
State of Charge Estimation Framework for Lithium-ion 

Batteries Based on Square Root Cubature Kalman 

Filter under Wide Operation Temperature Range 
 

Jiangwei Shen1, Jian Xiong1, Xing Shu1, Guang Li2, Yuanjian Zhang3, Zheng Chen1, 2* and Yonggang Liu4** 
1Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650500, China 

2School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United 

Kingdom 
3School of Mechanical and Aerospace Engineering, Queen’s University Belfast, BT9 5AG, Northern Ireland 

4State Key Laboratory of Mechanical Transmissions & School of Automotive Engineering, Chongqing University, 

Chongqing, 400044, China 

Email: shenjiangwei6@163.com, xjebox@qq.com, shuxing92@kust.edu.cn, g.li@qmul.ac.uk, chen@kust.edu.cn, 

andylyg@umich.edu 

Corresponding Author: Zheng Chen (chen@kust.edu.cn), and Yonggang Liu (andylyg@umich.edu) 
 

Abstract: Due to the significant influence of temperature on battery charging and discharging performance, 

exact evaluation of state of charge under complex temperature environment becomes increasingly important. 

This paper develops an advanced framework to estimate the state of charge for lithium-ion batteries with 

consideration of temperature variation. Firstly, an accurate electrical model with wide temperature 

compensation is established, and a series of experiments are carried out under wide range time-varying 

temperature from -20 °C to 60 °C. Then, the genetic algorithm is leveraged to identify the temperature-

dependent model parameters. On this basis, the battery state of charge is accurately estimated based on the 

square root cubature Kalman filter algorithm. Finally, the availability of the proposed method at different 

temperatures is validated through a complicated mixed working cycle test, and the experimental results manifest 

that the devised framework can accurately evaluate state of charge under wide time-varying temperature range 

with the maximum error of less than 2%. 

Key words: state of charge, temperature compensation model, time-varying temperature, lithium-ion battery 

I. INTRODUCTION 

Owing to the merits of long service lifetime and high energy density, lithium-ion (Li-ion) batteries have 

been progressively considered as the mainstream energy storage solutions, especially in electric vehicles (EVs) 

applications [1]. However, improper utilization of Li-ion batteries may result in thermal runaway, fire or 

explosion, significantly affecting operation safety of EVs. To pledge safe and efficient operation of Li-ion 

batteries, increasingly high requirements of monitoring internal state and ensuring safe operation have been 

imposed on battery management system (BMS) [2]. As a critical task of BMS, accurate estimation of state of 

charge (SOC) can supply the information of how much electric capacity is left in the battery and how long the 



battery can be fully charged [3]. In addition, accurate SOC knowledge can be conducive to avoidance of abuse 

operation, such as over-charge/discharge, and supply valuable reference for state of health (SOH) prediction 

and cell balance management in a battery pack. Usually, SOC can be expressed by the ratio of the remaining 

available capacity over the nominal capacity [4]. Obviously, SOC cannot be measured directly but only be 

estimated indirectly from the measured variables such as voltage, current and temperature [5]. Moreover, SOC 

can be significantly affected by external operating conditions (e.g. time-varying load current and ambient 

temperature), leading to certain difficulty of robust estimation [6]. How to accurately estimate the SOC under 

time-varying conditions becomes one of the main bottlenecks in BMS [7]. 

In recent years, many researchers have paid much attention to battery SOC estimation, and a mass of 

advanced methods have been promoted, mainly including coulomb counting method, characteristic parameter 

methods, machine learning-based methods and filtering algorithm-based methods [8]. In [9], a comprehensive 

investigation of the most commonly used battery modeling and state estimation methods for BMSs is performed. 

The coulomb counting method has been widely employed in practice due to its simplicity and easy 

implementation. However, its accuracy heavily depends on the fidelity of measured parameters and initial SOC 

value [10]. The commonly used characteristic parameter-based methods contain internal resistance method, 

chemical impedance spectroscopy method and open circuit voltage (OCV) method. However, these methods 

cannot estimate SOC online due to the limitation of test conditions and cannot be applied in EVs directly [11]. 

Machine learning-based methods can reveal the implicit relationship between characteristic parameters and 

SOC [12]. It does not require the prior knowledge of internal chemical or physical characteristics of Li-ion 

batteries and therefore features an acceptable estimation accuracy [8]. Nonetheless, the machine learning-based 

methods require sufficient offline data for model training to reveal the underlying dynamic characteristics of Li-

ion batteries. Filtering algorithm-based methods in combination with different battery models, has become the 

research hotspot and features high estimation accuracy of SOC, owing to its preferable adaption capabilities and 

strong robustness [13]. However, these approaches can be influenced due to the model parameter variation, 

which are significantly affected by ambient temperature, aging state [14] and loading profiles [15]. The 

commonly used filter algorithms include Kalman filter (KF) family [16], sliding mode observer (SMO) [17] 

and particle filter (PF) [18]. In addition, the Luenberger observer and least square-based method are also adopted 

in SOC estimation [19]. Amongst them, KF and its extension have been widely investigated and employed. Ref. 

[20] investigates the estimation performance of unscented KF (UKF) and extended KF (EKF) for SOC on the 



basis of constructing a Thevenin equivalent circuit model (ECM), and the experimental results indicate that the 

UKF algorithm leads to better precision and faster correction speed than the EKF algorithm. In [21], to cope 

with the variation of noise covariance matrices, an adaptive covariance calculation based EKF (AEKF) is 

introduced to estimate the SOC of Li-ion batteries. The results indicate that the AEKF algorithm raises better 

noise suppression, and the evaluating error is less than 2%. In [22], the cubature KF (CKF), derived from the 

radial volume criterion of the third-order sphere, is employed to estimate SOC. It can utilize a group of volume 

points to border on the error covariance of nonlinear systems under the existence of additional Gaussian noise, 

and is quirt close to Bayesian filtering to conduct state estimation of nonlinear systems [23]. For the sake of 

reducing the computational burden and enhancing the stability of CKF, a square root CKF (SRCKF) algorithm 

is proposed in [24], which updates error covariance matrix based on the square root filtering technique, thereby 

solving the non-positive definite and non-asymmetric problems of error covariance matrix caused by errors 

rounding and improving the real-time performance of CKF. 

Although massive attempts have been made in SOC estimation under certain conditions, there still exists 

a gap to be filled when considering the temperature variation, especially under the condition of wide time-

varying ranges. Due to the instable working conditions of EVs, the battery temperature changes dramatically 

within a large range, leading to certain difficulty when conducting robust SOC estimation [25]. By considering 

the temperature influence, Ref. [26] establishes a temperature compensation model, considering the range of 37 

oC to 40 oC with an interval of 1 oC, to estimate SOC via the EKF. In [27], to promote the SOC estimation 

precision at different temperatures, temperature-varying parameters of the built electrical model are updated 

dynamically by introducing a compensation factor. In [28], a temperature compensation model mainly 

accounting for the temperature variation of 0 oC to 40 oC is built based on a two-order ECM, and then the SOC 

is estimated by the UKF, which declares that the maximum estimation error is less than 3%. In practical 

applications, the battery temperature dynamically changes within a large range (usually between 10 oC and 50 

oC), thus significantly affecting estimation accuracy of SOC [29]. Thus, it is imperative to establish a 

temperature-dependent electrical model to cover the whole operation temperature range [30], and then the SOC 

can be estimated robustly with the help of advanced filters [31]. 

Motivated by this, an electrical model with wide temperature compensation is established on the basis of 

a two-order resistance capacitance (RC) ECM, for fully accounting for the evolution of ambient temperature 

and resolving the low efficiency of battery model under wide temperature ranges. Moreover, the battery capacity, 



OCV are tested under the wide temperature range from -20 ℃ to 60 ℃ with 10 ℃ as an interval, and the 

accurate model parameters are obtained through genetic algorithm (GA). Then, the SRCKF method with the 

fusion of temperature variation is advanced to estimate the battery SOC. The experimental validations are 

carried out at different temperatures and compared with the commonly addressed methods to emphasize the 

advancement of the presented framework.  

The residual of this paper is listed hereafter: the ECM, battery experiment and parameters identification 

are elaborated in Section II. The flowchart of SRCKF algorithm and estimation steps of SOC are detailed in 

Section III. In Section IV, the established model and the proposed SOC estimation method are verified and 

discussed under complex environmental temperatures. Section V draws the main conclusions of this paper. 

II. BATTERY MODELING AND CHARACTERIZATION TEST  

A. Battery Modeling 

The battery models can be generally summarized into three categories: ECM, electrochemical model and 

data driven model [32]. Although the electrochemical model and data-driven model exhibit high accuracy in the 

whole temperature range, they are often limited in practical applications due to the heavy calculation intensity 

and massive experimental data requirements. However, the ECM is symbolized by electronic components to 

simulate the electrical behaviors of Li-ion batteries, and can easily and simply convert the internal chemical 

reaction into intuitive external characteristics, thus being widely adopted in practice [33]. In particular, two-

order RC ECM can clearly pretend the concentration difference polarization and electrochemical polarization 

characteristics of Li-ion batteries to improve the model accuracy without much increase of complexity [34]. As 

such, it is employed in this study for modeling the battery and consequently facilitating the SOC estimation, as 

shown in Fig. 1. 

In Fig. 1, ( )tU t   means the terminal voltage, ( )I t   denotes the current, 
1( )U t   and 

2 ( )U t   are the 

voltage drop of the corresponding RC network respectively, 
0R  represents the ohmic internal resistance, jR  

and jC   ( 1,  2j =  ) denote the polarization resistance and capacitance of the battery, respectively, ( )OCU t  

denote the OCV, which is a nonlinear function of battery SOC and temperature T , as: 

 ( ) ( , )OC ocvU t f SOC T=  (1) 

According to the Kirchhoff law, the following state equations can be yielded, as: 
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Based on the Coulomb counting, the SOC can be obtained as:  

 ( 1) ( ) ( )
n

t
SOC k SOC k I k dt

C


+ = +   (3) 

where 
nC   denotes the battery nominal capacity, t   and    represent the sampling interval and coulomb 

efficiency, respectively. 

B. Experiments and Parameters Identification 

In this study, a lithium nickel cobalt manganese (NCM) oxide battery with the nominal capacity of 4 Ah is 

selected as the experimental object, and its main specifications are displayed in Table I. To investigate the 

charging and discharging characteristics of batteries in a wide temperature range, the experimental tests are 

carried out from -20 oC to 60 oC with an interval of 10 oC, and include the capacity test, hybrid pulse power 

characterization (HPPC) experiments and different dynamic current cycles tests. Note that the sampling 

frequency is set to 1 Hz during the battery test. 

1) Capacity Test 

The capacity test is conducted with a temperature increase step of 10 °C from -20 °C to 60 °C, and the test 

procedures are detailed as below: 1) Charge the battery with the constant-current and constant-voltage (CC-CV) 

charge mode. Note that the constant current charge rate is 2A, the cut-off voltage and current in this step are 4.2 

V and 0.08 A, respectively. 2) Shelve the battery for one-hour rest. 3) Discharge the battery with 0.8 A current 

until the voltage declines to 2.75 V. 4) Repeat steps 1) to 3) for three times. Then, the maximum available 

capacity can be obtained by averaging the three experimental results. The results of discharge capacity test are 

exhibited in Fig. 2 (a). As can be observed, the available discharge capacity is less at both high and low 

temperature conditions. When the battery works within 30 ℃ to 50 ℃, the discharge capacity is almost the same 

as the nominal capacity. However, the discharge capacity decreases by 46.08% rapidly at -20 ℃, compared with 

the nominal capacity. The discharging voltage curves at -20 ℃ to 60 ℃ are depicted in Fig. 2 (b), in which we 

can find that the voltage drops with a fast speed at lower temperature, resulting in less discharge capacities. This 

phenomenon can be explained by the increase of internal resistance at low temperature. Moreover, the 



experimental results indicate that the proper operating temperature of the battery is between 30 ℃ and 50 ℃. 

2) OCV Test 

In this study, according to the test method in [35], the OCV test is conducted at different temperatures for 

estimating the SOC. Fig. 3 sketches the three-dimensional nonlinear relationship between OCV, SOC and 

temperature. As can be found, the relationship curves between OCV and SOC are almost consistent with the 

variation of temperature. To intuitively describe the functional relation between OCV and SOC, a mathematical 

polynomial equation can be exploited to fit the experimental data, as shown in (4). From Fig. 3, we can find that 

when the battery SOC is higher than 60%, the OCV increases gradually with the increase of temperature, 

whereas the OCV shows decrease trend with the raise of temperature under the low SOC. This indicates that the 

OCV can be affected by temperature in different SOC stages. 

 
5 4 3 2 1

1 2 3 4 5 6(s)OCVf p s p s p s p s p s p= + + + + +  (4) 

3) HPPC Test 

HPPC test can activate the polarization of Li-ion inside the battery through large pulse charging and 

discharging profiles. By means of the HPPC experimental test and corresponding identification algorithm, the 

model parameters can be easily identified [36]. In this study, the HPPC test are carried out under different 

temperatures, and the related results at 25 ℃ is shown in Fig. 4 (a). In this study, GA is leveraged to acquire the 

parameters of ECM, which contains 
0R , 

1R , 
2R , 

1C  and 
2C  in (2). GA is a kind of artificial intelligence 

method which simulates the biological evolution to achieve the global optimization. The GA algorithm shows 

predominant performance in both local and global parameters estimation of nonlinear systems. Although the 

GA algorithm requires high operation time and is difficult to attain online application, it can still be employed 

for model parameter identification due to its strong identification capability [37]. The identification 

consequences are demonstrated in Fig. 4 (b) to (f). It can be found that with the rise of temperature, 
0R , 

1R  

and 
2R   decrease rapidly; while the polarization capacitance 

1C   and 
2C   increase slowly. The parameters 

variation trend shown in Fig. 4 indicates that the battery’s charge/discharge property and model parameters are 

dramatically influenced by temperature variation.  

In the next step, the process of applying the SRCKF to estimate SOC will be detailed, and the battery model 

parameters will be dynamically updated according to the present temperature. 



III. SOC ESTIMATION ALGORITHM 

Compared with the conventional EKF and its family algorithms, SRCKF can not only solve the problem 

of inferior accuracy of Taylor expansions for EKF, but also overcome the non-positive definite and non-

asymmetric problems of error covariance matrix caused by error rounding for UKF and CKF. Although the PF 

algorithm demonstrates high SOC estimation accuracy, it needs a large number of samples, and the calculation 

labor is still burdensome. By considering these merits, the SRCKF algorithm is exploited for the SOC estimation 

in this study. The flowchart of the developed SOC estimation framework is sketched in Fig. 5. 

For a nonlinear system, the discretized state equation and output equation are formulated as: 
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where 
ku  and 

kY  are the input and output, respectively, 
kX  means the state vector at step k . 

k  and 
kv  

represent the system and measurement noise, and their covariance are 
kQ  and 

kR , respectively. 
kA , 

kB , 

kC  and 
kD  individually express the transfer, control, observation and feedforward matrixes of the system, as: 
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 0,k kD R=  (11) 

where 
1 1 1exp( 1/ )s R C= − , and 

2 2 2exp( 1/ )s R C= − . The implemention procedure of SOC estimation based on 

the SRCKF algorithm can be summarized as below: 

Step 1. Initialization. 

  0 0 0 0 0 0 0
ˆ ˆˆ , ( )( )Tx E X P E X X X X = = − −

 
 (12) 

where ( )E   represents the expectation, and 
0P  means error covariance matrix. 



Step 2. Generation of basic volume points 
i . 

  1
2

i i

m
 =  (13) 

where  1  denotes the complete and fully symmetric point set, which is the point set generated by arranging the 

elements of n-dimensional unit column vector and changing the element symbols. 

Step 3. Time domain update. 

Step 3. 1. Calculate the sample points, as:  

  
, 1 1 1 1 1 1

ˆ
ii k k k k k k

X S x
− − − − − −

= +  (14) 

where 
1 1

ˆ
k k

x
− −

 and 
1 1k k

S
− −

 represent the square root form of state error covariance and the predicted state 

at step 1k − , respectively. 

Step 3. 2. Estimate state at each sampling point, as: 

 , 1 , 1 1
( , )ki k k i k k

X f X u

− − −
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Step 3. 3. Calculate the next predicted value, as:  
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m
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i
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Step 3. 4. The square root of covariance matrix for state estimation error can be calculated, as:  

 1 1, 1 1 , 1 1

1
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X X x X x

m
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where tria  represents the QR decomposition, and 
, 1Q k

S
−

 is the square root form of process noise 
1kQ −
. 

Step 4. Measurement update. 

Step 4. 1. Calculate the input sampling points of the measurement equation, as: 
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ˆ
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Step 4. 2. Estimate the measurement output at each sampling point, as: 
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Step 4. 3. Calculate the predicted value of the observed output, as: 
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Step 4. 4. Calculate the square root of the observation error covariance 
, 1zz k k

S
−

, as: 
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where ,R kS  is the square root of measurement noise 
kR . 

Step 4. 5. Calculate the covariance of state and observation output error 
, 1xz k k

P
−

, as: 
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Step 4. 6. Calculate the filter gain 
kW , as: 

 
, 1 , 1

, 1

T

xz k k zz k k

k

zz k k

P S
W

S

− −

−

=  (25) 

Step 4. 7. Update the status, as: 

 
1 1

ˆ ˆ ˆ( )k kk k k k k k
x x W z z

− −
= + −  (26) 

Step 4. 8. Update the square root form of state error covariance, as: 

 ,1 1
([ , ])k k R kk k k k k k
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− −

= −  (27) 

 In the next step, the model will be firstly validated, and the model parameters will be analyzed, followed 

by the substantial SOC estimation validation. 

IV. EXPERIMENTAL VALIDATION AND DISCUSSION 

In this section, the constructed battery model is firstly validated, and then the proposed method is compared 

with the other conventional SOC estimation methods, followed by the SOC evaluation at different ambient 

temperatures. 

A. Model Validation 

To prove the validity of the constructed model, the battery is fully charged, followed by the urban 

dynamometer driving schedule (UDDS) test. The results at 20 ℃ are shown in Fig. 6. Note that the voltage error 



in this paper is defined as that in (28). Fig. 6 (a) shows that the estimated voltage can track the measurement 

value at 20 ℃ with high accuracy, even when the battery current fluctuates quickly. Fig. 6 (b) demonstrates that 

the maximum relative error at -10 ℃, 0 ℃, 20 ℃, 40 ℃ and 60 ℃ is 1.70%, 1.21%, 0.60%, 1.14% and 1.59%, 

respectively. The results manifest that the constructed ECM integrating temperature compensation can faithfully 

simulate the dynamic and static characteristics of Li-ion batteries in a wide temperature range. 

 , ,

,

100%
simulation t measuerd t

t

measuerd t

U U
error

U

−
=   (28)   

B. The Comparison of Different Methods 

To authenticate the predominance of presented SOC estimation framework, another two filters, namely 

EKF and AEKF are implemented to predict SOC, and their estimation results are evaluated and compared with 

that of the SRCKF algorithm. The ambient temperature is set to 25 ℃ during the test, and the current data 

obtained by UDDS are repeatedly imposed until the voltage drops to 2.75 V. Simultaneously, for the sake of 

validating the correction of the developed method to the initial error, the incipient SOC of the filter-based 

methods are all set at 80%, in contrast to the actual initial SOC of 100% with 20% error. 

Fig. 7 shows the SOC estimation results based on different filers, and the statistical errors are summarized 

in Table II, from which we can find that the SRCKF, AEKF and EKF can mitigate the impact of initial SOC 

error quickly. It respectively takes 66 s, 75 s and 92 s for the three algorithms to converge to 3% error boundary. 

Obviously, the SRCKF algorithm leads to the fastest convergence speed. This demonstrates that the proposed 

algorithm enables strong correction capability to the initial error. In addition to the autocorrection of initial error, 

the maximum absolute error (MAAE) of SRCKF, AEKF and EKF is 2.77%, 3.64% and 9.80%, the mean 

absolute error (MEEA) is 1.22%, 2.19% and 2.27%, and the root mean square error (RMSE) are 1.39%, 2.46% 

and 3.20%, respectively. Compared with AEKF and EKF, the SRCKF raises higher estimation accuracy. The 

main reason can be explained as follows. For nonlinear Gaussian systems, SRCKF approximates the mean and 

covariance of states by the third-order spherical radial volume criterion, which can dynamically adapt to the 

charging and discharging characteristics of Li-ion batteries. However, the EKF and AEKF algorithms linearize 

the battery charging and discharging process and ignore the high-order terms, thereby discounting the filtering 

accuracy. 

C. SOC Evaluation at Different Ambient Temperatures 

As stated in Section II, the estimation performance of SOC is highly related to the operation temperature. 



Here, the experiments under a wide operation temperature range of -10 oC to 60 oC are conducted to further 

investigate the environmental suitability of the developed estimation framework. A fully charged battery is 

firstly discharged at 14 oC for 1 hour, at 20 oC for 2 hours and then at 26 oC, 30 oC, 40 oC and 50 oC for 1 hour, 

respectively. The temperature evolution curve is shown in Fig. 8 (a). It can be seen that there is a fluctuation of 

temperature that is caused by the measure error of thermal chamber and the reaction time of temperature change. 

In this experiment, a hybrid cycle including UDDS and dynamic stress test (DST) is conducted. Fig. 8 (b) shows 

the current and voltage curves under the hybrid test cycle. 

1) Algorithm Verification at Low Temperature 

Fig. 9 shows the results of SOC estimation at -10 oC and 0 oC, and Table III depicts the performance 

evaluation results, in which the "Reference" represents the SOC value obtained by the Coulomb counting 

method at corresponding temperature, "T-SRCKF" means the result of SOC estimation obtained by the proposed 

SRCKF algorithm with the temperature compensation ECM, "SRCKF" refers to the SOC recognized by the 

SRCKF without temperature compensation, and the model parameters are identified at 25 ℃. It can be obviously 

found from Fig. 9 that the estimated value based on the presented framework and the traditional SRCFK can 

trace the reference SOC smoothly. The estimation error of the presented framework is less than 1% at -10 ℃ 

and 0 ℃ within the full SOC operating range; and in contrast, the MAAE of SRCKF method without 

temperature compensation are respectively 3.48% and 3.49% at -10 oC and 0 oC, demonstrating the necessity of 

adjusting the model parameters according to the ambient temperature for improving SOC estimation accuracy. 

2) Algorithm Verification at High Temperature 

The results of SOC estimation at 50 oC and 60 oC are shown in Fig. 10, and the detailed performance is 

exhibited in Table III. The results indicate that although the battery works at a high temperature (more than 50 

oC), the T-SRCKF algorithm can still estimate the SOC accurately. Concretely, the MAAE, MEAE and RMSE 

at 50 oC are 0.56%, 0.34% and 0.38%, respectively; and meanwhile, the MAAE, MEAE and RMSE at 60 oC 

are 0.32%, 0.21% and 0.23%, obviously lower than those of traditional SRCKF method. According to the 

estimation results at low and high temperatures, it is noticeable that large error appears at lower temperature due 

to serious polarization in this case. Additionally, lower range of SOC leads to higher SOC error. However, no 

matter what temperature the battery works at, the designed T-SRCKF algorithm can effectively improve the 

estimation performance in full SOC range. 

3) Algorithm Verification at Time-Varying Temperature Conditions 



For EVs, the working environment temperature is not constant. Meanwhile, the battery temperature will 

continuously increase with the EV operation until the thermal balance is reached. To further validate the 

effectiveness and adaptability of T-SRCKF algorithm, the cycle test under dynamic temperature conductions is 

conducted. Fig. 8 shows the experimental temperature and current variation curves. Note that the reference SOC 

is calculated via the ampere hour integration method, and the maximum discharge capacity constantly changes 

and updates with the variation of ambient temperature. Fig. 11 and Table III summarize the SOC prediction 

results, which show that the estimation error is less than 1.8%, and the MAAE, MEAE and RMSE are 1.75%, 

0.83% and 1.03%, respectively, slightly higher than that of constant temperature condition. This is mainly 

because the time-varying temperature can lead to large fluctuation of internal model parameters. The SRCKF 

algorithm without temperature compensation can also follow the variation of reference value; however, it incurs 

large error and fluctuation, and the MAAE is close to 3%. The experimental validations authenticate the 

proposed framework can better adapt to the temperature variation in practical application and precisely predict 

the SOC under complex temperature conditions. 

V. CONCLUSION 

In this study, an advanced framework based on square root cubature Kalman filter is proposed to enhance 

the estimation accuracy of battery state of charge in complex temperature environment. In the proposed 

framework, an electric model integrating temperature variation in a wide range of -20 ℃ to 60 ℃ is constructed 

to simulate its electric characteristics. The square root cubature Kalman filter algorithm is then exploited to 

estimate the state of charge considering the accuracy and computational efficiency. The precision and error 

correction ability of the devised framework are compared with traditional filter-based methods at 25 ℃, and the 

reference state of charge trajectory can be precisely followed in the whole operation range by the proposed 

method. In addition, more detail experiments are conducted at different working conditions, and the results 

elucidate that the developed framework can maintain the maximum absolute error, mean absolute error and root 

mean square error within 1.75%, 0.83%, and 1.03%, respectively, even with time-varying temperatures from 

10 ℃ to 50 ℃, verifying the preferable estimation capability and robust environmental adaptation of the 

proposed method. To conclude, the validation results indicate that the presented framework can estimate the state 

of charge with high accuracy under wide dynamic temperature conditions. 

Although the present estimation framework can effectively adapt to the temperature, the capacity 



degradation will show an important impact on the SOC estimation accuracy. Hence, a joint estimation method 

of capacity and state of charge will be certainly investigated in our future work. Moreover, the state of charge 

estimation of battery pack on the account of single cell estimation also needs to be tackled in our next step 

research. 
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Table I. Specification of test batteries. 

Specifications Value 

Nominal capacity 4 Ah 

Voltage range 2.75 to 4.2 V 

Allowed charge temperature 0 to 45 °C 

Allowed discharge temperature -20 to 60 °C 

 

Table II. Statistical errors with different filter-based methods. 

Algorithm 
Convergence 

time (s) 
MAAE (%) MEAE (%) RMSE (%) 

EKF 92 9.80 2.27 3.20 

AEKF 75 3.64 2.19 2.46 

SRCKF 66 2.77 1.22 1.39 

 

Table III. Statistical errors at different temperatures. 

Temperature (℃) MAAE (%) MEAE (%) RMSE (%) 

-10 0.59 0.35 0.42 

0 0.68 0.44 0.51 

50 0.65 0.37 0.47 

60 0.32 0.21 0.27 

Time-Varying 1.75 0.83 1.03 
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Fig. 1. Illustration of two-order RC ECM. 

 
Fig. 2. Discharge capacity at different temperatures. (a) Discharge capacity. (b) Discharge voltage curve. 

 

 
Fig. 3. The three-dimensional response surface between OCV, SOC and temperature. 

 



       
(a) (b) 
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(e) (f) 

Fig. 4. The identification results of model parameters. (a) HPPC result at 25 ℃. (b) R0-SOC-T. (c) R1-SOC-T. (d) 

R2-SOC-T. (e) C1-SOC-T. (f) C2-SOC-T. 
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Fig. 5. The flowchart of SOC estimation framework. 



 
(a) (b) 

Fig. 6. The model verification results at different temperatures. (a) Voltage estimation results at 20 ℃. (b) Voltage 

estimation error at different temperatures. 

 
(a) (b) 

Fig. 7. The SOC estimation results with different filter-based algorithms. (a) Estimation results. (b) Estimation error. 

 

  
(a)                                          (b) 

Fig. 8. UDDS-DST test cycle at time-varying temperature. (a) Time-varying temperature curve. (b) The current and 

voltage curve of battery. 
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(c) (d) 

Fig. 9. SOC estimation results at low temperature environment. (a) Estimation results at -10 ℃. (b) Estimation error 

at -10 ℃. (c) Estimation results at 0 ℃. (d) Estimation error at 0 ℃. 
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(c) (d) 

Fig. 10. The SOC estimation results at high temperature environment. (a) Estimation results at 50 oC. (b) Estimation error 

at 50 oC. (c) Estimation results at 60 oC. (d) Estimation error at 60 oC. 

 
(a) (b) 

Fig. 11. SOC estimation results under time-varying temperature. (a) Estimation results. (b) Estimation error. 

 

 


