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ABSTRACT Foreground/background (fg/bg) classification is an important first step for several video
analysis tasks such as people counting, activity recognition and anomaly detection. As is the case for several
other Computer Vision problems, the advent of deep Convolutional Neural Network (CNN) methods has led
to major improvements in this field. However, despite their success, CNN-based methods have difficulties
in coping with multi-scene videos where the scenes change multiple times along the time sequence. In this
paper, we propose a deep features fusion network based foreground segmentation method (DFFnetSeg),
which is both robust to scene changes and unseen scenes comparing with competitive state-of-the-art
methods. In the heart of DFFnetSeg lies a fusion network that takes as input deep features extracted from
a current frame, a previous frame, and a reference frame; produces as the output a segmentation mask into
background and foreground objects. We show the advantages of using a fusion network and the three frames
group in dealing with the unseen scene and bootstrap challenge. Besides, a simple reference frame updating
strategy enables DFFnetSeg to be robust to sudden scene changes inside video sequences and a motion map
based post-processing method is proposed further to reduce false positives. Experimental results on the test
dataset generated from CDnet2014 and Lasiesta demonstrate the advantages of the DFFnetSeg method.

INDEX TERMS convolutinal neural network, foreground segmentation, multi-scene videos aware

I. INTRODUCTION

Foreground segmentation, also named as fg/bg classification,
that is the segmentation of frames into the background and
foreground pixels is a commonly used first step for detecting
regions of interest in videos, which has the same effect as the
well-known task background subtraction but with a differ-
ent mechanism. Foreground extraction helps video analysis
methods to discard irrelevant information in applications
such as video surveillance [1], pose estimation [2], and face
detection [3].

Traditionally, fg/bg classification methods mainly focus
on static surveillance camera videos, where the background
pixels depict either static regions or regions with semi-
periodic motion (e.g. flowing water). However, the develop-
ment of camera hardwares enables the surveillance camera
to be portable, which brings the challenge of scene change
to the surveillance videos caused by the camera position
or location change. We name these videos as multi-scene

surveillance videos. The multi-scene challenge is not new
for the fg/bg classification task, as the twoPositionPTZCam
video in the largest change detection algorithm benchmark
dataset — CDnet2014 [4] is a multi-scene video. Many fg/bg
classification methods [5], [6] are designed based on the
assumption that the camera is static, but these years the
relative methods begin to pay attention to the non-static
situation. For instance, the special components to deal with
the scene change problem are proposed in many traditional
methods such as SubSENSE [7], SWCD [8] and so on. Also,
a flux tensor [9] based scene change detection method is also
used by a deep learning background subtraction method [10].
However, since their performance relies on the quality of
the background model, they are still spoiled by the unstable
background model caused by the scene change.

On the other hand, the noval supervised deep learning
methods [11], [12] deal with multi-scene problem by simply
single frame foreground segmentation. They do not consider
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the background model and generate the foreground mask
from every single frame, with near human-level performance,
which surpass the traditional methods with a large gap.
Nevertheless, in the original paper, the parameters of these
models are trained and tested on one specific video or a group
of videos and the performance on unseen videos has not
been evaluated. (Unseen videos denote that the videos whose
scenes have no overlap with the scene in training dataset.)
For example, FgSegNet [11] trains one model for one video
with 200 frames and get a super good result when it tests the
performance on the rest frames from the same video, whereas
as shown in the experiment in Section IV-E, its performance
drops significantly for unseen videos even with more than
one hundred times various training data. As the real world
environment is generally changeful and uncontrollable, it is
not possible to guarantee that one model will only work on
the known scene. Therefore, a universal foreground mask
generation method which is robust to both unseen and multi-
scene videos is necessary.

In this paper, we propose a deep feature fusion net-
work based foreground segmentation method (DFFnetSeg)
to tackle the problem mentioned above. DFFnetSeg takes as
input a single frame, a previous frame and a reference frame,
and produces in the output a segmentation mask for fg/bg
separation. The reference and previous frames carry the long
and short term information in one sequence which enable
DFFnet not only to reserve the temporal stopped object mask
but also to eliminate the ghost mask. In addition, our model
is universal to a wide range of unseen videos (including
videos from indoor, outdoor, under different weather, and
so on), which works stably when both background scenes
and foreground objects are totally unseen during training. A
simple Pearson correlation coefficient based reference frame
updating strategy further enables DFFnetSeg robust to the
scene change inside the videos. As a reference frame is used
instead of a background model, no extra effort is needed for
background modelling, which leads to a fast response to the
scene change.

The contributions of this paper are three folds:

• We propose a deep features fusion network which first
compares features extracted from Pyramid scene pars-
ing network (PSPNet) in different depth levels to gen-
erate soft motion maps and then fuses the various levels
of soft motion maps and single frame feature maps to
produce in the output the fg/bg segmentation mask. We
show that with the help of semantic information ex-
tracted by the PSPNet, high-quality segmentation masks
are achievable even without background modelling.

• We propose a new post-processing method based on
region-level motion map, which eliminates the false
positive classification so as to boost the foreground
mask.

• We propose a simple Pearson correlation coefficient
based reference frame updating strategy which is both
effective and efficient.

The paper is structured as follows. In Section II, we will
discuss the related works. In Section III, we will present the
DFFnetSeg method in detail. In Section IV, we will describe
the experiments and discuss the results. In Section V, we will
conclude the DFFnetSeg method and discuss the future work.

II. RELATED WORK
As is the case in several Computer Vision tasks, fg/bg clas-
sification methods could be classified into two categories:
traditional methods and deep learning methods – the latter
appearing to dominate the field in the recent years.

The traditional methods generally go through the pipeline
of background model construction, background model main-
tenance and subtraction. Classified by background mod-
els, Gaussian mixture model (GMM) based methods [9],
[13], codebook-based methods [14] and sample model based
methods [7], [15], [16] occupied the top place in terms of
performance. Typical GMM-based methods fit a Gaussian
mixture model as the probability density function to de-
scribe the colour/intensity/features distribution at each pixel.
Recently, Wang et al. [9] combine the flux tensor based
motion detection method with split Gaussian models in or-
der to deal with more complex scene challenges, such as
illumination changes and ghosting effects. Chen et al. [13]
propose a sharable GMM model which extends its robust-
ness to camera jitter and dynamic background challenge by
developing the spatial-temporal correlation between pixels.
Original codebook based methods describe each pixel by a
codebook containing a set of codewords and each codeword
represents a range of pixels’ intensity values of the back-
ground, whereas the recent variant like PAWCS [14], which
utilizes the colour/LBSP/persistence triplets to construct the
robust background words model, and dynamically adjust
thresholds and learning rates for segmentation decision and
model updating rules. Different from other encoding mod-
els, sample-based models just sample values from previous
frames in order to maintain a background model. In such
methods, background models are updated based on updat-
ing probabilities that are estimated spatiotemporally and the
subtraction part is implemented by comparing the number of
matching samples in background models with a threshold.
Their variants are further proposed to enhance the robustness
for different challenges. For example, SubSENSE [7] adds
spatiotemporal binary features intra-LBSP and inter-LBSP
to the background model and comparison stage, and gets
it updated adaptively by monitoring the model fidelity and
local segmentation noise. Besides, WeSamBE [16] employs
a weight mechanism to both the background model and
updating. As the unsupervised methods, they are not limited
to certain video and can obtain proper performance by default
parameters. However, as is typically the case in Computer
Vision task, the handcrafted features have difficulty in coping
with more complex situations.

To address this shortcoming, the first deep background
subtraction method [17] was proposed with convolutional
neural network (CNN) in 2016 and since then, tons of
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deep learning fg/bg classification methods spring out and
surpass the traditional methods with a great gap (around by
20% in terms of F-Measure). The original deep background
subtraction method [17] simply uses a pre-calculated image
as the background model for each sequence and employs a
network similar to LeNet-5 for subtraction, which is evalu-
ated in a scene-specific manner on selected sequence from
CDnet2014 dataset with F-Measure 0.9. Based on the similar
network architecture, DeepBS [18] updates the background
image based on SubSENSE [7] and flux tensor [9] along
the sequence, which is evaluated in a relatively universal
manner with F-Measure 0.75. Follow a similar background
image generation method as [17], generative adversarial net-
works (GANs) based methods [19]–[21] are proposed with
F-Measure around 0.95. BScGAN [19] and BGAN [20]
utilize the conditional GAN and Bayesian GAN respec-
tively and BPVGAN [21] further introduces parallel vision
to the BSGAN. Different from the methods which need to
maintain a background model, the recurrent neural network
based methods extend their scope to the temporal sequence.
SFEN [22] first extracts semantic maps from a single frame
as the input of a ConvLSTM, and a STN model [23] and
CRF [24] are combined to enhance the motion robustness
and spatial smoothness of the output mask. Hu et al. [25]
conduct 3D atrous convolutional network with multi-frame
input before ConvLSTM. By contrast to the sequence-based
method, the foreground segmentation methods [11], [12]
only consider a single frame to segment foreground. Among
them, FgSegNet [11] and its variants occupy first several
entries on CDnet2014 with f-measure around 0.98. FgSeg-
Net generates the foreground segmentation mask by using a
single frame as input to the encoder-decoder structure archi-
tecture which uses triplet VGG-16 Net as the encoder and
a transposed convolutional neural network as the decoder.
Different from all the deep learning methods mentioned
above, SemanticBGS [26] combines deep learning semantic
segmentation with traditional methods, without training, in
which rules are made to combine semantic maps from pre-
trained PSPNet [27] with the traditional methods without
modifying their internal elements. As a result, SemanticBGS
reduces the mean overall error rate of 34 traditional algo-
rithms by roughly 50%.

Most deep learning methods surpass other methods in
terms of the evaluation metrics, but their good performance
is benefited from the background scene overlap and even
foreground object overlap between training data and testing
data. For example, Cascade CNN [12] manually chooses 200
frames from each video as the training set and SFEN [22]
uses the first half of videos as the training set with the rest as
testing ones. By contrary, SemanticBGS shows its advantage
as an unsupervised method on universality which is not
limited by the training and testing set. Also, the high-quality
performance of SemanticBGS mainly benefits from the pre-
trained deep semantic segmentation stage. It is because the
deep semantic segmentation methods [27], [28] are trained
on large and varied datasets which include enough semantic

classes to be the reference for foreground segmentation.
Therefore, dynamic background such as shaking trees and
ghost mask on the road region caused by the removed car
are easy to be eliminated, from the semantic perspective.
Based on the superiority of deep semantic segmentation, the
DFFnet internally combines the semantic information with
deep learning method to extend the universality of deep learn-
ing methods and the robustness to challenging situations.

III. PROPOSED METHOD
Let us denote by f (t) ∈ Rw×h×3, t ∈ [1, T ] the RGB
frame at time t of an image sequence with T frames in all,
where w and h are width and height. The DFFnetSeg method
aims to produce a label mask M

(t)
post ∈ Rw×h each entry

of which denotes whether the corresponding pixel depicts a
foreground object or the background, from the input group
which is compound of the current frame f (t), the previous
frame f (t−4) and the reference frame. The reference frame is
initialized by f (1) and updated along the sequence.

The DFFnetSeg consists of three parts in parallel: a deep
features fusion network, a region-based motion map genera-
tor and a scene change detector, as shown in Fig 1.

In detail, the first part is a convolutional neural network,
which includes two stages: the deep semantic features ex-
tractor and the foreground mask generator based on feature
fusion. In the features extractor stage, we feed each entry
from input group into a pre-trained PSPNet respectively
to extract the deep features. In the mask generator stage,
features of each entry are compared at selected depth levels.
The inner group comparisons are further fused with the image
content features extracted from f (t) at each depth level, as
shown in Fig 2. Finally, the shallow feature maps and the
deep feature maps are fused to generate the mask prediction
M (t).

The second part is a region-based motion map generator,
which could be regarded as a post-processing step to reduce
the false positives caused by semantic noise. Specifically,
the false positives here are the pixels which are classified
as foregrounds because they belong to some objects which
have pretty high possibility to be foregrounds such as humans
and cars but they are static. This part just simply conducts a
region-level comparison between f (t), f (t−4) and the refer-
ence frame fref to get the motion map which indicates the
potential motion region. The motion map is then used to post-
process M (t) as the final prediction M (t)

post.
The third part is a scene change detector, which utilizes the

Pearson correlation coefficient to indicate the degree of scene
change and update the reference frame when the large scale
scene change is detected.

These three parts are discussed in detail as following.

A. NETWORK ARCHITECTURE
In the architecture of our DFFnet shown in Fig 2, the feature
extractor and the fusion network are shown in white and
cream-coloured background respectively.
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(a) current frame

(b) previous frame

(c) reference frame

(d) Deep Features 
Fusion Network

(e) Region-Based 
Motion Map Generator

(f) Scene Change 
Detector

AND

(g) prediction

(h) difference map

(i) final prediction

UPDATE

FIGURE 1: An illustration of the pipeline of DFFnetSeg
method. Given a group of input images consist of a current
frame (a), a previous frame (b) and a reference frame (c), we
use three parts in parallel which consist of a deep features
fusion network (d), a region-based motion map generator (e)
and a scene change detector (f) to extract the foreground
mask prediction (g), generate the motion map (h) and update
the reference frame (c), respectively. Finally, we use the
motion map (h) to boost the final prediction (i) by the bitwise
and operator.

1) FEATURE EXTRACTOR

SFEN [22] and SemanticBGS [26] show that semantic infor-
mation plays an important role in fg/bg classification. Specif-
ically, naive background subtraction is easy to meet the ghost
problem when moving objects have not been eliminated from
the background model. Even when the background model is
super clean (without any foreground objects), the camouflage
problem may happen when the foreground object shares a
similar colour with the background region. However, ghost
and camouflage problems are easy to be overcome if we know
whether the problem region belongs to a potential moving
object or not, from the semantic knowledge. Therefore, the
semantic segmentation network comes to mind. Different
from SFEN and SemanticBGS which only use final layers of
a semantic segmentation network, the DFFnet uses both shal-
low layers and deep layers of a deep semantic segmentation
network PSPNet. The shallower layers capture the low-level
features such as edge, corner, and shape; the deeper layers
capture the high-level features such as semantic information.
Both of them contribute to the high-quality foreground mask
generation.

The PSPNet we used as the feature extractor is trained
on ADE20K dataset [29] [30] because the ADE20K dataset
includes various scenes and objects which have similar view
angles as surveillance videos. In terms of the architecture,
the PSPNet consists of the ResNet50 to extract feature maps
and the pyramid pooling module to generate semantic seg-
mentation maps. The ResNet50 is slightly different from the
original one, whose details are shown in Table 1. In the

TABLE 1: The details of the architecture of the ResNet part
of PSPNet.

layer name output size layers info
conv1.1 237× 237 3× 3, 64, stride 2
conv1.2 237× 237 3× 3, 64, stride 1
conv1.3 237× 237 3× 3, 64, stride 1

conv2.x 119× 119

3× 3 max pool, stride 2
1× 1, 64

3× 3, 64

1× 1, 256

× 3

conv3.x 60× 60


1× 1, 128

3× 3, 128

1× 1, 512

× 4

conv4.x 60× 60


1× 1, 256

3× 3, 256

1× 1, 1024

× 6

conv5.x 60× 60


1× 1, 512

3× 3, 512

1× 1, 2048

× 3

pyramid pooling module, we use the average pooling with
bin sizes of 1 × 1, 2 × 2, 3 × 3 and 6 × 6 respectively
and the convolutional layer is 512 feature maps with 1 × 1
kernel (the detail architecture sees [27]). The final feature
representation obtained by concatenation is followed by the
3× 3 kernel, 512 maps convolutional layer CONV5.4. Batch
normalizations are applied after each convolutional layer and
activation function is ReLU.

2) FUSION NETWORK
The fusion network conducts two kinds of fusion. Firstly,
considering each feature level, the fusion network fuses
image contents with the difference between input entries.
Secondly, considering across feature levels, the fusion net-
work fuses local information with global one and low-level
features with high-level features.

Specifically, the current frame f (t), the previous frame
f (t−4) and the reference frame are fed to PSPNet respectively
to extract the corresponding features. The last layers of each
scale of PSPNet are chosen as the input of the fusion network,
which are CONV1.3, CONV2.3, and CONV5.4 respectively.
The RGB images are also regarded as a grouped entry of the
fusion network. Thus, the fusion network considers four-level
features in all. These four-level features include both four
scale levels which contain various degree of local and global
information and four depth levels which contain various
degree of shape and semantic information.

Let us denote by Al(f
(t)), l ∈ {1, 2, 3, 4} the features at

level l of input f (t). We define the soft motion map at level l,
denoted by Bl = (dlijk), given denotion Al(f

(t)) = (alijk),
Al(f

(t−4)) = (blijk) and Al(fref ) = (clijk), as follows:

dlijk =
∣∣alijk − blijk∣∣+

∣∣alijk − clijk∣∣ , (1)

where i, j, k denote the index of one element in each di-
mension. dlijk is relatively high when the features of current
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FIGURE 2: Architecture of our proposed DFFnet. Firstly, features from chosen layers of PSPNet (d), which consists of ResNet
(d.1) and Pyramid Pooling Module (d.2), are extracted, given inputs including a current frame (a), a previous frame (b) and a
reference frame (c), respectively. After that, for each chosen layer, a FusionNet (e) first obtains the sum of the difference of
features between (a) and (b), and between (a) and (c), respectively. Then it concatenates the difference sum and features from
(a) to form a presentation which carries both content information of (a) and motion information along frames, followed by a
convolutional layer to combine these information and upsampling (optinal) layers to normalize the output shape. Finally, the
features from different levels are concatenated to form the final feature representation, followed by two convolutional layers to
fuse local information with global one and get the final per-pixel prediction (f).

frame f (t) are different from those of both the previous frame
and the reference frame, which denotes the location (i,j) may
contain motion. The soft motion map can also be regarded
as the external comparison of current frame information
with short term information and long term information. The
previous frame f (t−4) which only has short time interval with
the current frame carries the short term information, while the
reference frame carries the long term information because
it only updates when a large scene change is detected. The
advantage of short term information for foreground object
detection is the robustness to the continuous changing back-
ground because closer frames may share a more similar back-
ground than others. However, when the foreground object
temporarily stops for a while, the foreground object may lose
if only considering short term information. Then, the long
term information becomes an important reference.

The soft motion maps are concatenated with the features of
f (t) to feed to the CONV6.x layers to fuse motion informa-

tion with frame contents. All the CONV6.x layers generate
32 feature maps with 3 × 3 kernel size. For level 2 to 4, the
spatial upsampling is used to normalize the output back to the
same size as level 1.

The feature maps from 4 levels are further concatenated
and then fed to the CONV7 to fuse both low-level features
with semantic information and local with global information,
which generates 32 feature maps with 3 × 3 kernel size. Fi-
nally, the CONV8 uses 1×1 convolutional layer with softmax
to produce the foreground object mask M (t) ∈ {0, 1}w×h
(foreground=1, background=0).

To optimize the weights in the fusion network, the corre-
sponding loss is then the cross-entropy loss function, that is,

Loss = −1

I

I∑
i=1

[C(i) log p(i) + (1− C(i)) log (1− p(i))],

(2)
where C(i) is the ground truth label and p(i) is the output of
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the network at pixel location i.

B. REGION-BASED MOTION MAP
Different from the soft motion map in the fusion network, this
part proposes a hard motion map which gives the binary value
to each region to denote motion by comparing the difference
between f (t), f (t−4) and fref .

More specifically, we first define the motion mask Dpre =
(pij) and Dref = (rij), given denotions f (t) = (aij),
f (t−4) = (bij) and fref = (cij), as follows:

pij =

{
1 if (|aij − bij |) > θ

0 otherwise
,

rij =

{
1 if (|aij − cij |) > θ

0 otherwise
,

(3)

where i and j denote the location of pixels. A pixel is
regarded as moving when the difference is larger than θ.
Notice, here we only consider the greyscale of images.

The aim for hard motion map is to clean the false positives
of M (t) caused by potential moving objects. Therefore, we
propose it as a greedy mask, which activates one entry even
with a relatively weak hint for motion. In detail, the bitwise
or operator is used to obtain the pixel level motion mask
Mpix = (mpix

ij ) as follows:

mpix
ij =

{
1 if pij = 1 or rij = 1

0 otherwise
. (4)

Next, the pixel level motion mask is further transferred to
the region-based motion map which can reduce the effect of
local camouflage problem (an example is shown in Fig 3).
We divide the whole motion mask to N ×N regions without
overlapping (the edge is padded to be valid), denoted by
mk ⊆ Mpix (with

⋃
k mk = Mpix). Then, the region-based

map Mreg = (mreg
ij ) is obtained based on the quantity of

motion in each region as follows:

mreg
Ψi

=

{
1 if

∑
(i,j)∈Ψi

mpix
ij > β

0 otherwise
,

with Ψi = {(i, j)|mpix
ij ∈mk}.

(5)

The region entry of map Mreg is activated when the quantity
of motion in the specific region is larger than β.

The region-based map is finally used to post-process the
estimated mask generated by the fusion network. Denoted
Mpost = (mpost

ij ) is defined by:

mpost
ij =

{
1 if mreg

ij = 1 and mij = 1

0 otherwise
. (6)

Where M = (mij) denotes the output of the fusion network.
The bitwise and operator is used here to restrict the final
prediction. As shown in Fig 3, the pixel level motion mask
can not detect sufficient motion pixels because of camouflage
phenomenon, which leads to the holes inside the foreground
object in final prediction, whereas the region level motion

mask can tackle this well. The ghost mask exists in both
the pixel level mask and the region-based map because they
are defined greedily but the ghost has little effect on final
prediction. In addition, as we can see in M (19), there is a
small region of false positives, which is misclassified by the
fusion network because it corresponds to the clothes region
in the frame which has a high probability to be a moving
object (as it is usually carried by human), but it is easy to be
eliminated by the motion map.

f(19) f(15) fRef

M(19)

Mpix

Mreg

Mpost_pix

Mpost_reg

groundtruth

FIGURE 3: An example of the motion map based post-
processing. The current frame f (19), the previous frame f (15)

and the reference frame fref are the 19th, 15th and 1st
frames of the selected clip of I_SI_01 sequence of LASI-
ESTA dataset respectively.M (19) is the raw foreground mask
estimated by the fusion network.Mpix andMreg are the pixel
level motion mask (with θ = 20) and region-based motion
map (with θ = 20, β = 5 and N = 32) respectively.
Mpost_pix and Mpost_reg are the post-processed M (19) by
Mpix and Mreg respectively.

C. SCENE CHANGE DETECTOR

If the reference frame in the input group of the network does
not change along time, it will lose its advantage and even
conduct the opposite effect when the dramatic background
change caused by the camera position or location change
happens. To tackle this problem, a simple Pearson correlation
coefficient based scene change detector is proposed to decide
whether to update the reference frame or not at time t.

The Pearson correlation coefficient is defined as (7), where
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∀x, y ∈ Rn×1 and n ∈ N+.

Col(x, y) =
(x− x̄)T (y − ȳ)

‖(x− x̄)‖2‖(y − ȳ)‖ 2

. (7)

Then, Colt1 = Col(Ds(f (t)), Ds(f (t−4))) and Colt2 =
Col(Ds(f (t)), Ds(fref )) are the correlation coefficient be-
tween the current frame, previous frame and reference frame
respectively, where Ds(·) denotes spatial downsampling im-
age to 32 × 32 size and flattening it. The 32 × 32 size
can both reduce the computational load and capture enough
information to denote a scene. Intuitionally, the correlation
coefficient can denote the similarity between two images.
Therefore, based on the coefficient, the reference frame up-
dating strategy flow is as follows:
• We define an indicator Ct ∈ {0, 1} which is 1 when
Colt1 < γ and Colt2 < γ at time t, because generally the
correlation is regarded as weak enough to judge that the
scenes are different when the coefficient is lower than γ.

• We update the reference frame by fref = f (t−4) and
reset Cj = 0 (j ∈ [t − 4, t]) only when three require-
ments are fulfilled: a) Ct−4 = 1, b)

∑3
i=1 Ct−i > 1 and

c) Colt2 > γ. It first detects a potential scene change
signal, then further detects the scene change in neigh-
bour frames to tolerate the potential noisy detection, and
finally, update the reference frame by the farthest same
scene frame to guarantee the long term information.

Updating the reference frame when the scene changes en-
ables the DFFnetSeg to be robust to deal with the multi-scene
videos caught by multi-position or multi-location cameras.

IV. EXPERIMENTS AND RESULT
A. DATASET
We evaluate the performance of DFFnetSeg method by two
datasets CDnet2014 [4] and LASIESTA [31], to sufficiently
test the universality of DFFnetSeg.

The CDnet2014 dataset is the largest change detection
benchmark and dataset, including the evaluation matrics, the
rank of state-of-the-art methods and the pixel-level ground
truth of 53 sequences. These sequences from different scenes
are separated to 11 challenge categories, including bad
weather (BW), baseline (Ba), camera jitter (CJ), dynamic
background (DB), intermittent object motion (IOM), low
frame rate (LF), night video (NV), shadow (Sh), thermal
camera (TH), air turbulence (TB), and pan-tilt-zoom camera
(PTZ), and each category includes 4 to 6 sequences. In
our experiment, we do not consider the continue camera
moving and air turbulence videos because our DFFnetSeg
method focuses on the multi-scene videos captured by the
intermittent position changed camera, and the air turbulence
is out of the scope of the scene domain considered in this
paper. Therefore, we only include the "twoPositionPTZCam"
sequence in the PTZ category and exclude all the sequences
in the TB category.

In addition, 7 objective evaluation matrics provided by
CDnet2014 are used to evaluate the performance of algo-

rithms quantitatively:
• Re (Recall) : TP / (TP + FN).
• Sp (Specificity) : TN / (TN + FP).
• FPR (False Positive Rate) : FP / (FP + TN).
• FNR (False Negative Rate) : FN / (TP + FN).
• PWC (Percentage of Wrong Classifications) : 100 * (FN

+ FP) / (TP + FN + FP + TN).
• F-Measure : (2 * Precision * Recall) / (Precision +

Recall).
• Precision : TP / (TP + FP).

While each metric gives a different insight into the results,
the F-Measure is the most commonly used one. Therefore,
we mainly use F-Measure to evaluate the DFFnetSeg.

The LASIESTA dataset is composed of 17 real indoor and
22 outdoor sequences organized in 12 categories, including
simple sequences (SI), camouflage (CA), occlusions (OC),
illumination changes (IL), modified background (MB), boot-
strap (BS), moving camera (MC), simulated motion (SM),
cloudy conditions (CL), rainy conditions (RA), snowy condi-
tions (SN), and sunny conditions (SU). Same as CDnet2014,
we also exclude MC and SM categories, because those cam-
era motion patterns are not in the scope of the DFFnetSeg.

B. TRAINING AND TESTING SET
Many state-of-the-art deep learning fg/bg classification algo-
rithms generate the training set by separate each sequence by
half, 80% or selected number, with the rest sequence frames
as the testing set, in which the same background scenes and
foreground objects have chance to coexist in both training
and testing set. However, in our experiment, we generate the
training and testing set based on the principle that the back-
ground scenes and foreground objects in the testing set have
no overlap with the corresponding in training set. In detail,
we use 1 to 2 sequences in each category, including back-
door, canoe, dinningRoom, overpass, park, parking, pedes-
trians, peopleInShade, snowFall, streetCornerAtNight, traf-
fic, tramStation, turnpike_0_5fps, twoPositionPTZCam, and
winterDriveway from CDnet2014 and I_BS_01, I_CA_01,
I_CA_02, I_IL_01, I_MB_01, I_MB_02, I_OC_01, I_SI_01,
I_SI_02, O_CL_01, O_CL_02, O_RA_02, O_SN_01, and
O_SU_01 from LASIESTA as testing sequences and the
remainder as training ones. For training, we randomly choose
around 1000 frames from each training sequence (when the
available frames with ground truth are less than 1000, we
use all the frames). For testing, we randomly select one clip
from each sequence and based on these clips, we construct
the testing set by two parts. The first part of the testing set
consists of single test clips as sequences, which is mainly to
test the generality of algorithms. In the second part, we sim-
ulate the surveillance video captured by the camera whose
position or location changes 1, 2 and 3 times by randomly
concatenating 2, 3 and 4 test clips together, which is mainly
to test the robustness of algorithms when scene changes occur
in sequences. In terms of the implementation details, we
consider 30 test clips in all which is not exactly divisible by 4,
so 2 remainders are abandoned when concatenating 4 clips.
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TABLE 2: Scenes and frame indices used in testing on
CDnet2014 dataset.

Category Sequence Frame indices Category Sequence Frame indices

Sh backdoor 1490-1989 DB canoe 800-1189
peopleInShade 574-1073 overpass 2306-2805

TH park 250-600 IOM parking 1291-1790
diningRoom 1241-1740 winterDriveWay 1722-2221

BW snowFall 2701-3200 NV streetCornerAtNight 2396-2895
CJ traffic 1050-1549 tramStation 1237-1736
LF turnpike_0_5fps 800-1149 PTZ twoPositionPTZCam 820-1045
Ba pedestrians 306-805 1100-1380

TABLE 3: Scenes and frame indices used in testing on
LASIESTA dataset.

Category Sequence Frame indices Category Sequence Frame indices
BS I_BS_01 1-275 CA I_CA_01 105-350
IL I_IL_01 110-300 I_CA_02 193-525

MB I_MB_01 110-450 SI I_SI_01 88-300
I_MB_02 100-350 I_SI_02 97-300

OC I_OC_01 110-250 SN O_SN_01 336-500

CL O_CL_01 150-225 RA O_RA_02 186-375
O_CL_02 118-425 SU O_SU_01 122-250

The details of selected clips from CDnet2014 dataset are
shown in Table 2. 500 continue frames including foreground
are randomly chosen from each sequence, when the sequence
is longer than 500 frames. Otherwise, the whole sequence
is chosen as the testing clip. Under most circumstance, 500
frames are enough for most background initialization method
to estimate the background model, and are also short enough
to avoid long term static scene, which is proper to evaluate
the robustness of algorithms to the scene change.

The details of selected clips from LASIESTA are shown
in Table 3. The frame with big enough foreground object is
chosen as the first frame for each sequence, which brings
a general challenge bootstrap to background subtraction.
It is because different from the single-scene video which
generally has tons of history frames to obtain a relatively
clean background (without foreground), multi-scene videos
are difficult to obtain informative history frames to extract
background. Therefore, multi-scene video foreground object
detection method should have the ability to deal with the
situation with bootstrap challenge.

C. RESULTS
To evaluate the effectiveness of DFFnetSeg method, we
compare it with the following state-of-the-art algorithms:
• SubSENSE [7], PAWCS [14] and SWCD [8], the top

traditional background subtraction methods on CD-
net2014 with source code open to the public.

• FgSegNet [11], the top foreground segmentation
method on CDnet2014 with source code open to the
public.

• BScGAN [19], the deep background subtraction algo-
rithm with conditional generative adversarial networks
which reports a top result on CDnet2014 dataset in the
original paper.

on two datasets mentioned above. To ensure a fair com-

TABLE 4: Average F-measure on the single test clips with
different parameters range for the motion map.

Parameters Range Best F-Measure Worst F-Measure
θ = 20 N > 8 β ∈ U 0.884 0.863

θ = 50
N > 8 β ≤ 10 0.881 0.855
N > 16 β > 10 0.880 0.867

θ = 80
N > 16 β = 5 0.874 0.846
N > 64 β > 5 0.871 0.855

parison between the supervised models, we use the same
training data as our model to train the models and the hyper-
parameters are same as the ones described in the source code
and paper. The pre-trained model is also used to initialize the
model parameters if the initialization is mentioned in original
papers.

In order to assess the DFFnetSeg for a large set of pa-
rameters in region-based motion map stage mentioned in
Section III-B, an estimation of the foreground mask has been
generated for all the single test clips using each combina-
tion of θ ∈ {20, 50, 80, 110}, N ∈ {8, 16, 32, 64}, β ∈
{5, 10, 20, 40}. The three parameters of DFFnetSeg method
(θ, N , β) provide enough flexibility to boost the foreground
mask for various input video sequences. The raw result of the
fusion network mentioned in SectionIII-A is with average f-
value 0.8448. When we use the pixel-level motion map (N =
1, do not consider β), the best result with the parameters men-
tioned above is worse than the raw one with average f-value
0.84 (θ = 20). When (θ,N, β) = (20, 16, 20), the region-
based motion map achieves the largest boost effect with f-
value 0.884. In detail, when the considered parameters are
in the range shown in Table 4, the region-based motion map
boosts the foreground mask in different degrees. Otherwise,
it wrecks the final prediction. The table shows that θ = 110
is too big to catch the motion pixels; the greater the θ, the
greater the N , and the less the β is demanded to extract the
good enough motion map.

To choose the best parameter for scene change de-
tector we test all the testing sequences including the
single clips and concatenated sequences using γ ∈
{0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, as shown in Table 5. As γ is the
threshold for the level of similarity of frames, when γ is
high, the reference frame updating is more sensitive to the
scene difference and vice versa. As shown in Table 5, when
γ = 0.7, the updating strategy promotes the performance to
the best, whereas when γ becomes higher, the result becomes
worse because the scene change detector is so sensitive that
discriminates the scene change by mistake when the large
foreground is moving.

D. IMPLEMENTATION DETAILS
In our experiments, only the fusion network part need to
be trained in a supervised way by labelled change detection
data, as described in Section III-A. The PSPNet is pre-
trained on ADE20K as in [27] and no parameter inside the
PSPNet is fine-tuned. As the purpose of the fusion network
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TABLE 5: Average F-measure on all the test sequences with
different γ for the reference frame updating.

γ F-Measure
no updating 0.7296

0.4 0.8522
0.5 0.8529
0.6 0.8527
0.7 0.8531
0.8 0.8494
0.9 0.8450

is to generate foreground object mask based on the frames
difference and current frame contents, the reference frame is
fixed to be f (1) during the training and the parts proposed in
Section III-B and Section III-C are only for testing. Before
the frames are fed to PSPNet, the size of frames are standard
to 473 × 473 and subtracted by the mean as preprocessing.
The initial learning rate is 10−4 and we use Adam for
optimisation.

Our experiment is implemented based on TensorFlow
framework on a single NVIDIA GeForce GTX 1080ti GPU.
The training process was completed in about 10 hours with 5
epochs.

E. COMPARISON
We compare the performance among methods on the testing
data with and without halfway scene changes separately.
The performance on the sequences without halfway scene
changes shows the universality of methods under different
challenges, while the decay level of the performance when
the scene change is included in testing videos shows the
robustness of methods to the halfway scene change chal-
lenge. As shown in Table 6, SubSENSE, PAWCS, SWCD
and BScGAN have similar performance, whereas the DFFnet
dramatically outperforms these methods with a much higher
F-Measure value. The performance of FgSegNet is extremely
bad because it is originally proposed as a scene-specific
method to predict foreground segmentation based on a single
frame, which makes it easy to lack universality. In terms of
the multi-scene testing, as shown in Table 7, the performance
of SubSENSE, PAWCS, SWCD and BScGAN decreases
significantly, especially PAWCS, but the corresponding of
DFFnetSeg keeps steady with only 0.2% F-Measure drop. By
contrast, the performance of FgSegNet does not change be-
cause it is based on a single frame which has no relationship
with the scene change. The slight increase of the F-Measure
is actually caused by the missed video clips as mentioned
in Section IV-B. Except the DFFnetSeg, the SWCD and
BScGAN are more robust with only 8.5% and 10.2% F-
Measure drop respectively and the latter BScGAN gets the
relative better F-Measure when the scene change happens,
which benefits from the background modelling method it
chooses and the GAN architecture.

More details are shown in the sampled visualization Fig 4.
We choose the sequences from different typical challenges

for comparison (category details in Table 2 and Table 3).
As we can see from the figure, the DFFnetSeg outper-
forms others almost in all samples, from the perspective of
both accurate classification and clear edges. In addition, the
DFFnetSeg still performs well even when the scene changes
halfway in the sequence. However, the testing data seem quite
challenging for other methods. As the FgSegNet only con-
sider a single frame for foreground segmentation, it highly
depends on object detection rather than motion detection.
Therefore, a great number of false positives caused by wrong
object classification exist in its output masks but the output
masks are totally not influenced by the scene change. The
rest 4 methods as background subtraction methods all need to
construct the background model, so the scene change makes
great impact on their performance. Therefore, we discuss the
result of these 4 methods before and after the scene changes
separately.

Firstly, we analyze the performance before the scene
change happens. Notice, the performance of the existing
methods is different from the one shown on the benchmark
website because, in their experiments, the beginning frame
of the same video is different from the one in our exper-
iment. In our experiment, most beginning frames contain
foreground object inside which is a more common situation
in nature and more challenge than the first frames with-
out foreground objects. For example, the 2nd and 3rd row
in the figure are frames from the same sequence, but the
performance of SubSENSE, PAWCS and SWCD shown in
the 3rd row is much better than the corresponding in the
2nd row, which indicates that those methods take time to
construct the fine and stable background models. It aligns
well with the mechanism of most background subtraction
methods which generally need different length of video clips
to construct their stable enough background models. Except
FgSegNet, the rest state-of-the-art methods are competitive
with each other. For example, BScGAN performs better in
winterDriveway whereas PAWCS performs better in over-
pass. Although the peopleInShade is in Sh category, the bad
results are actually caused by the stopped foreground which
stopped since the 34th frame in the test clip (the current
frame is the 137th in that clip). In conclusion, for sequences
without scene changes, the qualitative result aligns well with
the quantitative result that SubSENSE, PAWCS, SWCD, and
BScGAN have similar performance.

Secondly, we analyze the performance after the scene
change happens. It is obviously PAWCS is not as good
at dealing with the scene change as others, because of its
large scale false positives which are caused by the bad
background model. For the other methods, they still take time
to reconstruct the background model, and the performance is
acceptable after reconstructing a proper background model.
From the perspective of visual evaluation, BScGAN performs
better than other methods, which benefits from both the
background modelling method it utilizes and its network
robustness to background noise.

Actually, the qualitative evaluation is limited by sampling
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TABLE 6: Evaluation values of models on single clips part of the test dataset.

Method Recall Specificity FPR FNR PWC Precision FM
SubSENSE [7] 0.6578 0.9929 0.0071 0.3422 2.8384 0.8209 0.7026
PAWCS [14] 0.6029 0.9973 0.0027 0.3971 2.7259 0.8936 0.6779
SWCD [8] 0.6325 0.9845 0.0155 0.3675 3.4388 0.7568 0.6447

FgSegNet [11] 0.7663 0.9233 0.0767 0.2337 8.8115 0.4473 0.4883
BScGAN [19] 0.8558 0.9802 0.0198 0.1442 2.8641 0.6329 0.6979

DFFnetSeg 0.9312 0.9935 0.0065 0.0688 1.1739 0.8602 0.8845

TABLE 7: Evaluation values of models on multi-scene sequences part of the test dataset.

Method Recall Specificity FPR FNR PWC Precision FM
SubSENSE [7] 0.6368 0.9394 0.0606 0.3632 7.4710 0.3694 0.4407
PAWCS [14] 0.6396 0.8560 0.1440 0.3604 15.4037 0.2072 0.2822
SWCD [8] 0.7131 0.9487 0.0513 0.2869 6.2381 0.5112 0.5596

FgSegNet [11] 0.8032 0.9221 0.0779 0.1968 8.2251 0.3918 0.5004
BScGAN [19] 0.8039 0.9644 0.0356 0.1961 4.3326 0.4983 0.5955

DFFnetSeg 0.9263 0.9921 0.0079 0.0737 1.0740 0.8509 0.8826

frames from sequences because the performance quality of
methods changes a lot along the time. It takes different
frame numbers for different methods to reconstruct a proper
background model which can also be understood as the
speed of background model reconstruction, which can not
be shown by simply sampling. Nevertheless, quantitative
evaluation can properly evaluate this performance feature
which changes along the time sequence. Therefore, the high
quantitative evaluation result comes not only from the fine
classification but also from the fast scene change response
mechanism.

In conclusion, the DFFnetSeg outperforms the state-of-
the-art methods by great gap in both quantitative evaluation
and qualitative evaluation.

F. ABLATION STUDIES
In this subsection, we justify the decisions we made in
the DFFnetSeg by conducting a series of ablation tests. In
particular, we evaluate the performance of the DFFnetSeg
by testing the effect of removing individual components on
foreground mask generation tasks. The results in Table 8 are
obtained by parameters (θ,N, β, γ) = (20, 16, 20, 0.7). The
main evaluation value F-Measure shows the increasing trend
when the proposed components are added. Table 8 shows that
for the single clips the motion map has a great positive impact
on the performance with F-Measure, increasing from 0.8449
to 0.884, because it can reduce the false positives caused by
semantic noise but it demands the reference frame and the
previous frame are from the same scene as the current frame.
Therefore, without the reference frame updating, the motion
map almost does not contribute to the foreground mask when
the scene change happens in the sequence. On the other
hand, the reference frame updating makes great contribution
to the multi-scene sequences (F-Measure from 0.6912 to

TABLE 8: Evaluation values of the model if a component is
removed.

Single Clips Multi-scene Sequences
Method F-Measure Recall Precision F-Measure Recall Precision

Fusion Network 0.8448 0.9417 0.7943 0.6912 0.8931 0.5779
+Motion Map 0.8840 0.9315 0.8596 0.6973 0.8886 0.5887

+Reference Updating 0.8453 0.9415 0.7951 0.8557 0.9368 0.7960
All 0.8845 0.9312 0.8602 0.8826 0.9263 0.8509

0.8557) but rarely contributes to the single clip results. It is
because the reference frame updating strategy is designed
to deal with the multi-scene sequences. Besides, when no
scene change happens in the sequence, our fusion network
performs also good even with the noisy frame (frame with
foreground object) as the reference frame. Notice, for multi-
scene sequence, only adding the motion map does not boost
our performance but when the motion map combines with the
updating strategy, our performance is improved further.

V. CONCLUSION
We propose a robust foreground segmentation approach
based on deep features fusion network by using features
extracted from a semantic segmentation network PSPNet in
a comparison and fusion architecture. By contrast to other
semantic-based background subtraction methods, our fusion
network learns to combine the semantic information of the
current frame with the soft motion map extracted from the
current frame, the previous frame, and the reference frame.
By contrast to other deep learning methods, DFFnetSeg gen-
erates high-quality foreground masks on not only the unseen
videos but also the multi-scene videos.

As the DFFnetSeg method is designed for position or
location changed surveillance camera videos and takes the
advantage of semantic information to get high-quality fore-
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ground mask, in future, it has potential to be extended to the
continue position changing surveillance camera videos.
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FIGURE 4: Qualitative results comparison on the 6 algorithms. The first 6 rows show results before the scene changes, while
the last 6 rows show results after the scene changes. The number behind # denotes the indices of the frame in original sequence
from the dataset, so that the corresponding indices of the frames in our clips can be obtained by subtracting the begin indices.
For example, the corresponding indice of the first row is 88.
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