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Abstract

Single event survival models predict the probability that an event will occur in the
next period of time, given that the event has not happened before. In the context
of credit risk, where one may wish to predict the probability of default on a loan
account, such models have advantages over cross sectional models. The literature
shows that the parameters of such models changed after compared with before
the financial crisis of 2008. But there is also the possibility that the sensitivity of
the probability of default, to say behavioural variables, changes over the life of an
account.

In this paper we make two contributions. First, we parameterise discrete time
survival models of credit card default using B-splines to represent the baseline
relationship. These allow a far more flexible specification of the baseline hazard
than has been adopted in the literature to date. This baseline relationship is crucial
in discrete time survival models and typically has to be specified ex-ante. Second,
we allow the estimates of the parameters of the hazard function to themselves be
a function of duration time. This allows the relationship between covariates and
the hazard to change over time. Using a large sample of credit card accounts we
find that these specifications enhance the predictive accuracy of hazard models
over specifications which adopt the type of baseline specification in the current
literature and which assume constant parameters.

Keywords:

OR in Banking; Risk Analysis; Risk Management; Multivariate Statistics; Splines

Introduction

Credit scoring models are extensively used by financial institutions to evaluate the
risk associated with a loan. At its core, a credit scoring model involves predicting
the probability that an account will default over a future time period based on a
number of observed variables, or attributes, that characterise account holders or
applicants. Traditional scoring methods were based essentially on the attributes
of the applicants measured at the time of application. Yet, many characteristics of
the applicants change with time. Survival analysis techniques provide an attractive
platform to address the limitations of traditional methods.

Survival models are not new. They have been used widely in many fields
over the past 50 years, especially in medicine (Altman et al., 1995; Collett, 1993;
Hougaard, 2012). In the credit risk context, the applications of these models have
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grown rapidly over the past decade and became an area of intensive investiga-
tions (Banasik et al., 1999; Ciochetti et al., 2002; Andreeva, 2006; Bellotti and
Crook, 2009). An important advantage of these models is that they facilitate the
incorporation of different types of time-varying risk factors (including behavioural
variables and macroeconomic conditions) into the scoring process as suggested
by Banasik et al. (1999) and tested by many authors (Stepanova and Thomas,
2001, 2002; Bellotti and Crook, 2009). In addition, survival models provide a
dynamic framework for the prediction and assessment of different types of credit
events (Leow et al., 2011; Bellotti and Crook, 2014, 2013). These models are being
increasingly used in a variety of contexts by banks, for example in profit prediction,
accept-reject decisions for mortgages and for provision calculations (IFRS9).

Most applications of survival models encountered in the literature assume that
the impact of each risk factor on the probability of default remains constant over
the business cycle. While this assumption is appropriate in some cases, it is ques-
tionable in general especially when the modelling period is not short. In this work,
we investigate the validity of such an assumption in the context of retail banking.
Specifically we consider a class of flexible models in which the marginal impacts
of the risk factors are free to vary. We then propose a parametric formulation
and a spline specification to capture the dynamic patterns of the impacts of the
risk factors. Finally, we show that the varying coefficients approach consistently
improves the overall model quality and yields more accurate predictions than the
traditional constant coefficient approach.

Varying coefficients models have been used elsewhere to explore patterns. An
overview of some methodological and theoretical development can be found in Hastie
and Tibshirani (1993), Fan and Zhang (2008), Ferguson et al. (2007), and Park
et al. (2015) among others. These models have been applied successfully to predict
corporate defaults. For example, Kauermann et al. (2005) applied varying coeffi-
cient models on time-homogeneous factors to analyse the survival of newly founded
firms in Germany. Hwang (2012) used varying coefficient models to illustrate how
the effects of firm-specific covariates depend on the dynamics of macroeconomic
factors. However, the investigation of varying covariates models in retail banking
has received very little attention. The only exception is Leow and Crook (2015)
but they compared the parameters in only two periods, before and after the finan-
cial crisis. We fill the gap with this paper, using a large portfolio of credit card
loans comprising several time-homogeneous and time-dependent risk factors. In
addition, we present a simple parametric and a flexible spline formulation of the
varying effects that can be implemented using standard statistical packages.

We make three contributions to the literature. First, we present a flexible
method to estimate the parameters of a survival model where the parameters
themselves vary with duration time, thus allowing for the effect of each covariate
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to vary over time, which is highly likely to be a more realistic assumption than that
of assuming the coefficients are constant. Second, we show the effects of assuming
a more flexible baseline specification than what has been previously assumed in
the context of discrete survival models for credit risk. Third, we illustrate, using a
large sample of credit card accounts, the extend to which time-varying parameters
boost predictive accuracy compared with the standard constant coefficients model.
From a practical point of view these contributions are very important because when
survival models are used they are used to make predictions several periods into
the future so the robustness of the marginal relationships between the duration
time and covariate over time is crucial to the accuracy of the predictions.

The paper is organised as follows. Section 1 introduces some notation and
outlines the formulation of survival models in continuous and discrete settings.
Section 2 presents varying coefficients survival models in the credit risk context
and describes the parametric and splines specifications. Section 3 presents exam-
ples of parameter estimates and Section 4 compares the predictive performance
of parameteric and spline function specifications against the standard constant
coefficient model. We close with some concluding remarks in Section 5.

1 Survival analysis

1.1 Standard survival model

Survival analysis is the term used to describe the study of time between entry to
a study and a subsequent event (such as death or default). Thus, the modelling
of defaults in credit risk lends itself naturally to the survival analysis framework.
The most commonly used survival model is the so-called Cox model (Cox, 1972).
Let us denote by λi(t) the hazard function for account i at duration time t; that
is:

λi(t) = lim
∆t→0

Pr{i will default before time t+ ∆t, given that i was still active at time t}
∆t

(1)

In its simplest form, the Cox model specifies the hazard function as

λi(t) = λ0(t) exp(Xi β ), (2)

where λ0(t) is an unspecified and non-negative function of time, Xi is the (1 ×
p) vector of covariates for account i, and β is the (p × 1) vector of coefficients.
The function λ0 can be interpreted as the hazard function for an account whose
covariates all have the value of 0. Thus it is usually referred to as the baseline
hazard. An important feature of formulation (2) is that the ratio of the hazard of
two individuals is independent of time. In order words, the value of the hazard of
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any individual is a fixed proportion of the hazard for any other individual. Thus,
this model is generally refereed to as the proportional hazard model (Collett, 1993;
Allison, 2010).

In typical credit portfolios however, many potential risk factors change over
time. In general, let us denote by Xi(t) the (p × 1) joint vector of all covariates
for account i at time t; this includes the time-dependent covariates as well as the
time-homogeneous ones. The basic Cox model (2) is extended to

λi(t) = λ0(t) exp(Xi(t)β ) (3)

As remarked by Cox, the likelihood function arising from these models factors into
two components: a first component that depends on both λ0(t) and β, and a second
component that depends on β alone. This second component is usually referred
to as the partial likelihood function and in most applications of the Cox model,
inference about the relative significance of the risk factors is based on this partial
likelihood. An attractive feature of this approach is that it does not require any
constraint on the shape of the baseline function λ0(t). However, as pointed out by
many authors, such a truncation of the likelihood function yields estimates that are
not fully efficient although in practice the lost of efficiency is generally small (Efron,
1977; Allison, 2010). An alternative estimation approach that guarantees full
efficiency is to maximise the full likelihood upon some restriction on the form of
the baseline.

1.2 Parameterisation of survival models for credit risk

In practice, credit risk data are usually discrete in time. Let us denote by qi,τ the
conditional probability that account i will default in month τ given that it is still
active at the beginning of the month. That is, qi,τ is a discrete-time approximation
to the hazard function. Assuming constant values for each covariate within months,
Model (3) can be approximated (Cameron and Trivedi, 2005) as follows

g(qi,τ ) = h0,τ +Xi,τ β, (4)

where g is the complementary log-log function defined by g(x) = log(− log(1−x))
and h0,τ is a transformed baseline. This discrete representation facilitates the
implementation of survival models for credit risk data. In particular, if we replace
the complementary log-log function by the logit function, we obtain the standard
logistic regression model.

Risk factors used in credit risk models fall into three classes: time-homogeneous
but account-dependent factors (often referred to as application variables), time-
dependent and account-dependent factors (often referred to as behavioural vari-
ables) and time-dependent but account-independent factors (e.g. the macroeco-
nomic variables). To allow prediction to take place, the time-dependent covariates
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are usually lagged. Thus, model (4) takes the following expanded form

g(qi,τ ) = h0,τ + Uiα + Vi,τ−τo δ + Zi,τ−τo γ, (5)

whereUi represents the row-wise vector of application variables, Vi,τ−τo denotes the
behavioural variables, Zi,τ−τo represents the macroeconomic conditions, and τo is
the lag. Since the macroeconomic conditions are the same for all accounts observed
at the same calendar time, the dependence of Zi,τ−τo on i is only due to the fact
that accounts are opened at different points in calendar time. Correspondingly to
model (4), we have:

Xi,τ = [Ui, Vi,τ−τo , Zi,τ−τo ] and β = [αT , δT , γT ]T . (6)

A central objective of credit risk models is to quantify not only the relative im-
portance of the risk factors, but also the full probability of default. This requires
estimation of the baseline and the regression parameters. Thus, the model specifi-
cation is completed by imposing some reasonable structure on the baseline. Both
rigid parametric structures and flexible splines specification are possible; see for
example Crook and Bellotti (2010), Luo et al. (2016), Djeundje and Crook (2018).
With this in place, if we denote by θ the joint vector of all parameters in the
model (including the parameters that define the baseline), an efficient estimate
for θ can be found by maximising the likelihood function, L, given by

L(θ) ∝
∏
τ

∏
i∈R(τ)

(qi,τ )
yi,τ × (1− qi,τ )1−yi,τ (7)

where R(τ) represents the set of accounts that are active and so at risk of default
at the beginning of month τ , qi,τ is the conditional default probability defined
in Equation (4), and yi,τ is the indicator function taking value 1 if account i has
defaulted during month τ and 0 otherwise. †

2 Modelling varying effects in credit risk

The models described in the previous section assume that the magnitude of the
impact of the risk factors (ie β) remains constant over time. This is a strong and

†The likelihood (7) arises by rearranging the product of individual contributions, Li, given
by

Li(θ) =

{ ∏τi−1
τ=1 (1− qi,τ ) qi,τi if account i has defaulted∏τi
τ=1 (1− qi,τ ) if account i is censored

where τi denotes the last observed month associated with account i.
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questionable assumption especially when the modelling period is not short. For
instance, using a dataset on credit card loans, Leow and Crook (2015) built two
survival models (based on accounts that were opened before and after the 2008
crisis) and show that the magnitudes of the impact of the risk factors from the
two models were statistically different from each other. The aim of this section is
to describe how to allow for changes in the magnitude of the impacts of the risk
factors, when building a dynamic model for credit risk. In a later section we will
illustrate how this improves the quality of the model. The modelling framework
that we adopt for this is that of varying coefficient models.

In the varying coefficients approach, model (4) is generalised to

g(qi,τ ) = h(τ) +Xi,τ β(τ), (8)

where the components of the joint parameter vector β(τ) are allowed to vary over
duration time.‡ That is, some (or all) regression parameters are now functions of
time. An investigation of these functions can be used to validate or to reject the
assumption of constant parameters commonly used in dynamic models for credit
risk.

Notice that we model how the parameters change as an account ages, rather
than how calendar time per se affects parameters. We argue that the sensitivity of
future hazard probabilities to information gained at the time of application, and
the sensitivity of future hazards to behavioural factors, all vary over the life of
an account. For example we expect the affect of application variables to decline
over time. It is also possible that the sensitivity of the hazard to macroeconomic
variables also changes over an account’s life.

In general, the effects of a covariate can vary not only over time but also accord-
ing to some attributes or risk factors. In this case, the vector of coefficients β(τ)
takes the form β(Ci,τ ), where C represents the conditions or attributes driving
the magnitude of the impacts of the risk factors Xi,τ . However, formulation (8) is
general enough to illustrate the importance of varying coefficients when modelling
portfolios of credit loans, as we shall see in Section 3.

For the sake of clarity, we express equation (8) as

g(qi,τ ) = h(τ) +X
(0)
i,τ β

(0) +X
(1)
i,τ β

(1)(τ), (9)

where β(0) and β(1) represent the time-independent and time-varying components
of β respectively. A natural question that emerges is how should we specify and
estimate the components of β(1)(τ)?

‡In equation (8), h(τ) is still the baseline; ie h(τ) = h0,τ . Its specification under two param-
eterisations is provided in the Sections 2.1 & 2.2 below.
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2.1 Parametric specification

A naive way to model the varying coefficients β(1)(τ) in equation (9) is to consider
a simple parametric shape. For example, assuming that they can be described by
straight lines, the jth component β

(1)
j of the coefficients vector β(1) takes the form

β
(1)
j (τ) = aj + bj τ, (10)

where the intercepts aj and slopes bj are parameters to be estimated. In this case,

the elements X
(1)
i,τ,j β

(1)
j (τ) of X

(1)
i,τ β

(1)(τ) expand into

X
(1)
i,τ,j β

(1)
j (τ) = aj X

(1)
i,τ,j + bj τ X

(1)
i,τ,j. (11)

That is, the varying coefficient model (9) falls into the family of time-dependent

covariate model (4), but with extra pseudo covariates given by the τ ×X(1)
i,τ,j.

Clearly the straight line assumption would not hold in many cases. One pos-
sibility is to capture non-linear effects through appropriate basis functions. For
example, Bellotti and Crook (2013) investigated the effectiveness of using a family
of four standard functions to capture the shape of the baseline hazard in the credit
risk context; the same approach was adopted by Leow and Crook (2015). In this
work, as a benchmark starting point, we consider the following family (comprising
the functions used by Bellotti and Crook 2013){

1, τ, τ 2,
√
τ ,

1

τ
, log(τ), [log(τ)]2

}
· (12)

Hence, the components β
(1)
j of β(1) in equation (9) take the form

β
(1)
j (τ) = aj + bj τ + cj τ

2 + dj
√
τ +

ej
τ

+ fj log(τ) + gj [log(τ)]2 (13)

where (aj, bj, cj, dj, ej, fj, gj) are unknown parameters to be estimated. The
baseline h(τ) can be expressed in a similar form.§ In the rest of the paper we shall
use the term parametric specification whenever the baseline and varying coefficients
are modelled using the family (12).

With this specification, all the regression coefficients can then be jointly es-
timated by maximising the likelihood function (7), and the standard error esti-
mates of the parameters are used to carry out statistical tests. In particular,
tests on the shape of the varying coefficients are based on the ratios of the esti-
mates (âj, b̂j, ĉj, d̂j, êj, f̂j, ĝj) to their standard errors.

This can be implemented in a standard statistical package for generalised
linear models upon computation of extra pseudo covariates similar to (11) but

with β
(1)
j (τ) as in equation (13).

§The baseline h(τ) can also be expressed as a linear combination of the family of basis func-
tions in (12). That is, h(τ) = a0 + b0 τ + c0 τ

2 + d0
√
τ + e0

τ + f0 log(τ) + g0 [log(τ)]2, where
(a0, b0, c0, d0, e0, f0, g0) are parameters to be estimated.
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2.2 Flexible B-splines specification

Although the family (12) is broad enough to handle some complex forms of baseline
and varying coefficients, it can suffer from the global dependence of these functions
on local properties of the data (De Boor, 1978). In other words, a given month

can exert an unexpected influence on remote parts of the fitted β̂
(1)
j (τ), and such

behaviour can potentially lead to unstable predictions with poor interpolation
properties, as illustrated in Djeundje (2011).

A more attractive approach is to express the baselines and varying coefficients
using a basis of splines. Such bases have been used extensively in the literature
to model complex variabilities; this includes radial basis, backward and forward
truncated lines (Ruppert et al., 2003; Djeundje, 2016), as well as B-splines (Eilers
and Marx, 1996; Brown et al., 2005).

Figure 1: Illustration of B-splines.
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Left: One cubic B-spline; the dots represent the knots. Right: Basis of cubic B-splines.

A B-spline can be described as a combination of truncated polynomials. An
illustration of B-splines is shown on Figure 1. Each B-spline has a compact support
and this makes them numerically advantageous over other spline bases. For a
complete description of B-splines, we refer the reader to De Boor (1978) or Eilers
and Marx (1996). We use cubic B-spline basis in this paper; some motivations of
this preference are discussed by Green and Silverman (1995).

In terms of B-splines, the jth component β
(1)
j of the coefficients vector β(1) in

equation (9) takes the form

β
(1)
j (τ) =

∑
r

Bj,r(τ)φj,r (14)

where Bj,r(τ) are cubic B-spline functions at time point τ , and φj,r are unknown
splines coefficients to be estimated; The baseline can be expressed in a similar
form, yet with different coefficients.¶

¶h(τ) =
∑
r
B0,r(τ)φ0,r

8



In the rest of the paper, we use the term splines specification whenever the
baseline and varying coefficients are expressed in terms of B-splines as in equa-
tion (14). Under this specification, extra pseudo covariates can be computed as in

Section 2.1, but with the β
(1)
j (τ) given by (14), and all the parameters (including

the splines coefficients) can then be jointly estimated by maximising the likelihood
defined in (7) using standard packages for regression models.

When fitting models using B-splines however, an important point to address is
the number and positions of the knots. Indeed, this can have a detrimental impact
on the values and shapes of the fitted varying coefficients. For example, at one
extreme, using too many splines can lead to over-fitting; at the other end, using an
insufficient number of splines or poor knot locations can yield a model that does
not fit the data well. This can negatively affect the predictive performance of the
model. In the literature, there are two major approaches to avoid this problem.

One approach is to cover the data range with a sufficiently large number of
B-splines and then penalise the roughness in adjacent spline coefficients to achieve
smoothness (Eilers and Marx, 1996; Wood, 2006). With this approach, smoothing
parameters are introduced (one for each varying coefficient) and used to tune the
amount of smoothing. Optimal values of these smoothing parameters must be
chosen carefully because large (small) values can lead to under (over) fitting. In
practice, these parameters can be selected via information criteria (or via MCMC
simulations especially in the context of a large number of smoothing parameters).

An alternative approach is to carefully and parsimoniously select the number
of splines and knot positions; see Friedman and Silverman (1989). In this work
for example, we considered various scenarios separately for each varying coeffi-
cient (including equi-spaced and irregular knot spacing) and selected scenarios
corresponding to lower values of the Akaike Information Criteria; see (16). ††

All models presented in this paper were implemented using SAS software. But
there are functions in other standard statistical software that can be used to es-
timate these models as well. For instance, varying coeffieints models expressed in
terms of B-splines as in Equation (14) can be seen as extension of GAMs (Hastie
and Tibshirani, 1990; Eilers and Marx, 2002); thus, packages developped for GAMs
such as mgcv (Wood, 2016, 2006) or R-INLA (Rue et al., 2009) in R can be adapted
to fit some of the varying coefficients models described in this paper.

††The models presented in this paper use up to 10 internal knots for each varying coefficient.
Using a larger set of knots on our dataset generally yielded less attractive models in terms of
Akaike Information Criteria and prediction performance.
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3 Application

3.1 Data and risk factors

For illustration we consider a dataset of credit card accounts supplied by a major
UK bank. This consists of more than 200,000 individual accounts opened from 2002
to 2011 on different books. The dataset contains several variables collected at the
time of application as well as behavioural variables collected monthly. In addition,
some macroeconomic variables were appended to the dataset. The complete list
of variables used in this investigation is shown in Table 1.

Table 1: Risk factors used in this investigation.

Application variables

Number of cards Categorical (4 groups)
Variable X Categorical (5 groups)
Employment type Categorical (5 groups)
Age at application Categorical (10 groups)

Behavioural variables

Repayment amount Continuous
Prop one-month delinquency Continuous
Prop two-month delinquency Continuous

Macroeconomic variables

Index of production Continuous
Consumer confidence Continuous
FTSE index Continuous
Unemployment rate Continuous

The dataset was split into three parts: a training set, a retrospective test set and
a prospective test set. The training data set consists of a random sample of 80%
of all the accounts which were opened from January 2002 to December 2008. The
retrospective test set consists of the 20% out of sample of accounts opened from
January 2002 to December 2008. The prospective test consists of accounts opened
from January 2009 onwards. Thus, relative to the training set, the retrospective
test set is out of sample but in time, whereas the prospective test set is out of
sample and out of time.

Models were fitted using the training dataset whereas prediction performance
of different models was assessed and compared using the retrospective and prospec-
tive test sets. An account was defined as being in default if it has missed three
payments. Note that these missed payments need not to be in consecutive months.
This definition is consistent with that used in Leow and Crook (2014) and Djeundje
and Crook (2018).
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3.2 Models and outputs

The main purpose of this work is to investigate the improvements arising from
the incorporation of time-varying coefficients into survival models in a credit risk
context. We also wish to see time varying parameters if spline, rather than para-
metric parameterisations, enhance predictive accuracy more for application mod-
els than for behavioural models. Thus, several models were implemented, starting
from the static models without time-varying coefficients through to models with
time-varying coefficients on several risk factors simultaneously. The list of models
discussed in this paper is shown in Table 2.

Each model in Table 2 was first fitted under the parametric assumption (13) and
next under the spline specification (14), giving rise to 10 models comprising two
without time-varying coefficients and eight with time-varying coefficients. In each
case, all the covariates in Table 1 were included, with a time-varying coefficient
specification on the relevant covariates according to the description in Table 2.

Table 2: List of models.

Model code Description

M0 model without varying coefficients
M1 model with varying coefficients only on application variables
M2 model with varying coefficients only for behavioral variables
M3 model with varying coefficients only for macroeconomic variables
M4 model with varying coefficients for application, behavioral and macroeconomic variables

Each model listed in this table was implemented under both parametric and splines specifications, giving rise to 10

models in total. In addition to these, models with varying coefficients on single variables were also investigated. Model

M0 was implemented with the assumptions (13) and (14) for the baseline only.

All models contain the application, behavioural and macroeconomic variables listed in Table 1.

The fitted coefficients from the two models without varying coefficients are
shown in Table 3. Several conclusions can be drawn from this table. For exam-
ple, we note that the estimated coefficients from both models are very similar and
highly significant. Also, this table indicates that holding more credit cards in-
creases the risk of default. Furthermore, it shows that the risk of default increases
as the proportion of time spent with one or two payments in arrears increases (see
coefficients for Prop one-month delinquency and Prop two-month delinquency).

Exploring baselines

Figure 2 shows the fitted baselines from the 10 models described in Table 2. For
each model, there is some difference between the fitted baseline from parametric
and splines specifications; in particular, the panel on the right reveals the potential
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Table 3: Parameter estimates from the two models without time-varying coeffi-
cients.

M0 with parametric baseline M0 with splines baseline
Est. p-val Est. p-val

Application Variables

Number of cards, group B 0.02435 0.00959 0.02409 0.01037
Number of cards, group C 0.10269 0.00000 0.10261 0.00000
Number of cards, group D 0.21284 0.00000 0.21285 0.00000
Variable X, group B 0.41530 0.00000 0.41518 0.00000
Variable X, group C 0.49518 0.00000 0.49539 0.00000
Variable X, group D 0.22397 0.00000 0.22380 0.00000
Variable X, group E 0.36725 0.00000 0.36740 0.00000
Age at application, group 2 -0.11765 0.00000 -0.11750 0.00000
Age at application, group 3 -0.15831 0.00000 -0.15825 0.00000
Age at application, group 4 -0.14723 0.00000 -0.14722 0.00000
Age at application, group 5 -0.16270 0.00000 -0.16272 0.00000
Age at application, group 6 -0.22887 0.00000 -0.22894 0.00000
age at application, group 7 -0.34847 0.00000 -0.34856 0.00000
Age at application, group 8 -0.52694 0.00000 -0.52712 0.00000
Age at application, group 9 -0.78460 0.00000 -0.78477 0.00000
Age at application, group 10 -1.10357 0.00000 -1.10374 0.00000
Employment code, group B 0.12299 0.00000 0.12288 0.00000
Employment code, group C -0.10384 0.00013 -0.10397 0.00013
Employment code, group D 0.03055 0.02933 0.03119 0.02613
Employment code, group E 0.14443 0.00000 0.14405 0.00000

Behavioural variables lagged 6 months
Prop one-month delinquency 3.74603 0.00000 3.74746 0.00000
Prop two-month delinquency 3.04395 0.00000 3.04566 0.00000
Repayment amount 0.05972 0.00000 0.05974 0.00000

Macroeconomic variables lagged 6 months

Index of production -0.00103 0.20647 -0.00099 0.22424
Consumer confidence -0.00590 0.00000 -0.00584 0.00000
FTSE index -0.00009 0.00000 -0.00008 0.00000
Unemployement rate -0.02444 0.00010 -0.02332 0.00021

The same covariates are used in both models; the only difference is the structure of their baselines. In the first model,
the baseline is expressed using the parametric family in (12); the baseline in the second model is expressed in terms of
B-splines.

of the splines approach in terms of its ability to capture hidden patterns from the
data (provided care is taken to avoid under(over)-smoothing).

The two panels show that the risk of default is higher around the 6th month
following the opening date of the account, but decreases sharply during the second
semester and tends to stabilise thereafter. However, one should bear in mind that
any interpretation of these baselines should be done with caution because these
baselines are not representative of all the covariate patterns in the training data.

Exploring the relative effects of the application variables

In this section, we explore the fitted coefficients associated with the application
variables. These variables are categorical giving rise to several indicator variables,
one for each category. As described in Table 2, varying coefficients were first
allowed on the application variables alone (see model M1) and then simultaneously
on all variables (see M4).

Figure 3 shows the fitted coefficients at each month that are associated with
the variable number of cards for each model listed in Table 2. Each panel refers to
the coefficient of the indicator for the relevant category. The left panels are based
on the parametric formulation of the baselines and varying coefficients, whereas
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Figure 2: Fitted baselines.
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Left: baselines and varying coefficients are parametric based. Right: baselines and varying

coefficients are splines-based.

the right panels are splines based.
A number of conclusions can be drawn from these graphics. For example, the

coefficients of the accounts in group C of number of cards is broadly the same for
the models without and with varying coefficients M0 and M1 to M4, respectively
(see the two middle panels). But in general, the shape of the coefficients varies
from one class of number of cards to another. The spline formulation is able to
detect a more granular change in the magnitude of the coefficients compared to its
parametric counterpart. Under each formulation, the difference between models
M1 and M4 is mainly due to the interaction between varying coefficients over time.
For example consider group B which corresponds to few cards. Increased card age
may increase the hazard. This may be because the outstanding balance on the
card may increase and with few cards cannot be spread over many other cards,
though this effect dwindles. For a larger number of cards at time of application
(group D), taking out another card has an increasing effect on the hazard over
time but by declining amounts. Between 15 and 33 months the effect increases
and this may be due to a greater volume of debt that may be built up over a larger
number of other cards, rather than no cards, which is the reference category.

Differences in the time pattern of coefficients also occurs for other application
variables. For example, Figure 4 reveals a quick change in the sign and magnitude
of the varying coefficients associated with categories E and D of employment types.
This can be tested formally as indicated in Section 2.1. Employment categories
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Figure 3: Fitted coefficients for each group of variable number of cards.
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time-varying coefficients are splines based.
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Figure 4: Fitted coefficients for each employment type.
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Left: baselines and time-varying coefficients are parametric based. Right: baselines and
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D and E (students and no information) show the same time pattern of the coeffi-
cients: when an account is opened this group has a lower hazard than the reference
category but as the account ages the effect increases, reaches a maximum around
12 months and then decreases. Intuitively this may be because the balance may
build up over time but then card holders get used to managing their repayments
and they may gain employment and this may account for the effects declining to
zero. For both the number of cards and employment group, both at the time of
application, the marginal effect would be expected to decline as the account ages
because this information becomes increasingly less indicative of the card holders
ability to repay.

The marginal effects of other application variables vary over time. For example
Figure A1 for the coefficients associated with Variable X as well as Figure A2 for
Age, both in the Appendix. For each age group the time pattern of coefficients is
broadly similar. One intuitive explanation might be that the card we are modelling
provides additional debt capacity but as it is used and the outstanding balance
may increase so does the hazard. But the cardholder may become more used to
making payments as his/her income rises so the hazard assymptotes.The latter
seems to indicate that an assumption of constant coefficients for most ages bands
looks reasonable.

Exploring the relative effects of the behavioural variables

We now turn to the behavioural variables; there are three of them all continu-
ous and time-dependent. The fitted coefficients associated with these variables
are shown in Figure 5. The coefficients associated with the variable Repayment
amount are essentially the same (two top panels) regardless of the model consid-
ered. However the four lower panels reveal that the longer the card is held the
larger the marginal effect for both the proportion of survival time with one out-
standing payment and for proportion of survival time with two such payments.
Intuitively there may be an interaction: the longer the card is held the greater the
values of these covariates are likely to be. But, given the proportions, the effect is
also larger possibly because over time other loans are also acquired which a given
disposable income has to repay.

Exploring the relative effects of the macroeconomic variables

Finally we consider the effects of macroeconomic variables; the result is shown
on Figure 6. Unlike the coefficients associated with the first three macroeconomic
variables, we observe greater variability in the varying coefficient associated with
Unemployment rate. In particular, the effect of unemployment rate decreases (in
absolute value) steeply until month 15, remains constant and then declines in both
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Figure 5: Fitted coefficients for behavioural variables.
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specifications. An intuitive explanation may be that just after opening the account
the card holder has more credit availability which can be used in unemployed
spells but over time this may reduce if debt is built up as might be expected over
time. After around 30 months only the good payers remain and these may be
more financially robust to changes in the macroeconomy. In the case of consumer
confidence where the variability in marginal effects is small, the longer a card is
held the more confident a card holder may be about being able to repay so that if
confidence generally increases those who have held a card longest may be especially
confident and overextend themselves in terms of ability to repay.

4 Assessment and comparison

4.1 Model checking

The analysis of residuals is a crucial step for checking model assumptions in regres-
sion type models. The monthly deviance residuals for each model were calculated
as follows:

Dτ = ± 2

[
Oτ × log

(
Oτ

Eτ

)
+ (Nτ −Oτ )× log

(
Nτ −Oτ

Nτ − Eτ

)]
(15)

where Nτ represents the number of accounts at risk at the beginning of month τ ;
Oτ is the total number of defaults that occurred during month τ , and Eτ denotes
the corresponding expected number of defaults.

A graphical illustration of these residuals from the 10 models in Table 2 is
displayed in Figure 7. These residuals are broadly similar across the 10 models
and all show more variations during the first months. But overall the residuals
from each model are centred with no discenible patterns.

4.2 Overall model quality

In general it is always possible to improve model fit by adding in a new variable;
but doing so can lead to overfitting and poor predictive power. A penalty against
model complexity allows one to avoid this problem. The Akaike Information Crite-
ria (AIC) measures the relative goodness of fit of a statistical model with a suitable
penalty term for complexity. It is defined by

AIC = −2ˆ̀+ 2p (16)

where p represents the number of parameters in the model, and ˆ̀ is the maximised
value of the log-likelihood function. In general models with lower AIC would be
preferred.
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Figure 6: Fitted coefficients for macroeconomic variables.
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Figure 7: Deviance residuals.

10 20 30 40 50

−
3

−
2

−
1

0
1

2
3

4

Time (in months)

D
e
v
ia

n
c
e

Deviance (parametric) M0

M1

M2

M3

M4

10 20 30 40 50

−
3

−
2

−
1

0
1

2
3

4

Time (in months)

D
e
v
ia

n
c
e

Deviance (splines) M0

M1

M2

M3

M4

Left: baselines and varying coefficients are parametric based. Right: baselines and varying

coefficients are splines based.

The AICs from the models described in Table 2 are shown in Table 4. Sev-
eral conclusions can be drawn. First, under parametric or spline specifications,
the models with varying coefficients outperform the standard survival model M0.
Second, allowing for varying coefficients on several covariates simultaneously (see
model M4) yields a further improvement compared to models with varying coeffi-
cients on a restricted set of covariates. Third, the varying coefficients models with
spline specification tend to be better than their parametric counterparts.

Table 4: Comparative AIC from different models.

Parametric-based Splines-based Parametric vs Splines

AIC
Drop in AIC

relative to M0
AIC

Drop in AIC
relative to M0

From parametric
to spline: Drop in AIC

M0 804860 0 804779 0 82
M1 802897 1964 802748 2031 149
M2 802700 2160 802638 2141 62
M3 801902 2959 801778 3001 124
M4 798728 6133 798489 6289 238

4.3 Prediction performance

We use two metrics to compare the predictive accuracy of the models. First,
comparisons of Receiver Operating Characteristics (ROC) curves and second, the
costs of misclassification. For the ROC the estimated parameters of the models
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were used to predict the probabilities of default for each account in the test sets,
and these probabilities were used in turn to construct ROC curves, separately
for each model. An illustration of these curves for the prospective test set over
a twelve-month window is shown on Figure 8. The estimated area under curves
are also shown in Table 5. Overall, the varying coefficients models (parametric-
based and splines-based) perform better than the standard model with constant
coefficients.

Figure 8: ROC curves.
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Table 5: Areas under the ROC curves.

Model code M0 M1 M2 M3 M4
Parametric based 0.731 0.759 0.758 0.756 0.769

Splines based 0.731 0.753 0.758 0.756 0.770

Second, we consider the percentage of cases misclassified, weighted by the rel-
ative costs of each type of error. Lenders view good and bad cases very differently
because the cost associated with the misclassification of a bad case is generally
larger that that associated with the misclassification of a good case. To reflect
this reality, we assign a cost of £0 to accounts that are correctly classified, £1 to a
good account misclassified as bad, and a higher cost (for example £5 or £10) to a
bad case misclassified as good. We use two alternative figures because there is very
little published evidence on the true figures. A similar approach was used by Bel-
lotti and Crook (2009) when assessing the importance of macroeconomic variables
in dynamic models for credit risk. We then compare the total misclassification of
each model.
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For illustration, we focus on a 6-month horizon (although all the models imple-
mented in this work allow one to compute the probability of default at any given
time point). We consider the accounts still active at the end of the first year and
compare the models in terms of their ability to predict the status of the account
over the next six months horizon.

Since the outputs from the models are not the predicted statuses themselves,
we first score our datasets with monthly probability; we then derive the six month
survival and default probabilities, and then predict status according to some cut
points. The cut points were estimated as the minimizer of the total cost based on
the training set, separately for each model.

Table 6: Predicted mean cost for prospective and retrospective test sets.

Cost=5 Cost=10
Parametric-based Splines-based Parametric-based Splines-based

Prospective

M0 0.2917 0.2916 0.5081 0.5081
M1 0.2901 0.2898 0.5047 0.5043
M2 0.2912 0.2913 0.5082 0.5081
M3 0.2892 0.2891 0.5052 0.5047
M4 0.2876 0.2874 0.5015 0.5015

Retrospective

M0 0.2940 0.2877 0.5088 0.5080
M1 0.2872 0.2870 0.5015 0.4996
M2 0.2893 0.2883 0.5067 0.5069
M3 0.2868 0.2874 0.5022 0.5009
M4 0.2857 0.2851 0.4966 0.4970

Table 6 shows the predicted mean cost for each model on our two test sets
when the cost of misclassifying a bad case is £5 and £10 respectively. A number of
conclusions can be drawn from this table. For example, on both test sets and under
the two cost scenarios, the models with varying coefficients consistently outperform
models M0 (note that this good prediction performance of varying coefficients
models can be improved further by dropping the weakest pseudo-variables from
these models). Overall there is no clear winner between the parametric and splines
formulations of varying coefficients regarding these predicted costs; but the spline
formulation gives slightly higher predictive accuracy in most instances.

5 Concluding remarks

The main aim of this work was to investigate if and how patterns change in the
effects of risk factors on the probability of default in retail banking. This has been
achieved using time-varying coefficients survival models with application to a large
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portfolio of credit card loans from a major UK bank. We started by describing
the framework of varying coefficients survival models with simple parametric spec-
ifications and a more flexible specification in terms of B-splines. We then fitted
several models under each specification.

We found that (i) in terms of overall model quality and prediction accuracy,
the varying coefficients models outperform standard survival models with constant
coefficients. (ii) Using varying coefficients simultaneously on several risk factors
can help to boost the overall goodness of fit and prediction accuracy. However this
requires some care because of the risk of overfiting. Also, this does not translate
systematically into better predictions when the model is used to score an inde-
pendent dataset. (iii) In terms of overall model quality, the spline formulation of
varying coefficients is to be preferred over their parametric counterpart.

In this work we have focussed on the importance of varying coefficients models
for a single event, namely default. In practice however, the lender may want to
predict the probability that an account would move from one stage of delinquency
to another before eventually defaulting. It would be of interest to investigate the
usefulness of varying coefficients in such a general multistate setting.
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Appendix

Figure A1: Fitted coefficients for variable X.
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Variable X: group C
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Variable X: group D
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Left: baselines and varying coefficients are parametric based. Right: baselines and vary-

ing coefficients are splines based.
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Figure A2: Fitted coefficients for Age.
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Left: baselines and varying coefficients are parametric based. Right: baselines and vary-

ing coefficients are splines based.
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