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Multiplicative Latent Force Models

Daniel J. Tait and Bruce J. Worton

Abstract Bayesian modelling of dynamic systems must achieve a compromise be-
tween providing a complete mechanistic specification of the process while retaining
the flexibility to handle those situations in which data is sparse relative to model
complexity, or a full specification is hard to motivate. Latent force models achieve
this dual aim by specifying a parsimonious linear evolution equation with an addi-
tive latent Gaussian process (GP) forcing term.

In this work we extend the latent force framework to allow for multiplicative
interactions between the GP and the latent states leading to more control over the
geometry of the trajectories. Unfortunately inference is no longer straightforward
and so we introduce an approximation based on the method of successive approxi-
mations and examine its performance using a simulation study.

1 Introduction

Modern statistical inference must often achieve a balance between an appeal to the
data driven paradigm whereby models are sufficiently flexible so as to allow in-
ference to be chiefly driven by the observations, and on the other hand the mecha-
nistic approach whereby the structure of the data generating process is well spec-
ified up to some, usually modest, set of random parameters. The conflict between
these two philosophies can be particularly pronounced for complex dynamic sys-
tems for which a complete mechanistic description is often hard to motivate and
instead we would like a framework that allows for the specification of a, potentially
over-simplistic, representative evolution equation which would enable the modeller
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2 Daniel J. Tait and Bruce J. Worton

to embed as much prior knowledge as they feel comfortable doing while at the same
time ensuring the model is sufficiently flexible to allow for any unspecified dynam-
ics to be captured during the inference process.

Such a compromise is provided by a class of hybrid models introduced in [1]
which they term latent force model (LFM). This is a combination of a simple mecha-
nistic model with added flexibility originating from a flexible Gaussian process (GP)
forcing term. The aim is to encode minimal dynamic systems properties into the
resulting state trajectories without necessarily having to provide a complete mecha-
nistic description of how the system evolves.

One of the appealing features of the LFM is the fact that the resulting trajectories
are given by Gaussian processes and therefore inference can proceed in a straight-
forward manner. However, for many classes of systems the Gaussian trajectories are
unlikely to be realistic; examples include time series of circular, directional or tensor
valued data. For all of these cases, if we have a suitably dense sample then the Gaus-
sian trajectory assumption may be acceptable, however when data are sparse com-
parative to model complexity we would like to be able to consider models that move
beyond this assumption and allow a priori embedding of geometric constraints.

In this paper we briefly review the LFM before introducing our extension in
Section 3 and then discuss how our model now allows for the embedding of strong
geometric constraints. Unfortunately it is no longer straightforward to solve for the
trajectories as some transformation of the latent random variables and therefore in
Section 4 we introduce an approximate solution method for this class of models
based on the method of successive approximations for the solution of certain integral
equations. We then demonstrate by way of a simulation study that our approximate
model performs well for cases which possess a solvable ground truth.

2 Latent Force Models

The LFM was initially proposed as a model of the transcriptional regulation of gene
activities in [3, 5], in subsequent developments the modelling philosophy shifted
from this mechanistic perspective to the hybrid setting in [1]. For a K-dimensional
state variable x(t) ∈ RK the first order LFM is described by a system of ordinary
differential equations (ODE) in matrix-vector form as

dx(t)
dt

=−Dx(t)+b+Sg(t), (1)

where D is a K×K real-valued diagonal matrix, b is a real-valued K-vector and g(t)
is the RR-valued stochastic process with smooth independent GP components gr(t),
r = 1, . . . ,R. In this work the kernel functions of the GP terms are chosen so that the
sample paths are almost surely smooth, allowing (1) to be interpreted as an ODE
rather than as a stochastic differential equation. The K×R rectangular sensitivity
matrix S acts to distribute linear combinations of the independent latent forces to
each component of the evolution equation.
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The model (1) gives only an implicit link between the latent random variables
and the observed trajectories, but to carry out inference we would ideally like to
represent this connection as an explicit transformation. It turns out that for the model
(1) with constant coefficient matrix and additive inhomogeneous forcing term this
is easily done and an explicit solution is given by

x(t) = e−D(t−t0)x(t0)+
∫ t

t0
e−D(t−τ)dτ ·b+L[g](t), (2)

where L[ f ](t) is the linear integral transformation acting on functions f : R→ RR

to produce a function L[ f ] : R→ RK given by

L[ f ](t) =
∫ t

t0
e−D(t−τ)S f (τ)dτ. (3)

The decomposition of the solution of the LFM (2) makes it clear that, for given
values of the initial condition x(t0) and the model parameters θ = (D,b,S), the tra-
jectory is given by a linear integral transformation of the smooth latent GPs, and it
follows that the trajectory and the latent force variables will have a joint Gaussian
distribution. This property enables a marginalisation over the latent GPs and so al-
lows the LFM to be viewed as a particular instance of a GP regression model. In this
interpretation the model parameters are to be regarded as kernel hyperparameters,
and inference for these variables may be done using standard techniques, see [6].

3 Multiplicative Latent Force Models

While from a computational point of view the GP regression framework of the
LFM is appealing we would like to move beyond the restriction of having Gaus-
sian state trajectories. We therefore introduce an extension of the LFM which will
allow us to represent non-Gaussian trajectories while at the same time keeping the
same fundamental components: a linear ODE with the time dependent behaviour of
the evolution equation coming from a set of independent smooth latent forces. In
matrix/vector form our model is given by

dx(t)
dt

= A(t)x(t), A(t) = A0 +
R

∑
r=1

Ar ·gr(t). (4)

The coefficient matrix A(t) will be a square matrix of dimension K×K formed by
taking linear combinations of a set of structure matrices {Ar}R

r=0 which we multi-
ply by scalar GPs. By linearity A(t) will be a Gaussian process in RK×K although
typically the choice of the set of structure matrices will be guided by geometric
considerations and in general the dimension of this space will be much less than
that of the ambient K2 dimensional space. In the specification (4) the matrix valued
Gaussian process A(t) will interact multiplicatively with the state variable in the
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evolution equation, rather than as an additive forcing term in (1), and so we refer to
this model as the multiplicative latent force model (MLFM).

Since the GP terms are smooth (4) has, almost surely, a unique pathwise solu-
tion on compact intervals [0,T ]. While for the LFM it was possible to use (2) to
perform a marginalisation over the latent forces and so learn structural parameters
independently of the variables we cannot guarantee the existence of the marginal
distribution to (4). The existence of Lp solutions to this problem are considered in
[8] from which it may be possible to construct moment matching approximations.
Because we cannot perform this marginalisation step we restrict ourselves in the
next section to considering approximations constructed around a dense realisation
of the GP terms which, with increasingly fine partitions of the interval [0,T ], will
approach the unique sample path solution.

The multiplicative interaction in (4) and the freedom to choose the support of the
coefficient matrix will allow us to embed strong geometric constraints on solutions
to ODEs of this form. In particular, by choosing the elements {Ar} from some Lie
algebra g corresponding to a Lie group G then the fundamental solution of (4) will
itself be a member of the group G [4], allowing the creation of dynamic models
with trajectories either within the group itself or formed by an action of this group
on some vector space.

4 Method of Successive Approximations

In general non-autonomous linear ODEs do not possess a closed form solution and
therefore it is no longer straightforward to carry out inference for the MLFM; we
lack the explicit representation of the trajectories in terms of the latent random pro-
cesses which was possible for the LFM using the solution (2). To proceed we first
note that a pathwise solution to the model (4) on the interval [0,T ] is given by

x(t) = x(0)+
∫ t

0
A(τ)x(τ)dτ, 0≤ t ≤ T,

a solution to which can be obtained by starting from an initial approximation of the
trajectory, x0(t), and then repeatedly iterating the linear integral operator

xm+1(t) = x0(0)+
∫ t

0
A(τ)xm(τ)dτ. (5)

This process is known as the method of successive approximations and is a classical
result in the existence and uniqueness theorems for the solutions of ODEs.

We introduce some probabilistic content into this approximation by placing a
mean zero Gaussian process prior on the initial state variable x0(t) independent of
the latent force terms. Since (5) is a linear operator for known A(t) and xm(t) then
the marginal distribution of the (m+1)th successive approximation conditional on
the process A(t) will be mean zero Gaussian with covariance given recursively by
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Ẽ
[
xm+1(t)xm+1(t ′)>

]
=
∫ t

t0

∫ t ′

t0
A(τ)Ẽ[xm(τ)xm(τ

′)>]A(τ ′)> dτ dτ
′, (6)

where Ẽ denotes expectation conditional on the stochastic process A(t) on [0,T ].
In practice, we will not be dealing with complete trajectories, but instead with

the process observed at a finite set of points t0 < · · ·< tN , and so we replace the map
(5) by a numerical quadrature

x(t0)+
∫ ti

t0
A(τ)x(τ)dτ ≈ x(t0)+

Ni

∑
j=1

A(τi j)x(τi j)wi j, i = 1, . . . ,N, (7)

for a set of weights {wi j} which are determined by our choice of quadrature rule
and we have a set of nodes τi j labelled such that τi1 = ti−1 and τiNi = ti. It follows
that methods with more than two nodes over a particular interval [ti, ti+1] must nec-
essarily augment the latent state vector. Increasing the number of nodes will cause
the error in (7) to decrease, we defer discussion of the finer points of this approxi-
mation, but for practical purposes the important detail is that this error can be made
arbitrarily small because we are free to increase the resolution of the trajectories by
treating this as a missing data problem albeit with a corresponding computational
cost. In terms of a linear operator acting on the whole trajectory we replace the op-
erator (5) with a matrix operator K[g] acting on the discrete trajectories such that
each row of K[g] performs the quadrature (7), that is if x is a dense realisation of a
continuous process x(t) evaluated at the points {τi j} then

(K[g]x)i = x(t0)+
Ni

∑
j=1

A(τi j)x(τi j)wi j, i = 1, . . . ,N. (8)

For suitably dense realisations of the trajectory we can conclude that the majority
of the informational content in the linear map (5) is captured by applying the matrix
operator form of the integral operator (8) and therefore there will be minimal loss of
information if we replace the (Gaussian) correlated error term with an independent
additive noise term leading to a conditional distribution of the form

p(xm+1 | xm,g,Γ ) = N (xm+1 | K[g]xm,Γ ) , (9)

where Γ is the covariance of the independent noise term approximating the quadra-
ture error in (7). A similar use of quadrature is proposed in [9] applied to the integral
operator (3) to allow for nonlinear transformation of the GP variables. No attempt
is made to proxy for the quadrature error and it effectively gets absorbed into the
GP model. For our application the additive error may be viewed as a regularisation
term to prevent singularities in the covariance matrix. Heuristically in the limit with
Γ = 0 and M→ ∞ the covariance matrix can be represented as the outer product of
the K eigenvectors of the discretised matrix operator K[g] with unit eigenvalues so
that the resulting covariance matrix is singular.
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If we specify a Gaussian initial distribution p(x0) =N (x0 | 0,Σ0) then carry out
iterates of the map (7) up to some truncation order M we have an approximation to
the distribution of a finite sample of a complete trajectory of (4) conditioned on a
discrete realisation of the latent forces which is given by

p(xM | g,Γ ) =
∫
· · ·
∫

p(xM,xM−1, . . . ,x0 | g,Γ )dx0 · · ·dxM−1

=
∫
· · ·
∫ M

∏
m=1

p(xm | xm−1,g,Γ )p(x0)dx0 · · ·dxM−1

= N (xM | 0,ΣM(g,Γ )), (10)

where the covariance matrix ΣM(g,Γ ) is defined recursively by Σ0(g,Γ ) = Σ0 and

Σm(g,Γ ) = K[g]Σm−1(g,Γ )K[g]>+Γ , m = 1, . . . ,M, (11)

and this model should then be viewed as a discretisation of the true marginal distri-
bution with moments (6).

It is now possible to specify a complete joint distribution p(x,g) of the latent
state and force variables by completing the likelihood term (10) with the prior on
the latent force variable. On inspection of (8) we see that the entries of K[g] will
be linear in the latent forces and so the entries of the covariance matrix (11) will be
degree 2M polynomials in the latent forces and as such there is no analytical expres-
sion for the posterior conditional density for orders greater than one. Despite this it
is straightforward to use sampling methods and gradient based approximations.

5 Simulation Study

Reasonably we would expect that by increasing the truncation order of the approxi-
mation introduced in the previous section we gain increasingly accurate approxima-
tions to the true conditional distribution and in this section we demonstrate that this
is indeed the case by considering an exactly solvable model.

We demonstrate our method on the Kubo oscillator [7] which can be expressed
by the ODE in R2 with a single latent force and evolution equation[

ẋ(t)
ẏ(t)

]
=

[
0 −g(t)

g(t) 0

][
x(t)
y(t)

]
, (12)

which for x(t) = (x(t),y(t))> has solution given by

x(t) = R
[∫ t

0
g(τ)dτ

]
x(t0), (13)

where R[θ ] in (13) is the 2×2 matrix rotating a vector in R2 by θ -radians anticlock-
wise around the origin. It follows that given a set of data points Y = (x0,x1, . . . ,xN)
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with t0 < t1 < · · · < tN and zero measurement error that the values of Gi :=∫ ti
ti−1

g(τ)dτ are constrained to satisfy xi = R[Gi]xi−1, for i = 1, . . . ,N which defines
the vector G = (G1, . . . ,GN)

> up to translation of each component by 2π , moreover
since Var(Gi) = O(|ti− ti−1|2) we can consider only the component in [−π,π] and
approximate the true conditional distribution of g = (g(t0),g(t1), . . . ,g(tN))> by the
Gaussian distribution with density p(g | G = γ) where γ ∈ [−π,π]N with compo-
nents satisfying xi = R[γi]xi−1 for each i = 1, . . . ,N.

While the distribution implied by the likelihood term (10) is not available in
closed form, we can investigate the qualitative properties of the method introduced
in Section 4 by considering the Laplace approximation. Using the Laplace approx-
imation has the benefit of allowing us to carry out the comparison with the ground
truth distribution using a proper metric on the space of distributions by considering
the Wasserstein distance between two multivariate Gaussians [2].

The method of successive approximations fixes a point and is therefore local in
character, as such we implement a simulation study that enables us to assess the per-
formance of our approximation as the total interval length increases. We consider
two methods of varying the interval length T ; the first by fixing the sample size, N,
and then varying the spacing between samples, ∆ t, and the second by fixing the sam-
ple frequency and varying the total number of observations. For each combination
of sample size and frequency we perform 100 simulations of the Kubo oscillator
(12) on the interval [0,T ] assuming a known radial basis function (RBF) kernel
k(t, t ′;ψ) = ψ0 exp{−(t− t ′)2/2ψ2

1} with ψ = (1,1)> for the latent force. We con-
sider interval lengths T ∈ {3,6,9} and sample frequencies ∆ t ∈ {0.50,0.75,1.00}.
This implies a sample size of N = T/∆ t +1 for each experiment and we use Simp-
son’s rule to perform the quadrature (7) so that the latent state vector is augmented
to size 2N +1.

Our principal interest is in the impact of the truncation order, M, on the accuracy
of our approximation and so for each simulated experiment we fit the model with
orders M = 3,5,7,10. The covariance of the initial approximation is formed by
placing independent GP priors on the first and second components with RBF kernels
k(t, t ′;φk) and the parameters φk, k = 1,2 are optimised during the fitting process.
The regularisation matrix Γ is given by multiplying an appropriately sized identity
matrix by a small scale parameter 0.0001 and this value is kept fixed.

The results of the experiment are displayed in Table 1. Along each row we ob-
serve that across all sampling specifications increasing the order of approximation
leads to increasingly accurate approximations of the true distributions, and that this
conclusion holds whether we vary the sample size or the sample frequency. Inspect-
ing the columns we observe that for each order a decrease in the sampling interval
T leads to a general increase in accuracy of the approximation with some variations
with the sample size and frequency. The fact that within most blocks of fixed T and
M that the distances are of a similar magnitude strongly suggests it is the size of the
window T that is a larger determinant of the accuracy of the introduced approxima-
tion than the number of sample points or their frequency. In fact, we see that dense
samples can lead to a slower convergence of the approximation and this is particu-
larly pronounced for the row T = 9 and ∆ t = 0.50 which does a very poor job of



8 Daniel J. Tait and Bruce J. Worton

approximating the true distribution at lower orders compared to the sparser samples,
but eventually outperforms these methods as the approximation order increases.

Table 1 Comparison of the successive approximations MLFM introduced in Section 4 with the
true distribution for the Kubo oscillator based on 100 simulations of the process on [0,T ] with
N = T/∆ t+1 evenly spaced observations. Reported are the sample averages and standard errors of
the Wasserstein distance between the Laplace approximation and the true conditional distribution

T ∆ t order=3 order=5 order=7 order=10

9 1.00 0.965 (0.477) 0.863 (0.573) 0.711 (0.672) 0.527 (0.632)
0.75 0.983 (0.315) 0.874 (0.407) 0.762 (0.448) 0.584 (0.415)
0.50 1.517 (0.556) 1.068 (0.450) 0.701 (0.227) 0.517 (0.225)

6 1.00 0.865 (0.606) 0.619 (0.503) 0.433 (0.475) 0.319 (0.412)
0.75 0.738 (0.392) 0.629 (0.463) 0.513 (0.426) 0.328 (0.325)
0.50 0.846 (0.256) 0.591 (0.194) 0.532 (0.234) 0.399 (0.192)

3 1.00 0.374 (0.311) 0.294 (0.384) 0.202 (0.256) 0.185 (0.211)
0.75 0.421 (0.440) 0.272 (0.440) 0.136 (0.217) 0.076 (0.064)
0.50 0.421 (0.190) 0.395 (0.289) 0.235 (0.132) 0.191 (0.051)

6 Discussion

In this paper we have introduced the MLFM, a hybrid model which enables the em-
bedding of prior geometric knowledge into statistical models of dynamic systems.
By using the method of successive approximations we were able to motivate a fam-
ily of truncated approximations to the joint distribution, and while the distribution
is not available in closed form it is still amenable to sampling and gradient based
methods. In future work we discuss variational sampling methods formed by retain-
ing the full set of successive approximations rather than performing the marginal-
isation (10) and exploiting the interpretation of (9) as a linear Gaussian dynamical
system in the truncation order.

The simulation study in Section 5 showed the method performs well over moder-
ate sample windows with only a few orders of approximation, but that as the length
of window over which the a solution is sought increases the order required to achieve
good performance increases. It may therefore be of interest to replace a single, high
order, approximation with a collection of local methods of lower order. Combining
these local models in a principled manner is the subject of ongoing work, never-
theless the results of Section 5 show that the method introduced in this paper can
perform well, as well as being an important precursor to more involved methods.
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