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Abstract: Development of purely organic materials displaying room-temperature 

phosphorescence (RTP) will expand the toolbox of inorganic phosphors for imaging, sensing 

or display applications. While molecular solids were found to suppress non-radiative energy 

dissipation and make the RTP process kinetically favourable, such an effect should be 

enhanced by the presence of multivalent directional non-covalent interactions. Here we report 

phosphorescence of a series of fast triplet-forming tetraethyl naphthalene-1,4,5,8-

tetracarboxylates. Various numbers of bromo substituents were introduced to modulate 

intermolecular halogen-bonding interactions. Bright RTP with quantum yields up to 20% was 

observed when the molecule is surrounded by Br⋯O halogen-bonded network. Spectroscopic 

and computational analyses revealed that judicious heavy-atom positioning suppresses non-

radiative relaxation and enhances intersystem crossing at the same time. The latter effect was 

found to be facilitated by the orbital angular momentum change, in addition to the conventional 
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heavy-atom effect. Our results suggest the potential of multivalent non-covalent interactions 

for excited-state conformation and electronic control.  

 

Introduction 

Room temperature phosphorescence (RTP) has received increasing interest due to the potential 

it presents for photonic devices, bio-imaging, anti-counterfeiting, and night-vision 

applications.1-3 Until recent years, the main sources of RTP luminophores have been inorganic 

or organometallic complexes, due to the presence of metal atoms being able to promote singlet-

to-triplet intersystem crossing (ISC) in the excited states. However, heavy metal complexes or 

inorganic materials can often be toxic and expensive; through the study of purely organic 

phosphors, the applications of phosphorescence materials can expand by becoming more 

biocompatible, cheaper to acquire, and environmentally safer.4, 5 While there are many benefits 

of organic phosphors compared to those containing heavy metals, achieving RTP from purely 

organic molecules has proven a challenge on account of slow ISC rates and competitive non-

radiative processes, in particular. 

In recent decades, organic phosphorescence has become a more widely explored topic 

due to the discovery of long-lasting RTP by utilising crystallisation,6-8 aggregation,9, 10 halogen 

bonding,11-14 heavy atoms,15 and carbonyl substituents16-18 to circumvent the aforementioned 

issues.19-28 Although spin-orbit coupling (SOC) in organic molecules is usually small (on the 

order of 1 cm–1, cf. 102–103 cm–1 for organometallic complexes), the introduction of a carbonyl 

functionality to aromatic rings often opens up a 1(n-π*) → 3(π-π*) (or 1(π-π*) → 3(n-π*)) 

channel with SOC ~ 100 cm–1.29-33 Such a small increase is sufficient to allow efficient ISC 

and populate the triplet of, for instance, benzophenone or benzaldehyde with a near-unitary 

quantum efficiency.34, 35 The structure of the as-generated triplet states can be rigidified in the 

solid state with the aid of non-covalent interactions (e.g. hydrogen and halogen bonds)11-13, 20 

to suppress non-radiative vibrational relaxation, resulting in nearly quantitative RTP quantum 

yields in the solid state.19, 36 

Combining these design principles, the Kim group reported seminal work on efficient 

RTP luminophores based on 2,5-bis(hexyloxy)-4-bromobenzaldehyde.37 The linear C=O⋯Br 

halogen-bonding interactions38, 39 present in the solid state were suggested to be the major 

reason to avoid energy dissipation through vibrational motions. The proximity of a fourth-row 

Br element to the C=O group, where the non-bonding electrons originate in the n-π* transition, 

is believed to enhance SOC as well.40, 41 In fact, in a later study by Kim and Dunietz, it was 
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found that moving the Br substituent from the para to the ortho position, closer to the triplet-

producing carbonyl functionality, in benzaldehyde increases SOC on the single-molecule level, 

which enhances both the rates of ISC kISC and phosphorescence kPhos significantly by 5–15 

fold.40  

Inspired by these findings as well as other successful demonstration of halogen-bond-

induced phosphorescence in the solid state, we exploited the naphthalene scaffold, a 

prototypical building block in organic optoelectronics, to study the effect of the halogen 

substitution and the role of halogen bonding in mediating triplet formation. Compared to the 

previously studied bromobenzaldehydes, this system is expected to have less carbonyl-

originated n-π* character in the low singlet excited states to drive ISC, thus offering a platform 

to highlight the halogen effects. Well-developed synthetic methodologies42-45 were used to 

introduce multiple halogen-bond donors (e.g. Br) and acceptors (e.g. O) in naphthalene to 

permit multiple non-covalent interactions to occur synergistically, enabling phosphorescence 

from halogen-bonded frameworks.46   

 

Results and discussion 

Naphthalene derivatives with halogen-bond accepting carbonyl functionalities and a various 

number of halogen-bond donating Br atoms can be prepared readily from 1,4,5,8-

naphthalenetetracarboxylic dianhydride (NDA) (Scheme 1).47-49 Bromination of NDA with 

1,3-dibromo-5,5-dimethylhydantoin is slow and can produce a mixture of NDA with various 

numbers of Br substituents.47 However, the application of excess reagents at elevated 

temperatures for a prolonged reaction time gives tetrabrominated NDA (Br4NDA) as the sole 

product. Esterification of BrnNDA with ethyl iodide in alkaline ethanol gave a mixture of 

naphthalene tetracarboxylic ethyl esters, BrnNTE (n = 0, 1, 2, 4; n = 3 can be isolated but it is 

not discussed here for simplicity).50, 51 The individual compounds were isolated by column 

chromatography on SiO2 and their identity was confirmed by NMR, MS, and single-crystal X-

ray crystallography.  
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Scheme 1 Synthesis of brominated naphthalene tetracarboxylic ethyl ester (BrnNTE). 

 

In the solid state, an extended Br⋯O network can be observed for Br2NTE50 (Fig. 1). 

For each molecule, each pair of the peri ester groups interacts with a Br atom of a neighbouring 

molecule to establish bifurcated, slightly asymmetric halogen bonds with d(C–Br⋯O=C) = 

3.268(2) Å, d(C–Br⋯O–C2H5) = 3.308(2) Å and both θ(C–Br⋯O) ~150° (i.e. 152.40(9) and 

149.21(8)).38 Reciprocally, each Br atom is interacting with two peri ester groups of a nearby 

molecule of Br2NTE. Being symmetrically substituted with four Br and four ester 

functionalities, Br4NTE is also embedded in a framework of halogen bonds in the solid state. 

However, likely due to the steric requirement of large Br atoms, the same arrangement in 

Br2NTE was not observed. Instead, only two out of the four esters on the 1 and 5 positions 

form linear C–Br⋯O=C short contacts with the Br atoms on the 3 and 7 positions of the 

neighbouring molecules (values taken from two crystallographically independent molecules: 

d(Br⋯O) = 3.074(3) and 3.286(3) Å, θ(C–Br⋯O) = 165.5(1) and 168.5(1)°). The remaining 

two Br atoms on the 2 and 6 positions are engaged in orthogonal (“Type II”)52, 53 C–Br⋯Br–C 

interactions (d(Br⋯Br) = 3.692(1) Å, θ(C–Br⋯Br) = 86.4(1)°).   
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Fig. 1 Single crystal X-ray molecular structure of (a) Br0NTE (space group P21/n), (b) Br1NTE 

(P21), (c) Br2NTE (P21/n), and (d) Br4NTE (P-1) and the close neighbours in crystals. Crystals 

were obtained by diffusing MeOH vapour into the CHCl3 solutions of BrnNTE. Colour code: C 

= grey, O = red, Br = brown. For Br1NTE, only the major component of the disorder is shown 

and discussed. The terminal carbon of the ethyl group and all hydrogen atoms are omitted for 

clarity. Thermal ellipsoids of the central molecules are shown at the 50% probability level, 

whereas the neighbouring molecules shown in stick representation. Non-covalent Br⋯O and 

Br⋯Br interactions are highlighted with cyan dashed lines. 

 

With only one Br atom per molecule, the ester groups in Br1NTE do not engage in 

extended halogen-bonded networks. In fact, the shortest d(C–Br⋯O–C2H5) distance is 

measured to be 3.32(2) Å (θ(C–Br⋯O) = 151.7(9)°), barely shorter than the van der Waals 

contact distance. At last, no π-stack or short contact between C–H and naphthalene was found 

in the crystals of Br0NTE.  
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Fig. 2 (a) UV-Vis absorption spectra of BrnNTE at (5–8) × 10–5 M in CH2Cl2. (b) Normalised 

phosphorescence spectra of BrnNTE in the crystalline solid state (solid line) or in PMMA 

(dashed line). Samples were excited at 300–320 nm. (c) Photographs of solid emission under 

UV irradiation (365 nm). 

 

While naphthalene and its 2-brominated derivatives display electronic absorption < 300 

nm, ester substitution induces a bathochromic shift of the naphthalene-centred transitions by 

ca. 50 nm, extending the absorption bands to 350 nm with maxima at ~300 nm (Fig. 2).54-56 

Compared to pristine naphthalene, which has an appreciable fluorescence quantum yield of 

23% (40% triplet formation yield),55 no emission was detected from all BrnNTE in deaerated 

CH2Cl2 up to 0.02 M (near saturation) excited at 330 nm.  

Despite the non-radiative energy dissipation in solution, crystalline solids of the 

brominated molecules display visible phosphorescence in the 500–700 nm region with 

millisecond lifetimes, whereas non-brominated Br0NTE remains non-emissive (Fig. 2 and 

Table 1). Powdery crystalline solid samples of BrnNTE, whose powder X-ray diffraction 

profiles match the pattern based on their single-crystal data, were used in all phosphorescence 

measurements. Phosphorescence of crystalline Br2NTE and Br4NTE feature clear vibrational 

progression with a quantum yield of ФPhos = 19.6% and 9.3%, respectively. Much weaker and 

structureless emission was observed for Br1NTE (ФPhos = 1.4%).  

The varying luminescent behaviours suggest that the excited-state dynamics were 

modulated in a subtle way by Br-specific properties, which is however not directly related to 

the number of Br atoms in the molecule. It is conceivable that multi-point halogen bonding 

provides a geometric framework to strengthen the rigidity of BrnNTE in the crystalline state. 
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This effect is especially substantial for Br2NTE where all the peripheral substituents engage in 

the directional Br⋯O interactions, providing the additional factor to the solid-state effect6, 8 of 

RTP to impede competitive non-radiative relaxation through intramolecular motions. The 

highest phosphorescence quantum yield was thus observed for the crystalline sample of 

Br2NTE.  

The weaker and non-structured phosphorescence observed for Br1NTE (and Br0NTE) 

seems to be originated from its looser solid-state packing. If we define the volumetric index Vi 

as the ratio between the Voronoi volume (VVor)
57, 58 and the van der Waals volume (VwdW) of a 

molecule in the crystal, smaller Vi = VVor / VwdW would suggest denser packing. Vi of 1.27–1.30 

were found for Br2NTE and Br4NTE embedded in halogen-bonded frameworks, but the values 

are significantly larger for Br0NTE and Br1NTE (1.36–1.38). The larger free space available 

to each molecule in the Br0NTE and Br1NTE crystals allows the excited molecules to decay 

radiatively and non-radiatively on various points of the triplet potential energy surface.  

The significance of the inter-BrnNTE Br⋯O interactions is further supported by 

comparing the phosphorescence of crystalline BrnNTE with that of the dispersed molecules in 

poly(methyl methacrylate) (PMMA, Mw ~ 996 kDa; 2 wt% doping). The rigid polymer matrix 

is expected to constrain the molecular motion at room temperature but disrupt inter-BrnNTE 

Br⋯O halogen bonds. The phosphorescence spectra of Br1NTE remained identical in either 

environment (Fig. 2), indicating that the triplet decay in Br1NTE is largely intrinsic to the 

monomeric molecule. However, the vibrational progression of Br4NTE, a signature of 

chromophore rigidity, became less pronounced, and that of Br2NTE completely disappeared 

and the overall emission profile resembles very well to that of Br1NTE. 

Additional support for the efficient population of the triplet excited state was provided 

by transient absorption measurements. Spectroscopically, all BrnNTE exhibit similar excited-

state dynamics: following the initial formation of the singlet excited state, which displays 

excited-state absorption (ESA) peaking at ca. 490 nm and a broad feature in the near infrared 

region of 800–1000 nm (Fig. 3 and ESI† Section 5), a new excited-state species with ESA at 

ca. 480 nm appears with microsecond lifetimes. This long-lived species was assigned to the 

triplet of each chromophore based on the lifetime and spectral similarity to the triplet-triplet 

absorption of methyl 1-naphthalate59 and 2-bromonaphthalene.60 Therefore, the decay of the 

initial state can be ascribed to singlet-to-triplet ISC; time constants on the order of tens of 

picosecond were observed for this process (Table 1). Compared to the typical fluorescence 

lifetime (1 ns or longer) of naphthalene derivatives,54, 61 the fast ISC process suggests a high 
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triplet forming efficiency. Such efficient ISC on the molecular level is likely due to the 

combined results of bromo (cf. > 90% triplet yield for 2-bromonaphthalene)60 and carbonyl 

substitution.62 Broadly speaking, the more bromo atoms in a molecule, the faster the S1→Tn 

and T1→S0 processes, in line with the stronger heavy-atom enhanced SOC.63 Unexpectedly, 

however, the S1→Tn ISC for Br4NTE is noticeably slower than its less brominated analogues.   

 

 

Fig. 3 Transient absorption spectra of BrnNTE (n = 1, 2, and 4) in deaerated CH2Cl2 at various 

pump-probe delay indicated (excitation = 330 nm, see ESI† Section 5 for n = 0). 

 

Table 1. Photophysical properties of BrnNTE.  

 in CH2Cl2 crystalline solids 

 τ(S1→Tn)a τ(T1→S0)a τPhos
b ФPhos

b,c 

Br0NTE 111.7±0.8 psd 29.1±0.1 μs n.a. n.a. 

Br1NTE 9.1±0.3 psd 1.42±0.01 μs 1.53±0.02 ms 1.4% 

Br2NTE 7.5±0.3 ps 0.50±0.01 μs 1.94±0.01 ms 19.6% 

Br4NTE 48.3±0.9 psd 0.0121±0.0006 μs 1.11±0.01 ms 9.3% 
a From transient absorption measurements.  b From (time-resolved) 
phosphorescence measurements.  cThe uncertainty is estimated to be 20% of the 
measured values.  dPreceded by the relaxation of hot S1 in (0.9–1.2)±0.3 ps. 

 

Since the rate of S1→Tn ISC is largely determined by the energy gap between the singlet 

and triplet states (ΔEST) and the magnitude of spin-orbit coupling (SOC),64 we evaluated the 

matrix elements of ⟨S1|ĤSO|Tn⟩ using the two-layer ONIOM (QM:MM) scheme to simulate the 

photophysical processes in crystals. The molecular geometry was computed at the level of 

ωB97X-D/6-31G(d):OPLS-AA, and ⟨S1|ĤSO|Tn⟩ calculated at the TDA-ωB97X-D/6-
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311+G(d,p) level of theory based on the ONIOM geometries (Table 2 and ESI† Section 7). The 

(TD-)DFT calculations were performed using Gaussian 16,65 which was then interfaced with 

PySOC30 to evaluate the SOC matrix elements. The Tamm–Dancoff approximation (TDA) was 

exploited to minimise triplet instability.40, 66 In all cases, the state energies are not significantly 

affected by aggregation; thus results from the calculations with one molecule in the QM region 

are discussed here. 

The ISC process for BrnNTE likely takes place between S1 and the high-lying triplet 

states. Considering ΔEST alone (<0.5 eV), ISC to T2,3 for Br1NTE, T2–4 for Br2NTE, and T2 

for Br4NTE should dominate in the respective molecules, whereas the large energy gap ΔEST 

> 1.5 eV prevents direct ISC into T1 (see ESI† Section 7 for the relative energies). Compared 

to Br0NTE, incorporating fourth-row Br elements into the naphthalene scaffold increases SOC 

by 1–2 orders of magnitude. Despite the larger number of Br atoms in the structure, smaller 

SOC was found for Br4NTE than Br2NTE, in line with the slower triplet formation found 

experimentally for the former molecule. The ⟨S0|ĤSO|T1⟩ calculated at the T1 geometry, the key 

factor determining the rate of phosphorescence, was similarly found to be smaller for Br4NTE 

than Br2NTE. 

 
Table 2. Spin-orbit coupling (in cm–1) calculated at the TDA-ωB97X-D/6-311+G(d,p) level of 
theory based on the ONIOM geometries.  

 at S1 geometrya  at T1 geometry 

 ⟨S1|ĤSO|T1⟩ ⟨S1|ĤSO|T2⟩ ⟨S1|ĤSO|T3⟩ ⟨S1|ĤSO|T4⟩  ⟨S0|ĤSO|T1⟩ 

Br0NTE 0.82 0.04 0.52 0.86  0.01 

Br1NTE 8.22 10.87 15.49 9.02  3.22 

Br2NTE 68.74 0.93 166.79 106.08  142.3 

Br4NTE 20.30 42.79 3.55 30.93  0.38 
a States relevant for the intersystem-crossing mechanism are highlighted in bold.  

 

A close examination of the electron density of the key states provided hints to the origin 

of the unexpected drop in SOC for Br4NTE. Fig. 4 shows the electron density difference 

between the selected excited states and the ground state for Br2NTE (S1 and T3) and for 

Br4NTE (S1 and T2). These transitions displayed a significant naphthalene-centred π-π* 

character; the involvement of the Br atoms can be clearly seen and hence the higher SOC in 

brominated BrnNTE. Comparatively, the carbonyl n-π* contribution, the typical driver for the 

ISC process in aromatic ketones/aldehydes, appears to be much less substantial. In the case of 

Br2NTE, the Br-centred transition densities are roughly perpendicular to the naphthalene plane 
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in the S1 state but rotate distinctively in the T3 state, facilitating the orbital angular momentum 

change for ISC (similar rotation found in T4). In the case of Br4NTE, however, the Br-centred 

transition densities in S1 and T2 are both perpendicular to the naphthalene plane. The absence 

of the analogous rotated transition density for Br4NTE is understandable as unfavourable 

electron repulsion in the region between neighbouring Br atoms would be caused by such a 

change in density orientation.  

 

  

Fig. 4 Top-down view of electron density difference plots (0.001 e Bohr–3 isovalue) between 

the selected excited states (S1 or T2/3) and the ground state for Br2NTE (top row) and Br4NTE 

(bottom row). The molecular orientation is sketched on the left; orange colour represents 

positive and blue negative values. 

 

Taken together, the judicious heavy-atom positioning in Br2NTE results in the 

favourable structural and electronic contributions to its efficient RTP. The 2,6-dibromo 

substitution offers a lock-in mechanism through halogen bonding to inhibit non-radiative 

relaxation. Furthermore, high SOC and hence efficient ISC are made possible by adding the 

orbital angular momentum change to the heavy-atom effect in both the triplet-generation 

(S1→Tn) and phosphorescence (T1→S0) processes.  

 

Conclusions 

In summary, we have shown that simultaneously incorporating multiple heavy halogens and 

halogen-bond donor/acceptor pairs in aromatic molecules can enable bright phosphorescence 

from purely organic materials. The formation of halogen-bonded frameworks in the solid states 

rigidifies phosphorophores, favouring the radiative decay. However, our results indicate that a 
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fine balance has to be struck in terms of the number and positioning of halogens. Too many 

large halogen atoms in proximity may prohibit structurally the access of halogen-bond 

acceptors and electronically the contribution of the non-bonding electrons of halogens for 

enhancing SOC. The latter effect is especially important to consider in the case of carbonyl-

bearing polycyclic aromatic hydrocarbons, such as rylenes and its derivatives in the present 

study where the S1 state is primarily π-π* in nature. It should be noted that the formation of 

halogen bonds cannot necessarily be correlated to the increase in ISC and phosphorescence 

rates; an excited-state analysis will be needed to elucidate the magnitude and origin of SOC 

when designing organic RTP materials. 
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