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Abstract 

This paper presents the first results towards experimentally resolving the local three-dimensional (3D) 

flame propagation and turbulence-chemistry-interaction in a spark-ignition engine using temporally 

resolved multi-planar laser diagnostics. The experimental method utilizes simultaneous dual-plane laser 

induced fluorescence (LIF) of OH and stereoscopic PIV (SPIV) to locally resolve 3D flame displacement 

speed during the early flame development when less than 5% of the mass has been consumed. OH-LIF is 

used to track the reaction-zone position and flame normal direction in 3D space, while SPIV measures 

the convection of the identified flame contours. Based on the vectorial difference of the 3D convection 

and absolute propagation of the reaction-zone, the 3D displacement speed (sT) is calculated. An 

instantaneous flame realization shows a large dynamic range of local sT and local flow transport, while 

also revealing the importance to resolve these quantities in 3D. Several flame-flow configurations are 

shown along the flame surface and each uniquely defined the local flame transport along the individual 

flame realization. A detailed uncertainty and sensitivity analysis is performed, confirming the validity of 

the sT distribution resolved for the methodology and operating conditions. A discussion on the different 

mechanisms leading to the large distribution of sT for the given operations is included and testifies to 

complex nature of the in-cylinder flame development in this early stage. The limitations of the 

presented methodology are discussed particularly in the need for improved spatial resolution and 

additional volumetric information. The merits and limitations of the presented work provides an 

improved understanding of what is further needed to better resolve local 3D flame transport in engines 

for both experimental and numerical methodologies.  

Keywords: Multi-plane imaging; laser induced fluorescence; stereoscopic PIV; flame displacement 

speed; spark-ignition engine  
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1. Introduction 

A detailed understanding of local flame propagation in spark-ignition (SI) engines is required to further 

improve combustion performance, realize next-generation combustion strategies, and provide valuable 

data to build predictive models in turbulent combustion. Flame-front progression within premixed 

systems is primarily governed from two components: (1) unburned-gas advection and (2) flame-normal 

displacement speed [1]. The latter has been recognized as one of the most important flame properties 

[2] particularly regarding numerical models using flame surface density (FSD) [3] and level-set [4] 

approaches, where such local effects must be included into sub-grid scale models [2,5]. In SI engines, 

like most turbulent combustion environments, flow-direction and flame-geometry are highly three-

dimensional (3D). Determination of the flame-normal displacement speed and advection velocity within 

a 3D domain is necessary to appropriately resolve local displacement speeds in turbulent combustion.  

Laser-based diagnostic techniques provide non-intrusive measurements of leading scalar and vector 

properties that quantify fundamental processes in combustion systems. With regards to flame 

propagation, traditional methods such as Schlieren, chemiluminescence, Mie scattering, and laser 

induced fluorescence (LIF) have measured integral flame growth rates for spherical-based flame 

geometries, which have provided the basis for most combustion models in practical systems [6-13]. A 

more comprehensive understanding of flame propagation however, has come from multi-parameter 

diagnostics that utilize multi-planar measurements to resolve coupling between turbulent flow and 

reaction chemistry. Measurements employing such techniques have provided detailed statistics of the 

3D flame-normal, flame stretch, advection velocity, and local 3D displacement speeds in turbulent 
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combustion [5,14-17]. Sophisticated, well-designed diagnostic methods are considered high-priority for 

an improved understanding in turbulent combustion. 

Within SI engines, experimental efforts have primarily resolved integral flame growth rates from single-

plane imaging, line-of-sight, and optical-fiber probes [9,11,12,18]. Local 2D flame displacement speeds 

have been resolved utilizing high-speed laser tomography and particle image velocimetry (PIV) in a 

boosted optical SI engine [19]. Using short laser-pulse separation, Mie scattering images resolved planar 

flame displacement, while local advection velocities were obtained from PIV. Although these 

measurements provided valuable classification of turbulent premixed flames within engines, the 

assumption of 2D flame propagation biases displacement speed calculations [15] and resolving the 3D 

flame-normal and flow velocity must be considered.  

This work utilizes the dual-plane OH-LIF, stereoscopic PIV (SPIV) methodology from [14] to resolve local 

3D displacements speeds in an optical SI engine. The engine is operated at 800RPM with stoichiometric, 

premixed isooctane-air mixtures. Images were acquired during the early-flame development when less 

than 5% of the mixture is consumed, typically regarded as the crucial stage of flame development 

defining subsequent combustion [20]. Measurements reveal individual contributions of local flow 

velocity and flame displacement speed on the overall transport of the flame surface. A detailed 

uncertainty and parameter sensitivity analysis is presented to discuss the validity of the results and 

limitations of the measurements. 
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2. Experimental Setup 

2.1 Engine 

Experiments were performed in a single-cylinder optical SI engine [21]. The engine was operated at 

800RPM with port-fuel injection of isooctane (27.4mg/cycle) to provide a stoichiometric, homogeneous 

mixture. The operating conditions shown in Table 1 are chosen to mimic low-load, idle engine operation. 

Low-load operation is technically relevant as it can be prone to combustion instabilities [20]. Moreover, 

the operating conditions provided low turbulence levels ( 1m/s (Reynolds decomposition) not 

shown) and repeatable thermodynamic conditions for reliable measurements of local flame 

propagation.  

The fuel-air mixture was ignited by a spark plug (NGK Spark Plug Co., Ltd.) with dwell of 3.5ms. Spark 

timing, ST=19 crank-angle degrees (CAo) before top-dead-center (bTDC), was chosen to optimize 

indicated mean effective pressure (IMEP) and combustion stability (COV of IMEP <2%). The engine was 

fired 200 cycles before acquiring measurements and provided stable engine boundary conditions.  

2.2. Diagnostics 

The optical setup is similar to that used in [14] and shown in Fig. 1. A frequency-doubled Nd:YAG dual-

cavity laser (Edgewave, INNOSLAB IS4 II-DE, 532nm) operating at 4.8kHz was used for SPIV 

measurements. Laser light passed through focusing optics to provide a laser sheet (0.5mm thickness), 

which was centered vertically within the tumble plane and bisected the spark plug center electrode. 

Two CMOS cameras (Phantom V.711, double-frame exposure) in Scheimpflug arrangement placed on 

each side of the engine imaged Mie scattering off chemically inert boron nitride (BN) particles (0.5µm 

diameter), which were seeded into the intake flow. The cameras were mounted =14° off-normal to the 

LIF cameras and imaged a 15x25mm2 region centered around the spark plug. 
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The combustion radical hydroxyl (OH) was imaged simultaneously in two parallel, vertical planes by two 

independent double-pulsed UV laser systems. Each laser system used a frequency-doubled dye laser 

(Sirah, Precision Scan, Rhodamine 6G) pumped by a double-pulsed Nd:YAG laser (Spectra Physics, 

PIV400, 532nm) each providing two UV laser pulses (24mJ/pulse) temporally separated by ∆tLIF. The dye 

lasers were tuned to 282.9nm to excite the Q1(6) line of the A-X(1-0) transition of OH.  

The laser beams from each UV laser system were sent through independent focusing optics and spatially 

separated to provide two parallel UV light sheets (0.2mm thickness) offset by ∆z=±0.5mm on each side 

of the PIV light sheet (Fig. 1). Experiments were also conducted with ∆z=±0.25 and ±0.75mm. The sheet 

separation and thickness was adjusted by UV-sensitive beam-monitor (DataRay). Fluorescence emission 

from each laser sheet passed through high-transmission, band-pass filter (Laser Components, UV-B) and 

was imaged onto two separate image intensifiers (LaVision, High-speed IRO) coupled to 14-bit CCD 

cameras (LaVision, ImagerProX, double-frame exposure) arranged on each side of the engine. 

Spontaneous OH* chemiluminescence and flame luminosity were suppressed by gating each intensifier 

to 300ns. The projected pixel resolution of both LIF detection systems was 20 m, while the spatial 

resolution was 80µm determined by a Siemens-stern (contrast transfer function). 

Integral flame growth was imaged by chemiluminescence. An unintensified CMOS camera (LaVision, 

HSS5, 10bit) operated at 5kHz and imaged onto a 40x55mm2 area through the piston via the crank-case 

mirror. Two identical long-pass 550nm filters (CVI) were used to suppress 532nm laser light.  

An optical crank-angle encoder (AVL) was used to synchronize all lasers and cameras to the engine. The 

LIF systems were synchronized by a programmable timing unit (LaVision, PTU) to provide images at a 

fixed CAo. Each double-pulsed LIF system operated at 10Hz providing two temporally resolved LIF images 

(t0, t0+ tLIF) in each plane at 14°bTDC (i.e. 5 CAo after spark), when the flame has consumed less than 5% 

of the mixture. The UV laser pulses between each laser system were offset by 400ns to avoid cross talk 
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between the LIF images in each plane. PIV lasers and cameras operated at 4.8kHz to measure the three-

component (3C, u,v,w) velocity from 20°–2° bTDC. The first PIV laser pulse was triggered 12.5µs after the 

first UV pulse and the pulse separation for the PIV (ΔtPIV) was 25µs, while the pulse separation for each 

LIF laser system (ΔtLIF) was 50µs. LIF images were recorded every other cycle for a 200 cycle sequence, 

while PIV images were recorded for 200 consecutive cycles. Chemiluminescence images started 1 CAo 

before spark and recorded 20 images/cycle at 5kHz for 200 consecutive cycles. 

2.3 Data Processing and flame speed calculation 

The absolute velocity of the reaction-zone ( ) is defined as sum of the local unburned convection 

velocity ( ) and the flame displacement speed (sT) relative to the flow in the flame-normal direction ( ). 

This is shown schematically in Fig. 2 and Eq. (1).   

 =  + sT    (1) 

The image processing procedure presented in [14] was used for the reconstruction of the flame surface 

onto the SPIV plane and to extract sT from the acquired images. The reaction-zone was identified in the 

LIF images by applying a non-linear diffusion filter [22] based on anisotropic operating splitting in 

combination with a Canny edge-detection algorithm. The identified reaction-zone is superimposed onto 

a raw LIF image in Fig. 3a. The red dashed line highlights a region of high in-plane curvature towards the 

products, which is not resolved due to weak LIF gradients. Although such areas represent <5% of the 

overall detected contour, systematic errors in sT will occur in such regions.  

A NURBS spline interpolation [23] was used to construct the 3D surface between the flame contours 

identified in each OH-plane and a patch diffusion algorithm [24] removed numerical noise from the 

constructed surface. The 3D flame surface is projected through the SPIV-plane providing the local flame-

normal at z=0mm. The convection velocity ( ) was extracted 0.4mm in front of the flame surface (flame-
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normal direction) on the SPIV-plane at t0. 1D laminar flamelet simulations [25] demonstrated this 

distance is sufficient to avoid effects of pre-heating and expansion.  

The 3D displacement speed was determined by transporting the position of the reaction-zone at t0, 

z=0mm by the local 3C velocity in 3D space. The remaining distance between the transported contour 

and the nearest point on the reconstructed flame surface at time t0+∆tLIF in the flame-normal ( ) is 

representative of the local displacement speed sT.  Local values were determined for individual points 

spaced 20 m (i.e. projected LIF pixel size) along the flame contour on the SPIV plane. The limited spatial 

resolution (80 m LIF, 400 m SPIV) is greater than the laminar (thermal) flame thickness ( L 45µm, from 

1D flamelet simulation). The detected flame front in the measurements is therefore recognized as a 

spatially filtered quantity. As a clear separation from previous work [2,14,15,26,27,28], which use 

various methodologies to assess the local laminar burning velocity, all results here are based on a 

filtered displacement speed (sT), referred to as turbulent displacement speed.  

SPIV images were processed with a commercial software (LaVision DaVis 8.1). Spatial calibration and 

dewarping of the PIV images were accomplished with a 3D target (LaVision, Type7). Self-calibration was 

accomplished from 200 Mie scattering images and provided a remaining average pixel disparity <0.01 

pixels. Image cross-correlation and vector calculation were performed with a decreasing window size 

multi-pass algorithm. Final interrogation window size was 16x16 with 75% overlap providing 0.1mm 

vector spacing. 

The integral flame growth rate (from chemiluminescence) was calculated assuming spherical flame 

growth [29]. Burned and unburned gas densities to determine the integral growth rate were resolved 

from 1D flamelet calculations.  

3. 3D flame surface and local displacement speed realization 
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This section presents a single realization describing the flame propagation with respect to local 3D 

flame-orientation, convection velocity, and 3D displacement speed. A statistical distribution of sT is 

shown and further discussed in sections 4 and 5.   

The reconstructed 3D flame surface projected onto the 2D3C flow-field is shown in Fig. 3b and provides 

an overview of the flame development for an individual cycle. The red and blue contour lines represent 

the reaction-zones in the z=0.5mm and -0.5mm OH-LIF planes, respectively. The gray surface depicts the 

reconstructed 3D flame surface between the LIF contours and the white contour is the flame position on 

the SPIV plane. A side-view of the 3D flame surface (Fig. 3c) further reveals the flame geometry within 

the 3D domain. Velocity vectors (every 4th vector) represent the local 3C velocity within the burned and 

unburned regions. The color-scale corresponds to the 3C velocity magnitude. The rectangles (white 

dashed lines 1 and 2) highlight flame segments discussed in Fig. 4.  

The flame surface shown in Fig. 3b surrounds the spark plug electrodes and is approximately 35mm in 

length. Both in-plane and out-of-plane wrinkling is evident for the reconstructed flame surface and is 

discussed further within section 4. The flow to the left of the flame exhibits high velocities (8-10m/s) 

directed towards reactants, resulting in strong transport of the flame surface. To the right of the flame, 

velocity magnitude is significantly lower (1-4 m/s) and primarily directed opposing the flame surface.  

Figure 4 shows enlarged views of two selected flame segments (regions 1 and 2 in Fig. 3b) to describe 

the flame transport of the instantaneous flame realization. Top images show the 3D flame surfaces at 

time t0 and t0+ tLIF (denoted as flame surface 1 (FS1) and flame surface 2 (FS2), respectively) with 

respect to the burned and unburned regions. Middle images show the convection of the 2D flame 

contour identified on the SPIV plane. Bottom images show local sT values superimposed onto FS1. 

Flame segment 1 (first-column) exhibits high convection velocities (8-10m/s), which enhances flame 

transport toward the reactants. sT values (-1 to 3m/s) are much lower than convection velocities along 
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the flame segment. A negative sT value occurs when the convected contour (black line) is transported 

further than FS2, resulting in a flame-normal direction toward the products rather than the reactants. 

The occurrence of negative sT for all cycles is discussed in section 5. Flame segment 2 (second column) 

shows that the convection velocity opposes the flame surface and transports the flame toward the 

products, while sT transports the flame in the direction of reactants. Since the convection velocity (4-5 

m/s) is greater than sT (2-4 m/s) the flame surface recedes toward the products and overall transport is 

small.  

Local sT (blue) and convection velocities (black) along the entire flame surface are shown in Fig. 5a 

(every 4th vector). Velocity values as well as out-of-plane convection- and flame-angle ( , Fig. 1) are 

shown along the flame contour in Fig. 5b,c. Contour points in Fig. 5b,c begin at the top, left position of 

the flame contour and walk along the flame in equally spaced points (1250 total points). Shaded regions 

highlight the flame segments in Fig. 4 and the red line reveals the ensemble-average displacement 

speed (2.6m/s) along the flame surface. Both local sT and convection velocity exhibit a large dynamic 

range (-3 sT 10m/s; 0 10m/s) and are non-uniformly distributed along the flame surface. 

Furthermore, both the flame and flow velocity exhibit a strong out-of-plane orientation. Along the flame 

surface many flame-flow configurations can be observed. On the left-side of the image, the flame 

exhibits strong convection velocities towards reactants with a large range of sT, leading to strong 

transport of the flame. Near the bottom, the flame approaches the piston (y=-5mm) and the flame-

normal is perpendicular to the unburned gas velocity. To the right, unburned-gas velocity opposes the 

flame-normal, leading to lower flame transport. The individual flame realization reveals the complex 

nature of flame transport in the engine.   
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The distribution of sT along the flame surface for 80 cycles is shown as bars in Fig. 6. It reveals that sT 

covers a broad range of values ranging from -5 to 15m/s, with mean value  =2.6m/s. Discussion of this 

range is presented within the following sections.  

4. Uncertainty and Sensitivity Analysis 

Calculation of sT is based on the precision of each input parameter in eq. 1 as well as the quality of the 

linear approximation of the 3D flame surface. Discussion of measurement uncertainty (accuracy, 

precision) and parameter sensitivity is considered within this section.  

Accuracy of the calculated sT is assessed in comparison to integral flame growth rate obtained from 

chemiluminescence imaging [29]. Chemiluminescence images depicting the integral growth rate (not 

shown) provide a spherical global flame growth of 2.1±1.2m/s at the same CAo (statistic from 80 cycles). 

This is in good agreement with .  

Precision of local sT values arise from the precision of each input parameter, namely reaction-zone 

identification and unburned gas velocity. Each LIF-detection system had a spatial resolution of 80 m. 

This could provide a maximum possible offset of 160 m between FS1 and FS2. Assuming the LIF-

detection within this offset is Gaussian distributed, a reasonable offset between flame surfaces is 53 m 

(i.e. 1 ), providing an uncertainty ±1.1m/s, while the maximum offset provides ±3.1m/s. SPIV 

measurements have an estimated precision of 10% from [30] corresponding to a maximum uncertainty 

of 1m/s. A root mean square estimation for sT provides a 1  uncertainty of ±1.5m/s, or maximum (3 ) 

of ±4.5m/s. 

The calculation of sT is also based on several limitations of the measurement systems. It is anticipated 

that flow and flame detection is under-resolved in regards to fine-scale structures that exist in turbulent 

flows [4]. Furthermore, the linear interpolation of the 3D flame surface and laser sheet separation ( z) 
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provides limited out-of-plane resolution. Therefore it is necessary to address the sensitivity of system 

parameters on the calculation of sT. As depicted in Fig. 3a not all regions of the flame are resolved. 

However, this consists of less than 5% of the flame contour for all cycles reported. The low occurrence 

of these areas will not significantly affect the sT distribution and is therefore not included in this analysis. 

The following sensitivity analysis discussion is separate from the sT uncertainty values already reported. 

SPIV was processed with a 16x16 pixel window size and data processing was repeated for a 32x32 pixel 

window to assess the sensitivity of SPIV resolution for sT. sT was compared at each location for both 

processed datasets and sT is the local difference. This resulted in an average sT=0.7m/s and did not 

significantly alter the sT distribution (red line, Fig. 6a). The extraction location of the unburned 

convection velocity was also varied (0.1-0.6mm, 0.1mm increments) for the 16x16 pixel window size 

dataset to assess the sensitivity of flow location in the flame-normal. The average sT is 0.8m/s and 

reveals a similar sT distribution (not shown for clarity).  

Experiments were repeated with z=0 mm to assess differences of the detected flame contour imposed 

from the processing methods and different LIF-detection systems. An average deviation between 

detected flame contours was 120 m, which will produce an artificial normal flame-angle of ±12o. 

Displacement speed calculations were repeated with ±12o and revealed a maximum sT  of 0.4m/s. 

Additional experiments were repeated with z=0.25 and 0.75mm to assess the sensitivity of z. This 

revealed similar sT distributions as z=0.5mm (Fig. 6a black and blue lines vs. bars). In-plane flame 

curvature revealed a statistic of =-0.2±0.8mm-1
 from the 80-cycle distribution. Assuming that out-of-

plane curvature is similar to in-plane curvature, the linear reconstruction method for z =0.25 and 

0.5mm is argued valid to capture the 3D flame structure and assumed that sub-wrinkling not captured 

by the linear reconstruction is minimal.  
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Out-of-plane convection and flame orientation can still bias the multi-planar measurements. Therefore, 

results were conditionally sampled to only include measurements that exhibited an out-of-plane 

convection angle | |<45o and out-of-plane convection velocity |w|<2m/s. Although 40% of the 

measurement data was removed, the sT distribution remained nearly the same (Fig. 6b, red and black 

lines vs. bars). Results were further conditionally sampled to include data that exhibited absolute 

displacement speeds >2m/s (i.e. >0.1mm total flame displacement) to exclude data that are 

susceptible to uncertainties of the flame front detection due to limited LIF spatial resolution. 

Conditional sampling on all aforementioned conditions (blue line, Fig. 6b) results in the same 

distribution, providing trust that the resolved sT distribution is valid for the methodology and operating 

conditions.  

5. Discussion  

Thus far it has been shown that sT is locally dependent along the flame surface and a large distribution 

exists for the operating conditions reported. The uncertainty and parameter sensitivity analyses 

performed provided confidence that the distribution is credible. This section presents a discussion 

describing the range of sT values reported.  

The distribution of sT shown in Fig. 6 provides an ensemble-average value =2.6m/s (rms=±3.8m/s and 

±1.5 m/s reported uncertainty (1 )), which is 7.2*sL (sL=0.36m/s at the operating conditions, [7]). Local 

flame instabilities caused by high pressures [13,31,32], local thermodiffusive properties [8,13], and high 

turbulence levels including strong flame wrinkling [1,4,9,32] are all underlying physical factors in our 

system that will increase sT/sL.  

The aforementioned effects can vary locally along the flame surface, which can also lead to local 

situations where sT>7.2*sL. The large dynamic range of flame development and limited out-of-plane 

resolution can also result in large sT values for the current methodology. As depicted in Figs. 4 and 5, the 
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flame surface is not equally transported. For the fixed tLIF = 50 s, local flame segments drastically 

advance and change shape. If opposing surfaces of the flame unite (e.g. closing of concave wrinkle) the 

locally resolved flame progression will appear substantial and increase sT [26]. To better resolve these 

effects, a large temporal dynamic range and an improved out-of-plane resolution (e.g. tri-plane, or 

volumetric tomography) are required.  

Twenty-percent of the distribution reported in Fig. 6 contains negative displacement speeds. This occurs 

when local regions of the convected flame contour are transported past FS2 and the resulting flame- 

normal is towards the products rather than reactants. The notion of negative sT does not pertain to rates 

of fuel consumption or heat release, but instead pertains to the flame displacement relative to the flow 

[27]. Although uncertainties due to limited spatial resolution or measurement precision can yield 

negative sT, these occurrences still exist beyond the maximum uncertainty. Thus, negative sT values are 

statistically significant (i.e. 6.5% occurrence considering 3  uncertainty), which support findings of 

[2,14,15,26,27,28]. Direct numerical simulation (DNS) studies have identified three primary mechanisms 

attributed to negative sT: (1) regions of high positive flame curvature exhibiting a larger diffusive flux 

than convective flux [27], (2) regions of high compressive and tangential strain [26], and (3) sensitivities 

of the prescribed isolevel (e.g. OH or fuel mass fraction) within the reaction front layer that is used to 

calculate local displacement speed [5,28].  In this work like other experimental investigations [14,15] no 

correlation is found between negative sT and local values of flame curvature or strain. Such findings are 

based on the available detection system resolutions (temporal, spatial) and given operating conditions. 

Note that our operating conditions are quite different than the aforementioned DNS and experimental 

efforts, which exhibit atmospheric conditions within simpler flame-facilities. At our imaging timing, the 

engine operates with 12 bar, 550K unburned gas-temperature, complex flame-flow configurations, and 

solid boundaries – all which can lead to different mechanisms for flame transport or negative sT.    
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The measurements presented are the first of its kind that quantify the distribution of local 3D flame 

propagation in an SI engine. They reveal the complex 3D flame transport due to advection and diffusion.  

Similar data processing methods are transferrable to numerical models for meaningful statistical 

comparisons and model development. However, the presented results demonstrate that it is important 

that numerical models account for negative displacement speeds such as in [27] for meaningful 

comparisons and further understanding of the mechanisms attributing negative sT values. The 

measurements also provide an understanding of the required numerical mesh sizes needed to resolve 

the flame displacement speed beyond the merits of the presented work. 

While these measurements provide a unique opportunity to understand flame transport in engines, they 

also have several shortcomings, which should be well-addressed. With the conventional lenses and 

cameras used, it is recognized that our detection systems under-resolve the spatial- and temporal-scales 

of the flame transport, which results in a filtered sT value. To properly resolve local flame transport, it is 

recommended to resolve several measurement points within the reaction zone thickness ( L 45µm at 

the imaging timing (1D flamelet calculations)). Improved spatial resolution in the z-direction is also 

required. The current experimental setup, however, vastly approached the physical limits of the 

conventional detection systems used and the physical space around the optical engine.  Measurements 

and simulations with improved temporal and spatial resolution, with additional volumetric information 

and detection of several reaction species will provide further insight of flame transport beyond the 

capabilities of the presented work. Verification of such complex methodology undertaking is first 

intended for simpler flame-facility geometries (e.g. laminar flames or freely propagating turbulent 

flames as presented in [14]). 

6. Conclusions 
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This paper describes an experimental investigation to resolve the early 3D flame propagation in a single-

cylinder SI optical engine. The engine is operated at 800 RPM with premixed stoichiometric isooctane-air 

mixtures. Simultaneous dual-plane OH-LIF and stereoscopic PIV were used to measure the local 3D 

flame-normal and 3C convection velocity to resolve the local 3D flame displacement (sT). Images were 

acquired 5 CAo after spark when less than 5% of the mixture was consumed. The processing methods 

used to create the reconstructed 3D flame surface and extract local sT is described. An instantaneous 

flame realization is shown as an example to describe the flame transport at the operating conditions. 

Both local sT and convection velocity exhibit a large dynamic range and many flame-flow configurations 

are shown, which individually define unique flame transport along the same flame front. Thorough 

uncertainty and parameter sensitivity analyses performed revealed that the sT distribution over the 80 

engine cycles is credible. The distribution is centered around sT=7.2*sL with significant regions extending 

both to large and negative values.  Local flame instabilities caused by high in-cylinder pressures, local 

thermodiffusive properties, and high turbulence levels including strong flame wrinkling are underlying 

physical reasons for sT>sL. Occurrence of negative sT support previous literature findings. However, 

under our operating conditions and filtered sT representation, negative sT values were not correlated 

with mechanisms found to cause negative sT from previous DNS studies. For presented findings, there 

appears to be several physical mechanisms responsible for the large sT distribution, which attributes to 

the complex nature of early flame development in SI engines. This experimental effort was the first of its 

kind to resolve local 3D displacement speeds in an SI engine and will be further used to study flame 

transport behavior for higher engine speeds and different fuel-blends. Further improvements in spatial 

resolution and additional volumetric information within experimental and numerical investigations will 

provide further insight of flame transport beyond the capabilities of the presented work. 
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Table 1:  

Engine details and operating conditions 

Engine speed 800RPM 

Intake press., temp. 0.95bar, 300K 

Fuel,  amount (PFI) C8H18, 27.4mg/cycle 

Eqivalence ratio 1.0 

Spark timing, dwell 19°bTDC, 3.5ms 

IMEP, COV 5.1 bar, 1.1% 

 

Lines:  8 

Column: Single column 
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Figure 1:  Experimental setup of multi-plane detection in engine. 

 

Column:  Single column 

Color:   b/w 

 

 

 

 

 

 

 

Figure 2:  Vectorial schematic of local transport of flame surface. 

 

Column:  Single column 

Color:   b/w 
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Figure 3:  Instantaneous realization of flame. (a) Raw LIF-image and reaction-zone (blue line). 

Red-circle highlights unresolved wrinkle. (b) 3D flame surface imposed onto 3C flow-

field (every 4
th
 vector) at t0, (c) side-view of 3D flame surface. Rectangles 1 and 2 

highlight flame segments described in Fig. 5.  

 

Column:  Double column 

Color:   RGB 

 

 

Figure 4:  Flame segments 1 and 2 highlighted in Fig. 3 to describe individual components of flame 

transport. (Top) FS1 and FS2, (middle) convection of SPIV flame contour, (bottom), sT 

superimposed onto FS1.  

Column:  Single column 

Color:   RGB 
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Figure 5: (a) sT (blue) and convection velocity (black) along flame surface, (b) local velocity values 

along flame contour, (c) local out-of-plane flame- and convection-angle. Shaded regions 

correspond to flame segments shown in Fig. 5. Red line indicates cycle-average . 

Column:  Single column 

Color:   RGB 
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Figure 6: Sensitivity of sT-calculation on input parameters. (a) original sT PDF (bars) compared to 

PDFs using different PIV resolution (red) and experiments utilizing z=0.25, 0.75mm 

(black, blue), (b) original sT PDF (bars) compared to PDFs that are conditionally sampled 

accounting for out-of-plane convection angles -45< <45 (red), out-of-plane convection 

velocity |w|<2m/s (black) and absolute displacement >2m/s (blue). 

Column:  Single column 

Color:   RGB 
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