo, (3.3)

t2
essSuPern SUP By oo [J
vesn—1 t
where S"~! is the (n — 1) - dimensional sphere.
We say that a Markovian decoupling field u on [t,T'] is strongly regular on a subinterval [t1,t3] <
[t, T] if u restricted to [t1, t2] is a strongly regular Markovian decoupling field for (u(tz,-), (M, X, f)).
Furthermore, we say that a Markovian decoupling field u : (t,T] x R™ — R™

* is weakly regular if u restricted to [t', T'] is weakly regular for all t' € (¢, T,

* is strongly regular if u restricted to [t', T'| is strongly regular for all t' € (¢, T

For the following class of problems an existence and uniqueness theory is developed:
Definition 3.3. We say that &, M, Y, f satisfy modified local Lipschitz conditions (MLLC) if

* M,3, f are

— Lipschitz continuous in x,y, z on sets of the form [0, T] x R" x R™ x B, where B < R™*¢
is an arbitrary bounded set

- and such that |M(-,0,0,0)|, [ f(-,0,0,0)| e, [|Z(-,-,,0)|0; L, » < 00,
* {:R" — R™ satisfies Lg < Lglz.

The following natural concept introduces a type of Markovian decoupling field for non-
Lipschitz problems (non-Lipschitz in z), to which nevertheless standard Lipschitz results can be
applied.

Definition 3.4. Let u be a Markovian decoupling field for (&, (M,X, f)). We call u controlled in
z if there exists a constant C' > 0 such that for all ty,ts € [t,T], t1 < to, and all initial values
Xy,, the corresponding processes X, Y, Z from the definition of a Markovian decoupling field satisfy
|Zs(w)| < C, for almost all (s,w) € [t,T] x Q. If for a fixed triple (t1,t2, X:,) there are different
choices for X,Y, Z, then all of them are supposed to satisfy the above control.

We say that a Markovian decoupling field uw on [t,T] is controlled in z on a subinterval
[t1,t2] < [t,T] if u restricted to [t1,t2] is a Markovian decoupling field for (u(te,-), (M,%, f))
that is controlled in z.

Furthermore, we call a Markovian decoupling field on an interval (s, T] controlled in z if it is
controlled in z on every compact subinterval [t,T]| < (s,T] (with C possibly depending on t).

8



Definition 3.5. Let I} < [0,T] for (&, (M, %, f)) be the union of all intervals [t, T] < [0, T] such

max —

that there exists a weakly regular Markovian decoupling field u on [t,T'].

Theorem 3.6 (Existence and uniqueness on a maximal interval, Theorem 3.21 in [FIP15].). Let
M, %, f, € satisfy MLLC. Then there exists a unique weakly regular Markovian decoupling field u on
IM . This u is also controlled in z, strongly regular and continuous.

max-*
Furthermore, either I} = [0,T] or I} = (tM. | T], where 0 <t < T.

max max

Existence of weakly regular decoupling fields implies existence and uniqueness of classical
solutions:

Lemma 3.7 (Theorem 3.18 in [[FIP15[.). Let M, X, f, £ satisfy MLLC and assume that there exists
a weakly regular Markovian decoupling field u on some interval [t,T].

Then for any initial condition X; = x € R" there is a unique solution (X,Y, Z) of the FBSDE on
[t, T'] such that

sup E[|Xs"]+ sup E[[Yf*] + [ Z]eoy < o0
se(t,T] se(t,T]

The following result basically states that for a singularity ¢! to occur 0,u has to "explode"

at tM . It is the key to showing well-posedness for particular problems via contradiction.
Lemma 3.8 (Lemma 3.22 in [FIP15].). Let M, Y, f, ¢ satisfy MLLC. If IM = (tM. T, then

. —1
i Lug,) = Ly

where u is the unique weakly regular Markovian decoupling field from Theorem

In the following sections we will use the aforementioned theoretical results to study the
solvability and regularity of system (1.2]). This FBSDE naturally implies parameter functions
M,3, f and £ such that n = 3, d = m = 1 and T' = 1. Note that in our case f vanishes, while
¥ is, in some sense, degenerate. We have Ly , = 0 and Lilz = o0. Our aim is to rigourously

conduct the following steps and arguments: Considering the maximal interval I,  associated
with our problem, we employ Theorem to obtain a decoupling field u on an arbitrary non-
empty interval [¢t,T] < I} such that u is Lipschitz continuous in  with a Lipschitz constant
possibly depending on ¢. By studying the object d,u (s, Xs) we derive a bound for the Lipschitz
constant of « which is independent of ¢. The final step is to use Lemma to conclude that the
case IM = (™ T] cannot be fulfilled and hence, by Theorem IM = [0,7] must hold,

max min’ max

which means that our FBSDE has a solution.

4 Gradient dynamics of the decoupling field

In this section we investigate the dynamics of the spatial gradient of the decoupling field for the
FBSDE ([I.2)). Based on the findings of this section we will derive, in the subsequent section, a
uniform bound for the Lipschitz constant of the decoupling field.

Let g, 1 and o be differentiable, 0 > ¢ > 0 and ¢/, %, ‘Zt—é‘, ’3;—2“, aﬁT" as well as a‘jT" be bounded.

It is straightforward to verify that the associated FBSDE satisfies (MLLC) such that the theory
of the previous section is applicable. By Theorem the maximal interval I}  contains an
interval [t,1] with ¢t < 1. Let z € R? and denote by X = (X, X® X©)T 7V the solution
of the FBSDE on [¢, 1] with initial condition (Xt(l), Xt(Q),Xt(g)) = x. Moreover, denote by u
the decoupling field associated to the FBSDE (1.2). From Theorem we also know that the
partial derivatives 0, u, 0z, u, 0z,u and the process Z are bounded on [¢,1].
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For shorter notation we define for all s € [¢,1]

and
ugl) = awlu(5>X§1)va(2)7X£3))v
ugZ) = amzu(stél)va(z)7X§3))v
ul® 1= dpu(s, X, X3, X)),

In the following we refer to v"), u(?), 4(3) as the gradient processes associated to the inital value
x at time t. The next result describes the dynamics of the gradient processes. For its derivation
we first argue that the processes are It6 processes and then match the coefficients appropriately.
In contrast to the approach of [[FIP15]], we do not explicitly compute the dynamics of the inverse
of the Jacobi matrix of X.

Lemma 4.1. Let g, yu and o be differentiable, o > ¢ > 0 and ¢, %, (Ztéﬁ (’0?2“, % g5 well as a‘jT" be

bounded. Then the gradient processes "), u(?) and u(®) have the dynamics

! Z2 a,r a,r ! ~ e
= o (xX0) 4 [ L (ol (s = 2, %0 ) @7 Y ar - [ 200,
! Z2 22 T a,r ! ad e
2 = [ L (o + ) 25 (%47 (2 i) dr - [ 22 a,
s O'T Oy Or

1 2 L ~
ug?’) =—-1+ f (u@ + 1) Z—; <u£3)ua,s —gZer (ug) + u$3)ur>> dr — J ZT(?’) dW,., 4.1)
s gy Or s

S

forall s € [t,1], where Z(1), Z(3), Z®) are locally square integrable processes. Moreover, the process

=Ws— f )+ u( ) ,ur> dr
is a Brownian motion under an equivalent probability measure, and the Jacobi matrix

0, X 0, x o, x
0:Xs = | 0, X% 0,x? o, xP
00, X 0, X8 0, x%

is invertible for every s € [t, 1] almost surely.

Proof. For x' = (xy,xh,2%)" € R3, y, 2z € R we define

0
1
2
M (e y.2) = G I
p (@, y + 25) S "

and

¢ (af) == g(ar) — ab.
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Then \ )
X, = a:+f M(XT,YT,ZT)errJ Ydw,
t t

and
1

Y, = £(X1) —f Z, dW,..

s

Now, define a stopping time 7 via
7 :=inf{s € [t,1]| det (0, Xs) < 0} A 1.

Notice that 7 > ¢ since det(0,X;) = 1. For all s € [t,7) we have that J, X is invertible with
(0:Xs)~! being an It6 process. By setting

Us := du (s, Xg) = ( Oz, Uy  Ogotly,  OpgU )(s,Xs)
which is the gradient process we get
axY:S = Us . achs

for all s € [t, 7) by the chain rule in Lemma A.3.1 in [Fro15]. Hence, Us = 0,Ys - (0, X,) ! is an

It process and thus there exist (bs) and (Z5) such that

US=U1+J brdr—J Z, dW,

S S

for all s € [t, 7).
For the following we also introduce for an Ito process I, = Iy + Sg i dr + Sg jrdW, the two
operators D' and D" defined via (D' I); := is and (D" I), := js. Using this notation we have

0 Zs = D" 0, Y,
= D" (Us - 0, X5)
=Us; DY 0, Xs + DV Uy - 0, Xs.
Since D¥ 0, X = 0, we further obtain 0,7 = Z; - 9, X, and thus we get
Zg = 0375 (0:Xs) "
for all s € [t, 7). Also,

Oz [M (X5, Ys, Zs)]
= aacM (Xs>Y:9> Zs) a:]ch + é)ij (X&Y:% Zs) ax}/s + az]w (Xsa }/Sa Zs) ast
= aa:M (X57 Kw Zs) ast + aij (X57Y97 Zs) Usaach + azM (X57 Y57 Zs) Zsast

and
0=D"0,Y, = D'(Ug0,Xs) = —bs - 0. X5 + Us - 01 [M (X5, Ys, Zs)]

yielding
by = U | 0uM (X, Yoy Z) + 0,M (X, Ya, Z) Uy + 0 M (X, Vs, Z4) Z |

11



for all s € [t, ) with

T
0 0 0
9, 20t0(x2,ytas)  Op(xaytas)z® o 20t0(za,ytas) plrsytrs)
aﬂ?M (x,y,z) = 0 2z o3 (x2,y+x3) o2(z2,y+x3) 2z o(z2,y+x3) o2(z2,y+z3) 5
0 —92,2 Qa0 (x2,y+x3)  Oap(re,y+w3)-2> 22 Oa0(w2,y+3) p(x2,y+23)
o3 (z2,y+z3) o2 (z2,y+z3) o(z2,y+z3) o?(w2,y+3)
0
_ 2 0q0(22,y+3)
ayM (az,y,z) = 22 o3 (x2,y+x3) ’
Oap(xo,y+a3)-2% 9,2 0a0(z2,y+x3) p(z2,y+x3)
o2(z2,y+3) o(z2,y+x3) o2(x2,y+x3)
0
2z
a2]\4 (l‘,y, Z) = o?(x2,y+x3)

w(z2,y+3)
22 o2(z2,y+x3)
being the derivatives of M.

Next we turn our attention to the question whether 0, X is invertible. We use that on the
interval [t,1] the processes U and Z as well as the functions 1, 4 Qe Gat 010 apq 577" are
bounded, giving that 0,M (X,,Y;, Z,), 0,M (X,,Y;, Z,) U, and 0,M (X,,Y,, Z,) are bounded,
too. Thus, there exist some bounded processes « and 3 depending on U, X, Y and Z, such that
for every stopping time 7 < 7, ¢ = 1,2,3 and s € [t, 1] the process 0

.= has dynamics
“SA)% = Ugi) + f
t

S

(OQ(}) + /8121) ’ ZT(’Z)> l{r<%} dr + J Zy)l{r<7~'} dW,.
t

Standard results on linear BSDEs (see e.g. Theorem A.1.11 in [Frol15]) yield, for every stopping
time 7 < 7 and ¢ = 1,2, 3, that Z() has a bounded BMO(P)-norm which is independent of 7.
Hence,

E U \ZT|2dr} < . (4.2)
t
Now observe that

0, X, = Id+J 0 [M (X, Yy, Z,)] dr
t

—1d +f [axM (X, Yy, Z0) + 8, M (X, Yy, Z,) Uy + 0. M (X, Yy, Zy) Zr] 0, X, dr
t
implying that
0. X, = exp (J [azM (X, Yy, Z0) + 0y M (X, Yy, Z2) Uy + 0.M (X, Yy, Zy) ZT] dr) .
t

Together with Inequality (4.2)) this implies that 0, X is invertible for all s € [¢, 7], which again
yields that 7 = 1 and 0, X is invertible on the whole interval [¢, 1].
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What remains to do is to calculate the explicit dynamics of U. Observe that

by =Us [02M (X, Yo, Zs) + 0y M (X, Vs, Z) Us + 0:M (X, Vi Z5) Zs |

0 0 0
2 2
- (ugl), u?, u<3>> 0 —253 T —2f§ Lo
Z s Z Z a,s
0 Ht,s 02 2;“5 02 U;; Ha,s 02 2;“8 02 Uo—;
0 0 |
Z2 a,s s ~ ~ ~
o e )| % |20 z0 )
Z Z Oq.,s s
Na,s?é 2)“’8??2 os o2 s |

2
_2Ugl) gQ)%U;;S + (1)Ug ) (,Ufas o 2/115 U;j)

Z
?
3 2 S a,s 2 3 2 a,s
u( )% (,Ll,t75 — 2/LSO;’S ) < ) 57 + Ug )Ug )% Ha,s — 2#500; )
uf’

S
2) 22 0. 3) 22 as 72 0ays 3)\? z2 as
—2Ug )7200; Ug )Té (Ma s — 2lbs GUS ) QUL(G ) )02 Ua + (Ug )) 7% (,ua,s — 2 UUS’ )

~ T
2 (o 4 o) 20
b | % () 22
2 () + ) 2

Using that Y7 = £(X1) and hence U; = V&(X) we obtain for the gradient processes the dynam-
ics

! 22 a,r a,r ! od e
ugl) = gl (X§1)> + J ugl)% <u7(“3) (:ua,r - 2/’1‘7'0 : ) - 2“7(?)0-’) dr — f Zﬁl) dWr
s Oy Or Or s

22 r a,r b i
u® =0 +j @ g ( PDptar + u”) —22r (Ut’ +u®2e > (u$2> + qu”)W) dr —J 72 4w,
s oy Oy Or Or s

1 2 L ~
ugg) =—-1+ J (ug?’) + 1) Z—g (u&g),ua,s _gTar <u£2) + u&S)MT)) dr — f ZT(3) dW,.,
s (o= Or s

where W, := W, — 2UZT (u7(~2) +ul? ,ur) dr for all s € [t,1]. Since furthermore

<

2{% ( @ 4 us> is bounded for all s € [t,1], where t € I we get by Girsanov’s theorem

that W is a Brownian motion for an equivalent probability measure. |

5 Bounding the gradient of the decoupling field

In this chapter we use the notations and definitions of Chapter
In the following we derive bounds for the gradient processes that do not depend on the
starting time ¢ € I and initial value = € R3. In particular, we obtain global estimates for the

space derivatives 0, u, i € {1,2, 3}, of the decoupling field . By appealing to Lemma we
then conclude that FBSDE (1.2)) has a solution on the whole interval [0, 1].

Lemma 5.1. Assume that g, ;. and o are differentiable, o > ¢ > 0 and ¢/, —2, 7, o, 010 Za0
are bounded. Let u be the unique decoupling field to FBSDE (1.2)) on I .
Furthermore, let t € IM , 2 € R3 and (XM, X X®) Y, Z) be the solution of FBSDE (L.2)

with initial condition z at time t, and let u™), u(®), u(® be the associated gradient processes. Then

13




for s e [t, 1]

|Zs| < sup sup |0y u(r,z)| as.
re(s,1] zeR3

and in particular |Z||o+ < |0z, 0] 0o t-
Furthermore, if the weak derivative d,,u has a version whose restriction to the set [t,1) x R3 is
continuous in the first two components t and x1, and 0., u is bounded, then

Zs(w) = Oy u (87Xs(l)(w),Xé?)(w),X§3)(w)> — oM (w)
for almost all (s,w) € [t, 1] x Q.

Proof. Observe that with It6’s formula we get for h > 0 and s, s + h € [t, 1]

1 h s+h s+h
h]EH Y, dW, +J (WT—WS)ZTdW,A—J Z, dr

1 s+h
= EE [J Zpdr .7:5]

— 7, a.s. for h—0.

1
EE [}/;+h(Ws+h - Ws)| ‘FS]

7|

On the other hand we get, using the decoupling condition Y, = u (r, X,El), XT(Q),XT(:S)), that

Ys-&-h(WsHL - WS)
1 2 3
=u (3 + h7Xs(—&-)h7X§+)h7X§+)h) (Wesn — W)

—u (5 +h,xD, x@ x6 >) (Wasn — We) (5.1)

+ (u <s+h,X(1) x% x

s+h’“*s+h’ 3)> <8 + h’ X(l) X§2)7X(3))) (Werh - Ws)

§ s+h? S
(3
s+

(u (s X X8 XD) = u (s 40 X, X XO)) (W - w).

At first let us take a look at the third summand on the right hand side of (5.1)). Since u is Lipschitz
continuous in its fourth argument on [¢, 1] with some constant Lz,zg that might depend on ¢ and

since furthermore XS’r)h - x® 4 S?h L %

—————— dr we can estimate the absolute value
o2(X Y+ X))

of the third summand against

% ‘ [( (5 +h Xs(Jr)h»Xs(i)h»XSr)h> (5 +h X£+)th£i)haX§3))) (Wsin — Ws) ]:s]
18 [l o X000 X2 XE0) = s X X3 X6 ]
s+h 2
%E [Lf"“ L “TJ2(X7§2)i/: + xO) dr| [Wesn — Wil ]:S]
< 3 Db B 12 B W - Wil A,
which clearly goes to 0 as i — 0 because | 43| and | Z|« are finite on [¢, 1].
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With analogous arguments we also get that

% ‘E [ u (s +h,xD, x® X§3>) —u <s +h,xD, x®), X§3>>) (Wasn — W) J-"s]
< %]E [ (54 X X XO) = (s 40, XD, X0, XO) [[Won - W4 | 7
1

Ly, h 202 16 2B [ [Wein — Wsl| Fo]

= E U, T2

—0 as. for h—D0,

where L!, , is the Lipschitz constant of u in the third argument on the time interval [¢, 1].

Now consider the remaining first term on the right hand side of Equation (5.1)). For this
remember

Xgl), X§2), XS(S) are F, measurable,

1 1
X£+)h = Xé ) + (Ws-i-h - Ws):

W, n — Wy is independent of F,
* v is deterministic, i.e. is a function of (s, ("), 2z 20)) e [t,1] x R x R x R only.

Using integration by parts these properties imply

E [u <3 + haX§2h7X§2)7X§3)> (Ws+h - Ws) ]:S]
1 1
_ 0 2 3 1,
fRu<s+h,Xs +2Vh, XD, X )z hgme s
1 1.2
_ (1) @ ¢ L
fR%u <s+h,Xs + 2R, X, X )hme 3% dz.
Hence
1
‘h]E [ (s X5, X2 X)) (Won = W) | 7|
= U Oy U (s +h, XM 4 z\/ﬁ,X(Q),X(?’)) = e 27 dz
R 1 S S S m
1 1.2
< | sup |0 + h, 27 d
Jo s et 4 et e
= sup |ax1u(8 + h,l‘)’
z€R3
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Putting everything together we get

1 s+h
1 Zs| = lim |- E U Zypdr fs:|
r\O | h s
. 1
= }111{‘% EE [Yorn(Wein — Ws)| F]

7|

~lim |2 1) x(2) xG) _
- lim hE[u (s 1 X0 X, X)) (W = W)
+oE

% [(u (s +h,x0 x® X<3>) (s +h,xD x@ X<3>)) (Wypn — W)

s+h’“*s+h s+h’

7|

+%]E[< (s +nx0 x2, x7

s+h? X sih s+h) —u (5 +h, X, X2 X(3))) (Wsrn — Ws)

s+h’“*s+h

7|
< limsup sup |0y, u(s + h,z)| + 0] + |0|
AN\O zeR3
< sup sup |0 u(r,x)|.
re(s,1] zeR3

If we have that 0., u is continuous in the first two arguments, we can derive, by using dom-
inated convergence since u(!) is bounded on [t, 1], the more precise result

i L D) @ x® _
ZS—}ILI\I%}LE[ <s+hX+h,X X )(Ws+h W) ]-"8]
1 10
:fR}lllmﬁxlu<s+hX +2Vh, X X >\/ﬂe 2% dz

=0y, <s,Xs( ), X2 >,X§3>)
almost surely. |

To obtain estimates for the gradient processes we use the following result.

Lemma 5.2 (See [MPF91], p. 362). Let the function f be continuous and non-negative on J =
[a, 8], a,b = 0, and n be a positive integer (n > 2). If

¢
(1) <a+ bf f"(s)ds, teJ,
then

1
t =
f(t)ga[l—(n—l)J a"lbds] , a<t< by,

«

where (3, = sup {t eJ:(n—-1) S; a"tbds < 1}.

Lemma 5.3. Assume that g, 1 and o are differentiable, o > € > 0 and ¢/, %, i’f—é‘, a{;’—#, ‘9’;7", % gre
bounded. Let u be the unique decoupling field of the FBSDE (1.2)). Then for any te IM and initial

condition (Xt(l),Xt( ), Xt(?’)) = x € R? the associated gradient process u(®) satisfies for all s € [t,1]
uf’) =-1

If we additionally assume that o, - W? = 0as. forall s € [t, 1] and

i TGl =200y g L
(0,7)eR; xR o3 ’ 2|lg’[2,°
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then it also holds that

1 Ot — 2040 - -
0<ul) < cominlo,  imf (TGl T20T 1Y (g o -
lg’ ”go (0,2)eR4 xR o3

N[

forall s e [t,1].

Proof. By interpreting (4.1) as a system of BSDEs we get for u(%) the trivial solution ug?’) = -1
for all s € [t, 1] as the unique bounded solution of this BSDE.

Also note that ¢’ > 0 since g = F,,;! o ® and F), as well as ® are non-decreasing. Thus it = 0
is the trivial and unique solution to

1 2 1
Z S
s =0+ f % <—ua,r + oy 2 2u$?>"“”"> dr — J ZW 4w,
S S

r UT 0-7‘

which implies by comparison that 0 = i, < ul! for all s e [t, 1].

For the upper bound of u(!) remember that W = Oz, u(s, Xﬁl), Xs(z), Xf’)) for all s € [t, 1]
and in particular for any fixed ¢ € IM _and all starting conditions = = (2,23, 2(3)) € R? we
have

o oy oy

1 2 1 ~
Onyultx) = uf? = g (x17) - f un s (u — 2, 7 2u£?>"‘”> dr — f Z{) AW,
t t

=N

Using this and that Z is bounded on every interval [t,1] I/

max?

we get

ugl) =k :ugl)‘ ]:t]

1 2
1 Zr Oa,r Oa,r
=B (1) = [ 07 (e 2 20 Yl 7
[ LN £ o
1 r a,r
<E|J (X{ )) —L ufnl)—gg (,uam -2 = ur> dr ft]

forall t € M and (z(V,2® 2®) e R3, where we use that o, - u'” > 0. Next we use the
inequality

s as_2 a,sMr . *la _2a :
_TsHa, Ta,sht gmax{o,—(e )mf <U Calt 360 M) (Q,x)} =0
, T g

o3 eRy xR

and the estimate from Lemma for Z to obtain

1

u’ < |g'lo+ B | sup Oyu(r,x) sup sup (g,u)* (0, ) dr.
t zeR3 0e[r,1] zeR3

Thus we can derive the inequality

1
sup sup Oy u(p,z) < ¢’ + B sup {j sup Og, u(r, ) sup sup (0g,u)* (6, z) dr}
pE[t,1] zeR3 pelt,1] | Jp zeR3 0e[r,1] zeR3
1
<|d o+ B | sup sup (dz,u)? (6, z)dr.
t Oe[r,1] zeR3
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Note that inf g ,)cr, xr M(O,x) Hence, we obtain by

1
z ~ a7y, mPlies § < g
setting f(t) = Sup,e[,1] SUPzers Ox, u(p, =) and applying Lemmathat

N

sup sup dryu(p.a) < (o 2001 0))
T

pE[t,1] zeR3

and thus,

NI

1 .
D] < [y uloe < (ng? —25) <o
o0
[ |

Theorem 5.4. Let g, u and o fulfill Assumption - 2.1| Then, for FBSDE (1.2)), we have I} = [0,1]
and there exists a unique, strongly regular Markovian decoupling field u on the whole interval [0, 1].
This u is a continuous function on [0,1] x R3.

Furthermore let (X, X2 X®) 'Y, Z) be the solution of FBSDE with an arbitrary initial
condition z € R3 and u,u®,u®) be the associated gradient processes on [0,1]. Then we have
u® = —1 and the finite estimates

1 ) _ ) -
o< < (g e2minfo, i (TEEEE o) T 62
0 ,T)EI 4 X g

D=

Hu(2)H < exp [’Z‘go (' aaéu (‘ H H ata ))]
e0] o o0
1212 (2\‘9;" el %) e

and

1
1 0Ot — 2040 - T2
< oD < : . alt a0 * [ .
12l < Hu Hoo = (IIg’Ilgo 2min {0’ (G,x)lerIIRf+><R< o3 (0,z) SR

Proof. Using Lemma we only need to show that the weak derivative of « with regard to
the initial value 2 € R? is bounded by some constant which is independent of the time interval
[t,1] = IM on which it is defined. Then it follows that I/, = [0, 1] and hence ¢ can be chosen
to equal 0 and the estimates (5.2)), (5.3) and (5.4) hold true for corresponding processes on the
whole interval [0, 1].

For now fix t € IM and x € R? and let ("), u(®, 4 be the associated gradient processes.
Lemma Eylelds u®) = —1. In order to derive Estimate ( - we show that o, 4 ug) > 0 a.s.
for all s € [t, 1] which then allows us to apply Lemma |5.3| yielding the estimate. Consider the
three cases ), i) and i) of Assumption [2.1} With d,o = 0 of case i) this is obviously true. For
the remaining two cases observe that

1 2
7 2
ug2) _ f 7’; |:<u£2)> <_20'a71”) + u$~2) <_Ma,r I 20'a7r,ur _ 20’t,r> i (20't,rlur . /Jzt,r>:| dr
s 02 oy oy oy oy

Because u'”) is bounded on every interval [, 1] = IM. , we can view u(® as fulfilling a Lipschitz

max?
BSDE. This allows us to use the comparison theorem by changing 2%-* i, — ;.- to zero and hence
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compare with the trivial solution which is constantly 0. Thus in the case i) we have uv(2) > 0
and in case iii) u(® < 0. Therefore, we have 0,0 - u®) > 0 for the cases ii) and iii) as well.
Hence we can apply Lemma [5.3| to obtain, for s € [t, 1],

1
1 900 1
0< ugl) < | —% +2min<0, inf 0 Capt = 2000 - 1 (0, x) ’ .
lg'12 (8,z)ER4 xR o3

In addition with Lemma [5.1] this yields

1
1 . 0 Ogpt — 2040 - 2
1Z]1o0.6 < JuDene < (II jp + 2min {o inf < — “) (9,:5)}) < .

(0,$)ER+ xR

Since, as stated before, in case i7) we have u(®) > 0 and d,0 > 0 and in case iii) u(?) < 0 and
d.0 < 0, we again can apply the comparison theorem to see that in case ii) we have 0 < u(® < @
and in case 7ii) @ < u(? < 0, where @ is the solution of the linear BSDE

1 2 2 1
7 72 o~
US:J‘ a2 ( uar+2 o _QUtr) +<20t’rur—ﬂtf) dr—f Zp dW,..
s Ur Or Or Ur Or s

In case i) we have that «(2) = @ giving that «(?) is bounded by @ as well.

By estimating
2 My 2 Ttr > > (
Or Oy r

|| = ‘E “1 exp Uriﬁ (—ua,r + 20
&l )]

,u't,r> dr fs:|
Oq Ca0
<exp [|ng < i [y (H
o0
00
212 (

g
)
we have found a finite bound for «(?) that is independent of .
Thus v, v(? and u(® are bounded independently of ¢. Hence there exists a solution on
the whole interval [0,1] = I} . Therefore, we also have that all bounds are valid on this
interval. [ |

Oyt

o2

ezl

6 Weak solution

In this section we show that a weak solution of the SEP can be obtained from the solution of the
FBSDE (1.2)). Recall that if Assumption [2.1]is fulfilled, then by Theorem [5.4 FBSDE (1.2) has a
solution on the whole interval [0, 1] and the gradient processes are bounded.

In the following we sometimes use the fact that for two It6 processes A and B and a time
change ~, in the sense of Definition 1.2 in Chapter V, [RY13], it holds that

(1) t
L ArdB, = fo Ay 4By

(see e.g. Proposition 1.4, Chapter V, [RY13]).
The next theorem is a version of Theorem [2.2| with an explicit weak solution of the SEP.
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Theorem 6.1. Let g, i and o fulfill Assumption Furthermore let (X, X2 X®) Y, Z) be
the solution of the FBSDE with initial value (Xol),XSQ), X(()3)) = (0,0,0). Define the random
time
7= X2,
the time change
{inf {s > 0] x? > t} ifo<t<7,

V(t) = L

1 ift>7,
the filtration G, := F. ) and the process A; := Y, ) + XS(’E)

Then T is a (G;)-stopping time satisfying

~1
F<e? 1 +2min{0, inf 0 Capt = 2020 - (6, ) a.s.
Hg/”go (0,x)eR4+ xR o3

on [0, 7).

Furthermore, on [0, 7], the process B, := Sé ©) L @~ dY, () is a (G¢)-Brownian motion, A
(XS Y+ X5 m)
fulfills the SDE
¢ ¢
A=Yy + f w(r, Ay)dr + f o(r,Ay)dB,
0 0

and we have
Af- ~ V.

Proof. By standard results it follows that 7 is a (G;)-stopping time (see e.g. Proposition 1.1,
Chapter V, [RY13]). With

7 (s) = X (6.1)
for all s € [0, 1] we have for all ¢ € [0, 7] that X,(Y%t)) = v~ 1(y(t)) = t. Therefore, and because
dY, = Z,.dW,, we obtain

5B v(t) Zf
B, By = Jo 2(x2, v, + x®)

dr =y7'(y(1) = t.

By Levy’s characterisation of Brownian motion we get that (B;) is a (G;)-Brownian motion on
[0,7].
Note that for all w € 2 the function ~ is A-a.e. differentiable on [0, 7] with

(X2 Vo + X8O
V) = () = e = 0 0 T T 6.2)
(v=1)(v(1)) Z2
and hence
A, = Xﬁz) + Y0 — Yo + Yo
~(t) 2 V) (3 () (3)
=Y+ f 1 <X1£2)7Y;’ 4 Xr(3)> - /e - dr + J U(X22)7n + Xr(g)) v,
0 02(XT Y, + Xy ) 0 O'(Xr Y + Xo )

t

2) 3)
o (X)) Vo + X

t
e ©
= Yo+ f (50 Yoo + X0, ) dr f 1) (1)

0 0 ) 5

t

¢
=Y —i—f w(r, Ay)dr +J o(r,A;)dB,
0 0
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for all ¢ € [0, 7]. Also

Ar =Yy + X0 =i+ X{Y = g(W7) ~ v

The bound for 7 follows with the bound for |Z| stated in Theorem[5.4/and by o > ¢. [ ]
The next lemma characterizes the stopping time 7 = v~ !(1) of Theorem in terms of

the solution of an FBSDE driven by the Brownian motion B. We use the lemma later to show
existence of strong solutions of the SEP.

Lemma 6.2. Assume g, 1 and o to fulfill Assumption Let the decoupling field u of the FBSDE
(T.2) have a continuous weak derivative 0,,u > 0. Also let (X, X2 X®) Y, Z), v and B be

defined as in Theorem Moreover, let B be any Brownian motion coinciding with B on [0, X F)].
Then ~, W, X®) and Y solve the system

(3)
t o2 (7“, Y’y(r) + X’y(r)) 1
v(t) = 9 3) r
0 (aﬂt1u) (V(T)aw'y(r)vrv Xy(r))

3
t o Y,e + X A
Wy = | ("0 + X50) dB, 6:3)

3
0 amu(y(r), W’y(r)a T, X,s(i))

t
3 _ (3)
x® = L o (r Y + X0, ) ar

ORVY:
Yo = Yo+ JO o (r Yy + X\7),)) aB,

for all t = 0 such that v(t) < 1. Additionally, for v~ defined as in we have

-1 H%M\?o —9 1 . . 0+ Oglt — 20,0 - |4 -1
1) < Mmoo 2 0, inf 0, .
v (1) -2 € T + 2min (071)1611%{+X]R 3 (0, x)

(6.4)
Proof. Note that Theorem implies the bound (6.4). Since d,,u is continuous we get with
Lemmathat Zs = Og,u(s, Xs(l), X§2), X§3)) > 0 for all s € [0, 1] and hence both v and y~! are
strict monotone increasing and continuous. Moreover, Lemma Equation and the fact

t

@) :
that X =t yield
2 (2 3) 2 (3)
Op <XW) ;; o XW)> N ; (t’ Yv(tzlj Xy((;;) ®
2
7(t) (Ozy ) (V(t)uXA/(tva(t)va(t))
forall 0 <t <~ 1(1).
Furthermore, X 5(1) = W, yields that
(2 3)
W B t LW B t o (Xw(r)’ Y'y(r) + XV(T)> 15
() = y(r) = 7 T
0 0 y(r)
3)
_ Jvt o (T, Y,Y(T) + XW(T)> 4B

O O x®
0 Oy ((r), XI 0, X, X))

0 a3l71u (’Y(T)a W’y(r)a Ty X’S’?’))



Also

v(t) t
Yoo =Yo+ J Z, AW, = Yy + J Zy AW,y
0 0
t
_ (3) -
=Yy + J;) o (T‘, Yv(r) + X’y(r)) dB,,
v(t) 72
X\ = J (X4 XP) S ar
K 0 2(xP. v, + x¥)
2 2 (2) (3)
- Jtﬂ (X0 Yo + X5 o ? (5 Yo+ o) dr
Wy IR ) e (@) (3) Z?
0 o (X“/( ) Yy + XW(T)> ~(r)
t
_ (3)
- JO M( ,YW(T) +X_y( )) dr
and
' ! o (7 Yy + X))
A0 = [ Vo) ar ; O N
’ 0 (Oayu) (’V ), XSy 7(T)X()>
t o (’I“, ’7(7" (7"))
= 2 (3) dr
0 5$1u (fy m)

for all t € [0,771(1)].

7 Strong solution

We use the definitions and constructions of the former chapters. In particular let u be the unique
strongly regular decoupling field of the FBSDE ((1.2) which exists on the whole interval [0, 1] if

Assumption [2.1]is fulfilled.

Theorem 7.1. Let g, ;1 and o fulfill Assumption and pu, o and their derivatives be bounded.
Denote by u the decoupling field of FBSDE and assume the partial derivative 0., u with respect
to the first space variable to be Lipschitz continuous in every argument and 0 ,u = 6 > 0. Let
B be an arbitrary Brownian motion and denote by (F?) = (FZ).c[o.) the augmented filtration
generated by B. Then there exists a bounded stopping time T with respect to the filtration 7 such

that for the process A given by

t

p(r, Ay)dr + f o(r,A.)dB,
0

t

|
0

for allt € [0, 7], we have that A, ~ v and the stopping time T satisfies

-1
T<e? ! +2min<0, inf 0 Calt = 2000 - 1 (0,x) a.s.
lg'12 (0,2)eR4 xR o3
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By solving the Lipschitz SDE

T 0'2(8,95 + Ag)
y(r) = J 7 ds
0 (axlu(v(s)aFSastS»
T o(s,05 + Ayg)
T, = dB, 7.1
y T 7

A, = f (s, ©s + Ag)ds

0, =Y, +f o(s,0s + Ag)dBg
0

for all v = 0 such that v(r) < 1 and where Y, is the starting value of the process Y in the FBSDE
(1.2) and setting T := inf{r > 0]vy(r) = 1} we can obtain such a stopping time.

Proof. Since any solution of FBSDE has a unique distribution independent of the driving
Brownian motion, we know that the constant Y}, is always the same and does not depend on the
driving Brownian motion.

Let us take a look at the system (7.1). Note that for all a,b € [0,1] x R?

1 1 ’

B Oz, u(b) — O, u(a) - Ly
al‘lu(a) 6I1u(b) ’

eyu(a) - Opu(b) | 62

|b_a"7

yielding that (d,,u)~! is Lipschitz continuous. Since hence both (0,,u)~! and o are Lipschitz
continuous and bounded we get that o - (0,,u) ! and ¢ - (0, u)~? are Lipschitz and bounded as
well. Thus, we have that all coefficients of the system are Lipschitz continuous. Therefore
there exists a unique solution (v,I", A, ©) of which is progressively measurable w.r.t. (F7).
Hence 7 := inf{r > 0|y(r) = 1} is a stopping time w.r.t. (F?) because  is continuous.

Furthermore, the systems and just differ by notation and the driving Brownian
motion. By the principle of causality (see [KS91]) the distributions of (v, WW,X@,YW) from
Lemma and (v,I", A, ©) are the same. Hence, we immediately have the bound for 7 as
stated in Lemma and also for A; := A; + O, that

A=A, +06, = A,Yf1(1) + @771(1) ~ X(3)

3
vy T Yemt) = XP 1y =g) ~v

and

t t

u(s, As + O5)ds + f o(s,As + O;)dBs

At:At+@t:%+J
0

0
t

t
=Yy + J wu(s, Ag)ds + J o(s,As)dBs.
0 0

What remains to do is to find sufficient conditions for the assumptions of Theorem to
hold true. For this we use that the decoupling field « of FBSDE is three times weakly
differentiable. To show this we extend FBSDE by the dynamics of the gradient processes
and view this system as a extended FBSDE, for which we can show the weak differentiability of
its decoupling field.

Let a := max (| 0z, u]w, |Ostt] oo, | 0zsulw) and define the truncation operator 7' : R — R by
T(z) := min(max(z, —a),a). Note that the map 7 is uniformly Lipschitz. Assume that g, u, o
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and their first derivatives are Lipschitz continuous and consider the FBSDE
S

XM =0 4 J 1dW,,
t

s (0)\2
X _ 4 +J @) g,

t g,

with the decoupling condition

YO =u®(s, X, X, X)),
YZS(I) = u(l) (57 Xél) ) Xs(2)7 X§3))7
V2 = (s, X, X2, X0,
Y =u® (s, XV, XP, x[),
where
Ly = pi (Xr(Q)aYr(O) + X(3)) , oy =0 (Xr(2)7Yr(O) + X7§3))
and
pr 1= o (X2, 7,0 4+ X)), o 1= apt (X2, Y0 4+ X)),
Oty 1= 010 <X7§2), v, O + XT(3)) , Oar 1= 00 <XT(2),YT(O) + X£3)> .

Lemma 7.2. Let g, u and o fulfill Assumption In addition, suppose that g, p and o are
twice differentiable and that the second derivatives are bounded. Then, for the FBSDE (7.2)),
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we have IM = [0,1] and there exists a unique, strongly regular Markovian decoupling field
(u®, w42 4B3)) on the whole interval [0,1]. Furthermore,

u® =wu, M =0,u, u? =d,u and u® = o,,u,

a.e., where u is the unique decoupling field to FBSDE (1.2). In particular, u is twice weakly differ-
entiable w.r.t. the initial value x with uniformly bounded derivatives.

Proof. It is straightforward to verify that FBSDE ([7.2) satisfies (MLLC), and hence Theorem
is applicable. Let u(i), i = 0,1,2,3 be the corresponding unique weakly regular Markovian
decouphng field on 1M . u®, i =0,1,2,3, are continuous functions on IM < R3. In order to

show that IM = [0, 1] we again need to prove that every partial derivative of u(*) fori = 0, 1,2, 3
is bounded independently with regard to the interval [¢, 1] = I* where we consider it.

max
Lette IM

M For an arbitrary initial condition Z € R? consider the corresponding processes

XU x@ x6) yO yO) y@ y@) zO) z0) 72 73
n [t,1]. Note that XV, x®?) x©) y(©) 7z(©) solve FBSDE (1.2), which implies that they co-
incide with the processes X(1), X2 Xx®) 'y, Z from since strong regularity of Markovian
decoupling fields guarantees uniqueness. Now Y(©) = Y implies u(t, ') = u(9(¢,2’) for all
"e[t,1], 2" € R3.

Note that a truncation with 7' does not effect any gradient process of FBSDE (1.2)). Thus,
(Ys(l)), (Ys(z)), (}/5(3)) fulfill the same dynamics resp. BSDEs as the gradient processes (ugl)),
(u (2)) (u (3)) in (4.1). Therefore, we can apply the same arguments and conclude that they also
satisfy the estimates (5.2), (5.3)) and (5.4) (see Theorem [5 . In particular v = 1 =P
for all s € [¢,1] and therefore also Z; ) =0 =2, Hence,

Y @ = Ll ((Yr(z)>2 B (u§2)>2> (ZiO))2 (_2?;’") dr

T

! ZT('O) 2 a,r r
+ f (}/7“(2) - u$'2)> ( 2) <_,Ufa,7" + 20 : My — 2O-t’ > dr
s g Or Or

T

[P (1) 20— (o - ) 20) - [ (0 - 20w

s S

_ Ll ((YM)Q _ (usm)z) (Zfz))z (_21) dr - Ll (22 - 28 aw,

T

[\

Ot,r
—92 )
M ag.

Z<O) ( @ _ ,ur> is bounded we have that W’ =W, —-W, =’ 2§(0) ( @ _ ,ur> dr, s €

[t,1], is a Brownian motion under some probability measure equ1valent to P. Under the new

measure the process pair (YS(Q) — u§2), A S@) -7 § )) is a solution of the following linear BSDE with
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bounded coefficients

1 (0)y2
-~ (Z
+j K( Tg) <_Mar+200a’r/1r_20t7r>d7ﬂ
S

r Or
1 970 I

+f v, = Z@dr—f Z, dW,.
S O-T‘ S

Note that (0,0) is the unique solution of the previous BSDE. Consequently, Y® and v are
indistinguishable and Z(?) = Z(), A ® P-almost everywhere on [t, 1] x €.
Similarly we can show that Y(!) and u(") as well as Z(!) and Z(!) coincide. Thus we have

20y (5, X{D, X, X) = 8pyus, X, X, X9) = ) = ¥,
0t 9 (s, XU, XO X Z o (s, XU, XO x3) 4@ _ y@
20y, X0, X, X) = 0ryu(5, X, X2, X9) = uf® = V19
a.e.on [¢,1].
It remains to show that I = [0, 1]. Define for x = (z1, 72, 23)T € R3, y = (y0,y1,%2,y3)" €
R47 z = (207 21,22, Z3)T € IR4
(0) (0)
5 Y Zs
o ?2) o v > zM
XS = XS 5 }/S = (2) 5 ZS = (2)
(3) Y Zs
Xs Y9(3) Z§3)
0 1 g(z1) —x3
v 2 3 3 g' (1)
M(x,y,z) = 02(x2,£0+933) ) ) Y= 01, f(.%‘) = 0
1 (22,90 + 23) so75 oty 0 —1
and
F(x,y,2)

0
(20)2 0a0(x2,Y0+3) 0a0(x2,y0+3)
ylm (5a,u (22, Y0 + 23) — 201 (22, Yo + x3) W + 2Q2W>

(20)? Oto(x2,y0+23)
o2(z2,yo+x3) \ o(x2,y0+23)

Oa Yo+
t Y2 Gc(fﬂ(ﬁjfygixﬁn (Y2 — p (z2, 90 + 73))

0
0
0
+ (20)2
TTan votmy) (Y20akt (22,50 + x3) + Ot (22,0 + 3))
0
0
T _% (y2 — p (@2, 90 + 23)) 21

)
—m (y2 — 1 (22,90 + x3)) 22
0
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Then

and . .
ffs:s(xl)—j F(Xr,ﬁ,z)dr—j Z,dw,
By setting
O C I C) BN C)
(1) _ o u® o u® o u® _
u U o U 3 U
s = 0|, (s, Xs) = axiu@) 5wzu(2) axzu@) (s, X)
u® 00 u® O u® 9, u®
we get

0:Ys = Uy - 0, X.

Since (0, X;)"! is a multidimensional It6 process on [t, 1] (see Lemma[4.1]and its proof) we get

that Us = 0,Ys - (0.X,) ™! is also an It6 process and hence there exist (bs) and (Z,) such that
Us =U; —J brdr—f Zr dW,..

For the following we also introduce for an It6 process Iy = Iy — SS i dr — Sg jrdW, the two
operators D' and D via (D' ), := is and (D I)s := j,. Using this notation we have

0xZs = DV 0, Y,
= D" (Us - 0. X)
= U,-D¥ 0, X, + D" U, - 0. X

where we can further specify

00 [V (X, Vo Z6)] = 0l (R, Vi Z4) 00K+ 0,0 (K, Yoy Z) 00Ys + 0.0 (X, Vi Z4) 047,

and likewise

and



where the derivatives of M and F are bounded due to the assumptions made. Therefore, we see
that the dynamics of U are linear with exception to the quadratic terms Usd, M (X5, Ys, Zs)Us
and 0.M (X,,Ys, Zs) Z,. However, we claim that we can reduce the dynamics of U to a linear
BSDE.

It is straightforward to see that

0 0 00
o (0)y2
0,M (X, Yy, Z,) = —2Z, ) e 000
(0)y2 (0)y2
Ee o =225 e 0 0 0
(0) (0) (0)
Note that o := —2(2072)2"% and f := (2072)2 Pa,s — 2(%;72)2‘7;;5 ps are both uniformly bounded,

and we have
0 0

0
oy M (X, Ve, Z) Uy = | a-ul? a-ul? a-ul? |,
goul poul poul?
which is bounded independently of [¢, 1] (cf. in Theorem [5.4)).
Moreover, note that

0 0 0O
_ - - = (0)
o.M ( sy Ys, 5) = 2532. 000

7(0)
ps’%= 0.0 0

only depends on the solution components (X2, X®) y(©) 7))  Hence, together with the
estimates of Theorem 5.4} we conclude that 0, M (X, Y, Z,) is bounded. Since U is bounded on
[¢,1], the term U0, M (X, Ys, Zs) Z, in Equation can be shifted, via a Girsanov measure
change, into the Brownian motion W. Similary, the term 0, F (X, Y;, Z) Z, in Equation
can be shifted into W. To sum up, there exists a Brownian motion W under an equivalent
probability measure such that (U, Z) solves the BSDE on [t, 1] driven by W with linear driver

f(Say,Z) = axF (X57?9725) + ayF (X&}_/&Zs) y+y [axM (XSuYSqu) + ayM (Xs’}_/s’25> Us]

and terminal condition V£(X;). Observe that the terminal condition and all coefficients are
bounded by some constant independent of ¢ and z. Therefore, also U is bounded independently
of t and x. By Lemma [3.7| this yields that I} = [0,1]. [ |

max

Remark 7.3. The second and third derivatives do not have to be bounded. It would suffice if the
second and third derivatives of i divided by o and the second and third derivatives of o divided by
o are bounded.

Lemma 7.4. Let g, p and o fulfill Assumption and their second and third derivatives be
bounded. Then the decoupling field u of FBSDE (1.2) is three times weakly differentiable w.r.t.
to the initial condition = € R? with uniformly bounded derivatives.

Proof. This proof is completely analogous the proof of Lemma Therefore, we only give a
sketch.

Extend the system (7.2) by the dynamics of ¥ () := w(%) := g, v for all 4, j € {1,2,3} as
obtained in the proof of Lemma [7.2] and by the corresponding entries in the decoupling field.
Then argue analogously to the proof of Lemmathat for every i € {0, 1,2, 3} the (") of FBSDE
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(7.2) coincides with the zf(i) of the extended system. Redefine, if necessary, the vectors X, Y,Z
and the functions M, ¥, &, F' such that for the extended system we have

X, :x+f (XY, Z,) dr+J S W,
t t
and . )
¥, = (X)) - f F (XY, 2,) dr - f 7, dW,.
Also define U, as the partial derivatives of t}}e decoupling field u(s, X;) of the extended system
for all s € [t,1]. Again there exist (bs) and (Z5) such that

Us = U — Jlbrdr—deWT.
By the same calculation as in the proof of Lemma [7.2) we obtain that
Zs = 0.7 (0 Xs) "
and
bs = 0o F (X5, Ys, Zs) + 0y F (X5, Ys, Zs) Us + 0. F (X, Ys, Zs) Zs
+ T, | M( Vo Z) + 0, M (X, Y, 2,) Uy + 0.M (X, Vs, Z,) 24|

Analogous to the proof above, 0, F, o, F, 0,F, d,M, 0,M and 0, M are bounded while addition-
ally 0, M only has entries in the first column which allows us to conclude that 0, M (X, Y5, Z)Us
is bounded. Furthermore every coefficient in front of Z is bounded on every Interval [t, 1] = I}

and can therefore be transformed away with Girsanov’s Theorem. Hence we have linear dynam-
ics for U with bounded coefficients which yields that it is bounded independently of the interval

[ ] glVIHg max - [07 1] u

Lemma 7.5. Let g, u and o fulfill Assumption their first and second derivatives be bounded
and ¢ = 6 > 0. Then the weak derivative 0,,u of the decoupling field u from the FBSDE (1.2)
H IR

fulfills
) (7.4)
e 0]
and in particular 0,,u is bounded away from 0.

Proof. By Lemma the decoupling field of the FBSDE ([1.2) exists on the whole interval [0, 1]

and is twice weakly differentiable. In particular d,,u is continuous (see e.g. Theorem 4.2.17

in [Frol5]), and hence we can apply Lemma yielding Z70 = Oz U <r, X,gl), X2 ), (3)> for

1

Oz, U || o

1

ol Cu0

o2

2lal)f

< + 2 onulo
Hi 1o

all » € [0,1]. Also using Lemma - we know that «(!) is bounded by some constant for every
starting time ¢ € Iﬁf{lx = [0,1] and every initial value z € R3.
azlu(r,Xﬁl),X£2)7 9)) for all r € (to, 1] where tg := inf{t > 0|0z, u(t,x) =

Now we set V. :
0 for at least one x € R} with the convention that inf 5 = 0. We immediately get that V% <
[0z, | < oo and the dynamics

Oa,r ( )Uar
1 1 2 1 Har — 24y + 2u, 1 ~
e g | (v @) -t o [,
g(X77) s T g s

T

a,r (2)0'ar
1 1 A\ 2 :U«a,'r_Q,UTJU; + 2uy o Lo~
:,u)‘f v (Z) - -2 dr‘f Zr dWr,
g(X77) s T r s
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&)
where ug) = Oy U (r, Xﬁl), X,(,Q),XT(?’)), Ly = sz and W is defined as in the proof of Lemma
Using that Vis < |0y, ullc we can apply Corollary 2.2 of [Kob0O] to obtain

w24l |° )<=
0

because 0., v and 0,,u are bounded by Theorem Since this bound is independent of s we
also get that

1 Ca0
o

Vil <
g

2 2 luulc

P (

o]

1 1
O XM x@ xB)) - = > _~ S
lu (8, s ) S 9 S ) Vg HV“OO >
for all s where V' is defined. Because, as stated above, 0,,u is continuous, we get that ¢y = 0
and that hence Equation ([7.4)) holds true. [ |

Lemma 7.6. Let g, p and o fulfill Assumption and their second derivatives be bounded. Then
for the problem (7.2) it holds for all s € [0, 1] almost surely that

1Z9] < 02,4V o0 < 0.

Proof. Note that this proof runs on similar lines as the proof of Lemma

Remember that Lemma yields that for problem there exists a unique solution on
the whole interval [0, 1] for every initial condition in R3. Observe that with It&’s formula we get
for h > 0and s,s + h € [0,1]

s+h s+h s+h
J v, aw, + f (W, — W,)dy,) + f 1-zWdr

T
S S

7|

s+h quo) 2 ar
+f (W, — W) (—(UZ)YT(” (Yr‘?*) <u — 2u, 2% ) -2y ) dr

s+h 2Z7£0)
+ f (W, — W) (— o (V2 + YO ) 20 ) ar| F,

T

s+h s+h s+h
E f ZM dr + v, aw, + J (W, — W) ZM dw,

—7ZW g5, as h—0.
On the other hand we get by using the decoupling condition that

sz(i)h(Ws-i-h - Ws)
=u!) <3 +h Xs(Jr)h’Xgh’Xgh> (Wsin —Ws)
ulD (54, XL X0, XE) (Wi - W) (7.5)

# (u® (s 0, x D X B XY = u) (54, X XO,XP)) (W = W)

s+h?“*s+h? s+h’ s

(
o (u® (s 0 x0 X3 X9,) =0 (54 0, x 0, X G, XD) ) (Wi = W),
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At first let us take a look at the third summand at the right hand side of (7.5). Since u® s
Lipschitz continuous in its fourth argument with some constant Ltu(l) 25 and since furthermore

s+h Z(O) 2
(3)+J ,ur< r ) dr

2
s gy

3
X3 =X

we can estimate

1 2 3 1 2
’ [( (3 + h7Xs(+)h7Xs(+)h7Xs(+)h> —uV) (S + h7X§+)h’X£+)th(3)>> (Wesn — Ws) }—S]
1 s+h ZT(O) 2
< B Ly 4 J Mr( 02) dr| [Wiin — Fs
1 %
< 3L | 55| 1ZOIZEWasn - Wll ]

which clearly goes to 0 as h — 0 because £, and Z () are bounded by Theorem Analogously
we get, with Li(l) 2 being the Lipschitz constant of u(!) in the third argument, that

% ‘E [( (1) <5 +h, XD, x@ XS<3>) —u® (s +h, XD, x® x6 >)) (Wasn — We) }"S]
hLuu thHZ(O)Hz e B [|Wepn — Wil Fs]

—0 a.s. for h—0.

Now consider the remaining first term on the right hand side of Equation (7.5). Using
integration by parts we obtain

E [u(l) (s+h,Xs(1+)h,X<2> X >) (Wiysn — W) }"S]
1 1,2
= | v (s+h XY +2v0, XD XO) 2v/n —27° ¢
J}R (s z , X )z me z
1 2
= | Onu (s 4+, XY + 2, XD XO) h——e737 d
J]R U (S s z s s ) 27{_6 z

Since ,,u(" is bounded as proved in Lemma we have

7|

1 1 1) (2 v3
’hE [0 (s + 0, X5 X2 XE) (Woin - W)

=[] e (s 0, X0 4 VR X X)) i
R

< 0y ut oo

Putting the derived estimates together we get

(1) 1
Zs( )’ }lll{f%) hE [Yerh(Ws-i-h - Ws) }—s] T1 ( )H
By Lemma |02, uM | < o0, which further implies the result. [

Proposition 7.7. Let g, u and o fulfill Assumption let their first, second and third derivatives
as well as o and ; be bounded. Then the requirements of Theorem are fulfilled.
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Proof. Remember that the derivative 0,,u of the decoupling field of FBSDE equals u(!)
of the decoupling field of FBSDE by Lemma and which, by Lemma is bounded
from below by a § > 0. Hence, it only remains to show that d,,u which equals ") is Lipschitz
continuous. Since we already know that the derivatives w.r.t. the space variables are bounded
(by Lemma we only need to prove that «(!) is Lipschitz continuous in the time variable.

Consider FBSDE ([7.2) for a starting time ¢ € [0, 1) on the interval [¢, 1] with initial condition
(Xt(l), Xf@, Xt(g)) = (M, 2®,20)) = £ € R3. Let s € (¢, 1]. Using the triangle inequality several

times gives
’u(l)(s,x) —uM(t, x)‘ < ‘u(l)(s,x) —E [u(l) <3,X(1) x(z),x(g))”
+‘E[u<1> (S X g ] [ (1)( ()7X§2),x(3))]]
+‘E[u(1> (S X, x ’x(:a)] [ (1) (s X, x ())ng3>)”

+ ‘E[u(l)( XM, x@ X(3)) —u® (t xW x@ >,X§3)>”.

We take a closer look at every summand on the right hand side starting with the first one. By
defining

o(2) = u (5,20, 2@ 23 _ D (s 20 4 5 2@ L6))

we see that the first summand equals |E[p(W, — W})]|. Furthermore, ¢(0) = 0 and by Lemma
7.4, ¢ is two times weakly differentiable with derivatives bounded by some constant L, 1) < o0.

Hence, the inequality ’SR o(a- z:)\/%e_%z2 dz’ < 2a%|¢" | holds true (see e.g. Lemma 4.3.11 in
[Frol15]]). Therefore,

‘u(l)(s,x) Tk [uu) (s,XS(l),:c(?),:c(?’))” B [o(W, — W] < (s ; t) Lo

For the second summand we use the Lipschitz constant of u(!) denoted by L, to get

B [u® (5. X0,2®,20) —u® (5, X0, XO,20)]| <L, B[X® 2

S (0)\2
j (Zr") dr
t

2
Or

:Lu(1)E

<Ly a5 (s = 1)

since | Z(9| < |u™M|, < oo by Theorem
The third summand can be estimated similarly by

B [u® (5, X0, X{,2®) —ut) (5, X0, 2, x0)]|

S (0)y2
[ w22,
t

2
oy

<L,k

< L,

I
] I EXCE!
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3)

For the last summand we use the decoupling condition and Y./ = —1 to obtain

B [u® (5 X0, X3, xH) —u® (¢, x{V, x2, x|

<|E [Ysu) _ Yt(l)”

S (0) 2 (0)
YO (1, = o 2o soy@ o) 22 (v )z gy
t 02 ' r
MEIE ( )
| * o0

r Oy Or
+2JuDls (e2u@ o + | Sl ) 105,00 | (5 = 1)
where we applied Theorem [5.4|and Lemma|7.6] Thus, the last summand is Lipschitz continuous
by Theorem [5.4]and Lemma too.

Putting all estimates together we arrive at |u(") (s, 2) — u") (r, )| < L(s — t) for some finite
constant L which is independent of s and ¢t. Hence u(!) is Lipschitz continuous in the time
variable.

aau 04,0
2

a

N

0a0 2
- + ﬁ“u(z)‘|w
g 0 &

+2Hﬁ2
0 g

Hoo

|
Observe that Proposition [7.7]and Theorem [7.1] imply Theorem

8 Numerics

We now illustrate numerically an example of an embedding using the methodology developed.
This is done by numerically approximating the solution of the FBSDE

W, :f o (X2, Y, + x¥)
0

Z, By
S 2
x® :f : Zr —dr (8.1)
0 22X, Y, + X))
@ _ ", x® 3 Z;
X0 = | @5, + X9) : ar
S 2(x? v, + xP)

1
Y, =g(W1) — X3 — J Z, dW,.
S

To the best of our knowledge no literature exists able to deal directly with approximations of
and hence, inspired by known literature, we propose a numerical scheme whose rigor-
ous study is left for future research. FBSDE is a fully coupled quadratic growth FBSDE
which we deal with as follows: from [IDRZ10] we inject the theoretical a priori hard bounds in
the coefficients, reducing FBSDE to a uniformly Lipschitz fully-coupled one, then apply a
decoupling technique based on Picard iterations [BZ08] to reduce the problem to the iterative
simulation of uniformly Lipschitz fully-decoupled FBSDE. The final approximation step is car-
ried out using a classic explicit Euler scheme discretization [[BZ08|] while the approximation of
the conditional expectations is done via projection over basis functions [GLWO05]. The final out-
come is the approximation of the embedding stopping time and the verification that the stopped
process does embed the target distribution.

From a mathematical point of view, the only step of the described numerical approximation
that cannot be fully justified is the convergence of the Picard iteration step. The results of [BZ08]|
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do not apply if the diffusion coefficient o depends on Z. We stress, however, that for some special
cases the algorithm outlined below can be shown to converge, e.g. in the homogeneous case (see
Remark [8.5]| below).

8.1 The problem, its conditions and the hard bounds

At first we show that FBSDE (8.1) has a unique solution from which we can construct a strong
solution of the SEP.

Proposition 8.1. Let the assumptions of Theorem or Proposition be satisfied. Denote by
u the decoupling field of FBSDE (1.2). Let B be an arbitrary Brownian motion and denote by
(FB) = (FB )se[0,00) the augmented filtration generated by B. Then there exist unique square-
integrable processes (W, X X®) Y solving the FBSDE (8.1)). Moreover, T := X£2) is an (FP)-
stopping time bounded as in (2.2)), W is a Brownian motion on [0, 1] and the pair (7,Y}) is a strong
solution of the SEP.

Proof. Remember that by Theorem the SDE (7.I) has a unique solution (v,I',A,0). We
introduce the time change v~ 1(¢) = inf{r > 0 : y(r) > t} for t € [0, 1]. Observe that y~! has the
dynamics

_ 2
7_1(75) _ Jt (aﬂvlu(’S»F'y_l(s)"y 1(5)7A7—1(s))) ds
0 0—2(’7_1(8)7 (H)ﬁﬁl(s) + Aﬁ/*l(s))
By setting Z := 0z, u(s,I'-1(4), v 1(s), A,-1(4) for s € [0, 1], replacing the dynamics of v by the
dynamics of y~! and applying the time change v~! to all other processes, we can rewrite the

system ([7.1) as

t 2
-1 (Zs)
Y () = f — ds
( ) 0 02(7 1(‘9)7 e'yfl(s) + A'}/*1(5))

Fo(v71(8), Oy-1(6) + Aym1(y)
F,Yfl(t) = f 7 dB’Yfl(S)
0 S
¢ Z,)?
A - = -1 ,6 (s + A, s ( - d
y=1(t) JO ,U(’V (S) y~1(s) 7 ))02(7—1(3),@771(5) + Aqﬁl(s)) s

t
@Wq(t) =Yy + L Zg dF771(S)
for all t € [0,1]. Here it is straightforward to see that with y~1(t) = Xt(2), Lo = Wi,
Ay-igy = Xt(S) and ©,-1,) = Y; we exactly have the system (8.1). Thus the system (8.1) has a
solution (W, X, XY, Z) which fulfills that 7 := X% = 4=1(1) = inf{r > 0jy(r) = 1} is a
stopping time with regard to (/) bounded as in (2.2) and that A, ~ v.

It remains to show the uniqueness of this solution. Now take an arbitrary square integrable
solution (W, X(?), X®) Y, Z) of (8.1)). Define the time change

_ inf{s)O:X§2) > t}, t<X1(2)
A(t) == (
1, t> X,

and observe that by

X(2) 0’2 T;Y’r +X£3) tU2 XT(‘2)7}/:I‘+X7'('3) t
¢ ( 3(r) v(r))drzf ( >dX,§2)=J1dT‘=t

Wy = |
0 Z2 0 Z; 0
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W is a Brownian motion on [0, 1]. Thus the processes (W, X(?), X®3) Y, Z) solve FBSDE (T.2)
for the initial value 0. Due to Theorem and Lemma this solution of FBSDE (1.2) is
unique. |

Remark 8.2. If one is only interested in a weak solution, then only FBSDE needs to be
solved, where W is given, and the Brownian motion B can be calculated afterwards, as described
in Theorem Aside from simplifying the system that needs to be simulated, this also has the
advantage of being valid for more general coefficients i and o (compare the assumptions of Theorem

and Theorem [2.4).

By the combination of Lemma [7.5] Lemma [5.1] and Theorem [5.4] we have for Z the A x P
a.s. bounds 0 < Z < Z < Z < o0, which are

-

Z-(—L Ltomindo, inf 0 Galt = 2000 - f "’ and
lg|12, (0,2)eR; xR o3
0a0 B
2=([5], - 2(%, =1l I %u"wHa )
with
0 1% 8ta
2 a
et <o |2 (|35 +2(|%] [+ 27],)]
-ZQ( o) |2],+|2])
Therefore, we have that
Z2 Z2 72
< . < —, A x P as.
lolz ~ o2(x® )y, + x¥) €
and in particular
~2 72
o <7 X< as (8.2)

Example 8.3 (Embedding a Normal distribution into a Brownian motion with drift). For p =
meR, c=1and v = N(0,a?) for a > 0 we know that 7 = o? and Ag = —m - o? solves the
SEP. In this case we have that g(x) = ax and the above bounds for Z become the explicit values
a < Z < « and the system (8.1)) simplifies to

S 1 S S
Wy :J ~dB@, XP =f o’dr, XB) = f m - o*dr
0 & r 0 0
Y:W—X(3)—<B _B )
s =alVy 1 x® x®

giving that 7 = X 52) = o? a.s. which equals the above mentioned stopping time. We immediately

find the correct value for Ay since

1
A=Yy =E[V1| Fo] = E [an —f ma®dr — By o) + B
0 1

2
X .7:0] = —ma”.
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Example 8.4. Again let v = N(0, a?) for a > 0. Furthermore, set

Pi P
14+et 14e

Py J2
l4+et 14+e

1w

o(t,a) =p7 + and  p(t,a) =pi +

for the vectors p°,p* € R3 containing parameters such that

e := p{ + min(0, p3) + min(0,p3) > 0,

2p5p3p} — pIph + min(0, p§p3ph) + min(0, 2p3p§ps — (p§)ph) > 0

and

L pfpy — 2p8pk + min(0, pph — 2pgph) — max(0, pgph)

o2 923 > 0.

Then observe that all conditions of Proposition|[7.7]and therefore also of Proposition [8.1|are fulfilled,

=

5o (L, pivs — 20307 + min(0,pSp; — 2p3ph) — max(0,p3p5) ) > _
~\a? 2e3

and also Z can be directly obtained since

oo = p + max(0,p3) + max(0, p3),
|t oo = max (p} + max(0, ph) + max(0, p5), —p} — min(0, p§) — min(0, pf)) ,
10acllo = D3], 000 = 1P5],  |atillo = P51, 0est]oo = IPh-

8.2 Iterative procedure

To numerically approximate we first embed the hard bounds for Z, as found above, in the
system, then create a Picard-type approximative sequence converging to and numerically
approximate the terms of said sequence. Since we have a coupled system of FBSDEs with a
truncated quadratic growth component, we combine [IDRZ10]] and [BZ08].

Since X is increasing and

-1
X1(2) <e? L + 2min < 0, inf 0 - ajt — 2020 - (6, )
l9'l13 (0,2)eR4 xR o3

a.s. as stated in Equation (8.2), we only need a trajectory of B untill this point.

Furthermore, choose any starting value for Z between the lower and upper bounds Z, Z
respectively. Here we set the starting value Z(© = |¢/|, since Z < I3l < g'le < Z.
Moreover, we define a truncation operator to incorporate the hard bounds for Z, namely, let
T : R — R such that given Z, Z, we define T(z) := min(max(z, Z), 2) The map 7 is uniformly
Lipschitz.

For the other starting conditions we choose Y(©) = X (2).(0) — x®).(0) — 0. Then we do the
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following iterations for k € INy:

(rz))

X @:(k+1) :f
0 o2 <X£2)’(k+1),Y}(k) +X7§3),(k+1))

(rz)

dr
o2 (X7§2),(k:+1)7y;(k) + X7g3),(k:+1))

X (3),(k+1) :J " <X£2),(k+1)’y;(k) +X7£3),(k+1))
0

S

o (X@),(/m) v L @0+
W(k-i-l) :J‘ r y4r r
’ 0 7(Z®)

1
y (kD) :g(Wl(kJrl)) B X§3),(k+1) _J

S

dBX£2>,(k+1>

o (XﬁZ)’(kH)7Kn(k) + X7£3)’(k+1)> dBX7§2),(k+1).

Under the conditions imposed on u, o (Lipschitz and bounded) and T, all the coefficient maps
of the truncated FBSDE system are Lipschitz continuous. It is currently not clear how to show
that the iterative system converges to the solution of where one could possibly use a result
similar to [[BZ08, Theorem 2.1]; this difficulty stems from the fact that the [BZ08] methodology
does not allow for either random drift or diffusion coefficients or ¢ depending on Z. Note that
in the limit (k — o) the truncation does not affect the system as 7<7<7.

8.3 Numerical procedure (time discretization)

We introduce the time discretization 7 = {0 = to,...,t, = 1} for n € IN and define || :=
mMax;—o.... n |ti+1 — t;| as the mesh’s modulus. The numerical approximation of the iterative sys-
tem, for each k£ € IN follows [BT04] (or [BZ08]]). We apply an explicit Euler type approximation
to the integrals and let throughout ¢; € w\{to}. At first

XD g Xt((?),(k-&-l) _0

to
2
T(29)
(2),(k+1) (2),(k+1) ti
Xy =X, + (tit1 — t;)
iyl ti + <U(Xt(f)’(k”),Yt§k) +Xt(i:3),(k+1))
2),(k+1 k 3),(k+1 By 2
(3),(k+1) (3),(k+1) H (Xt(i)( i )’YtE ) +Xt(i)( i )) (T(Zt(i ))>
X =Xg + (tiv1 — i) (2),(k+1) (k) (3),(k+1) ’
o2 (x PO vy x B0
then
(2),(k+1) (k) (3),(k+1)
(k+1) (k+1) oo (ke1) | O(X, Y+ Xy )
LG O 7(20) B = By
and

Ytikﬂ) —g <W1(k+1)> _ X1(3),(k+1)

Y(k+1) - [Ytgkﬂ)‘fti_l]

ti—1

0 e (B [ ) -

]—“ti_l] .
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The time discretization expression for Zt(f_tl) is somewhat non-standard when compared with

the [BT04]] scheme. The inner term with the conditional expectation of YtEkH) is a variance re-

duction trick which has been discussed in several places, e.g. [LdRS15| Section 5.4.2]; independ-
ently, the scheme’s convergence (for fixed & as h \, 0) follows via [BT04, Theorem 3.1] yielding
a convergence rate of order h1/2 (the formulation associated to [BZ08, Theorem 2.2] would de-

liver the same convergence). In the calculation of Z we use that Si U(X,EQ), Y, + X,(S)) dB
Si Z,dW, for all s € [0,1] and hence for small & > 0

x@) =

1 t+h
Zy ~—FE [J Zdr ft}

h ¢
1 t+h

~lE [(mh ) (Wen =W = [ (0= ¥iok O, = W) 2) a7, ft]

t

1

:EE[YHh (Wiegn — Wi)| F]
1

=7 [(Yien — E[Yion| F]) (Wipn — Wi)| F].

For the calculation of W we implicitly assume that the value of B is known for every Xt(f)’(k) for
all £ > 0 and t; € w. This problem is more involved if the trajectory of B is to be calculated at
the beginning of the simulation. However, it can be eliminated by calculating the trajectory of
B just in time for the points needed by the method of Brownian bridge and storing all thereby
obtained points. It is well known that the distribution of a Brownian bridge B at time ¢; under
the condition of the values of B at the times to < t; and ¢y > ¢ is

bt o timty (2= t)(t —to)
ty—to 2ty —t ty — to ’

Bt1|Bt07Bt2 ~N (Bto :

see e.g. [KS91]]. Thus the simulation of B at the exact points of time is straightforward as
well. Lastly, the conditional expectations are computed via Least-Squares regression functions
as shown in [[GLWO5]]; we project over 3-dimensional polynomials up to degree 2.

After finishing the simulation of the FBSDE we can use the simulated trajectory of B to
simulate our process A and apply the stopping time 7 to see if A, has the desired distribution.

Remark 8.5. For time homogeneous coefficients (1 and o the FBSDE ([1.2)) simplifies to the decoupled
FBSDE

W-f ZIEPR <W>—f1 ()2 dr—ledW
s 00_2(}70 ) s =4 1 S;UJ 7"02()—/;) . r T

For this decoupled system one can use the same trick as above and inject in the BSDE the hard
bounds on Z. Once truncated and using the condition on p, o, the driver of the BSDE, say fr(y,z) =
T?(2)u(y)/o?(y) using the notation from before, is a standard uniformly Lipschitz driver in vy, z for
which it is known ([[BT04], [BZ08]], [GLWOS5]]) that the Euler explicit scheme converges to the true
solution. For weak solutions (see Remark of the SEP this explicit scheme is equivalent to the
scheme we propose here. Hence, we have a special case where the convergence of our scheme is
known.

8.4 Numerical testing for Example

For the parameters a = 1, p” = (2,0.5,2) and p* = (1.5, —2.5,0.5) such that v = N/(0, 1),

0.5 2 —2.5 0.5
and t,a) =1.5
1+e*t+1+e*“ pult, a) +lJre*t—FlJre*“

o(t,a) =2+
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we gete =2, o] = 4.5, Z < \/g and Z > 0.111 giving 6 x 1074 < 7 < 0.4. A simulation with
10° paths, 20 time steps and 50 iterations yielded values for 7 in the interval [0.061;0.161] and
the starting value Yy = —0.042.

0.4
25
0.31 20 4
024 15 -
10
0.1
5 -
0.0 0 . ;
-4 -2 0 2 4 0.0 0.1 0.2 03 0.4

Figure 8.1: On the left, Histogram of 10° samples of A, against the density of the N'(0,a); on
the right, the Histogram of the corresponding samples of = and at = 0.0055 and 2 = 0.4 the a
priori hard bounds for the stopping time.

We simulated A, with initial condition 4y = Y; = —0.042. In Figure [8.1] one finds the histo-
gram of the simulated values of the A, (left) and the stopping time 7 (right). The histogram of
A indicates that our algorithm generates the sought normal distribution (with the appropriate
characteristics). Also, D’Agostino and Pearson’s [D’A71, DP73] test for normality, applied to the
simulated data A,, yielded a p-value of 0.37. Given such a high p-value we do not reject the
hypothesis of normality at any reasonable significance level.

A Appendix

Lemma A.1. For = € R define g(x) := F, }(®(x)) for F,, and ® being the cumulative distribution
functions of v and the standard normal distribution, and additionally define ®¢,(r) = ®(Z) for
any o > 0. If |¢'||c < o0, then there exist K > 0 and o > 0 such that

* forall z < —K we have F,,(z) < ®g,(x) = ®(%) and
* forall z > K we have F,,(z) = @, (v) = ®(Z).

If additionally there exists a constant ¢ > 0 such that 0 < ¢ < ¢ then there exist K > 0 and
01,09 > 0 such that

e forallz > K we have &g, (z) = ®(%) < F(z) < Pogy(x) = (E) and
e forallz < —K we have ®q4,(z) = ®(E£) < Fy(z) < $o 0, (z) = P(E).

Proof. Select K, 0,¢ > 0 such that for all z > K we have ¢g(Z) < x and for all z < —K we have

g(%) — € = x, which is possible since 0 < ¢’ < C' < 0. Then

forz > K : Fy(z) = F (%) = F,(9(%)) = B, (E, 1(®(2))) = ®(%£) = ®o0(2),
fore < —K: F,(z)=F, (%) <F,(9(%)—¢) = Fu(F‘l(fb(%)) —e) < ®(Z) = Po ().



If additionally 0 < ¢ < ¢’ then we can choose K5 > 0 and some o5 > 0 such that for all z > K>
we have g(;2) —e > x and for all z < — K> we have () < z. By an analogous argumentation

Z
g2

as above we then obtain the remaining estimates. Setting K as the maximum of K from above

and K, and furthermore o := o we have proved the statement. [ |
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