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Glioblastoma multiforme (GBM) is the most frequently occurring primary brain tumor and
has a very poor prognosis, with only around 5% of patients surviving for a period of 5 years
or more after diagnosis. Despite aggressive multimodal therapy, consisting mostly of a
combination of surgery, radiotherapy, and temozolomide chemotherapy, tumors nearly
always recur close to the site of resection. For the past 15 years, very little progress has
been made with regards to improving patient survival. Although immunotherapy represents
an attractive therapy modality due to the promising pre-clinical results observed, many of
these potential immunotherapeutic approaches fail during clinical trials, and to date no
immunotherapeutic treatments for GBM have been approved. As for many other difficult to
treat cancers, GBM combines a lack of immunogenicity with few mutations and a highly
immunosuppressive tumor microenvironment (TME). Unfortunately, both tumor and
immune cells have been shown to contribute towards this immunosuppressive
phenotype. In addition, current therapeutics also exacerbate this immunosuppression
which might explain the failure of immunotherapy-based clinical trials in the GBM setting.
Understanding how these mechanisms interact with one another, as well as how one can
increase the anti-tumor immune response by addressing local immunosuppression will lead
to better clinical results for immune-based therapeutics. Improving therapeutic delivery
across the blood brain barrier also presents a challenge for immunotherapy and future
therapies will need to consider this. This review highlights the immunosuppressive
mechanisms employed by GBM cancers and examines potential immunotherapeutic
treatments that can overcome these significant immunosuppressive hurdles.
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INTRODUCTION

Glioblastoma multiforme (GBM, WHO grade 4) is the most
frequently occurring primary brain tumor. Although primarily a
disease associated with old age, it can also occur in children. The
prognosis for GBM patients is poor and the disease is almost
uniformly fatal with only around 5% of patients surviving for a
period of 5 years after diagnosis (1). The current course of
therapy for GBM patients is surgical resection of the tumor
(where possible) followed by concomitant radiotherapy and
temozolomide chemotherapy, fol lowed by adjuvant
temozolomide. Despite aggressive multimodal therapy, GBM
tumors nearly always recur, the majority close to the site of
resection (2–4). This recurrence is most likely, and most often,
due to the infiltrative nature of GBM making complete resection
of tumor cells incredibly difficult. Although progress to improve
the surgical removal of tumor cells has been made, such as the
use of 5-aminolevulinic acid (5-ALA) which is approved for
intraoperative imaging of GBM cells increasing their removal, it
is not possible to visualize all individual cancer cells that have
migrated further into healthy areas of the brain (5).

GBM tumors are histopathologically characterized by an
abundance of poorly differentiated and pleomorphic astrocytes
with nuclear atypia and high mitotic activity. GBM tumors are
highly vascular and necrosis is often evident within these tumors
(6). Metastasis is rarely seen in GBM tumors; however, they are
highly invasive, and these tumors employ a plethora of
mechanisms to avoid immune detection.
THE BRAIN AS A UNIQUE IMMUNE
ENVIRONMENT

In order to understand the complexity of the brain’s interaction
with the immune system, the presence of the blood-brain barrier
(BBB) needs to be considered and understood. The endothelial
cells of the brain vasculature are connected by tight junctions
that control the permeability of the endothelium. Although these
tight junctions under normal physiological conditions are highly
regulated, under inflammatory conditions (such as those in
GBM) these junctions are not as tightly connected making the
endothelium ‘leaky’ (7). The BBB, a multi-component structure
found in the wall of cerebral blood vessels, selectively restricts
passage of cells and molecules into the brain from the circulation.
The major, but not sole, players in this defense are the
endothelial cells of the cerebral vessels, which differ from their
peripheral counterparts by the presence of intercellular tight
junctions that essentially prevent paracellular transfer of all, but
the smallest gases and ions, and the absence of fenestrations and
pinocytic mechanisms that restricts bulk transcytosis (8, 9).
These features are then reinforced by the presence of
numerous efflux transporters that remove xenobiotics and
metabolic waste from the brain into the circulation. Beyond
the endothelium, the BBB is further composed of a bi-layered
basement membrane within which reside pericytes and
perivascular macrophages that regulate endothelial function
Frontiers in Immunology | www.frontiersin.org 2
and pose a further barrier to cellular entry, ultimately
surrounded by a tight glia limitans formed of astrocyte end-
feet that appose and encircle the blood vessel (8, 9).

GBM tumors contain areas of highly metabolic cells that drive
local hypoxia, triggering production of vascular endothelial
growth factor and angiogenesis (10). This process involves
disruption of inter-endothelial tight junctions to permit
vascular growth, hence the core of the tumor is associated with
a weakened blood-tumor barrier (BTB) with an increased
permeability (11, 12). Nevertheless, areas of GBM tumors
distal from the hypoxic core, which in diffuse tumors can be a
significant proportion, remain behind a BTB that is highly
reminiscent of the true BBB, and are thus protected from the
entry of chemotherapeutic agents, including most therapeutic
antibodies (13). However, these difficulties do not mean that the
delivery of effective therapeutics for GBM is futile, and a wide
variety of approaches to achieve this are under active exploration.

The brain has traditionally been considered as being an
immunoprivileged organ due to a variety of factors, however it
is now accepted that there is an active interaction between the
brain and the immune system (14, 15). Despite this active
immune interaction, the brain is immunologically unique in
that immune cells do not freely access the brain parenchyma.
Although activated immune cells can cross the BBB, only those
specific for antigens within the brain remain there. T cells cross
the BBB in a capture, crawl, cross manner with integrins and
selectin ligands on T cells binding to selectins and integrin
ligands on endothelial cells ‘capturing’ them (16). Leukocytes
are then activated by chemokine secretion resulting in their
slowing and eventual transmigration. Once T cells have
transmigrated, they downregulate their integrin expression and
upregulate expression of matrix metalloproteinases (MMPs)
enabling them to break down matrix components allowing cell
penetration of the brain parenchyma (7). Inflammation within
the brain has been shown to lead to an upregulation of adhesion
molecules on the BBB endothelial cells (16, 17). The endothelial
cells of the brain vasculature do not just control the immune
response by physically excluding immune cells, these cells have
also been shown to contribute to immunosuppression in GBM.
FasL expression has been seen on GBM associated vascular
endothelial cells, and the FasL expressed on these cells is
linked to a reduced T cell infiltrate, most likely due to the FasL
induced death of T cells (18). There are very few immune cells
normally present within the brain, however the microglia can act
as antigen presenting cells (APCs). The brain traditionally has
low major histocompatibility complex (MHC) class I and class II
expression meaning that antigen expression is reduced when
compared to other tissues (19). It is important to note, however,
that GBM cells themselves have been shown to express MHC
class I and II molecules meaning that these cells present antigens
to antigen specific CD8+ and CD4+ T cells (20).

Not only does the unique physiology of the brain create an
unusual immune environment but it is important to note that the
tumors themselves create their own microenvironment. Tumor
cells can co-opt stromal cells in order to support their growth
and survival (21). The brain extracellular matrix is comprised of
October 2020 | Volume 11 | Article 582106
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proteoglycans, glycoproteins and glycosaminoglycans. In the
GBM setting, significant increases in heparan sulphate
proteoglycans (HSPG) have been seen in the tumor
microenvironment (TME) (22). The increase of HSPGs in the
TME leads to greater retention of growth factors such as vascular
endothelial growth factor (VEGF) and fibroblast growth factor
(FGF), thereby supporting tumor nutrition and growth. The
increased local concentration of VEGF within the GBM TME
results in upregulation of periostin and tenascin C within blood
vessels trapping T cells and preventing tumor penetrance (23).

In the case of GBM, as with many cancers T cells are
frequently exhausted and dysfunctional and therefore are
inadequate at exerting an anti-tumor immune response.
Persistent stimulation of T cells by tumor cells results in T cell
senescence as indicated by the presence of CD57 on the surface
of T cells (24). CD57 positive T cells can secrete cytokines when
stimulated by their cognate peptides however they do not
proliferate when stimulated (25). Tumor resident senescent T
cells have also been shown to down regulate the co-stimulatory
molecules CD27 and CD28 contributing to immune dysfunction,
causing changes in APC phenotype such as a down regulation of
CD80 and CD86 reducing their ability to stimulate T cells further
exacerbating the local immune dysfunction (26). When
compared to healthy donors GBM patients have a lower
number of circulating CD3+ T cells in their peripheral blood
mononuclear cells (PBMCs) further indicating a disease related
immune dysfunction (27). Glioblastoma multiforme is more
frequent in the older population with most cases occurring
between the ages of 55 and 60 (28). Increased age is linked to
T cell dysfunction; with elderly patients having a higher number
of senescent T cells and thymic shrinkage being apparent (24,
29). The chronic stimulation of T cells by tumor cells also leads
to the exhaustion of these cells, rendering them ineffective at
tumor control. This exhaustion leads to an upregulation of
immune checkpoint markers such as PD-1, LAG-3, TIGIT,
and CD39 on GBM infiltrating CD8+ T cells (30). TILs
isolated from murine GBM tumors show impaired cytokine
production compared to peripheral T cells, with reduced levels
of interferon gamma, tumor necrosis factor alpha and interleukin
2 being detected via flow cytometry when cells are stimulated in
vitro (30). Transformed tumor cells also compete with other cells
within the TME for glucose, GBM cells have an increased rate of
glucose uptake when compared to non-transformed cells. T cells
within the TME require glucose in order to perform effector
functions and therefore the depletion of glucose by tumor cells
results in impaired T cell function and exhaustion (31).
STANDARD OF CARE AND
IMMUNOSUPPRESSION

The current standard of care for GBM is maximal surgical resection
(where possible) followed by concomitant radiotherapy and
temozolomide chemotherapy (32). Patients are also given anti-
inflammatory steroids such as dexamethasone to help control
peritumoral edema (33). The US Food and Drug Administration
Frontiers in Immunology | www.frontiersin.org 3
(FDA) has also approved the use of tumor treating fields (TTFs) to
treat GBMs. This involves using alternating electric fields
administered via scalp electrodes to disrupt GBM tumor cell
division (34).

Dexamethasone has been shown to lead to the upregulation of
the immunosuppressive checkpoint cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) on the surface of T cells,
thereby reducing their anti-tumor activity. Dexamethasone has
also been shown to lead to a reduction of T cell proliferation (35).
Dexamethasone has also been shown to dampen patients’
immune responses to immune checkpoint blockade (36).

As previously mentioned, the standard of care involves the
use of the chemotherapeutic drug temozolomide (TMZ), which
is known to influence the immune system. High dose
temozolomide induces lymphopenia, an issue that is
exacerbated when TMZ is combined with radiotherapy (37).
TMZ has also been shown to result in T and B cell dysfunction in
a murine model of GBM (38).

In the GBM setting, radiotherapy can be administered in a
variety of ways such as whole brain radiotherapy, stereotactic
radiosurgery, image guided radiotherapy and hypofractinated
radiotherapy (39). Radiotherapy is known to have a number
immune modulating effects (40–42), importantly brain tumor
exposure to radiotherapy has been shown to upregulate MHC
class I expression by brain tumors, and this improves the antigen
presentation capability of these cells. Radiotherapy also increases the
repertoire of peptides presented by tumor cells and the
phenomenon of antigen spreading can occur – i.e. tumor cells
die, and their antigens are taken up by nearby immune cells (43).
Research has shown that radiotherapy is less efficient in mice
lacking T cells, thereby highlighting the additive effect that
radiotherapy has in immune cell-mediated control of cancer (44).
Radiotherapy is often thought of as an in-situ vaccination that
makes tumors susceptible to immune attack (44–46). Although a
large amount of evidence points towards radiotherapy stimulating
an anti-tumor immune response, radiotherapy can also
unfortunately result in the secretion of immunosuppressive
cytokines such as IL-6 and IL-10 from treated tumor cells (47, 48).

Combined TMZ, radiotherapy and dexamethasone therapy in
GBM patients has been shown to induce a persistent lowering of
CD4+ cell counts which is associated with increased rates of
infection and poorer survival (49).
IMMUNE INHIBITORY PROTEINS
EXPRESSED BY GBM TUMORS

GBM cells secrete many immunosuppressive proteins and
express many cell surface and cytoplasmic immune inhibitory
proteins (as summarized in Figure 1). Intracellular adhesion
molecule 1 (ICAM-1), a key regulator of cell-cell interactions, is
commonly upregulated within GBM tumors, when compared to
immunohistochemically stained normal brain (50). ICAM-1
interacts with lymphocyte function-associated antigen 1 (LFA-
1) expressed on myeloid cells to promote migration of these cells
into tumors, thereby enhancing intratumoral immune
October 2020 | Volume 11 | Article 582106
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suppression (51). Myeloid derived suppressor cell (MDSC)
accumulation in GBM tumors further contributes to local
immune suppression (52). The presence of MDSCs circulating
in the blood of GBM patients is also elevated when compared to
non-diseased individuals (53). These MDSCs express many
immunosuppressive molecules that suppress anti-tumor T cells
such as TGF-b and arginase (52). GBM cells have been shown to
overexpress galectin-1 (Gal-1), another protein important for the
maintenance of cell-cell interactions. Expression of Gal-1 by
GBM cells promotes the proliferation and migration of tumor
cells (54, 55). Gal-1 expressing GBM cells have also been shown
to induce T cell death when the two types of cells are co-cultured
(55). Gal-1 interacts with CD45 and CD43 on T cells resulting in
their clustering. Gal-1 also binds to CD7 on the T cells and these
interactions result in T cell death (56–58).

GBM cells have also been shown to express non-classical
MHC class I molecules on their surface which enables them to
evade immune cell mediated killing. HLA-G is one such non-
classical MHC class I molecule that is involved in immunogenic
tolerance of trophoblasts and prevents immune response to the
developing semi-allogeneic fetus. In the adult, HLA-G is
expressed in thymic epithelial cells, nail matrix and cornea
(59). Although HLA-G expression is tightly controlled in the
human body, it appears that GBM cells can express HLA-G (59).
HLA-G is not just expressed on the cell surface - a soluble
isoform that is secreted has been detected in plasma,
cerebrospinal fluid and seminal plasma. GBM tumors are
Frontiers in Immunology | www.frontiersin.org 4
frequently infected with cytomegalovirus (hCMV), and hCMV
infection has been associated with high levels of HLA-G
expression (60). Cytomegalovirus infection is prevalent in the
population and infection is lifelong. The immunosuppression
linked with GBM results in reduced control of hCMV and this
results in reactivation of the virus (60). HLA-G can bind to
several receptors, namely the inhibitory receptors Ig-Like
Transcript 2 (ILT2) and Ig-Like Transcript 4 (ILT4) (61).
HLA-G can also bind the non-inhibitory receptors CD8,
CD160, and KIR2DL4. Binding of soluble HLA-G to CD8 on
T cells induces a signaling cascade that results in Fas-FasL
mediated apoptosis of CD8+ T cells (61). HLA-G binding to
ILT2 on natural killer (NK) cells inhibits the polarization of lytic
granules and the microtubule-organizing center at the contact
zone, ultimately preventing NK cell-mediated lysis (61). HLA-E
is another non-classical MHC class I molecule; it is a ligand for
both NKG2A and NKG2C expressed on NK cells, CD8+ ab and
gd T cells. Binding of HLA-E to NKG2C can lead to immune cell
activation, and its binding to NKG2A leads to immune cell
inhibition. HLA-E, much like HLA-G, is believed to play a role in
maternal tolerance of the fetus (62). HLA-E has been shown to be
expressed on GBM cells and this HLA-E expression has been
shown to prevent NK cell mediated lysis of these tumor cells.
Blockade of the NKG2A – HLA-E interaction has been shown to
improve NK cell mediated killing of GBM tumor cells (62).

GBM tumors have also been shown to express Fas ligand
(CD95L) on their surface, the binding of which to Fas (CD95/
FIGURE 1 | Overview of immunosuppressive mechanisms utilized by GBM tumors.
October 2020 | Volume 11 | Article 582106
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APO-1) on T cells leads to apoptosis of the T cells, thereby
enabling GBM cells to evade lysis by Fas-expressing T cells (63).
GBMs can also induce T cell death via their expression of CD70.
CD70 on GBM cells binds to CD27 on T cells inducing death of
activated T cells, and blockade of this interaction has been shown
to partially protect T cells from GBM cell induced death (64).
GBMs have also been shown to express the immune dampening
checkpoint ligand programmed death ligand 1 (PD-L1). PD-L1
binds to its cognate receptor programmed death 1 (PD-1)
expressed on activated T cells, and this leads to inhibition of T
cell responses to PD-L1 expressing GBM cells. It has been
reported that as many as 88% of patient GBM samples express
PD-L1 (65). This high level of PD-L1 expression has been shown
to be linked with poorer patient survival (66).

Herpes virus entry mediator (HVEM) is an example of
another immune checkpoint molecule that has been proven to
be expressed in the GBM microenvironment (67). HVEM is
usually expressed on T cells, it can have both co-stimulatory and
inhibitory effects, depending upon its binding partner (67).
HVEM exerts an immune inhibitory effect when bound to B
and T lymphocyte attenuator (BTLA) or CD160 expressed by
other immune cells (67). High expression of HVEM in GBM
tumors has been linked to regulatory T cell differentiation,
negatively associated with the regulation of T cell mediated
cytotoxicity and with a decreased survival time (67).

Indoleamine 2,3-dioxygenase (IDO) is another protein
involved in immunoregulation and prevention of fetal
rejection. IDO catabolizes tryptophan into immune-regulatory
kynurenines. IDO expression can be induced by a variety of
receptors such as the toll like receptors (TLRs), tumor necrosis
factor receptor superfamily members (TNFRs), interferon
gamma receptors (IFNGRs), transforming growth factor beta
receptors (TGFBRs) and aryl hydrocarbon receptors (AhRs)
(68). The depletion of tryptophan by IDO activity inhibits
immune cell function and prevents dendritic cell (DC)
maturation (68). IDO expression is upregulated in recurrent
GBMs, with 100% of patients being studied expressing IDO at
the time of the second surgery (69). The expression of IDO
within GBM tumors is associated with an increased infiltration of
CD4+ regulatory T cells, immune escape and a poorer prognosis
(70). Increased kynurenine production driven by IDO activity
induces the differentiation of naïve CD4+ T cells into
immunosuppressive regulatory CD4+ T cells triggered by the
binding of kynurenine to the aryl hydrocarbon receptor (AHR)
on naïve CD4+ T cells (71). Tryptophan 2,3-dioxygenase (TDO),
another enzyme involved in the degradation of tryptophan into
kynurenine, can also contribute to an immunosuppressive
microenvironment high in kynurenine. TDO is expressed in
brain tumors and represents a druggable target for reversing the
immunosuppressive microenvironment (72).

GBM tumors also secrete numerous other immunosuppressive
factors that shape the immune TME and enable immune evasion.
GBM tumors secrete IL-6 (73, 74) and their expression of the IL-6
receptor is upregulated (75). IL-6 mediates signaling via the
transcription factor STAT3. Upon activation, STAT3 is
phosphorylated and persistent phosphorylation is linked with
Frontiers in Immunology | www.frontiersin.org 5
brain tumor grade; with GBM showing the highest levels of
STAT3 phosphorylation. Knockdown of STAT3 in GBM cell
lines slows in vitro and in vivo tumor cell growth (76). Human
GBM cells isolated from tumors were shown to secrete the
chemokine CCL22 (77) which attracts regulatory CD4+ CD25+

FoxP3+ T cells to the TME (78). GBM tumor cells also secrete the
immunosuppressive cytokine TGF-b which reduces ICAM-1 and
VCAM-1 expression on GBM endothelial cells and thereby T cell
infiltration (79, 80). The active form of TGF-b secreted by GBM
cells increases the activity of MMP2 and MMP9 on the surface of
GBM cells which in turn increases cell motility and promotes the
invasion of GBM cells into the surrounding brain (81). GBM tumor
cells also secrete the anti-inflammatory cytokine IL-10 which, in the
normal setting prevents excessive inflammation and reduces tissue
damage by suppressing the activity of Th1 and CD8+ T cells.
Immune cells such as regulatory T cells secrete IL-10 to quell the
immune response (82). IL-10 mRNA is highly expressed in GBM
tissues (83). More concerning is that IL-10 not only suppresses the
immune system, but also increases the proliferation and migration
of GBM cells. Intratumoral microglia/macrophages are major
contributors to the IL-10 production within GBM tumors (84).

Human cytomegalovirus (hCMV) is a herpes virus that has been
shown to persistently infect 50% to 90% of the adult population.
Analysis of GBM tumors has revealed that a large proportion of
tumors express hCMV proteins indicating the presence of hCMV
within these tumors (85, 86). Human cytomegalovirus secretes a
homolog of IL-10, known as cmvIL-10 which has the same
immunoinhibitory properties as human IL-10 (87). The
attenuation of the immune response by cmvIL-10 prevents
eradication of the tumor as well as the virus itself. The secretion
of cmvIL-10 leads to the differentiation of CD14+ monocytes to
macrophages, thereby further supporting hCMV infection (88). In
vitro studies have revealed that cmvIL-10 affects the maturation and
life span of DCs, in that although monocytic DCs exposed to
cmvIL-10 reach maturation, their cytokine production is impaired
in a non-reversible manner (88). The presence of IL-10 and TGF-b
in GBM tumors is believed to downregulate the expression of MHC
class I in the TME (89). GBM cells express macrophage migration
inhibitory factor (MIF) which renders GBM cells resistant to NK
cell mediated killing (90). VEGF secretion by GBM cells stimulates
the growth of new blood vessels supplying oxygen and nutrients to
rapidly dividing and often hypoxic tumor cells (91, 92). As well as
increasing tumor vasculature, VEGF also upregulates expression of
the macromolecules tenascin C (TNC) and periostin. TNC blocks
the migration of T cells across the blood tumor barrier thereby
preventing them from penetrating the tumor parenchyma (23).
Periostin also recruits circulating immunoinhibitory M2
macrophages into the tumor parenchyma (93). GBM stem cells
secrete the macrophage attracting cytokine periostin. These
macrophages support tumor growth and result in a poorer
prognosis (93). GBM cells exposed to radiotherapy and
chemotherapy have been shown to display increased
immunosuppression. This phenomenon has been shown to be
due to increased prostaglandin E2 secretion by cells. Blockade of
this secreted PGE2 reverses the immunosuppressive capacity of
treated cells (47). Colony stimulating factor 1 (CSF-1) is a growth
October 2020 | Volume 11 | Article 582106
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factor that has been shown to be expressed in GBM tumors and by
GBM cell lines (94). CSF-1 can either be secreted by cells or expressed
as a transmembrane variant on the cell surface. CSF-1 is secreted by
astrocytes within the brain during acute inflammatory responses.
CSF-1 can bind to its receptor (CSF-1R) on the surface of
macrophages and microglia within the brain promoting their
switch to the immunosuppressive M2 phenotype (94, 95). GBM
cells also secrete interleukin-1a and -1b (IL-1 a and b) (96). The
down regulation of HLA class II expression on the U-105 MG GBM
cell line by IL-1b suggests that this could be another mechanism
which reduces immune recognition by CD4+ T cells (97).
THE CONTRIBUTION OF IMMUNE CELLS
WITHIN GBM TUMORS TO THE IMMUNE
INHIBITORY PHENOTYPE

Whilst GBM tumor cells contribute to immunosuppression, the
immune cells recruited to the tumor can also exacerbate the
immune evasive properties of these tumors. Although immune
cells can contribute to tumor control, immunosuppressive
populations can also contribute to the immune escape of GBM
tumors. Indeed, many of the anti-tumor immune cells recruited
to the TME adopt an immunosuppressive phenotype due to the
cytokines secreted by the GBM tumors and the unique
microenvironment which these tumors create.

Myeloid-derived suppressor cells (MDSCs) can be found
within GBM tumors, and these cells contribute to the
immunosuppressive phenotype of GBMs (98). MDSCs can be
divided into two main types, monocytic and granulocytic.
Granulocytic MDSCs are rarely found in GBM tumors,
whereas the monocytic subtype are more prevalent (99).
Monocytic MDSCs support tumor growth by increasing the
recruitment of CD4+ regulatory T cells via chemokine release
in the TME (100). CD4+ regulatory T cells are well known
immunosuppressive immune cells that dampen the immune
response. When compared to healthy controls, the prevalence
of regulatory T cells in the peripheral blood is higher in GBM
patients. Of even more relevance is that the prevalence of
regulatory T cells in lymphocyte populations infiltrating GBM
tumors is significantly greater than that in lymphocyte
populations from ‘normal’ brain tissue obtained from seizure
patients (101, 102). Although immune cell infiltration is often
viewed as a positive prognostic marker, it can also contribute to
the pathology of GBM. Lymphocytes entering the tumor have
been shown to downregulate costimulatory molecules such as
CD28 and CD62L (103). The presence of immunosuppressive
regulatory T cells within GBM tumors has been correlated with
shorter recurrence-free survival. GBM associated microglia/
macrophages, which constitute up to 30% of the GBM tumor
bulk are of the immunosuppressive M2 phenotype (103, 104).
The expression of PD-L1 by these immunosuppressive M2 cells
further contributes to local immunosuppression, as does their
secretion of CCL22 which recruits regulatory T cells and MDSCs
into the TME (103, 104).
Frontiers in Immunology | www.frontiersin.org 6
OVERCOMING GBM-DRIVEN
IMMUNOSUPPRESSION

Active Immunotherapy via Vaccination
Vaccination presents an attractive method for immuno-
therapeutically targeting GBMs (ongoing trials are detailed in
Tables 1–3). One issue that can arise with peptide vaccinations is
that immune escape variants can develop, and tumors can
overcome the immune pressure applied to them. This
phenomenon has been seen in the case of Rindopepimut, an
EGFRvIII-keyhole limpet hemocyanin peptide conjugate. When
Rindopepimut was used to treat GBM patients with EGFRvIII
positive tumors, their median overall survival was 26 months
compared to the 15 months of matched controls. Although
vaccination prolonged the overall survival of patients, tumors
recurred in a large proportion of these patients. When the
recurrent tumors were analyzed immunohistochemically for
EGFRvIII expression, 82% of the tumors examined had lost
expression of EGFRvIII and the other 18% only displayed
EGFRvIII expression in less than 1% of their tumor cells (114).
These data suggest that the targeting of a single antigen can lead
to the generation of immune escape variants, as a consequence of
which multiple antigens need to be employed in the formulation
of such vaccines.

IMA950 is one such multi-peptide vaccine that is being
investigated in GBM. IMA950 is made up of 9 CD8 specific
peptides derived from BCAN, CSPG4, FABP7, IGF2BP3,
NRCAM, NLGN4X, PTPRZ1, and TNC as well as two CD4
specific peptides derived from survivin and c-met (150). This
multi-peptide vaccine was given in conjunction with the immune
boosting adjuvant poly-ICLC to GBM patients in a phase I/II
clinical trial (111). This vaccination was well tolerated by patients
and induced antigen specific CD8+ and CD4+ T cell responses
(111). The level of response seen in patients varied, and analysis
of five tumor samples revealed that no vaccine-specific T cells
were present in the TIL population, meaning that there may be
issues with the homing of vaccine-induced T cells (111). When
samples from the recurrent tumors were tested for expression of
the target antigens, no change in the levels of these antigens
compared to the pre-vaccination tumor samples was observed,
further suggesting that the issues are with T cells not trafficking
to the tumor site (111). The ability of tumor cells to present
immunogenic epitopes at their surface may also explain the
failure of peptide vaccine treatments. Whilst tumors may express
the target antigen, they may not present the target epitope on
their surface meaning that vaccine generated T cells will not
target these tumors. Although vaccination with these peptides
generates antigen-specific T cells, there appears to be an issue
with the immune TME of these tumors. As a result, the
combination of IMA950 vaccination with other modalities,
such as immune activating anti-CD27 and anti-PD-1 are being
explored in the clinic (111).

A ‘personalized’ peptide vaccination approach has also been
explored in the GBM setting. In a phase I clinical trial, GBM
patients were treated with a cocktail of manufactured peptides
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TABLE 1 | Peptide vaccine trials for glioblastoma.

) Median OS(months) Primary
endpoint

Results

15.3 Safety and
immunological
response

Positive

Results pending Safety Safe vaccine

29 Safety and
immunological
response

Safe vaccine,
Trend for
immunological
response

86.6 Safety Safe vaccine

Results pending Safety and
immunological
response

Safe vaccine

6.2
(r-GBM)

Safety Safe vaccine

Results pending Safety and
immunological
response

Results pending

Results pending Feasibility and
safety

Results pending

Ongoing Safety Ongoing

Results pending
(interim results: OS=19)

Safety and
immunological
response

Positive

Results pending
(interim results: 11.0 for
stage 1, 11.7 for stage 2)

Safety, ORR,
OS12

Results pending

Ongoing Safety Ongoing

Ongoing Immunological
response

Ongoing

: Ongoing (Interim results:
14.0 in immunological
responders - rGBM)

Safety Ongoing

Ongoing (not yet
recruiting)

Safety Ongoing
(not yet recruiting)

26.0 PFS and
immunological
response

Positive

26.0 PFS and OS Positive

21.8 PFS5.5 Positive
(PFS5.5 = 66%)

NA PFS6 Positive (trend)

Pending (interim results:
OS12=93.4%)

PFS6 Positive
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Trial name
ClinicalTrial.gov
identifier

Phase Immune targets Associated
treatments in
active arm

Control arm Sample size T cell response(CD4/CD8
response details)

Humoral
response

Median PFS(month

IMA-950
NCT01222221
(105)

I BCAN, CSPG4, FABP7, IGF2BP3,
NLGN4X, NRCAM, PTPRZ1, TNC,
MET, BIRC5, HBcAg

None None 40 Yes
(Up to 1.1% specific CD8)

NA NA
(PFS6 = 74.4%)

NOA-16
NCT02454634
(106)

I IDH1R132H None None 32 Results pending Results
pending

Results pending

GAPVAC
NCT02149225
(107)

I Personalized vaccine None None 15 Yes
(Up to 0.02% specific CD8)

NA 14.2

SurVaxM
NCT01250470
(108)

I Survivin
(SVN53-67/M57-KLH peptide)

None None 9 Yes
(CD8 response in 78%
patients: at least 1%
specific CD8)

Yes
(88%
patients)

17.6

NCT01621542
(109)

I WT2725 None None 21 Yes
(interim results: CD8
response in 10% patients)

Results
pending

Results pending

UMIN000003506
(110)

I Cocktail of WT1 HLA class I and II
peptides

None None 14 Yes
(CD8 response in 64%
patients: median specific
CD8 = 6% of total CD8)

NA 4
(r- GBM)

PERFORMANCE
NCT02864368

I CMV peptide Temozolomide None 70 Results pending Results
pending

Results pending

NeoVax
NCT02287428

Ia/Ib/
Ic

Personalized neoantigen vaccine Temozolomide
plus
Pembrolizumab

None 56 Results pending Results
pending

Results pending

NCT03223103 Ia/Ib Personalized mutation-derived
tumor antigens

TTF None 20 Ongoing Ongoing Ongoing

IMA-950
NCT01920191
(111)

I/II BCAN, CSPG4, FABP7, IGF2BP3,
NLGN4X, NRCAM, PTPRZ1, TNC,
MET, BIRC5, HBcAg

Pembrolizumab None 13 Results pending
(interim results: CD8
response in 63.2% patients)

Results
pending

Results pending
(interim results:
PFS9=63%)

SL-701
NCT02078648
(112)

I/II IL-13Ra2, EphrinA2, survivin Stage 1:
imiquimod;
Stage 2:
Bevacizumab

None 74 Results pending
(interim results: CD8
response in stage 2
patients)

Results
pending

Results pending

IMA950-106 I/II BCAN, CSPG4, FABP7, IGF2BP3,
NLGN4X, NRCAM, PTPRZ1, TNC,
MET, BIRC5, HBcAg

None None 24 Ongoing Ongoing Ongoing

UCPVax-Glio
NCT04280848

I/II Telomerase (TERT) None None 28 Ongoing Ongoing Ongoing

VBI-1901
NCT03382977
(113)

I/II CMV (pp65 and gB antigens) None None 38 Ongoing Ongoing Ongoing (Interim result
3.6 in immunological
responders - rGBM)

ROSALIE
NCT04116658

I/II TAAs and microbiome-derived
peptides (EO2401)

Nivolumab
+/-
Bevacizumab

None 32 Ongoing (not yet recruiting) Ongoing
(not yet
recruiting)

Ongoing (not yet
recruiting)

ACTIVATe
NCT00643097
(114)

II EGFR-vIII Temozolomide None 22 NA Yes
(33%
patients)

NA
(PFS5.5 = 66%)

ACT II
NCT00643097
(115)

II EGFR-vIII None None 18 NA Yes
(43%
patients)

14.2

ACT III
NCT00458601
(116)

II EGFR-vIII Temozolomide None 65 NA Yes
(85%
patients)

9.2

ReACT
NCT01498328
(117)

II EGFR-vIII Bevacizumab KLH and GM-
CSF plus
Bevacizumab

36
(vs. control

37)

NA Yes
(89%
patients)

NA

SurVaxM
NCT02455557
(118)

II Survivin: SVN53-67/M57-KLH
peptide

Temozolomide None 63 Pending results Pending
results

Pending results
(interim results: 13.9)
s
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derived from known GBM antigens followed by a vaccination
that targeted neoepitopes derived from analysis of the patients’
tumor immunopeptidome and transcriptome (107). Each patient
received a vaccine that was tailored to their tumor antigen
expression profile. Vaccines were administered with the
adjuvants Poly-ICLC and GM-CSF. The cocktail of ‘off the
shelf’ peptides known as APVAC1 generated CD8+ T cell
responses in twelve out of the thirteen patients studied and
CD4+ T cell responses were found in nine of the thirteen patients
studied (107). The neoepitope vaccine known as APVAC2
generated a predominantly CD4+ T cell response in eight out
of the ten patients evaluated. The overall median overall survival
of patients receiving this vaccination regime was 29 months
(107). Although these findings are promising, these peptide
vaccinations are far from curative. Whilst CD4+ and CD8+

responses were detected, these were at a relatively low level,
with the frequency of antigen specific T cells being below 4
percent for CD4+ T cells and 1 percent for CD8+ T cells (107).
The low frequency of target specific T cells may explain the
failure of this therapy to act in a curative manner. Targeting of
multiple antigens helps prevent the development of antigen
escape variants, however combinatorial methods that enable
vaccine-induced T cells to penetrate tumors and overcome the
immunosuppressive microenvironment need to be explored.
Targeting Immune Inhibitory Cells and
Cytokines
The contribution ofmacrophages/microglia to the immunosuppressive
TME of GBM and their prevalence within the tumor bulk suggest
them to be attractive therapeutic targets for the immunotherapeutic
targeting of GBM. As mentioned previously, microglia and
macrophages in the TME adopt an immunosuppressive M2
phenotype (103, 104). As also previously mentioned, microglia/
macrophages express the CSF-1R and GBM cells secrete CSF-1
resulting in the switching of GBM macrophages/microglia to
the immune inhibitory M2 phenotype. The blockade of this
CSF-1/CSF-1R interaction presents an attractive approach for
preventing the switching of tumor resident macrophages/
microglia to the immunoinhibitory M2 phenotype. In this
regard, blockade of the CSF-1R with the chemical BLZ945 has
been shown to improve survival and reduce tumor development
in GBM bearing mice without any visible deleterious side-effects.
BLZ945 treatment did not alter macrophage numbers within the
implanted tumors but reduced the polarization of these
macrophages to the M2 phenotype (95). As a result,
combining BLZ945 with active immunotherapy represents an
exciting therapeutic option for GBM.

As previously discussed GBM cells are known to overexpress
MIF, making them resistant to NK cell mediated killing (90). Not
only does MIF protect GBM cells from NK cell mediated killing it
also exerts effects on macrophages/microglia within the tumors.
MIF has been shown to interact with CD74 on microglia
resulting in the adoption of the immunosuppressive M2
phenotype. Disruption of the CD74/MIF pathway prevents this
M2 phenotype switch and prolongs the survival of GBM tumor
bearing mice (151). Immunotoxins have also been used to target
T
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TABLE 2 | Dendritic cell vaccine trials for glioblastoma.

nths) Primary endpoint Results

Safety Positive

Safety and feasibility Safe vaccine

Safety and feasibility Ongoing

, Safety and feasibility Safe vaccine

Safety and feasibility Safe vaccine

6.3 Safety and clinical
outcome

Positive

.5)
Safety and feasibility Safe vaccine

.1
Safety Safe vaccine

Immunological
response

Positive (trend)

Safety Results pending

Safety Ongoing

Safety and
immunological
response

Ongoing

Safety and toxicity Ongoing

Safety, Feasibility and
immune response

Ongoing

Safety, feasibility and
OS12

Ongoing

MTD and immune
response

Vaccine well tolerated with
not MTD reached

Safety and Immune
response

Ongoing

Safety and Feasibility Vaccine was safe and well
tolerated

Safety Safe vaccine

Safety, feasibility,
immunological
response

Positive for safety and
feasibility

Safety and PFS6 Ongoing

PFS Ongoing

(Continued)

P
earson

et
al.

Im
m
une

Escape
in

G
lioblastom

a
M
ultiform

e

Frontiers
in

Im
m
unology

|
w
w
w
.frontiersin.org

O
ctober

2020
|
Volum

e
11

|
A
rticle

582106
9

Trial name
ClinicalTrial.gov
identifier

Phase Immune targets Associated
treatments in
active arm

Control Sample
size

T cell response (CD4/CD8
response details)

Humoral
response

Median PFS
(months)

Median OS (mo

PERCELLVAC
NCT02709616
NCT02808364
(121)

I Personalized TAA None None 5 Yes
(CD4 and CD8 response in 80%
patients: up to 3.5% specific CD8)

NA NA 19

ATTAC
NCT00639639
(122, 123)

I CMV pp65 None None 11 Yes
(up to 4.5% specific CD8 in 55%
patients)

NA 25.3 41.1

NCT03615404 I CMV RNA Td + GM-CSF +
DI-TMZ

None 10 Ongoing Ongoing Ongoing Ongoing

NCT00612001
(124)

I Autologous glioma
lysate
vs. GAA peptides

None None 34 NA NA 9.6 34.4 for lysate-D
14.4 for GAA-DC

NCT00068510
(125)

I Autologous glioma
lysate

None None 12 Yes
(CTL response in 50% patients)

NA 15.5 23.4

Rudnick 2020
(126)

I Autologous glioma
lysate

Gliadel None 28 Yes
(CD8 response in 25% patients, no
details in %specific CD8)

NA 3.6 32 for nd-GBM,
for r-GBM

MC1272
NCT01957956
(127)

I Autologous glioma
lysate

Temozolomide None 20 Results pending Results
pending

Results
pending
(interim
results: 9.7)

Results pending
(interim results: 2

NCT02010606
(128)

I Autologous glioma
stem like lysate

Temozolomide for
nd-GBM
Bevacizumab for r-
GBM

None 38 Results pending Results
pending

Results
pending
(interim
results: 8.6
For nd-GBM;
3.14
For r-GBM)

Results pending
(interim results: 2
for nd-GBM;
12.0
For r-GBM)

ICT-107 (129) I AIM-2, MAGE1,
TRP-2, gp100,
HER2, IL-13Ra2

None None 16 Yes
(specific CD8 increase in 31%
patients)

NA 16.9 38.4

NCT01808820 I Autologous glioma
lysate

Imiquimod None 20 Results pending Results
pending

Results
pending

Results pending

NCT03360708 I Autologous glioma
lysate

None None 20 Ongoing Ongoing Ongoing Ongoing

ATL-DC
NCT04201873

I Autologous glioma
lysate

Pembrolizumab ATL-DC plus
poly ICLC
plus placebo

40 Ongoing Ongoing Ongoing Ongoing

NCT03360708 I Autologous glioma
lysate

None None 20 Ongoing Ongoing Ongoing Ongoing

NCT00890032 I BTSC mRNA None None 50 Ongoing Ongoing Ongoing Ongoing

NCT03914768 I Genetically modified
tumour cells and
neoantigens

Cyclophosphamide
+ Bevacizumab

None 10 Ongoing Ongoing Ongoing Ongoing

NCT01171469
(130)

I Allogenic BTSCs Imiquimod None 8 Increase in IL-17 expressing CD4
(Th17) cells in stable patients
compared to non-stable patients

None NA NA

DENDR-STEM
NCT02820584

I Allogenic BTSC None None 20 Ongoing Ongoing Ongoing Ongoing

ICT-121
NCT02049489
(131)

I CD133 None None 20 Immune response detected to
CD133 epitopes)

NA NA NA

NCT00846456
(132)

I/II Autologous glioma
stem cells lysate

None None 7 Yes
(100% patients, defined via
proliferation assay)

NA 23.1 25.3

16-184-4412
(133)

I/II Autologous glioma
cells

None None 32 Yes
(CD8 response in 13% patients: up
to 5.5% specific CD8 of total CD8 T
cells)

NA 10.3
(r-GMB)
18.3
(nd-GBM)

18.0
(r-GMB)
30.5
(nd-GBM)

NCT04388033 I/II Autologous glioma
cells

Temozolomide None 10 Ongoing Ongoing Ongoing Ongoing

DEN-STEM
NCT03548571

II/III Autologous glioma
stem cells

Temozolomide TMZ 60 Ongoing Ongoing Ongoing Ongoing
C
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TABLE 2 | Continued

months) Primary endpoint Results

ing
s: 43.7)

OS Ongoing

Safety and Feasibility Ongoing

OS Positive (trend for OS and
significant for PFS)

PFS Safe vaccine

PFS12 Positive
(PFS12 = 41%)

PFS12 Negative

Immunological
response

Positive trend

OS and PFS Positive (trend for PFS)
(Second phase of trial in
IDH1wt TERTmt subgroups
of GBM patients ongoing)

ing Immunological
response

Results pending

ing OS Results pending

ing OS and DC migration Results pending

OS Ongoing

OS Ongoing

OS, Safety and T reg
depletion

Ongoing

OS Ongoing

PFS12 Ongoing

Safety and feasibility Ongoing

for this
an DOH/
04)

OS and safety Positive

PFS Ongoing

Overall survival Suspended

ing
s: 23.1)

PFS Results pending

OS Ongoing

rogression free survival; OS, overall survival; Td, Tetanus toxoid;
imum tolerated dose.
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Trial name
ClinicalTrial.gov
identifier

Phase Immune targets Associated
treatments in
active arm

Control Sample
size

T cell response (CD4/CD8
response details)

Humoral
response

Median PFS
(months)

Median OS

ADDIT-GLIO
NCT02649582
(134)

I/II WT1 Temozolomide None 20 Ongoing
(interim results: CD4 response
correlated with OS)

Results
pending

Results
pending

Results pend
(interim result

NCT03879512 I/II Autologous tumor
lysate

Metronomic
cyclophosphamide

None 25 Ongoing Ongoing Ongoing Ongoing

ICT-107
NCT01280552
(135)

II AIM-2, MAGE1,
TRP-2, gp100,
HER2 and IL-
13Ra2

Temozolomide TMZ 81
(vs. control

43)

Yes
(CD8 response in 50% patients)

NA 11.2 17.0

ICT-107
NCT01006044
(136)

II AIM-2, MAGE1,
TRP-2, gp100,
HER2 and IL-
13Ra2

Radiotherapy-
Temozolimide
+ fluorescence-
guided surgery

None 27 Yes (11/27 patients displayed tumor
specific responses with increased
serum cytokine levels)

NA 12.7 23.4

DENDR1
EUDRACT N°
2008-005035-15
(137)

II Autologous tumor
lysate

Radiotherapy-
Temozolimide

None 22 No NA 10.5 20.1

Audencel
NCT01213407
(138, 139)

II Autologous tumor-
derived peptides

Temozolomide TMZ 34 (vs.
control 42)

NA NA 6.8 18.8

NCT00323115
(140)

II Autologous glioma
lysate

None None 10 Trends (CD8 and CD4) NA 9.5 28

NCT01567202
(141)

II Autologous glioma
stem-like lysate

None Placebo 22 (vs.
control 21)

NA NA 7.7 13.7

NCT01204684 II Autologous glioma
lysate

None None 60 Results pending Results
pending

Results
pending

Results pend

AV-GBM-1
NCT03400917

II Autologous glioma
cells

TAA-pulsed DC
vaccine plus GM-
CSF

None 55 Results pending Results
pending

Results
pending

Results pend

ELEVATE
NCT02366728

II CMV pp65 +-/Basiliximab None 100 Results pending Results
pending

Results
pending

Results pend

I-ATTAC
NCT03927222

II CMV pp65 Temozolomide None 48 Ongoing Ongoing Ongoing Ongoing

ATTAC-II
NCT02465268

II CMV pp65 Temozolomide Unpulsed
PBMC and
saline

120 Ongoing Ongoing Ongoing Ongoing

DERIVe
NCT03688178

II CMV pp65 Varlilumab
plus Temozolomide

Unpulsed
DCs

112 Ongoing Ongoing Ongoing Ongoing

GlioVax
NCT03395587
(142)

II Autologous glioma
lysate

DC vaccine plus
TMZ

TMZ 136 Ongoing Ongoing Ongoing Ongoing

ADCV01
NCT04115761

II Autologous glioma
lysate

Temozolomide TMZ 24 Ongoing Ongoing Ongoing Ongoing

NCT00576537 II Autologous tumor
lysate

None None 50 Ongoing Ongoing Ongoing Ongoing

ADCTA-G
NCT02772094
(143)

II Autologous tumor
lysate

TMZ +
Radiotherapy

None 42 NA NA NA 22.9 (median
trial and Taiw
MA09100725

Combi G-Vax
NCT04523688

II Autologous tumour
lysate

TMZ + radiotherapy None 28 Ongoing Ongoing Ongoing Ongoing

STING
(ICT-107)
NCT02546102

III AIM-2, MAGE1,
TRP-2, gp100,
HER2 and IL-
13Ra2

None Autologous
PBMCs

Estimated
414 but

suspended

NA NA NA NA

DCVax-L
NCT00045968
(144)

III Autologous tumor
lysate

None Autologous
PBMC

331 NA Results
pending

NA Results pend
(interim result

NCT04277221 III Autologous tumor
lysate

Bevacizumab Bevacizumab 118 Ongoing Ongoing Ongoing Ongoing

KLH, keyhole limpet haemocyanin, TTF, Tumor Treating Fields; nd-GBM, newly diagnosed glioblastoma; r-GBM, recurrent glioblastoma; TAA, Tumor Associated Antigen; PFS, p
GM-CSF, Granulocyte Macrophage-Colony Stimulating Factor; DI-TMZ, Dose-Intensified Temozolomide; BTSC, Brain Tumor Stem Cells; CMV, Cytomegalovirus; MTD, max
(
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tumor associated macrophages (TAMs); Nagai et al. (2009)
utilized this methodology to selectively target TAMs. Activated
TAMs were shown to express folate receptor beta (FRb), thereby
providing a macrophage-specific target. The heavy and light
chains of an anti-FRb antibody were conjugated to the toxin
Pseudomonas exotoxin (152). The abundance of macrophages
within the tumor allows delivery of the toxin to the tumor
resulting in the death of tumor cells and the potentially
immunosuppressive macrophages. Administration of this
immunotoxin intratumorally to a subcutaneous rat C6 glioma
tumor reduced tumor growth and the number of TAMs in these
tumors (152). It is important to note that this treatment was
injected directly into subcutaneous tumors which reduces the
potential for any deleterious off-target effects. Although FRb was
not detected in the normal brain, it was detected on macrophages
resident in the heart and liver (152). This presents a potential
hurdle to the systemic delivery of this immunoconjugate. The
ability of this drug to cross the blood brain barrier is also
unknown since this study utilized a subcutaneous model. In
patients, this immunoconjugate could be administered
intratumorally during surgery, or intraventricularly utilizing an
Ommaya reservoir (an intracranial catheter device that allows
direct delivery of drugs to the ventricles), thereby bypassing the
blood brain barrier. However, this method is highly invasive and
not without risks (153, 154).

Propentofylline (PPF) is a synthetic methylxanthine drug that
is known to reduce the proliferation (155) and expression of
inflammatory cytokines (155) by microglia in response to
lipopolysaccharide. PPF could therefore be a novel therapeutic
for targeting microglia within GBM tumors. In a rat model of
GBM utilizing the CNS-1 cell line, a cell line which recapitulates
the features of human GBM with minimal immunogenicity,
systemic PPF administration reduced the volume of
intracranial CNS-1 tumors (156). In vitro analysis revealed that
PPF did not exert its effects on the CSF-1 cell line, rather its anti-
tumor effects were attributed to its effect on microglial migration
and the contribution of microglia to tumor cell migration (156).
Rather than trying to remove microglia/macrophages from the
TME, switching immunosuppressive M2 cells to the immune
activating M1 phenotype also represents an attractive
therapeutic option.

IL-12 represents an excellent immunotherapeutic candidate
due to its ability to activate T-cells and NK cells and provoke
antigen-specific immunity (157). As systemic administration of
recombinant IL-12 was associated with adverse effects (such as
damage to vital organs), gene transfer of IL-12 was achieved by
the intracranial administration of an adeno-associated virus
(AAV) encoding IL-12 to rats, after which they were
challenged by intracranial injection of rat RG2 GBM cells.
Treatment improved the survival of tumor challenged mice
when compared to PBS injected control mice. Analysis of
treated tumors revealed an increase in the microglial activation
markers ED1 and TNF-related apoptosis-inducing ligand
(TRAIL), and this was accompanied by a downregulation of
the proliferation marker Ki67 and an increase in TUNEL
staining - an indicator of apoptosis (157).
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The blockade of TGF-b presents an attractive adjunct for
active immunotherapy, due to its immunoregulating and tumor
promoting effects. Trabedersen is an anti-sense RNA for human
TGF-b2 mRNA that has been administered via convection-
enhanced delivery to patients with recurrent GBM. Although
Trabedersen improved the median survival compared to
chemotherapy alone, this difference was not of statistical
significance (158). In a pre-clinical murine model of metastatic
pancreatic cancer, active vaccination was combined with
antibody blockade of TGF-b. Soares et al. (2015) treated a
murine model of pancreatic cancer using a vaccine comprised
of GM-CSF secreting irradiated pancreatic cancer cells known as
GVAX. This vaccine was used to treat two models of pancreatic
cancer, the Panc02 model and KPC model. When GVAX
vaccination was combined with TGF-b blockade, the cure rate
of tumor bearing mice was improved in both models when
compared to mice given GVAX with an IgG isotype antibody.
The anti-tumor effects of GVAX were even further improved
when the vaccine was combined with both an anti-TGF-b and
anti-PD-1 antibody. This blockade of TGF-b in combination
with GVAX reduced the regulatory T cell infiltrate into these
tumors, a trend not seen when either therapy was used
alone (159).

Immune Checkpoint Blockade
Due to the expression of numerous immunosuppressive
checkpoints within the GBM TME, many checkpoint blockade
antibodies have been tested in the GBM setting. Immune
checkpoint blockade also represents a method for rescuing
exhausted T cells. As monotherapies, immune checkpoints
have provided lackluster results (160–162). One interesting
method for altering the responsiveness to immune checkpoint
blockade is to administer these immune checkpoint blocking
antibodies in a neoadjuvant setting, as opposed to an adjuvant
setting. Neoadjuvant administration of checkpoint blockade
involves the dosing of the patient prior to tumor resection and
standard therapy as opposed to after surgery and alongside
standard therapy. In the GBM setting, neoadjuvant PD-1
blockade has been explored patients with recurrent disease -
these patients received neoadjuvant PD-1 and therapy was then
continued in the adjuvant setting post-surgery. Neoadjuvant
treatment prolonged the overall survival when compared to
adjuvant PD-1 blockade, and increased CD8+ T cell infiltration
into tumors. An upregulation in the expression of interferon
gamma related genes was also seen in the tumors of these
patients (163).

Combining checkpoint blockade modalities or combining
active immunotherapy with checkpoint blockade are also
attractive methods for enhancing protective anti-GBM
immunity. In a pre-clinical murine model of GBM, PD-1
blockade was combined with DC vaccination to great effect.
Mice bearing intracranial GL261 tumors were vaccinated with
DCs loaded with murine GL261 tumor cell lysate. Although this
approach increased the infiltration of tumor cells into these
intracranial tumors, this did not lead to improved survival in
mice with an elevated tumor burden. It was hypothesized that
Frontiers in Immunology | www.frontiersin.org 12
local immune suppression within the TME was preventing
tumor-specific lymphocytes from inducing tumor cell death.
TILs were shown to have up-regulated their expression of PD-
1, as a result of which it was decided to combine anti-PD-1
antibody therapy with DC vaccination. This combination
increased the percentage of activated CD8+ T cells within the
intracranial tumors and improved the survival of mice when
compared to mice given vaccination alone (164).

As CSF-1R inhibition has been shown to reduce polarization
of macrophages to the immunosuppressive M2 phenotype (95),
combining CSF-1R inhibition with active vaccination and PD-1
blockade has been explored in the GBM setting. Myeloid derived
cells recruited to the tumor were shown to express PD-L1 and
contribute to the immunosuppressive environment seen in
murine GL261 tumors. The presence of vaccine-induced TILs
increased the recruitment of these immunosuppressive PD-L1
expressing myeloid cells. As a result, Antonios et al. (2017)
combined PD-1 antibody and a CSF-1R inhibitor with active DC
vaccination. CSF-1R inhibition increased the presence of TILs
within tumors, whereas PD-1 blockade improved the activation
of TILs. This triple therapy significantly increased the survival of
GL261 tumor bearing mice when compared to non-treated, DC
vaccinated and DC vaccinated mice with either CSF-1R or PD-1
blockade alone (165).

As detailed earlier, IDO and TDO expression within GBM
tumors contributes to the immunosuppressive nature of these
tumors. Targeting IDO alone or as part of a combinatorial
strategy therefore also represents an attractive treatment
avenue. The anti-viral drug acyclovir has been shown to inhibit
both IDO and TDO and preventing the recruitment of regulatory
T cells to the TME (166). In a pre-clinical murine model of GBM,
the combined blockade of IDO, CTLA-4 and PD-1 reduced
regulatory T cell infiltration into tumors and led to 100% long-
term survival in mice harboring intracranial GL261
tumors (167).

Engineered CAR T Cells
Chimeric antigen receptor (CAR) T cells provide an avenue for
generating tumor targeted T cells that can function in the
defective tumor microenvironment. CAR T cells are generated
by transfecting autologous T cells taken from patients with a
construct combining a single chain variable fragment specific to a
tumor cell target with costimulatory domains that enable T cell
activation without the need for a secondary co-stimulatory signal
(168). Numerous antigens have been targeted utilizing CAR T
cells and the design of CAR T cells has been fine-tuned in order
to optimize their anti-tumor activity. Traditionally CAR T cells’
intracellular signaling domain was derived from the CD3z chain
of the T cell receptor (first generation), as progress has been
made further costimulatory domains have been added to the
intracellular region in order to improve the functionality of CAR
T cells (second and third generation). These costimulatory
domains are often derived from costimulatory CD28, OX-40,
ICOS, and 4-1BB (169, 170). Whilst the design of the targeting
domain of the CAR T cells has evolved so has the general design
of these cells, with the knock in of other genes that enhance anti-
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pearson et al. Immune Escape in Glioblastoma Multiforme
tumor function being explored (see Table 4). As mentioned
previously, GBM tumors frequently upregulate their expression
of FasL (63, 175). CAR T cells generated from patient derived T
cells often express Fas, which makes these T cells susceptible to
FasL mediated cytotoxicity when entering the TME (176). The
development of CAR T cells expressing Fas dominant negative
receptors by Yamamoto and colleagues resulted in the
persistence of cells without any deleterious side-effects such as
autoimmunity or lymphoproliferative disease (177). CAR T cells
expressing a dominant negative receptor for TGF-b have also
been developed for the treatment of prostate cancer. These CAR
T cells target a prostate antigen known as prostate-specific
membrane antigen (PSMA) and they also express the
dominant negative TGF-bRII that blocks TGF-b signaling.
These CAR T cells displayed improved anti-tumor function
when compared to CAR T cells that did not have the
dominant negative TGF-bRII transfected into them. These
CAR T cells appeared to exhibit long-term persistence and
resistance to exhaustion (178). CAR T cells have also been
engineered to secrete a PD-1 blocking antibody single chain
variable fragment (scFv) that binds to PD-1 on the surface of
activated T cells (both CAR and bystander T cells), thereby
preventing PD-L1 on tumor cells from dampening T cell anti-
tumor responses (179). These CAR T cells enhance the survival
of PD-L1 expressing tumor bearing mice when compared to
CAR T cells that do not secrete the PD-1 scFv combined with an
anti-PD-1 antibody. This is believed to be due to the increased
amount of PD-1 blockade within the TME when compared to
systemic checkpoint blockade. These CAR T cells displayed
efficacy against both hematologic and solid tumors (179). CAR
T cells have also been modified to express the immune-
stimulatory molecule CD40L to improve the anti-tumor
function of these cells (180). The interaction of CD40L on
these T-cells with CD40 on DCs results in the secretion of the
immunostimulatory cytokine IL-12 (180). CD19 directed CAR T
cells armed with the CD40 ligand have been shown to lyse CD19
negative cells and prevent their expansion and the development
of antigen negative variants that escape an immune response
(180). In order to prevent the development of antigen escape
variants, CAR T cells have also been developed to produce bi-
specific T cell engagers (BiTEs) in the GBM setting. EGFRvIII
targeting CAR T cells have been developed to secrete BiTEs that
target the wild type epidermal growth factor receptor (EGFR).
These BiTEs contain an anti-EGFR domain along with an anti-
CD3 domain, homing T cells onto EGFR expressing tumor cells.
The secretion of these BiTEs recruits bystander cells that target
tumor cells, these CAR T cells can also eradicate tumors that do
not express the EGFRvIII antigen, thereby highlighting the
importance of the BiTEs produced by these CAR T cells (181).
One study looked at utilizing CD123 (IL-3 Receptor a chain)
directed CAR T cells to target Hodgkin lymphoma cells. The
investigators also hypothesized that as CD123 is expressed on
myeloid cells, these CAR T cells could also target these cells and
overcome the local immune suppression induced by MDSCs and
M2 macrophages. These CAR T cells targeted lymphoma cells in
vitro and in vivo. What was even more interesting was that these
Frontiers in Immunology | www.frontiersin.org 13
CAR T cells were resistant to inhibition by M2 macrophages
when compared to classical CD19 targeting CAR T cells (182).

Oncolytic Virotherapy
The design and delivery of immunotherapies must consider the
pronounced immunosuppressive environment of the TME in GBM.
The use of oncolytic viruses, which can selectively infect and kill
tumor cells, is beginning to generate increased interest due to its
tumor specificity and the ability of these viruses to turn an
immunosuppressive microenvironment into an immune
supporting environment (183). Oncolytic viruses are genetically
altered to not infect non-transformed cells, and, in some cases,
other genes may be knocked down or knocked in to enhance the
immune stimulatory properties of these viruses. For example, the
oncolytic herpes simplex virus T-VEC has been transfected with the
human granulocyte-macrophage colony-stimulating factor (GM-CSF)
gene. GM-CSF secreted by the virus increases the recruitment of DCs
into the TME and thereby enhances antigen presentation and T cell
activation (184). Tumor cell lysis by oncolytic viruses also triggers
inflammatory immune responses involving the release of antigens,
danger associated molecular patterns (DAMPs) and pathogen
associated molecular patterns (PAMPs) within the TME (184).
Several different types of viruses have been used in the oncolytic
virotherapy of GBM, viruses such as the herpes simplex virus (HSV),
Newcastle disease virus (NDV), poliovirus, reovirus, adenovirus,
measles virus and H1 parvovirus (185) (see Table 5). Not only
have viruses been used to directly induce the death of tumor cells they
have also been used to transfer genes to tumor cells that enable these
cells to be targeted. One such example of one of these viruses is Toca
511, a retroviral vector that delivers cytosine deaminase to rapidly
dividing malignant cells (193). The transferred cytosine deaminase
enzyme then converts the pro-drug 5-fluorocytosine to the active
antineoplastic compound 5-fluorouracil resulting in the death of
tumor cells (193). The use of this virus pro-drug combination has
also been shown to result in an increase of immune cell activity
within murine brain tumors, with a decrease in immunosuppressive
cells and an increase in interferon gamma positive CD8 T cells within
the tumor microenvironment (194). Whilst in treating preclinical
models of GBM Toca 511 showed great promise recent however
results from a phase II/III clinical trial revealed that Toca 511 in
combination with 5-fluorocytosine did not improve overall survival
when compared to standard therapy (195). Although oncolytic viral
therapy represents an exciting avenue for GBM therapy, it is not
without obstacles and as a result combinatorial therapy utilizing
oncolytic viruses needs to be considered. Very little virus crosses the
blood brain barrier when oncolytic viruses are delivered systemically,
yet these therapies are still efficacious in brain tumor models.
Oncolytic herpes simplex viruses (HSVs) can be used in
combination with various other therapeutics for the treatment of
GBM. The virus can also be altered with immunomodulating
transgenes to improve anti-tumor efficacy and enable modulation
of the TME (196). ‘Arming’ an oncolytic HSV with the murine IL-4
gene has been shown to increase the survival of mice bearing
intracranial GL-261 cells. Conversely, no survival benefit compared
to sham treated animals was observed when immunosuppressive IL-
10 was transfected into this oncolytic virus (197). Clinical testing of
October 2020 | Volume 11 | Article 582106
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TABLE 4 | CAR T cell trials for glioblastoma.

size
ble
s)

Median
PFS

(months)

MedianOS
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Primary endpoint Results

NA 24.8 months for
children and 30
months for adults

Safety and feasibility Positive

Ongoing Ongoing Safety and feasibility Ongoing
Ongoing Ongoing Safety and feasibility Ongoing

Not
evaluable

8 months Safety and feasibility CAR T cells seen to traffic to tumours,
however adaptive changes in TME need
to be accounted for

Ongoing Ongoing MTD Ongoing

Ongoing Ongoing Safety and feasibility Ongoing

Ongoing Ongoing MTD Ongoing

Ongoing Ongoing Saftey and feasibility Ongoing
Ongoing Ongoing Safety, feasibility, OS

and PFS
Ongoing

Ongoing Ongoing OS Ongoing
Ongoing Ongoing Safety and feasibility Ongoing
Ongoing Ongoing Safety and feasibility Ongoing

Ongoing Ongoing Safety and feasibility Ongoing
Ongoing Ongoing Safety, feasibility, OS

and PFS
Ongoing
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PFS6

Ongoing
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Trial name
ClinicalTrial.gov
identifier

Phase CAR
generation

Targets Associated
treatments
in active arm

Sample
(evalua
patien

NCT01109095
(171)

I Second HER2 and CMV pp65 None 16

NCT02442297 I Second HER2 None 28
NCT02208362
(172)

I Second IL13Ra2 None 92

NCT02209376
(173)

I Unknown EGFRvIII None 10

NCT02664363 I Third EGFRvIII TMZ induced
lymphodepletion

3

NCT04003649 I Second IL-13Ra2 Ipilimumab and
Nivolumab

60

INTERCEPT
NCT03283631

I Unknown EGFRvIII None 24

NCT02844062 I Unknown EGFRvIII None 20
NCT03726515
(174)

I Unknown EGFRvIII Pembrolizumab 7

NCT04077866 I Unknown B7-H3 TMZ 40
NCT04045847 I Unknown CD147 None 31
NCT02937844 I Second PD-L1 (PD-1 on CAR T cell

linked to co-stimulatory CD28
cytoplasmic domain)

Cyclophosphamide
and Fludarabine

20

NCT04270461 I Third NKG2D None 10
NCT04385173 I Unknown B7-H3 TMZ 12

NCT01454596 I/II Third EGFRvIII Chemotherapy
induced
lumphodepletion and
aldesleukin

18

PFS, progression free survival; OS, overall survival; MTD, maximum tolerated dose.
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TABLE 5 | Viral therapy trials for glioblastoma.

) Primary endpoint Results

Safety, feasibility OS
and PFS

Ongoing

MTD and safety Ongoing

MTD and safety Ongoing
Safety and feasibility Suspended

Safety, feasibility and
OS24

Ongoing

Safety and feasibility Ongoing

Safety and feasibility Ongoing

MTD, safety and
feasibility

Positive

Safety and feasibility Positive

Safety PFS6 and OS12 Pending

,
Safety and feasibility DNX-2401 was well tolerated

however the addition of IFNg
made no difference to
efficacy

Safety and efficacy Ongoing
MTD Ongoing

Safety and feasibility Positive
g) Safety and feasibility Ongoing (not recruiting)

Safety, feasibility and
MTD

Ongoing

Safety and feasibility Ongoing
g) Safety and feasibility Ongoing (not recruiting)

Safety, feasibility and
OS

Ongoing

MTD Results pending

MTD Ongoing
Safety and OS Terminated
Safety and feasibility Results pending
Safety and feasibility Results pending
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Trial name
ClinicalTrial.gov
identifier

Phase Virus used/mode of
action

Associated
treatments in
active arm

Control Sample size
(evaluable
patients)
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NCT00390299 I Oncolytic
carcinoembryonic antigen
expressing measles virus
(MV-CEA)

None None 23 Ongoing Ongoing

NCT02444546 I Reovirus (REOLYSIN®) Sargramostim
(GM-CSF)

None 6 Ongoing Ongoing

NCT00528684 I Reovirus (REOLYSIN®) None None 18 Ongoing Ongoing
NCT00031083 I Adenoviral transfer of IFN-

b gene
None None 35 Suspended Suspended

NCT03043391 I Poliovirus (PVSRIPO) None None 12 Ongoing Ongoing

NCT03072134 I Neural stem cells loaded
with adenovirus

None None 13 Ongoing Ongoing

NCT03911388 I HSV G207 +/- Single dose of
5 Gy radiation

None 15 Ongoing Ongoing

NCT01491893 (186) I Poliovirus (PVSRIPO) None Historical
controls

15 Results pending Results pending
(interim: 12.6)

NCT02457845 (187) I HSV G207 None None 5 Results pending Results pending

D24GBM
NCT01956734

I Adenovirus (DNX-2401) TMZ None 31 Pending Pending

NCT02197169 (188) I Adenovirus (DNX-2401) +/- IFNg None 27 Results pending Results pending
(interim OS12 = 33 %
interim OS18 = 22 %

NCT03657576 I C134-HSV None None 24 Ongoing Ongoing
NCT03152318 I HSV (RQNestin34.5v.2) +/-

Cyclophosphamide
None 108 Ongoing Ongoing

NCT02026271 (189) I Ad-RTS-hIL-12 Veledimex None 31 NA 12.7
NCT03636477 I Ad-RTS-hIL-12 Veledimex +
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None 21 Ongoing (not recruiting) Ongoing (not recruitin

NCT03896568 I Allogenic stem cells
loaded with adenovirus
(DNX-2401)

None None 36 Ongoing Ongoing

NCT03679754 I Ad-RTS-hIL-12 Veledimex None 36 Ongoing Ongoing
NCT01811992 I Ad-hCMV-TK and Ad-

hCMV-Flt3L
None None 19 Ongoing (not recruiting) Ongoing (not recruitin

NCT03714334 I DNX-2440 None None 24 Ongoing Ongoing

NCT02031965 I HSV-1716 Dexamethasone +
surgery

None 2 Results pending Results pending

NCT02062827 I HSV-1 None None 36 Ongoing Ongoing
NCT04327011 I Toca 511/5-FC None None 65 Terminated Terminated
NCT00028158 I/II HSV G207 None None 65 Results pending Results pending
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oncolytic viruses remains in its relative infancy, with several viral
therapies undergoing phase I/II clinical trials (198). The prospect of
genetically modifying these viruses provides great hope for the future
treatment of GBM. Not only can viruses be genetically manipulated
but they can also be combined with other immunotherapeutic
modalities to help overcome the immunosuppressive TME. One
such example is combination of oncolytic measles virus therapy
with anti-PD-1 checkpoint blockade (199). This combination was
shown to increase survival in C57BL/6 mice bearing intracranial
GL261 tumors when compared to either monotherapy, as well as
increasing survival this combinatorial therapy increased T cell
infiltrate into these tumors (199). Checkpoint blockade has also
been combined with the IL-12 expressing oncolytic HSV in a pre-
clinical model of GBM to great effect (200). This IL-12 secreting
HSV was combined with both anti-CTLA-4 and anti-PD-1
checkpoint blockade for the treatment of two murine GBM
models, this triple therapy reduced the number of regulatory T
cells present within tumors and increased the influx of immune
supporting M1 macrophages resulting in the complete cure of these
mice (200). As previously mentioned GBMs frequently overexpress
PGE2 which promotes an immunosuppressive environment and
provides an attractive target for therapy. An oncolytic vaccina virus
has been developed that expresses 15-(NAD)-hydroxy-
prostaglandin-inactivating enzyme (HPGD); an enzyme that
inactivates PGE2 (201). This modified vaccinia virus was tested in
a variety of mouse solid tumor models and it was found to reduce
the number of MDSCs and regulatory T cells within these tumors
increasing the response of these tumors to viral therapy and
adoptive T cell transfer (201). Whilst viral therapy is in its relative
infancy with regards to clinical approval these early findings provide
great hope for the future of this treatment modality.
Combining Immunotherapy With
Standard Therapy
Adapting current therapies also needs to be considered in the
context of immunotherapy for GBM, especially given the
likelihood that all new approaches will need to be delivered in
the context of current ‘standard’ therapy. Both TMZ and
radiotherapy have immune augmenting effects that can be
capitalized upon when considering the immunotherapeutic
treatment of GBM. As mentioned previously, TMZ can induce
lymphodepletion in patients. This lymphodepletion can be
capitalized on to potentially enhance the efficacy of CAR T cell
therapy. In a murine model of GBM, EGFRvIII CAR T cells
failed to confer a survival advantage for mice bearing intracranial
EGFRvIII expressing tumors, despite that fact that these cells
were shown to have anti-tumor cell activity in vitro.
Lymphodepletion with radiotherapy administered prior to
CAR T cell therapy was shown to improve the efficacy of CAR
T cell therapy by resulting in long-term survival of mice (202).
Similarly, TMZ was used to lymphodeplete prior to CAR T cell
administration. TMZ was either used in a standard or high dose,
with the higher dose inducing more marked lymphodepletion.
The lymphodepletion caused by high dose TMZ increased the
survival of mice bearing established intracranial tumors when
given CAR T cell therapy. This lymphodepletion to led to
T

A
B
LE

5
|
C
on

tin
ue

d

T
ri
al

na
m
e

C
lin

ic
al
T
ri
al
.g
o
v

id
en

ti
fi
er

P
ha

se
V
ir
us

us
ed

/m
o
d
e
o
f

ac
ti
o
n

A
ss

o
ci
at
ed

tr
ea

tm
en

ts
in

ac
ti
ve

ar
m

C
o
nt
ro
l

S
am

p
le

si
ze

(e
va

lu
ab

le
p
at
ie
nt
s)

M
ed

ia
n
P
FS

(m
o
nt
hs

)
M
ed

ia
nO

S
(m

o
nt
hs

)
P
ri
m
ar
y
en

d
p
o
in
t

R
es

ul
ts

O
N
C
O
VI
R
A
C

N
C
T0

32
94

48
6

I/I
I

TG
60

02
/5
-F
C

N
on

e
N
on

e
78

O
ng

oi
ng

O
ng

oi
ng

S
af
et
y
an

d
fe
as
ib
ilit
y

O
ng

oi
ng

N
C
T0

15
82

51
6

I/I
I

A
de

no
vi
ru
s
(D
el
ta
-2
4-
rg
d)

N
on

e
N
on

e
20

R
es
ul
ts

pe
nd

in
g

R
es
ul
ts

pe
nd

in
g

S
af
et
y,

fe
as
ib
ilit
y
an

d
O
S

R
es
ul
ts

pe
nd

in
g

N
C
T0

05
89

87
5
(1
91

)
II

A
dV

-t
k

V
al
ac

yc
lo
vi
r
+

st
an

da
rd

of
ca

re
M
at
ch

ed
co

nt
ro
l

co
ho

rt

48
12

.7
25

.1
fo
r
pa

tie
nt
s
w
ith

m
ax
im
al
re
se
ct
io
n

S
af
et
y,

fe
as
ib
ilit
y
an

d
O
S

P
os

iti
ve

N
C
T0

44
82

93
3

II
H
S
V
G
20

7
S
in
gl
e
do

se
of

5
G
y
ra
di
at
io
n

N
on

e
30

O
ng

oi
ng

(N
ot

ye
t

re
cr
ui
tin
g)

O
ng

oi
ng

(N
ot

ye
t

re
cr
ui
tin
g)

O
S

O
ng

oi
ng

(n
ot

ye
t
re
cr
ui
tin
g)

N
C
T0

27
98

40
6

II
A
de

no
vi
ru
s
(D
N
X-
24

01
)

P
em

br
ol
iz
um

ab
N
on

e
49

O
ng

oi
ng

(n
ot

re
cr
ui
tin
g)

O
ng

oi
ng

(n
ot

re
cr
ui
tin
g)

O
bj
ec

tiv
e
re
sp

on
se

ra
te

O
ng

oi
ng

(n
ot

re
cr
ui
tin
g)

N
C
T0

08
70

18
1
(1
92

)
II

A
D
V-
TK

G
an

ci
cl
ov

ir
+

ch
em

ot
he

ra
py

N
on

e
47

8.
7

11
.4

P
FS

6
P
os

iti
ve

N
C
T0

44
06

27
2

II
VB

-1
11

B
ev
ac

iz
um

ab
S
ta
nd

ar
d

of
ca

re
45

O
ng

oi
ng

O
ng

oi
ng

TI
L
de

ns
ity

an
d
do

se
lim

iti
ng

to
xi
ci
ty

O
ng

oi
ng

N
C
T0

40
06

11
9

II
A
d-
R
TS

-h
IL
-2

C
em

ip
lim

ab
N
on

e
36

O
ng

oi
ng

(n
ot

re
cr
ui
tin
g)

O
ng

oi
ng

(n
ot

re
cr
ui
tin
g)

S
af
et
y,

fe
as
ib
ilit
y
an

d
O
S

O
ng

oi
ng

(n
ot

re
cr
ui
tin
g)

N
C
T0

41
05

37
4

II/
III

To
ca

51
1/
To

ca
FC

TM
Z
+

ra
di
ot
he

ra
py

S
ta
nd

ar
d

of
ca

re
Te

rm
in
at
ed

Te
rm

in
at
ed

Te
rm

in
at
ed

P
FS

an
d
O
S

Te
rm

in
at
ed

P
FS

,p
ro
gr
es
si
on

fre
e
su

rv
iv
al
;O

S
,o

ve
ra
ll
su

rv
iv
al
;M

TD
,m

ax
im
um

to
le
ra
te
d
do

se
.

October 2020 | Volume 11 | Article 582106

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pearson et al. Immune Escape in Glioblastoma Multiforme
persistence of the injected CAR T cells within the blood of
treated mice and this correlated with lower tumor burden (202).
As well as using high dose TMZ to lymphodeplete, the dosing
can also be given as low frequent doses, known as metronomic
dosing. Ouyang and colleagues (2016) designed immune
activating CpG carbon nanotube conjugates (SWCNT/CpG-2)
that prolonged the survival of mice bearing intracranial GL261
tumors. This SWCNT/CpG-2 was used to treat a more invasive
GBM model using the KR158B cell line, a model that more
faithfully represents the characteristics of human GBM within a
murine model. Although this intracranial SWCT/CpG-2 therapy
was not curative for this KR158B model, as it was in the case of
the GL261 model, when this SWCT/CpG-2 was combined with
low dose daily TMZ, it significantly improved survival when
compared to SWCT/CpG-2 monotherapy (203). Splenocytes
taken from mice that had received metronomic TMZ in
combination with SWCT/CpG-2 were more efficient at
inducing in vitro KR158B tumor cell death than splenocytes
from mice given either SWCT/CpG-2 or TMZ alone. This dual
therapy did not reduce the number of regulatory T cells in the
tumors. However, both SWCT/CpG-2 therapy and dual therapy
induced an increased macrophage infiltrate into the tumors. The
researchers hypothesized that the metronomic TMZ dosing
increased the relative proportions of immune activating M1
macrophages to immune inhibitory M2 macrophages within
the tumors (203). Radiotherapy can also be used as an
adjunct to immunotherapy in order to boost the anti-tumor
immune response. Weiss et al. (2018) generated an NKG2D
expressing CAR T cell therapy that when systemically
administered penetrated brain tumors in a murine GL261
GBM model. These NKG2D CAR T cells were shown to cure
22% of GL261 bearing mice treated. Radiotherapy upregulated
the expression of NKG2D ligands on the surface of GBM cells
and, as a result, it was decided to combine radiotherapy with
NKG2D CAR T cells. Mice were given a single 4 gray (Gy)
dose of radiotherapy on day 7 after tumor implant and CAR T
cells were given on days 5, 7 and 10. The single radiotherapy
dose alone did not alter the survival of tumor bearing mice
compared to control mice, however it increased the survival of
mice harboring intracranial GL261 cells when combined with the
NKG2D CAR T cell therapy. This effect was also shown in mice
bearing intracranial SMA-560 tumor cells (204). Another
alternative that has been considered is the intratumoral
administration of TMZ, as opposed to systemically administered
TMZ. This local delivery of TMZ could theoretically prevent the
profound lymphodepletion seen in systemic administration due to
the therapy being mainly confined to the tumor. This method of
administering TMZ was shown to improve the survival of mice
bearing GL261 cell-derived tumors when compared to mice given
intraperitoneal TMZ. CD4 and CD8 blocking antibodies revealed
that T cells are responsible for this improved survival, with mice
receiving intracranial TMZ failing to show improved survival if T
cell blocking antibodies were used. Survival was improved even
further when intracranial TMZ was combined with active
immunotherapy using irradiated GL261 cells transfected to
express GM-CSF (205). This combined intracranial TMZ and
Frontiers in Immunology | www.frontiersin.org 17
immunotherapy increased CD8+ T cell infiltrate and decreased
MDSCs (205).

Overcoming the Blood Brain Barrier (BBB)
The BBB can act as a significant barrier for systemically
administered therapeutics, including immune checkpoint
blocking antibodies. Several approaches can be used to address
this issue. These include direct modification and masking of
therapeutic agents, encapsulation of therapeutics within vesicle-
based delivery systems, and targeted opening of the BBB/BTB by
physical or biochemical disruption. Conceptually, the simplest
route to bypass the BTB is direct administration to the brain
parenchyma or the cerebrospinal fluid (CSF). Although this is a
commonly used approach in pre-clinical, experimental work, it is
clinically problematic. Direct intra-parenchymal injection is
rarely performed outside of intensive care medicine due to the
difficulties associated with infection risk and needle damage.
Moreover, although GBM are rarely metastatic (206), direct
administration to the tumor site is contra-indicated due to the
slow rate of diffusion of therapeutic molecules through compact
brain tissue, injected substances rarely travelling more than a few
millimeters beyond the injection site (207–209). This route is
therefore unlikely to be sufficient for treating GBM, given both
the likely tumor size on diagnosis and accessibility issues.
Intracerebroventricular or intrathecal injection, delivery to
the CSF, has similarly poor distribution issues (210). Passage
of drugs from the CSF to the parenchymal tissue is
primarily diffusive, which, coupled with rapid removal from
the ependymal surface via bulk flow and the glymphatic
system, results in minimal transfer of therapeutic agents
into the tissue (211, 212). These restrictions are even more
relevant to the delivery of large molecules such as therapeutic
antibodies (213).

Working on the principle that the simplest way to overcome
the BBB/BTB is to remove it, a number of methods of disrupting
barrier function have been investigated for their potential use in
the treatment of GBM and other neurological disorders. Such
techniques were first begun over 50 years ago, with studies
employing hypertonic solutions of osmolytes such as mannitol
to induce osmotic endothelial shrinkage and tight junction
opening (214). Such untargeted disruption, whilst effective in
permitting increased therapeutic access to the brain, is also
indiscriminate and enables the entry of pro-inflammatory and
potentially toxic serum proteins such as albumin and
complement factors (215), thereby rendering this non-specific
approach unsuitable for clinical use. More targeted methods of
inducing increased BBB/BTB permeability have used
endogenous bioactive agents such as bradykinin or its synthetic
analogues (216). Although such approaches have increased
permeability of chemotherapeutic agents to the brain in
preclinical models, they have not translated into clinical
practice, possibly due to having too brief a duration of
action (217).

Rather than chemical or osmotic-mediated disruption,
another technique used to circumvent the BBB/BTB is the use
of high-power focused ultrasound (218) to generate foci of
October 2020 | Volume 11 | Article 582106
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increased tissue permeability. Although this approach is effective
in opening the barrier to therapeutic antibodies (219), it suffers
from producing bystander tissue distortion and damage in
experimental animals (220). In an attempt to overcome this
issue, the technique has been refined to improve specificity and
reduce energy transfer through the use of injected microbubbles
(221, 222). In this case, lower frequency ultrasound is used to
stimulate microbubble oscillation and cavitation, disrupting the
endothelial wall through local shock wave production and
permitting access of therapeutic agents to the brain. Although
promising, it is not yet clear to what degree brain penetration can
be enhanced as efflux transport systems remain active (223), and
the long-term consequences of disruption have not yet
been studied.

As an alternative to BBB/BTB disruption, numerous attempts
have been made to modify the therapeutic agents themselves or
their delivery systems to permit greater transfer across an intact
BBB/BTB. Building on the rationale that more lipophilic agents
are better able to cross the BBB/BTB, initial approaches aimed to
improve therapeutic agent lipid solubility. Although such
modifications do indeed improve CNS access, this was
achieved at the cost of increased non-specific membrane
permeability and a consequent rise in off-target effects (224, 225).

To overcome these difficulties, ongoing attempts at achieving
effective drug delivery across the BBB/BTB have employed a wide
range of different nanocarriers, also termed nanoparticles. These
are diverse molecular structures, including lipid micelles,
liposome composites of phospholipid and other molecules, and
polymer-based particles, with the common property that they
form a vesicle that can be loaded with therapeutic agents and
which can then cross the BBB to enter the parenchyma (226).
Once within the brain, variation in environmental pH at the
tumor site, amongst other conditions destabilize the nanocarrier
structure and trigger release of the cargo within the tissue (227).
Although effective, these nanocarriers are indiscriminate and
passively deliver their cargo widely across the brain, a drawback
that has spurred the development of more effectively targeted
nanocarrier delivery systems.

Targeting can be substantially enhanced by including
molecular tags within the vesicle wall using proteins, peptides,
nucleic acids or small molecules that specifically recognize
tumor-associated receptors, thereby minimizing off-target
actions. A wide range of different molecular tags have been
exploited for this purpose in vivo, including for example, the
interaction of nanocarrier borne transferrin with the transferrin
receptor TfR-1 on GBM cells (228), the EGFP-EGF1 fusion
protein on nanoparticles with tissue factor in tumor cells (229),
and cholera toxin with tumor-expressed chloride channels and
matrix metalloproteinase-2 (230). Such strategies hold significant
promise as they allow for both the concentration of therapeutic
agents at the tumor site and, by virtue of the encapsulation,
protect therapeutic agents from hepatic metabolism (230).
Although a number of nanocarrier-encapsulated small
molecule approaches are currently undergoing clinical trial in
GBM, as yet none have been approved for use (231). Questions
Frontiers in Immunology | www.frontiersin.org 18
about the efficiency of large molecule, i.e. therapeutic antibody,
encapsulation efficiency remain.

As direct lipophilic modification of therapeutic agents and
encapsulation strategies have relatively broad specificity, even
with improved targeting strategies, interest has grown in the use
of direct molecular tagging of the therapies themselves to permit
recognition by specific endothelial transporters, e.g. the
transferrin receptor, insulin receptor or low density lipoprotein
receptor (232, 233), a process sometimes termed receptor
mediated transcytosis.

This approach has proven to hold significant promise for the
experimental delivery of protein agents, including therapeutic
antibodies. Exposure of ‘normal’ CNS to circulating biologic
agents is restricted to less than 0.5% of the concentrations that
are present in serum (234, 235), a level at which target
engagement is unlikely to occur (236). However, molecular
engineering of therapeutic antibodies has enabled significant
enhancements in uptake across the BBB. These approaches
include the development of bispecific antibodies in which one
F(ab) binds the target of interest and the other binds and is
transported by an endothelial transporter (237), therapeutic
antibodies in which a transporter recognition domain is linked
to the immunoglobulin heavy or light chain (238, 239), or, more
recently, molecules in which the Fc domain itself is directly
recognized by an endothelial transporter (240, 241). Such an
approach has not yet been tested directly for the clinical delivery
of immunotherapies targeting GBM but does hold significant
promise. BBB penetrating Nano immunoconjugates have been
developed with the aim of crossing the BBB and penetrating
intracranial tumors. Galstyan and colleagues (2019) developed
anti-CTLA-4 and anti-PD-1 IgG antibodies conjugated to poly
(b-L-malic acid), a natural biopolymer scaffold. These Nano
immunoconjugates cross the BBB more efficiently than the anti-
PD-1 and CTLA-4 IgG antibodies without polymer conjugation,
increased the CD4+ and CD8+ T cell infiltrate into tumors and
improved the survival of mice bearing intracranial GL261 tumors
compared to those treated with the non-conjugated antibodies
(242). Antibody delivery to intracranial tumors can also be
improved by disrupting the BBB using focused ultrasound and
microbubbles to physically disrupt the tight junctions enabling
penetrance of the brain parenchyma. The combination of
focused ultrasound (FUS) with microbubbles improves entry of
the anti-HER2 antibody Herceptin into brains (243). Similar
results have also shown with FUS in combination with
microbubbles increases the penetrance of anti-amyloid beta
antibodies into the brains of mice in two separate models of
Alzheimer’s disease (244). FUS is an attractive option since the
opening of BBB is transient (245), thereby minimizing the
potential for damage to the brain. More interestingly, FUS
itself can be used therapeutically to target intracranial tumors
due to its immunomodulation action. Ultrasound waves can
expand and contract air bubbles present within cells to generate
heat and physically damage cells, inducing cell death, leading to
the release of antigenic material and an up-regulation of immune
activating molecules such as heat shock proteins (246).
October 2020 | Volume 11 | Article 582106
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CONCLUDING REMARKS

Glioblastoma multiforme (GBM) is the most frequently
occurring primary brain tumor. It is uniformly fatal due to its
highly invasive nature and resistance to standard therapies. GBM
tumors employ several mechanisms to avoid being detected and
killed by immune cells. These include the downregulation of
important immune activating molecules such as MHC
molecules, as well as upregulating expression of molecules that
induce the death of immune cells such as Fas ligand, non-
classical MHC molecules such as HLA-E and -G, and PD-L1.
GBM cells also secrete numerous immunoinhibitory cytokines
such as IL-10, TGF-b, Gal-1, IL-6 and PGE2, to name a few.
These cytokines result in the inactivation/death of immune cells
as well as the recruitment of inhibitory cells such as regulatory T
cells and MDSCs to the TME. These cytokines also lead to a
conversion of tumor resident macrophages from the immune
activating M1 phenotype to the immunosuppressive M2
phenotype further dampening the anti-tumor immune response.

The plethora of immunosuppressive mechanisms that GBM
tumors utilize, as well as their physiological location, make
treating them with immunotherapy a daunting task. Although
these tumors are immunosuppressive, this immunosuppression
can be leveraged to try and boost the anti-tumor immune
response. The concept of combining immune checkpoint
blockade with active vaccination is one such method that can
Frontiers in Immunology | www.frontiersin.org 19
be used, or the use of genetically modified oncolytic viruses and
CAR T cells that actively attack tumors whilst overcoming the
local immunosuppression, either via the secretion of immune
activating cytokines or immune blocking scFvs. Combinatorial
immunotherapy along with improvement of BBB penetration
represents an encouraging avenue for GBM therapy in the future.
The only caveat to these combined therapies is the possibility of
an overactive immune response and potential autoimmunity,
this will have to be monitored when moving combinatorial
immunotherapy forward.
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