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ABSTRACT 

One means of producing a 3D current in a circular tank is by using groups of conditioned axial flow impellers arranged 

around the perimeter to collectively create a sea representative bulk flow in a laboratory setting. Unfortunately to achieve 

the required bulk flow neighbouring impellers have to operate at different speeds resulting in steps in the plan view 

velocity profile. Therefore the underlying situation that governs tank behaviour is that of two fluid streams at different 

speeds combining, leading to a turbulent mixing layer which then dissipates and develops. Here a simulation of this flow 

is created using a 2D Reynolds Averaged Navier-Stokes method and then validated with physical experiments. The 

implications for accuracy and computational costs of various turbulence models, boundary conditions setups, and 

geometry representations are assessed. These findings are then used to produce a simplified 2D numerical model of 

the plan view flows in a 3D test tank which is then employed to demonstrate how a satisfactory device test zone might 

be generated from groups of stepped inputs. This finding helps prove that a combined current and wave tank can be 

created using the described configuration with the model providing a useful means of testing control scenarios. 

 

* Corresponding author: Adam Robinson, Adam.Robinson@ed.ac.uk 

1.0 INTRODUCTION 
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Testing is a necessary part of development for off-shore devices and structures. A current and wave testing tank capable 

of producing realistic sea conditions at 1:20 scale would provide a mid-step between existing small scale test facilities 

and sea trials. Figure 1 shows the layout of  the first of this new type of test tank which is currently being built at Edinburgh 

University. 

 

 

Figure 1 Vertical section through the combined current and wave test facility under construction at the 

University of Edinburgh.  

Figure 2 shows the operational principles, simplified to consist of six separate flow streams. The conditioned flow from 

the impellers is driven out of guide vanes in the tank floor, and then combined to form a defined flow across the centre 

of a circular tank, before being drawn back into the plenum chamber. The Edinburgh facility actually uses 28 impellers 

to achieve this effect. The aim is to create representative sea conditions in a large enough area to test arrays of off-

shore devices.  
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Figure 2 Separate streams of driven fluid combining to form a bulk flow in a tank viewed in a direction aligned 

with gravity. 

Each propeller used to create the bulk flow produces a stream at a single velocity which may be different to its 

neighbours. This difference in velocity leads to a turbulent shear layer between inlets and can lead to a stepped or 

curved plan view velocity profile in the test section of the tank where a plug profile is usually required. It is, therefore, 

necessary to understand and quantify the nature of the shear between individual input streams. This paper will consider 

the evolution of the shear layers between such inlets. An outline of the simulation is given in Figure 3 where two flows 

at different velocities combine to create a vertical shear.  

 

 

Figure 3 A 2D slice of separate streams of driven fluid combining to form a bulk flow in a flume viewed from the 

side with gravity aligned down the page. Black lines indicate the type of velocity profile development expected. 
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The final aim of this study is to support the development of a 3D numerical model of a combined wave and current test 

facility. It may be necessary to model more than twenty-eight turbulent shear layers each in 3D extending from the free-

surface to the tank floor then downstream. Detailed models of the basin will also require waves to be simulated.  The 

choice of numerical model is therefore critical in allowing such simulations to be tractable without recourse to very large 

high performance computers. 

 

Initially, experimental data from a smaller scale test will be used to validate a Reynolds Averaged Navier-Stokes (RANS) 

numerical model. This will then be used to predict the development distance and plan view velocity profile in a full scale 

tank. Along with this, the implication to accuracy and computational cost of various turbulence models approaches to 

boundary conditions and geometry representation will be explored. The turbulence models tested will include: k -ε 

standard model; RNG k -ε model; k -ω and Reynolds shear stress approach.  

 

The inlet boundary can be represented in two ways: The first excludes geometry and uses the measured point velocities 

immediately downstream of the flow combination to provide node values of velocity at the inlet boundary; the second 

method includes the geometry of the splitter plate between the streams. Excluding the geometry may lead to a reduction 

in computational cost, without reducing the usefulness of the model to engineering design. 

 

Subsequently, the model will be extended to provide a simplified 2D representation of the 3D tank flows in a combined 

current and wave tank. Once this extended model is proven to be numerically sound, it will be used to find a combination 

of inlet settings that generates a plan view velocity profile that is suitable for testing arrays of offshore devices. This 

generated test area must have a uniform and developed velocity profile and a prescribed level of turbulence to be sea-

representative as well as being large enough to allow realistically spacing array of scaled tidal power generation devices. 

2.1 NUMERICAL SIMULATION OF TURBULENT MIXING LAYERS  

 

As well as being the dominant factor affecting the behaviour of the 3D flow in a combined current and wave tank, 

turbulent mixing layers are an important and well-studied phenomenon in fluid dynamics. Turbulent mixing layers are a 

kind of Kelvin-Helmholtz instability that develops when flows of different speeds combine with significant shear. This 

results in a 2D span-wise series of vortical structures known as rollers (Loucks and Wallace 2012). Figure 4 is an 

experimental image showing a turbulent mixing layer.    
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Figure 4 Turbulent mixing layer image (Loucks and Wallace 2012). 

A detailed physical explanation of turbulent mixing layers in the context of a combined current and wave tank is given in 

a previous paper (Robinson, Richon et al. 2014) 

 

Many numerical models have been created to provide a means of predicting and investigating the behaviour of a 

turbulent mixing layer without having to create a representative experiment. Balaras et al. (Balaras, Piomelli et al. 2001) 

suggests that for turbulent mixing layers, which are very sensitive to small upstream changes, numerical simulations 

have the benefit of being able to precisely define inputs and the environment when compared to physical experiments. 

 

The typical turbulent mixing layer involves large vortical structures which eventually break down to the Kolmogorov 

scale, then dissipate due to viscosity. This breakdown is physically complex and therefore requires powerful numerical 

techniques to produce a representative simulation. 

 

In this work the aim is to accurately simulate how the two separate streams combine after the splitter plate with the 

turbulent mixing layer eventually developing to form a flow with a uniform single velocity profile. This development may 

take a length equivalent to a thousand times the diameter of the first roller. 
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Although simulations of turbulent mixing layers have been attempted analytically by Neu (Neu 1984) and using 

Lagrangian numerical methods by Ashurst and Meiburg (Ashurst and Meiburg 1988), most attempts have involved 

numerical solutions of the Navier Stokes equations. The first method in this category is Direct Numerical Simulation 

(DNS) which attempts to solve the Navier-Stokes equations for all scales of motion. 

 

Rogers and Moser (Rogers and Moser 1992) use DNS in an attempt to answer some questions related to the early 

development of the mixing layer. Rather than modelling the area the rollers progress through as they move downstream 

the approach used simulates just the pair of rollers as they develop over time. This method is analogous to moving a 

picture frame downstream so if always contains the same rollers, reducing the computational requirements. Although 

this is a useful simplification Comte et al. (Ducros, Comte et al. 1996) states that once the upstream perturbations 

become important a spatially growing simulation is required. The DNS simulation was performed by solving vortices 

equations derived from the Navier-Stokes equations in a Eulerian grid with a size of 192 x 212 x 128 cells with a method 

described by Spalart, Moser and Rogers (Spalart, Moser et al. 1991). The simulation is begun in a clean state with one 

layer moving above the other with no turbulent mixing layer. This is then allowed to run on in time; due to the boundaries 

being periodic the turbulent mixing layer develops (Moser and Rogers 1993).  

 

DNS is a useful tool when the modelled phenomenon can be resolved on at a single scale accurately resolved  with a 

computable number of grid cells. As the turbulent eddies break down and reduce in size there becomes a point where 

DNS is impractical. In 2001 Balaras et al (Balaras, Piomelli et al. 2001). stated that DNS using computational grids 

significantly larger than those done by Rogers and Moser (Rogers and Moser 1994) are prohibitively expensive. 

Fortunately once the eddies reduce beyond a certain size relative to the bulk flow representing them directly is no longer 

necessary to achieve a usefully accurate prediction of the bulk flow behaviour. A method that is suited to this kind of 

phenomena is Large Eddie Simulation (LES) were eddies that are large relative to the bulk flow size are directly 

simulated using DNS. The effects of the small eddies are represented indirectly by equations known as a sub-grid model. 

LES uses spatial and sometimes temporal filtered Navier-Stokes equations and choose what features to resolve using 

a filter function. The simplest sub-grid model that have been shown to be accurate are based on the turbulent viscosity 

approach to turbulence modelling ie	Boussinesq hypothesis, where the effects of turbulence manifest as a modified 

viscosity.                                                                                                                                                                                            

Comte et al. (Comte, Silvestrini et al. 1998) uses LES to simulate a spatially growing turbulent mixing layer. The 

numerical code used in this study solves the complete Navier-Stokes and LES equations. Sub-grid scale effects are 
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modelled using a filtered structure function  model as described by Ducros et al. (Ducros, Comte et al. 1996). Comte et 

al. (Comte, Silvestrini et al. 1998). states that this LES based model can be used at far higher Reynolds numbers than 

previous DNS simulation. This, along with the ability to compute more complex geometry, makes it a useful design tool 

for vibration prediction in rocket boosters.  The method shown here appears to have the capability to model a series of 

around five rollers using super-computers current to 1998 although no analysis of capability or the computational power 

used is given. No sensitivity analysis of grid size or initial conditions is documented by Comte et al. (Comte, Silvestrini 

et al. 1998) the importance of these tests in this context is stated in the later work of Balaras et al. (Balaras, Piomelli et 

al. 2001). 

 

Balaras  et al. (Balaras, Piomelli et al. 2001) uses LES to further investigate turbulent mixing layers and states that the 

reduced computational cost allows a large range of parameters to be investigated with greater detail than with DNS. 

They also note that if the sub-grid model or numerical resolution is poorly selected LES can be very inaccurate. As with 

Comte et al. (Comte, Silvestrini et al. 1998) the complete Navier-Stokes equations are solved for the large scale motions 

and an eddy viscosity based model is used for the small scales. Sensitivity analysis of grid size, domain size and initial 

conditions were completed along with positive validation against results obtained by DNS. Therefore Balaras  et al. 

(Balaras, Piomelli et al. 2001) states the results can be trusted in terms of mesh resolution and model selection. However 

the solution was still found to be sensitive to initial conditions and boundary size. Balaras  et al. (Balaras, Piomelli et al. 

2001) concludes with the support of some experimental work that this could be due to real turbulent mixing layers 

behaviour being highly sensitive.  Although this simulation was not spatially growing and uses periodic boundary 

conditions twenty rollers in three dimensions can be seen within the computational domain showing the development of 

computational power since the work of Comte et al. (Comte, Silvestrini et al. 1998). 

 

An example of a spatially growing 2D simulation of a turbulent mixing layer is given by Bogey, Bailly and Juvé (Bogey, 

Bailly et al. 2000). Here specific details are given of the computational mesh and computational time and power.  

 

A third method of simulating a turbulent mixing layer could be the use of a RANS model with a turbulence model to 

provide closure. In this approach there is no attempt to directly model turbulent eddies. Instead it works much like the 

sub-grid model in LES and describes earlier except it is used for all scales of motion by time averaging the Navier-

Stokes equations. In RANS no filtering is applied however grid size determines whether an eddy will be resolved. By 
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performing a mesh independence study (Oberkampf and Blottner 1997) the effect of resolving eddies on the simulation 

outcome can be determined. 

 

There is little evidence of this type of model being employed to simulate turbulent mixing layers possibly because the 

accurate representation of large coherent vortices is critical in the type of study described above.  

 

Previous studies like the ones discussed above have computed as few as two and at most twenty rollers. In this study 

the area of interest extends far further downstream of the splitter plate and may stretch a distance of a thousand times 

the diameter of the first roller downstream with the resolution of the rollers less critical than the downstream velocity and 

turbulence profiles.  If a RANS approach accurately predicts the flow of interest here it should therefore indicate that the 

far field downstream results are insensitive to how well the rollers are modelled before they lose coherence. 

 

 

The eventual aim of this study is to support the development of a 3D numerical model of a combined wave and current 

test facility. It may be necessary to model more than twenty eight turbulent shear layers each in 3D extending thousands 

of roller diameters downstream and thousands of roller diameters deep in one simulation. This situation is many orders 

of magnitude beyond anything computed to date with DNS and LES where a 3D mixing layer with nineteen rollers 

downstream and significant depth has only recently been computed by Comte et al. (Comte, Silvestrini et al. 1998). With 

this and the simulation costs given by Bogey, Bailly and Juvé (Bogey, Bailly et al. 2000) a simulation of this magnitude 

required for a combined wave and current tank may be far in the future using LES or DNS. 

 

The reduction in computational requirements that may result from using a RANS may make tank simulation possible 

with current computer technology and could provide an accurate prediction that is useful for engineering design and 

control strategy testing.  

 

Although there are no example of RANS being used for a turbulent mixing layer in the literature there are examples for 

related flows. 

 

Feng et al. (Feng, Olsen et al. 2005) used a RANS based method to investigate turbulent mixing of a confined planar-

jet. A confined planar-jet is a jet confined between two jets of lower velocity specifically designed to enhance mixing 
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(Feng, Olsen et al. 2005). Between the jets a turbulent mixing layer may develop. The visualisation presented does not 

show eddies with the coherent structure seen in works described earlier although some structure is clear and Feng et 

al. (Feng, Olsen et al. 2005) states that large eddies are present and fully resolved in the RANS simulation 

 

Feng et al. (Feng, Olsen et al. 2005) compares downstream mean velocity profile results obtained from experiments 

with PIV against RANS simulations using the k -ε model (Launder and Spalding 1974). They states that although the 

comparison is good the development rate of the bulk flow is slightly slower than the experimental result and this is likely 

due to a lower diffusion rate of turbulent kinetic energy for the RANS model. 

 

The k-ε model contains constants which tune turbulent kinetic energy and its dissipation rate.  Feng et al. (Feng, Olsen 

et al. 2005) does not give this information here but it is likely the default values given by Launders and Spalding (Launder 

and Spalding 1974) were used. These constants were set to give accurate predictions in a wide range of turbulent 

conditions however they may not be optimum for turbulent mixing layers. 

 

The findings of Feng et al. (Feng, Olsen et al. 2005) indicate that a RANS simulation may be successful for turbulent 

mixing layers although an exploration of the of the k -ε model parameters would have made this more solid. 

 

Liu et al (Liu, Feng et al. 2006). later extends this work using the same experimental setup with an improved PIV 

approach here eddies are clearly seen in the mixing layer. Liu et al(Liu, Feng et al. 2006). uses again uses a RANS 

simulations with the k -ε model. The conclusions on the performance of the simulation match those of Feng et al.(Feng, 

Olsen et al. 2005) 

 

Hybrids of spatially filtered LES and the time averaged RANS methods have also been found useful in some situations 

especially where walls have important effects. Hamba (Hamba 2003) gives a good example of this approach. However 

it will not be discussed here as wall effects are negligible for the type of turbulent mixing layer of mixing layer investigated 

in this article. 

  

Based on the gaps in knowledge found in this review into the modelling of turbulent mixing layers the following actions 

are required to economically enable the accurate simulation of 3D combined current and wave tanks: 
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• An assessment of RANS performance for mixing layers which takes account for recent turbulence modelling 

developments.  

• An assessment of the importance of simulating the splitter plate geometry on flow development. 

• An investigation into the effect of inaccurately prescribing turbulence values on downstream development. 

2.2 MODELLING WAVE AND CURRENT TEST TANKS 

Although many tanks exist where waves and currents combine none have the capability to combine 3D waves with 3D 

currents. This work is in support of a new type of tank and therefore will require new solutions. The use of curved and 

round wave tanks with wave-makers around the perimeter is well developed and is described by Taylor et al. (Taylor, 

Rea et al. 2003),Naito (Naito 2006) and Minoura et al. (Minoura, Takahashi et al. 2009). The work on 3D currents is 

limited to one source. Salter (Salter 2001) proposed a design for a tank that combined 3D waves and current and later 

created a scale model (Salter 2001, Salter 2003, Taylor, Rea et al. 2003). This design generates a 3D current by rotating 

aerofoils around the parameter of a tank and works on the same principal as a Voith-Schneider Propeller. Salter (Salter 

2003) states that testing proved the design generally provides a robust means of producing a 3D current. Although the 

3D current method used in the tank described here is different as it uses perimeter inlets like those in the tank proposed 

by Salter (Salter 2001), supporting the new tank's likely success. The tank proposed by Salter (Salter 2001) does not 

produce a bulk flow from stepped inlet flows like the tank being investigated here and therefore no further insight can 

be gained. 

 

Examples of the many numerical combined wave and current tanks created are provided by Buchmann et al. 

(Buchmann, Skourup et al. 1998) as well as Orloff and Krafft (Ortloff and Krafft 1997). These models were produced to 

test ocean structures and nether includes waves and current generation as waves and currents are more easily provided 

by prescribing boundary conditions. Orloff and Krafft (Ortloff and Krafft 1997) describe a RANS based method of 

producing a combined wave and current tank. The only example of absorbing wave-makers being directly modelled is 

described by Maguire (Maguire 2011). Maguire (Maguire 2011) uses the flow-3D (Hirt 1988) multi-phase  RANS code 

to simulate the behaviour of a wave-maker both producing and absorbing waves. This work, combined with that of Orloff 

and Krafft (Ortloff and Krafft 1997), demonstrates that all the capabilities required to directly simulate a 3D combined 

current and wave tank are feasible within a RANS code. 
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3.1 NUMERICAL MODEL 
 

A computational model was created to replicate the experiment performed in the related paper (Robinson, Richon et al. 

2014).This paper gives details of the experimental setup, with Figure 5 giving only an outline.  

  

Figure 5 A 2D slice of the experimental setup. 

In the experiment a single flow is selectively split in two then separated by a wall; one half is then slowed down and 

conditioned by a porous screen. It is not necessary to model the entire experiment. The Simulation areas tested are 

shown in Figure 5. 

 

In the experiment the propeller is set at three different speeds which determine the total flow rate. Three settings for the 

velocity ratio between the upper and lower stream, giving nine different test conditions in total. Here validation will be 

carried out using the experimental tests that represent the largest variation in flow conditions.  

 

The computational methodology is based on solving the RANS equations in a Eularian fixed grid implemented within 

the CFD code FLUENT (Fluent 2006).  Various turbulence models are used for closure.  

 

The simulations are run transiently with a variable time step controlled the predictor-corrector type of algorithm proposed 

by Gresho et al. (Gresho, Lee et al. 1980) and maintaining a truncation error of less than 0.001 until the flow becomes 

steady. In all cases tested the flow became steady and was to run in a non-time advancing steady mode until the all 

equation residual reached 1x10-7. 
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Second order upwind discretisation is used for the treatment of the advection term except for pressure where the 

Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) (Issa 1985) algorithm was used.  

 

The flow is simulated in 2D and geometry used for the test is simple, with the boundary conditions providing the 

complexity of the flow. The geometry is simply a rectangle 0.276m high and 6m long in the flow direction. 6m was found 

to be long enough that the downstream boundary condition has a negligible effect on the flow in the area of interest. 

 

The upstream inlet boundary condition is set by prescribing node values for u and v velocity, turbulent kinetic energy, k 

and turbulent dissipation rate, ε to match that recorded at the corresponding location in the experiment (Robinson, 

Richon et al. 2014).  The velocity is set to the mean experimental value and the turbulent quantities are approximated 

using Equation 1 and Equation 2 (Fluent 2006). The sensitivity to error of up to 100% in k is checked in section 4.3.  

 

 

 

Where:  

u = measured velocity 

I = measured turbulent intensity 

Equation 1 

  

 

Where:  

0.09        

 Turbulence length scale (0.006m for experiment) 

Equation 2 

The bottom boundary is set as a wall with a roughness matching the experiment. It was found that modelling the free-

surface made little difference to the result and added greatly to the computational cost. The PIV measurements do not 

extend to the free-surface and would need to be estimated.  Due to these factors the upper boundary was set as a free-

slip wall. 
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The physical properties of the water are set within the models based on conditions recorded in the experiments. The 

values used in the computations were found by using the experimental temperature and the tables provided by White 

(White 1994): 

 

• Density; water = 996.54 kg/m³  

• Viscosity; water = 8.541x10-4 kg/m-s 

• water temperature 16°C 

 

The mesh created for the computational model is a structured quadrilateral mesh with a higher concentration of cells at 

the fluid inlet, boundary layers and mixing zone where the separate streams combine.  

 

The basic mesh structure is shown in Figure 6. In the stream-wise direction the mesh expands at a rate of 1.05 from the 

inlet boundary to the outlet boundary. Across the flow the mesh expands at a rate of 1.05 to the upper boundary from 

the splitter plate location. Between the splitter plate and the lower wall the mesh expands to the midpoint at 1.1 then 

contracts again at 1.1 to properly resolve the boundary layer on the bottom wall. This mesh strategy is used throughout. 

 

Figure 6 Example mesh 

A mesh independence study was completed to ensure that the solutions were independent of the number and location 

of the cells. This test was computed by creating a series of different meshes with identical geometry and identical 

boundary conditions. For each mesh the same variable, such as point velocities were recorded. Based on these 

quantities values a mesh was selected which was shown to offer the same result as one of a higher mesh density.  
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Mesh independence was checked for every case tested to ensure that error due to mesh resolution was less than 1% 

throughout. 

 

Due to the fact that the k-ε model RNG based method was proven more useful for a low cost mixing layer simulation a 

more detailed study was conducted to ensure an optimised solution. This investigation is described below. 

 

Using the meshing strategy described above a series of eight simulations was created with total mesh sizes between 

227 and 73017 cells. 

 

As the ability to predict the downstream development of the mixing layer is critical, the error in the prediction of the 

velocity profile 930mm downstream of the splitter plate was chosen as the comparison criteria. 

 

To enable this comparison each of the velocity profile for each total mesh size had to be transposed onto an identical 

set of Y locations using linear interpolation. The maximum and average deviation from the profile of the mesh with the 

highest resolution is plotted in Figure 7. 

 

 

Figure 7 Mesh error vs. the number of cells used for the development of an Identical turbulent mixing layer. 

 

The error remains below 1% when more than 1770 cells are used but if less than this the error greatly increases. 
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The simulation time for the case with 1770 cells (MI1) is 1620 seconds for 1 second of flow-time with a fixed transient 

time step of 0.001 seconds. 

 

All equation residuals were converged to 0.0001 and the simulation was carried out on a four core 2.4GHz Intel 

processor.  

3 RESULTS 

To investigate the simulation of turbulent mixing layers with RANS and provide the necessary validation for a model of 

the flow in a combined current and wave tanks a series of tests were carried out. The parameters and results of these 

are described in Table 1. 

 

Case 

u 

(m/s) 

uh 

(m/s) 

ul 

(m/s) R (m/s) 

Initial location x 

(mm) 

Turbulence 

model Inlet Comment 

1A 0.62 0.84 0.48 0.57 22.5 k-ε RNG BC 73017 cells 

1B 0.62 0.84 0.48 0.57 22.5 k -ε STD BC   

1C 0.62 0.84 0.48 0.57 22.5 R-SST BC   

1D 0.62 0.84 0.48 0.57 22.5 k -ω STD BC   

1E  0.38 0.5 0.3 0.6 21.7 k -ε RNG BC   

1F  0.59 0.78 0.48 0.62 21.7 k -ε RNG BC   

2A 0.62 0.84 0.48 0.57 22.5 k -ε RNG GEO Includes  geometry 

2B 0.62 0.84 0.48 0.57 22.5 R-SST GEO Includes  geometry 

3A 0.62 0.84 0.48 0.57 22.5 k -ε RNG BC Double turbulence 

3B 0.62 0.84 0.48 0.57 22.5 k -ε RNG BC Half turbulence 

MI1 0.62 0.84 0.48 0.57 22.5 k -ε RNG BC 1770 cells 

 

Table 1 Table of cases for single mixing layer simulations. 

The investigation will begin with comparison of turbulence model performance against experimental data. 
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3.1 TURBULENCE MODELS 

 

To achieve an accurate prediction of the mixing layers development the selection of turbulence model is critical. More 

complete approaches such as Reynolds Stress equation Model (RSM) can give a benefit in accuracy but require more 

transportation equations to be solved, therefore increasing computational cost. A proven model for mixing layers which 

add no transportation equations and therefore computationally cheap is the mixing length model (Vesteeg and 

Malalasekera 2007). However this model is incapable of describing the complex flows and re-circulation that may be 

present in the full 3D tank model and therefore will not be suitable for the final application. The turbulence models tested 

here must have the potential to be useful for the final application in combined wave and current tanks. The approaches 

tested here will be the standard k -ε model, the Re-Normalisation Group (RNG) version of the k -ε turbulence model, 

the Wilcox K-ω model and the Reynolds Stress equation Model (RSM). 

 

One of most commonly used turbulence models is the k -ε model developed by Launder and Spalding (Launder and 

Spalding 1974).  

 

This k -ε model can account for changes in length and velocity scales and is based on the assumptions (Boussinesq 

hypothesis) that turbulent behaviour is isotropic and that Reynolds stresses are proportional to the mean rate of 

deformation. 

 

The k -ε model consists of two transportation equations for mean turbulent kinetic energy, k and ε, the turbulent 

dissipation rate of k. 

 

The equation for k and  ε are used here in their standard form proposed by Launder and Spalding (Launder and Spalding 

1974), and implemented in the Fluent CFD code (Fluent 2006).  

 

Where this model is used the constants in the standard k -ε model are set as: 

0.09         1.30        1.44       =1.90 
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The near wall flows are simulated using the standard wall function proposed by Launders and Spalding (Launder and 

Spalding 1974) where the standard k-ε model is used. 

  

A variant of  tested here is the Re-Normalisation RNG  turbulence model (Yakhot, Orszag et al. 1992). 

This model accounts for the effects of small scale turbulence with a random forcing function in the RANS equations. 

With the RNG model the small scales of motion are removed from the governing equations with their effects expressed 

in terms of large scale motion and modified viscosity. The RNG versions of the time averaged equation governing k and 

ε  used here were derived by Yakhot et al. (Yakhot, Orszag et al. 1992).  

 

The constants for the RNG k -ε turbulence model are set as throughout: 

0.0845         1.39        1.42       =1.68  4.377  0.012 

 

The result of this is improved predictive accuracy in some rotating flows for little extra computational cost over the 

standard k -ε turbulence model (Yakhot, Orszag et al. 1992) and may be more suitable for the final application. A more 

detailed description of the model is provided in Vesteeg and Malalasekera (Vesteeg and Malalasekera 2007). 

 

A more complex Reynolds shear stress model, which accounts for turbulent anisotropy and solves an equation for each 

of the six Reynolds equations, is also tested here. This model was developed by Launder, Reece and Rodi (Launder, 

Reece et al. 1975). The implementation of the RSM model used in FLUENT is described in the FLUENT user guide 

(Fluent 2006). 

 

Wilcox k -ω model (Wilcox 1988) is also tested for completeness as it has been found to be useful in some general 

purpose CFD simulations (Vesteeg and Malalasekera 2007). 

 

The cases used to investigate the performance of various turbulence models are detailed in Table 1. 

 

As the ability to predict the downstream development of the mixing layer is critical the error in the prediction of the 

velocity profile 930mm downstream of the splitter plate was chosen as the comparison criteria. 
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To enable this comparison the velocity profiles from each case had to be transposed onto an identical set of Y locations 

using linear interpolation. 

 

The maximum and average deviation from the experimentally measured profile is plotted in Table 2: 

 

Case 

Turbulence 

model  

Mean 

error % 

Max 

Error % 

1A k -ε RNG 1.67 3.14 

1B k -ε std  1.84 4.18 

1C RSS 2.15 9.2 

1D k-ω   14.3 40 

1E k -ε RNG 3.13 10 

1F k -ε RNG 4.38 10.6 

 

Table 2 Turbulence model comparison. 

 

The flow in k -ω simulation case 1D developed significantly earlier than the experiment leading to large errors. This 

shows that the default setup of the model is not suitable for mixing layer although a parametric study of the model 

constants would be need to confirm this. The k -ε models gave very similar results at a similar computational cost. The 

RSS model gave a comparable result to the k -ε models but at a computational cost two orders of magnitude higher due 

to the necessity to solve transiently. A velocity profile comparison of the methods against the experiment is shown in 

Figure 8. The simulated velocity profiles show a slight difference from the experiment, with all numerical methods 

showing the same general shape.  The velocity profiles provided throughout do not reach the free-surface and only 

extend to 250mm from the lower wall. This is due to the inability of the experimental technique to measure accurately 

close to the free-surface (Robinson, Richon et al. 2014). The free-surface would be located 276mm from the lower wall 

in all figures including Figure 8.  
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Figure 8 Comparison of velocity profile at x=930mm against experimental data for various turbulence models 

including; k -ε RNG (case 1A), k -ε std (case 1B) and RSS (case 1C). 

 

To check that the simulation method was robust two more simulations were set up using the RNG  turbulence 

model. The two cases were identical in geometry, model setup and boundary conditions but had different overall 

velocities and differences shear levels between the mixing layers. The parameters of these tests case 1E and  case 1F 

are given in Table 1. 

 

In general the simulations predict mixing layer development with similar levels of accuracy as with case 1A, Table 2. 

 

Although the general accuracy for case 1E is acceptable, by looking at the velocity profile downstream in Figure 9 it is 

clear that the prediction is better for the half closer to the free surface than the half close to the lower wall. 
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Figure 9 Comparison of velocity profile at x=930mm for Case 1E. 

 

Although the equation constant used in the standard and RNG  turbulence models were set to best describe a 

wide range of turbulent situations these settings were found to give acceptable accuracy here. In order to preserve the 

robustness of the approach for the final more complex application, where other mechanisms may create and dissipate 

turbulence, it is recommended that the values from the literature are preserved. 

3.2 GEOMETRY EFFECT 

 

In the experiment the two streams that lead to the turbulent mixing layer are separated by a splitter plate. The 

computational domain in the simulations detailed in section 4.1 starts just after the splitter plate removing the need to 

simulate the splitter plate geometry which reduces computational cost. The implications of this simplification are tested 

by setting up a simulation that includes the last 100mm of the splitter plate. The computational domain is shown in Figure 

5. The k -ε RNG model was chosen for this test with all other simulation settings as before. 
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By analysing the data from each simulation, then comparing the result to the experiment, it was clear that including the 

geometry had an effect on the downstream wake development. In Figure 10, Figure 11 and Figure 12 It is clear that 

when the splitter plate geometry is included the prediction of downstream development is slightly improved. 

 

Figure 10 Comparison of velocity profile at x=135mm for Cases 2A (k -ε RNG with geometry), 1A (k -ε RNG) and 

experimental data.   
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Figure 11 Comparison of velocity profile at x=300mm for Cases 2A (k -ε RNG with geometry), 1A (k -ε RNG) and 

experimental data.   
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Figure 12 Comparison of velocity profile at x=930mm for Cases 2A (k -ε RNG with geometry), 1A (k -ε RNG) and 

experimental data.   

 

The RSS model was also tested with the geometry included and found to have the same effect on development as 

described for the k -ε RNG simulation.  

3.3 TURBULENCE ERROR EFFECT 

There is some uncertainty in the measurements of turbulence used for the inlet boundary conditions in these simulations 

due to the experimental method. Here a test is performed to quantify the sensitivity to error in experimental turbulence 

measurements to the results of CFD recreations of turbulent mixing layers. To investigate these three identical 

simulations were setup, Table 1. Case 1A uses the experimental turbulence data; Case 3A is the identical but with 

turbulent kinetic energy doubled. In Case 3B the turbulent kinetic energy is set at half the experimental value. By 

comparing the downstream velocity profiles at X=930mm for each case the effect of turbulence error can be assessed. 

 

 

Figure 13 Effects of turbulence error for Case 1A (k -ε RNG), Case 3A (k -ε RNG 200%) and Case 3B (k -ε RNG 

50%). 

With a 100% error in turbulence the effect on the flow development is significant in terms of the profile shape, Figure 

13. The deviation from the velocity profile is around ±4%. This finding shows care should be taken in turbulence 
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measurements if they are to be used as boundary conditions in a turbulent mixing layer experiment. The measurement 

technique used to validate and provide the boundary conditions in the simulations presented here had an error of around 

±5% for point velocity measurements; therefore the error in profile prediction in this case due to the measurement error 

should be low. 

4.1 3D FLOW IN A COMBINED WAVE AND CURRENT TANK 

 

Having found an efficient and accurate means for predicting the development of a single turbulent mixing layer the 

method will now be extended to simulate the 3D flows in a simplified combined wave and Current tank. The k -ε RNG 

turbulence model chosen here was found to be the most accurate and efficient of those tested. Due to the small effect 

on downstream development the splitter plate geometry is omitted. 

 

To enable the model to be useful for control scenario testing it has to be possible to run many boundary condition setups 

quickly. With this in mind the tank model was simplified to a 25 metre 2D disc constructed from 28 flat lines. Figure 14 

shows how the computational domain and the edges are used as boundary conditions. In the 3D tank configuration 

shown in Figure 1 the flow is introduced from the bottom of the tank rather than the edges to enable the use of wave-

makers. This adds a 3D element that is not accounted for in the 2D model used here. It is not possible to offer at this 

stage any conclusions about how useful a 2D disc model might be for predicting flows in a tank of this configuration. 



 

 25  
 
 
   

 

Figure 14 Computational domain superimposed on contours of velocity magnitude plot, the ideal array test area 

is the white contour at the centre of the tank. 

The mesh used to compute this case is based on the structure and density found in section 3.1. A quadrant of the mesh 

used highlighting two inlet edges is shown in Figure 15. 

 

Figure 15 2D disk mesh 
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To check the mesh strategy was offering the same accuracy demonstrated in Section 3.1 a case was created where the 

cell count was doubled. This doubled case was then compared to the result of the initial simulation that was created 

using a mesh resolution based on previous findings. The maximum and average deviation between the centre line 

velocity profiles (shown in Figure 14) is 0.2% and 0.06% respectively. As before the simulations are run transiently to 

the same convergence criteria until the flow become steady. 

 

If you had and infinite number of inlets you would have the maximum possible influence over the behaviour in the tank. 

Unfortunately, due to the 3D nature of the final problem the more inlets you have the smaller the propellers have to be 

to provide the control input. This increases complexity and reduces efficiency. The compromise between controllability 

and propeller size chosen here is twenty eight 1.8 metre diameter propellers to drive twenty eight inlets as shown in 

Figure 14. 

 

The control inputs from the propeller and inlet systems are represented as common boundary conditions. In Figure 14 

a boundary condition setup that leads to an acceptable bulk flow pattern is shown. The three condition types used are 

first a prescribed positive velocity inletting fluid at a fixed rate across the boundary edge; second, a prescribed negative 

velocity removing fluid at a fixed rate across the boundary edge; and third a Neumann type pressure boundary labelled 

PB in Figure 14 . The Neumann type pressure boundaries ensure that the net flow in and out of the domain equals zero. 

This behaviour is analogous to a stationary propeller allowing fluid to pass freely and balances the flows in the way the 

under-floor plenum chamber would in the real tank, Figure 1. In a physical tank the turbulence level at the inlet is 

controllable by the design of the inlet vanes and the porous screen that is attached to its underside. Therefore the 

turbulent intensity can be specified at a uniform 10% with a length scale of 0.005 metres. 

 

To find a suitable boundary condition setup for the twenty-eight inlets an iterative process was used, greatly aided by 

the ability of the model to produce a converged solution in 60 minutes on the same computer used in section 3.1. The 

result presented in Figure 14 shows a large usable test area in the centre of the tank (14 x10 metres) where the velocity 

is relatively uniform and suitable for array testing. The centre line velocity profile (Figure 16) is smooth showing that by 

this point the turbulent mixing layers are totally dissipated, confirming that this tank configuration is able to provide the 

necessary performance. 
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Figure 16 Tank centre line velocity profile. 

The results discussed here are strong evidence that a group of conditioned axial flow impeller arranged around the 

perimeter of a circular tank to collectively create representative sea conditions. The model described can also be used 

to predict the control inputs to recreate less common sea conditions such as shearing flows and transient behaviour. 

 

4.0 CONCLUSIONS 

 

Although this work has an application to current and wave testing tank design, turbulent mixing layers is a classic fluid 

dynamic case which can be seen in nature and many engineered flows. Therefore these findings have a wider 

applicability. The results for the validation case of combining two streams to form a single turbulent shear layer show 

that the k -ε standard model, RNG k -ε model and a Reynolds shear stress approach all provide accurate predictions of 

how turbulent mixing layers develop. The RNG k -ε model proved the most accurate with the k -ω model not performing 

well in its default configuration. 
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The results prove that RANS is a useful simulation tool for turbulent mixing layers when the far-field development is the 

critical measure. This also proves that proper resolution of the first rollers and their breakdown is not required to achieve 

a useful accuracy of far-field downstream development for engineering. This removes the need for DNS or LES and 

enables the modelling of complex systems containing numerous and sizeable turbulent mixing layers such as combined 

current and wave testing tanks to be modelled with an available level of computing power. 

 

The inclusion of the splitter plate geometry gives a slight improvement in the accuracy of downstream development 

prediction however this improvement not significant enough to make the increase in computational time and model 

complexity worthwhile in the context of a current and wave testing tank. 

 

Having tested the effect of an inaccuracy in the measurement of turbulence it was found that for a given error in 

turbulence the resulting error in point velocity prediction is twenty-five times less, meaning that PIV results are suitable 

to provide boundary conditions for simulations. 

.  

Once the model was validated it was demonstrated that the approach could be extended to a simplified 2D model of the 

3D current flows around a combined current and wave testing tank. The model helps prove the concept of using groups 

of conditioned axial flow impellers arranged around the perimeter of a circular tank to collectively create representative 

sea conditions over a large enough area to allow the testing of arrays of off-shore devises. The method is also be used 

to predict the control inputs required to recreate common sea conditions.  
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