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Abstract

Re-randomisation trials allow patients to be re-enrolled and re-randomised for
each new treatment episode they experience. For example, in a trial evaluating
treatments for acute sickle cell pain crises, patients could be re-randomised each
time they have a new pain crisis. However, uptake of this design has been slow,
likely because of uncertainty around its validity. The purpose of this thesis is to
evaluate the methodological properties of the re-randomisation design.

Chapter 2 defines a set of treatment estimands that can be used for re-
randomisation trials, and chapters 3 and 4 evaluate the use of independence
estimators and mixed-effects models for these estimands. I find that independence
estimators are generally unbiased, though can be biased for certain estimands
in specific situations. Mixed-effects models are generally biased, except under
very strong assumptions. In Chapter 5 I compare re-randomisation with cluster,
crossover, and parallel group designs. I find that re-randomisation compares
favourably with the other designs, though depending on the specific research
question (i.e. estimand of interest), other designs may be more appropriate in
certain settings. In chapter 6 I evaluate a set of trials of granulocyte colony-
stimulating factors for patients with febrile neutropenia which include both
parallel group and re-randomisation designs. I found that using re-randomisation
led to an increase in recruitment and provided similar results to parallel group
trials. In conclusion, the re-randomisation design is a valid design option, and
should be used more often.
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1 Introduction

In many clinical settings, patients may require treatment on multiple occasions. For
example, patients who experience acute sickle cell pain crises will require treatment
to manage pain each time they experience a new crisis; patients who experience
severe asthma exacerbations will require treatment to manage symptoms for each new
exacerbation; and patients who develop febrile neutropenia as a result of chemotherapy
will require treatment for each new round of chemotherapy leading to a neutropenic
episode [1, 2, 3]. In these settings, patients are typically given the same treatment
for each new episode; for instance, morphine is typically used to treat all hospital
admissions for sickle cell pain crises [4]. I refer to these as ‘multi-episode’ settings, to
indicate that some patients may experience multiple treatment episodes over a given
period of time.

1.1 Randomised trials in multi-episode settings

Randomised controlled trials (RCTs) are considered the gold standard for assessing
the effectiveness of healthcare interventions, as randomisation ensures that, on average,
treatment groups are balanced for both known and unknown factors, thereby allowing
unbiased estimation of the treatment effect [5]. The most common trial design is
that of a parallel group design, where patients are enrolled for a single episode only;
subsequent treatment episodes are excluded (figure 1.1).

However, allowing only a single episode per patient can have limitations in multi-
episode settings. These are described in section 1.1.1 below. Because of these potential
limitations, it may be useful to consider alternate trial designs which allow enrolment
of multiple treatment episodes. The purpose of this thesis is to evaluate clinical
trial designs for use in multi-episode settings. The main design I focus on is the
re-randomisation design; this is described in section 1.3 below. However, I discuss
alternative design options in chapter 5.

In section 1.1 I describe the potential limitations of allowing trials to enrol only
one episode per patient in multi-episode settings, and I provide a motivating example
for this work in section 1.2. I give a brief overview of the re-randomisation design in
section 1.3, and then list some examples of trials that have used this design in section
1.4. In section 1.5 I provide an overview of the notation that will be used in this thesis,
then in section 1.6 I summarise the methodological features of re-randomisation trials,

13



Figure 1.1: Re-randomisation vs. parallel group trials. This figure depicts the treatment
episodes occurring during the trial recruitment period that are eligible for enrollment
under a parallel group and re-randomisation design. Grey episodes denote the patient
was not eligible, A = allocated to treatment A, B = allocated to treatment B.
Reproduced from Kahan BC, Morris TP, Harris E, Pearse R, Hooper R, Eldridge E.
Re-randomization increased recruitment and provided similar treatment estimates as
parallel designs in trials of febrile neutropenia. Journal of Clinical Epidemiology 97
(2018) 14-19. DOI: https://doi.org/10.1016/j.jclinepi.2018.02.002 with permission.

and detail what is still unknown. In section 1.7 I give an overview of the research
topics that I cover in chapters 2-6 of this thesis.

1.1.1 Limitations of allowing trials to enrol only one episode per patient in multi-episode
settings

1.1.1.1 Recruitment

Despite the widespread use of RCTs, recruitment of patients remains a major challenge.
Two reviews of trials funded by the National Institute for Health Research (NIHR)
Health Technology Assessment (HTA) and the UK Medical Research Council (MRC)
found that many trials fail to reach their target sample size [6, 7]. The first review
assessed 122 trials from 1994-2002, and found that 69% did not reach their target
sample size [6]. The second review assessed 73 trials from 2002-2008, and found
that 45% did not meet their target sample size [7]. A review of trials posted on
clinicaltrials.gov found that 48,027 patients had taken part in 481 trials that were at
risk of being unable to address their primary research question due to poor recruitment
[8].

Poor recruitment can have adverse impacts on patient care. It can delay trial results,
leading to delays of successful interventions being adopted as part of routine care, or of
unsuccessful or harmful treatments being discontinued [9]. Longer recruitment periods
or early discontinuation of trials can lead to higher costs and wasted research funds,
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resulting in fewer trials being funded overall [9]. Finally, difficulties in recruitment can
make conducting trials in rare diseases impractical [9]. For example, a large number of
randomised trials in sickle cell disease have been stopped early due to poor recruitment
[4, 10]. As a result, guidelines for these diseases may be based on poor evidence from
underpowered trials or non-randomised studies, leading to potentially suboptimal care
for patients. Poor recruitment is a major barrier to conducting effective RCTs, and
has been identified as the primary research priority for leads of UK Clinical Trials
Units [11].

Allowing trials to only enrol one episode per patient can be inefficient in multi-
episode settings, as it discards a potentially large portion of the available episodes [4, 9].
For instance, there are not very many people who experience sickle cell pain crises, but
those who do often experience a large number of episodes [4, 9]. Limiting enrolment
to one pain crisis per patient could substantially reduce the pool of eligible episodes,
which may make recruitment a much larger challenge than it would be otherwise.

One of the main advantages of trial designs which allow multiple episodes per
patient to be enrolled is that they can increase recruitment compared to parallel group
designs [12]. This gain in efficiency from re-enrolling patients for subsequent episodes
could have large benefits to healthcare systems, by (a) allowing trials to be conducted
more quickly, leading to successful treatments being introduced into systems sooner;
(b) leading to lower trial costs, allowing more trials to be funded; and (c) allowing
trials in some rare diseases to be more easily conducted, resulting in an improved
evidence base for the care provided to these patients.

1.1.1.2 Generalisability

A second issue with allowing trials to enrol only one episode per patient is that the
results from these trials would likely be used to inform practice for all treatment
episodes that occur, even the ones that are excluded from the trial by design. For
instance, imagine that a parallel group trial finds that a new intervention is effective
for treating pain in acute sickle cell pain crises. When rolled out into clinical practice,
this intervention would not be limited to use in a single pain crisis per patient; it would
instead be used to treat patients each time they came in with a new pain episode.

The parallel group design estimates the effectiveness and safety of the intervention
in a single episode from each patient, and then extrapolates this effect to all subsequent
episodes. This approach assumes the effect found in the parallel group design will
generalise to the excluded episodes, i.e. that because it was found to be safe and
effective when studied in a single episode per patient, it will be equally safe and
effective if used for all episodes from each patient. However, this is a very strong
assumption; treatments may become less effective or more toxic the more often they
are used, or the effectiveness of the treatment may be different in patients who require
treatment more often. If the effect differs in subsequent episodes, the extrapolation
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from a parallel group design could be misleading, and could result in inappropriate
use of the intervention in practice.

Designs which allow multiple episodes per patient to be enrolled do not require
extrapolation, as they are able to directly assess whether interventions are safe and
effective to use across all treatment episodes. For instance, investigators can evaluate
whether there is an increased risk of toxicity due to repeated exposures to the inter-
vention, or whether the intervention becomes less effective on re-use. Because these
designs do not require extrapolation it is reasonable to expect they may provide a
more realistic picture of how useful the treatments would be in practice.

1.2 Motivating example: the SWIM trial

In the early 2010s I worked on the SWIM (Sickle With Ibuprofen & Morphine) trial
(ISRCTN97241637) while I was employed at the MRC Clinical Trials Unit [4] . SWIM
was a trial in patients admitted to hospital with an acute sickle cell pain crisis who
were treated with patient-controlled analgesia (either morphine or diamorphine). It
evaluated whether ibuprofen could reduce the total amount of opioids consumed over
a four day period compared to placebo. The rationale was that opioids have negative
side effects, and if ibuprofen could reduce the amount of opioids required for effective
pain control, this would be of benefit to patients.

The interventions (ibuprofen or placebo) were given for a maximum of four days.
The follow-up period for each patient was four weeks from hospital discharge, and it
was expected that most patients would be discharged within four days of admission.
Therefore, it was anticipated that the follow-up period would be under 5 weeks for
most patients enrolled in the trial. SWIM was designed as a parallel group trial, so
patients could only be enrolled for a single pain episode. The sample size target was
316 patients.

Recruitment to SWIM was much slower than expected, and so partway through
the recruitment period the trial management group convened to discuss options to
increase recruitment. One member of the group did an audit of all admissions with
a sickle cell pain crisis to one of the SWIM recruiting centres to see whether they
could identify reasons for the poor recruitment. One major finding from this audit
was that many of the admissions to hospital for pain crises were from the same group
of patients. Over a one year period, there were 121 pain crises from 46 patients [9].
The median number of pain crises per patient was 2 (interquartile range 1 to 3; range
1 to 11), and 30/46 patients (65%) were admitted for multiple pain crises [9].

Based on these findings, the trial management group decided to modify the design
of the SWIM trial to allow patients to be re-enrolled for each new pain crisis they
experienced, provided they had completed the follow-up period from their previous
enrolment. It was anticipated that this change could potentially increase the recruitment
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rate enough to allow SWIM to reach its recruitment target. However, due to the poor
recruitment, the funder decided to terminate the trial early, before the changes to the
trial design were implemented.

1.3 Re-randomisation trials

Re-randomisation trials have been proposed as an alternative to the parallel group
design to evaluate interventions in multi-episode settings (figure 1.1) [9, 13, 14]. An
overview of the re-randomisation design is given in table 1.1.

The re-randomisation design involves re-enrolling and re-randomising patients for
each new treatment episode they experience (presuming they continue to meet all
eligibility criteria for the trial). In the SWIM example described above, patients could
be re-enrolled and re-randomised for each new pain crisis they experience. Importantly,
the number of times each patient is enrolled in the trial is not specified in advance,
but instead depends on how many treatment episodes they experience during the trial
[9]. For instance, in the SWIM example above, some patients may be enrolled for a
single pain crisis; others may be enrolled for two or more episodes.

Re-randomisation trials can be used to evaluate interventions that are intended
to be used to treat each new episode that occurs (i.e. interventions that are fixed
across episodes). The duration of the intervention and duration of the follow-up period
for each patient must also be less than the length of the trial recruitment period
(otherwise the trial recruitment period would end before the patient completes their
first enrolment) [9, 12].

These criteria are met in the SWIM trial described above: (a) some patients may
experience more than one pain crisis during the course of the trial; (b) if found to
be effective, ibuprofen would likely be used to treat patients each time they were
admitted to hospital with a pain crisis, and its use would be fixed across episodes; (c)
ibuprofen is a short term intervention (maximum use of four days in the SWIM trial);
and (d) the follow-up period in the SWIM trial was also short compared to the overall
duration of the trial.

Conversely, re-randomisation trials cannot be used to evaluate interventions which
might be modified or changed between episodes (i.e. adaptive interventions), or long-
term interventions whose duration is longer than that of the trial recruitment period.
It can also not be used if the intended follow-up period for patients is longer than
the trial recruitment period. For example, re-randomisation could not be used for: (i)
a treatment strategy where the dose of ibuprofen is modified for each new episode
based on the patient’s response to treatment in their previous episode; (ii) a long-term
intervention, such as taking a daily pill on an indefinite basis to reduce the severity of
pain crises; or (iii) if investigators wished to evaluate quality of life scores at 5 years
post-randomisation, and the duration of recruitment to the trial is expected to take
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only 3 years. The re-randomisation design would not be appropriate for use in the
above settings, and alternative trial designs would be required.

There are two design requirements for re-randomisation trials (table 1.1) [9, 12].
The first is that patients can only be enrolled and re-randomised after they have
completed the follow-up period from their previous enrolment. For example, in a trial
where outcomes and other data are only collected up to one year from randomisation,
and the patient’s involvement in the trial is considered to be finished after the one-year
mark, patients can only be re-enrolled after this point. This is to ensure there are no
overlapping treatment periods between different randomisations.

The second design requirement is that randomisations for the same patient are
performed independently, i.e. the patient’s treatment allocation in episode two is not
affected by their allocation in episode one. This means that ’patient’ is not used in the
randomisation process, e.g. patient cannot be used as a stratification factor to force
balance in treatment allocations within patients.

1.4 Examples of re-randomisation trials in practice

Several trials which have used the re-randomisation design are shown in table 1.2. I
summarise these trials below.

1.4.1 L-arginine in children with sickle cell disease admitted to hospital with vaso-occlusive
pain episodes

This trial (NCT01796678) evaluated L-arginine vs. placebo in children with sickle cell
disease admitted to hospital with vaso-occlusive pain episodes [1]. This trial allowed
patients to be re-enrolled and re-randomised for each new admission to hospital for a
vaso-occlusive pain episode. They enrolled 56 episodes from 38 individual children (a
47% increase in the number of episodes enrolled compared to if only one episode per
child was allowed). They found that L-arginine led to reductions in the total amount
of opioid use (L-arginine 1.9 mg/kg [standard deviation (SD) 2.0] vs. placebo 4.1 [4.1],
p=0.02) and lower pain scores at discharge (1.9 [2.4] vs. 3.9 [2.9], p=0.01), though
there was little evidence of a difference in length of hospital stay (4.1 days [1.8] vs.
4.8 [2.5], p=0.34). The authors concluded that L-arginine may be a potentially useful
adjunct to standard care in this setting and that a larger trial is warranted to confirm
or refute these findings.

1.4.2 Azithromycin in children for treatment of acute episodes of asthma-like symptoms

This trial (NCT01233297) evaluated azithromycin vs. placebo to treat children aged
1-3 years who experienced asthma-like symptoms [2]. Children could be re-randomised
for each new acute episode of asthma-like symptoms they experienced. They enrolled
158 episodes from 72 children (a 119% increase in the number of episodes enrolled).
They found that azithromycin shortened the duration of episodes by an estimated
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Table 1.1: Overview of re-randomisation trials. Reproduced from Kahan BC. Using re-
randomization to increase the recruitment rate in clinical trials – an assessment of three
clinical areas. Trials. 2016;17:595. doi:10.1186/s13063-016-1736-z with permission.

Settings requirements for re-
randomisation trials 1. Some patients may require treatment on

multiple occasions

2. The intervention(s) would be used for
each new treatment episode

3. The intervention duration and length of
the follow-up period for each treatment
episode are less than the overall length
of the trial recruitment period

Design requirements for re-
randomisation trials 1. Patients are only re-enrolled and re-

randomised when they have completed
the follow-up period from their previous
randomisation

2. Randomisations for the same patient are
performed independently

Implementation of re-
randomisation trials 1. Patients are enrolled as usual, ran-

domised to a treatment group, and
followed-up until all outcomes have been
collected

2. If patients experience new treatment
episodes and require further treat-
ment, they can be re-enrolled and re-
randomised, provided they have com-
pleted the follow-up period from their
previous randomisation

3. This process is repeated until the target
sample size is met
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Table 1.2: Examples of trials using re-randomisation design

Trial Population Interventions Treatment
episode which is
re-randomised

L-arginine in chil-
dren with sickle cell
disease admitted
to hospital with
vaso-occlusive
pain episodes
(NCT01796678)
[1]

Children with sickle
cell disease admit-
ted to hospital for
vaso-occlusive pain
episodes

L-arginine vs.
placebo

New hospitalisation
for vaso-occlusive
pain episode

Azithromycin in chil-
dren for treatment
of acute episodes of
asthma-like symp-
toms (NCT01233297)
[2]

Children aged 1-3
who experience re-
current asthma-like
symptoms

Azithromycin vs.
placebo

New acute episodes
of asthma-like
symptoms

Granulocyte colony-
stimulating factor in
paediatric patient for
treatment of febrile
neutropenia [3]

Paediatric pa-
tients undergoing
chemotherapy who
experience fever and
severe neutropenia

Granulocyte
colony-
stimulating
factor vs. placebo

New episode of
fever and severe
neutropenia

Pathogen-
inactivated platelets
in patients with
haematologic ma-
lignancies and
thrombocytopenia
(NCT02783313) [15]

Patients with haema-
tologic malignancies
and thrombocytope-
nia

Pathogen-
inactivated
platelets vs. un-
treated platelets

New hospital admis-
sion requiring trans-
fusion

High-dose influenza
vaccine in adults
65 years or older
(NCT01427309) [16]

Adults 65 years or
older

High-dose in-
fluenza vaccine
vs. standard dose
influenza vaccine

New influenza sea-
son

Ambient light for
completion of bio-
physical profiles
(NCT02453230) [17]

Women with single
gestations scheduled
to undergo biophysi-
cal profile testing

Ambient light vs.
darkened room

New biophysical
profile test

Albumin to treat
patients admitted to
hospital with compli-
cations from cirrhosis
(ISRCTN14174793)
[18]

Patients admitted to
hospital with compli-
cations of cirrhosis

Albumin vs. stan-
dard care

New hospitalisation
for complication of
cirrhosis
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63.3% (95% confidence interval (CI) 56.0 to 69.3; p<0.0001), with no increase in
adverse events in the azithromycin group (azithromycin 23% vs. placebo 30%; p=0.30).
The authors concluded that azithromycin could be useful in the acute management of
exacerbations.

1.4.3 Granulocyte colony-stimulating factor in paediatric patients for treatment of febrile
neutropenia

This trial compared granulocyte colony-stimulating factor vs. placebo in paediatric
patients undergoing chemotherapy with fever and severe neutropenia [3]. Patients could
be re-randomised for each new episode of febrile neutropenia (up to a maximum of 4
episodes). They enrolled 186 episodes from 112 patients (a 66% increase in recruitment
compared to limiting each patient to one episode). They found moderate evidence
that granulocyte colony-stimulating factor led to a shorter duration of hospital stay
(granulocyte colony-stimulating factor median 5 days [range 4 to 8] vs. placebo 7
[range 4 to 10]; p=0.04) and fewer days of antibiotic use (median 5 days [range 3 to
7] vs. placebo 6 [range 4 to 9]; p=0.02), though there was little evidence of a shorter
duration of fever (median 2 days [range 1 to 5] vs. 3 days [range 1 to 5]; p=0.30). The
authors concluded that use of granulocyte colony-stimulating factor has some benefit
in treatment of febrile neutropenia.

1.4.4 Pathogen-inactivated platelets in patients with haematologic malignancies and
thrombocytopenia

This trial (NCT02783313) compared the use of pathogen-inactivated platelets vs.
untreated platelets for transfusion in patients with haematologic malignancies and
thrombocytopenia [15]. They evaluated whether pathogen-inactivated platelets were
non-inferior to untreated platelets for the primary outcome of grade 2 bleeding. They
used a non-inferiority margin of 12.5 percentage points for the upper limit of the
95% CI for the absolute difference (pathogen-inactivated vs. untreated). Patients
could be re-randomised for each new hospital admission requiring transfusion. They
enrolled 567 episodes from 469 patients (a 21% increase in recruitment compared to
limiting enrolment to one episode per patient). They found in an intention to treat
analysis that there was evidence that pathogen-inactivated platelets were non-inferior
(pathogen-inactivated 54% vs. untreated 51%, absolute difference 3 percentage points,
95% CI -6 to 11; p for non-inferiority 0.012). However, a per-protocol analysis did
not show non-inferiority (52% vs. 44%, absolute difference 8 percentage points, 95%
CI -2 to 18; p for non-inferiority 0.19). As such, the authors did not make any strong
conclusions around the non-inferiority of pathogen-inactivated platelets.

1.4.5 High-dose influenza vaccine in adults 65 years or older

This trial (NCT01427309) compared high-dose vs. standard-dose influenza vaccine in
adults 65 years or older [16]. Patients were allowed to be re-randomised at the start
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of each new influenza season. They enrolled 31,989 episodes from 24,344 patients (a
31% increase in recruitment). They found that the high-dose vaccine was effective in
reducing the incidence of laboratory-confirmed influenza (high-dose vaccine 1.4% vs.
standard-dose vaccine 1.9%, relative efficacy 24.2%, 95% CI 9.7 to 36.5), with a slight
decrease in the number of serious adverse events (8.3% vs. 9.0%, relative risk 0.92,
95% CI 0.85 to 0.99). The authors concluded that high-dose vaccine offered better
protection against influenza compared to the standard-dose vaccine.

1.4.6 Ambient light for completion of biophysical profiles

This trial (NCT02453230) assessed whether the time to complete a biophysical profile
(a pre-natal ultrasound evaluation of the foetus) was shorter using ambient light
compared to a darkened room [17]. Patients could be re-randomised each time they
returned on a subsequent visit for a biophysical profile. They enrolled 357 biophysical
profiles from 224 patients (a 59% increase in recruitment). They found no difference in
the time to complete the biophysical profile (ambient light median 6.6 minutes [IQR
2.6 to 13.4] vs. darkened room 6.1 minutes [2.4 to 12.7]; p=0.73). They concluded that
ambient light was not useful in decreasing the time needed to complete a biophysical
profile.

1.4.7 Albumin to treat patients admitted to hospital with complications from cirrhosis

ATTIRE (Albumin To prevenT Infection in chronic liveR failurE) is a trial (IS-
RCTN14174793) comparing albumin vs. standard care in patients admitted to hospital
with complications from cirrhosis [18]. Patients can be re-randomised for each new
admission to hospital provided it has been more than 30 days from the hospital
discharge from their previous enrolment. At the time of writing this thesis, ATTIRE
has not yet finished recruitment. Its primary outcome is a composite of new infection,
renal dysfunction or mortality within the trial treatment period (up to 14 days or
hospital discharge if sooner). The trial will aim to recruit 866 episodes.

1.5 Notation

In this section I summarise some of the key notation that will be used in this thesis. A
summary of notation is provided in table 1.3. Some of the notation introduced in this
section will be expanded on in later chapters, and so there are some pieces of notation
in table 1.3 that are explained in later chapters rather than in this section.

Table 1.3: Summary of notation

Notation Definition

Indices

i Indexes patient

j Indexes episode within patient
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Continuation of Table 1.3

Notation Definition

Notation related to number of episodes/patients

Mi The number of episodes for which patient i is enrolled in the trial

Wi A weight for patient i (in this thesis Wi is used to weight patients
by the inverse of their number of episodes, Wi = 1

Mi
) (see section

3.1.2)

MT (j) The total number of patients for whom Mi = j

MT The total number of episodes enrolled in the trial

Nj The number of patients who are enrolled in the trial for at least j
episodes

p The proportion of patients in the trial who enrolled for two episodes
(i.e. p = MT (2)

NT
)

N
j,Z̃=z̃ The number of patients enrolled at episode j with treatment history

Z̃ = z̃ (i.e. N2,Z̃=(0) denotes the number of patients enrolled at
episode 2 who were allocated to control in their first episode, and
N2,Z̃=(1) is the number allocated intervention in their first episode)
(see section 4.3.2)

NT The total number of patients enrolled in the trial

Variables

Yij Outcome for patient i during episode j

Zij Treatment allocation for patient i during episode j (where 0=control,
1=intervention)

Zi,j−1 Treatment allocation in the patient’s previous episode (defined as 0
for j = 1)

Z̃ij A vector of previous treatment allocations for patient i (for exam-
ple, Z̃13 would be the vector (Z11, Z12)); this is referred to as the
‘treatment history’

Xepij Indicator for episode 2 (i.e. Xepij = 1 for episode 2, and 0 otherwise)
(see section 3.1.3)

XMi
Indicator for patients with Mi = 2 (i.e. XMi

= 1 if Mi = 2, and 0
otherwise) (see section 3.4.2.1)

XPLi An unobserved binary patient-level variable (i.e. it is constant across
episodes) (see section 3.3.10)
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Continuation of Table 1.3

Notation Definition

XELij An unobserved binary episode-level variable (i.e. it can vary across
episodes) (see section 3.3.11)

Rij Denotes whether patient i is enrolled in the trial at episode j (where
Rij = 1 means the patient was enrolled, Rij = 0 means they were
not enrolled) (see section 2.4.2.2)

εij A random error term for episode j from patient i

µi Random-intercept for patient i

Parameters

σ2
ε Variance of εij

σ2
µ Variance of µi

σ2 Total variance of outcome Yij conditional on treatment allocation
Zij , i.e. V (Yij |Zij) = σ2

β Denotes a treatment effect (either the effect of treatment in a model,
an estimand, or a potential treatment effect)

α Represents an intercept in a model

γ Represents the carry forward effect in a model (i.e. the effect associ-
ated with Zi,j−1)

δ Represents the interaction between Zij and Zi,j−1 in a model

ϑ The intraclass correlation coefficient, which represents the degree of
correlation between outcomes from episodes from the same patient

ϑ∗ The expected value of ϑ

Notation related to sampling of episodes/patients (used for estimands)

IE A random variable, where IE = i with probability Mi

MT

JE A random variable, which, conditional on IE has a uniform distri-
bution on (1, . . . ,M IE )

(IJ)E Represents IEJE , which represents a randomly selected episode
from within the trial, where each episode has an equal probability
of being selected ( 1

MT
)

Y(IJ)E The outcome for a randomly selected episode in the trial

Z(IJ)E The treatment allocation for a randomly selected episode in the
trial

Z̃(IJ)E The treatment history for a randomly selected episode in the trial
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Continuation of Table 1.3

Notation Definition

IP A random variable which has a uniform distribution on (1, . . . , NT )

JP A random variable, which, conditional on IP has a uniform distri-
bution on (1, . . . ,M IP )

(IJ)P Represents IPJP , which represents a randomly selected episode
from a randomly selected patient from within the trial, where each
patient has a probability 1

NT
of being selected, and each episode

from the chosen patient has a probability 1
MIP

of being selected

Y(IJ)P The outcome for a randomly selected episode from a randomly
selected patient

Z(IJ)P The treatment allocation for a randomly selected episode from a
randomly selected patient

Z̃(IJ)P The treatment history for a randomly selected episode from a ran-
domly selected patient

End of Table

I will illustrate this notation using the simple fictitious example shown in table 1.4.
Let i index patient, and j index the episode number within the trial. Mi represents
the number of episodes for which patient i is enrolled in the trial. In this fictitious
example, M1 = 1 because patient 1 was only enrolled for one episode, and M5 = 4
because patient 5 was enrolled for four episodes.

MT is the total number of episodes enrolled in the trial, and MT (j) represents the
total number of patients for whom Mi = j (i.e. the number of patients enrolled for j
episodes). In this example, MT = 10 because there are 10 episodes enrolled, MT (1) = 2
because two patients are enrolled for only one episode, MT (2) = 2 because two patients
are enrolled for two episodes, MT (3) = 0 because no patients are enrolled for three
episodes, and MT (4) = 1 because one patient is enrolled for four episodes.

NT denotes the total number of patients enrolled in the trial, and Nj is the number
of patients who are enrolled for at least j episodes. In this example, NT = 5 because
there are five patients enrolled in the trial, N1 = 5 because all five patients were
enrolled for at least one episode (N1 is always the same as NT ), N2 = 3 because three
patients were enrolled for at least two episodes, and N4 = 1 because only one patient
was enrolled for at least four episodes (N3 is also equal to 1).

Let Yij denote the outcome for patient i during episode j, and Zij denote the
treatment allocation for patient i during episode j (where 0=control, 1=intervention).
Z̃ij represents a vector of treatment allocations in the patient’s previous episodes
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Table 1.4: Simple fictitious re-randomisation trial

Patient ID (i) Episode (j) Treatment al-
location (Zij)

Treatment his-
tory (Z̃ij)

1 1 0 -
2 1 1 -
3 1 0 -
3 2 1 (0)
4 1 1 -
4 2 0 (1)
5 1 0 -
5 2 1 (0)
5 3 1 (0, 1)
5 4 0 (0, 1, 1)

(referred to as the ‘treatment history’). In this fictitious example, Z̃54 is the vector
(Z51, Z52, Z53) = (0, 1, 1), and Z̃32 = (Z31) = (0).

Next, I define some notation that will be used for chapter 2 (this notation will
become clearer in chapter 2 when I expand on it further). Let I be a random vari-
able, where I = i with a probability that is specified by design (i.e. chosen by the
investigators); I represents a randomly selected patient from the trial. Then, let J
be a random variable, where J = j with a probability that is specified by design; J
represents a randomly selected episode from patient I = i. Then, YIJ represents the
outcome for a randomly selected episode from the trial, where each episode has a
certain probability of being selected, depending on the specified probabilities for I and
J ; I discuss different specifications of these probabilities in chapter 2. Similarly, ZIJ
and Z̃IJ represent the treatment assignment and treatment history for a randomly
selected episode.

In this thesis I will use the potential outcomes framework [19, 20]. I will discuss this
further in chapter 2, but I briefly define the notation here. Consider a single-episode
setting, where patients experience a maximum of one episode. Let Yi denote the outcome
for patient i, and Zi denote their treatment allocation (0=control, 1=intervention).
Then, Y (Zi=1)

i is the outcome that would occur for patient i if they were allocated to
the intervention, and Y (Zi=0)

i is the outcome that would occur if they were allocated
to control. In the multi-episode setting, we need to include the patient’s treatment
history (Z̃ij) in the potential outcome definition as this may impact their outcome

Yij . So, Y
(
Zij=0,Z̃ij=z̃ij

)
ij would represent patient i’s potential outcome at episode j

under Z = 0 and treatment history Z̃ij = z̃ij , and Y
(
Zij=1,Z̃ij=z̃ij

)
ij would represent

their potential outcome under Z = 1. For clarity, I will drop the subscripts inside
the brackets, as these are the same as subscripts on the outside of the brackets; for

example, Y
(
Z=1,Z̃=z̃

)
ij is the same as Y

(
Zij=1,Z̃ij=z̃ij

)
ij , and Y

(
Z=1, Z̃=1̃

)
IJ is the same
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as Y
(
ZIJ=1, Z̃IJ=1̃

)
IJ .

Finally, in this thesis I will describe both analysis models and data generating
models. Data generating models describe the true underlying process that gives rise
to the data, and includes true parameter values; analysis models are the statistical
models we use to estimate parameters from the data. I will differentiate the two types
of models by including hats on the parameters in the analysis models (to indicate they
are estimates from the data), but not on the parameters in the data generating models
(as these are the true values). For example, the following is a data generating model,
where the outcome is based only on a covariate Xij and a random error term εij :

Yij = α+ τXij + εij

whilst the following is an analysis model which is used to estimate the effect of
treatment Zij (we can see from the data generating model above that the treatment
effect is null):

Yij = α̂+ β̂Zij + εij

1.6 Previous research into methodological properties of re-randomisation
trials

In this section I summarise some of the previous research into the properties of the
re-randomisation design. I begin by summarising the research around the analysis of
re-randomisation trials in sections 1.6.1 and 1.6.2, then summarise several articles
which report results of re-analyses of completed re-randomisation trials in section
1.6.3. I then describe research around the sample size calculation in section 1.6.4,
then describe previous research into the potential increase in recruitment from re-
randomisation in section 1.6.5. In section 1.6.6 I summarise the research which has
compared re-randomisation with other trial designs

1.6.1 Analysis of re-randomisation trials

1.6.1.1 Overview of analysis models

The data from a re-randomisation trial will be clustered, with episodes nested within
patients. It is therefore natural to assume that episodes from the same patient might
be correlated (that is, outcomes from two episodes from the same patient will be more
similar to each other than they are to outcomes from episodes from different patients).

There are two broad analysis approaches which have been evaluated for re-
randomisation trials: (a) independence estimators; and (b) mixed-effects models with
a random intercept for patient (hereafter referred to as ‘mixed-effects models’). These
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two analysis methods differ primarily in how they deal with the possible correlation
between episodes from the same patient.

Independence estimators use a working independence correlation structure to
estimate treatment effects [21, 22, 23, 24, 25]; that is, they estimate the treatment
effect under the assumption that all episodes are independent, even those from the
same patient. They can be used in conjunction with robust standard errors which allow
for clustering [21, 26], though the use of robust standard errors for re-randomisation
trials has not been formally evaluated in the literature.

The use of working independence correlation structures has been previously sug-
gested for analysing correlated data, under the premise that they can still provide con-
sistent estimates of regression parameters, even if the correlation structure has been mis-
specified (i.e. if episodes from the same patient are in fact correlated) [21, 22, 23, 24, 25].
However, they are less efficient than methods which correctly specify the correlation
structure [21].

For a continuous outcome Yij the analysis model for an independence estimator
can be written as:

Yij = α̂+ β̂Zij + εij (1.1)

where Yij is a continuous outcome for episode j from patient i, Zij is the treatment
allocation (0=control, 1=intervention), β̂ is the estimated treatment effect, and εij ∼
N
(
0, σ̂2

ε

)
is a random error term for episode j in patient i (i.e. the off-diagonal elements

in the variance-covariance matrix are all set to 0).

In contrast, mixed-effects models directly model the clustering structure by includ-
ing a random intercept for patients, and allow for correlation between episodes from the
same patient. Mixed-effects models with a random-intercept assume an exchangeable
correlation structure, where the correlation between any two episodes from the same
patient is the same (i.e. all episodes within a patient are equally correlated).

For a continuous outcome Yij the mixed-effects model can be written as:

Yij = α̂+ β̂Zij + µi + εij (1.2)

where µi ∼ N
(
0, σ̂2

µ

)
is a random-intercept for patient i, and εij ∼ N

(
0, σ̂2

ε

)
is

a random error term for episode j in patient i (and µi and εij are assumed to be
independent).
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1.6.2 Evaluation of analysis models

1.6.2.1 Independence estimators (continuous outcomes)

Before I began work on this thesis, I was involved in a research paper which eval-
uated independence estimators [9]. We primarily evaluated the performance of the
independence estimator when the true data generating model was:

Yij = α+ βZij + µi + εij (1.3)

where µi ∼ N
(
0, σ2

µ

)
is a random-intercept for patient i, and εij ∼ N

(
0, σ2

ε

)
is a

random error term for episode j in patient i (and µi and εij are independent). Model
1.3 implies that episodes from the same patient are correlated, with an intraclass
correlation coefficient (ICC) of σ2

µ

σ2
µ+σ2

ε
. It also implies that the treatment effect (β)

is constant across all patients and episodes. Note that this model differs to model
1.2 in the use of hats for the parameters (i.e. β vs. β̂, σ2

µ vs. σ̂2
µ), because model 1.2

represents an analysis model, whereas model 1.3 represents a true data generating
model.

We initially evaluated independence estimators under the true data generating
mechanism in model 1.3, and under the assumption that there is no non-enrolment of
episodes; that is, that patients re-enrol for all episodes they experience (i.e. all patients
who experience two episodes enrol in the trial for both; there are no patients who
enrol for their first episode, but then do not re-enrol for the second episode). Under
these assumptions, we showed analytically and using simulation [27] that independence
estimators provide unbiased estimates of treatment effect, and the standard error will
also be unbiased, implying that confidence intervals and p-values from independence
estimators will be valid.

We also evaluated independence estimators under different data generating models
(i.e. under models that differ to model 1.3 above). These models were:

• Patients who experience more episodes have different outcomes than patients
who experience fewer episodes.

• Patients experience different outcomes in different episodes.

• Outcomes depend upon previous treatment allocation (e.g. the effect of the
intervention carries forward into the subsequent episode).

We also evaluated some scenarios with non-enrolment (for example, where some
patients who experience two episodes do not re-enrol in the trial for their 2nd episode).
These scenarios were:

• The probability of being re-enrolled is the same for all patients;
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• The probability of being re-enrolled depends on treatment allocation in the
previous episode;

• The probability of being re-enrolled depends on the outcome in the previous
episode.

We found that in all scenarios described above the independence estimators provided
unbiased estimates of treatment effect and valid standard errors.

1.6.2.2 Independence estimators (binary outcomes)

Dunning and Reeves [13] evaluated an independence estimator for a difference in
proportions. They evaluated bias in the estimated standard error and the type I error
rate, using both simulation and mathematical derivations. In their simulations, they
assumed a true data generating model similar to model 1.3 (except adapted for a
binary outcome). In their mathematical derivations they did not assume any particular
data generating model. Their simulation study showed that independence estimators
provided valid type I error rates. Their mathematical derivations found that under the
null hypothesis (i.e. when there is no treatment effect) estimated standard errors were
unbiased. However, they showed that under the alternative hypothesis (i.e. when there
is a treatment effect) estimated standard errors from an independence estimator may
be biased in some instances. The degree of bias depends on the correlation between
outcomes, and the event rates in each treatment group. They found that for positive
correlation where episodes within a patient are more similar to each other than to
episodes from other patients (as would be expected in re-randomisation trials), the bias
will be downwards, leading to confidence intervals that are too narrow and p-values
that are too small. However, they concluded that in most instances, the bias in the
standard errors would be small. For instance, they used the vaccine trial discussed in
section 1.4.5 as an example, and found that the bias in the estimated standard errors
for this trial would be ≤ 0.2%. They did not evaluate bias in the estimated treatment
effects.

In our earlier work [9], we also evaluated independence estimators for an odds ratio
for binary outcomes. We used simulation to evaluate the type I error rate under a
similar data generating model to model 1.3 (adapted for a binary outcome). We found
that independence estimators provided valid type I error rates. We did not evaluate
bias in estimated treatment effects.

Takada et al [28] also evaluated independence estimators for an odds ratio for
binary outcomes. They examined this in the context of trials where only patients
who do not experience an event (i.e. Yij = 0) were re-randomised. Their motivating
example is of a fertility trial, where patients who experience an event (become pregnant,
Yij = 1) do not need to undergo further treatment to induce pregnancy. They used
a simulation study to evaluate bias and type I error rate under four different data
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generating models. All were based on the data generating mechanism in model 1.3
(adapted for a binary outcome), both with and without the random intercept for
patient µi (the model without the random intercept denotes there is no correlation
between episodes from the same patient), and with and without an episode effect (i.e.
patients experience different outcomes in different episodes). They found the type I
error rate was valid in all scenarios. However, they found that estimated treatment
effects were biased in all scenarios (except under the null hypothesis, i.e. no treatment
effect). However, it is not immediately clear whether this is true bias, or is because
they did not compare the estimated treatment effects to the right parameter. For
example, in several scenarios they used a conditional odds ratios (conditional on the
random intercept µi, or the episode effect) in the data generating model, but estimated
a marginal odds ratio. These two quantities will differ due to the non-collapsibility
of the odds ratio [29, 30, 31]; however this is not bias, but simply that marginal and
conditional odds ratios are estimating different things.

1.6.2.3 Mixed-effects models (continuous outcomes)

In our earlier work, we also evaluated mixed-effects models for continuous outcomes
[9]. We found that this method of analysis provided unbiased estimates of treatment
effect, valid type I error rates, and higher power than independence estimators for
most of the data generating models discussed in section 1.6.2.1. The one exception
was when the outcome depended on the treatment allocation from a previous episode.
An example of this scenario can be seen in the following model:

Yij = α+ βZij + γZi,j−1 + µi + εij

where Zi,j−1 is the treatment allocation from the patient’s previous episode (and
is set to 0 for episode 1). This data generating model represents a situation where
the intervention effect carries forward into the subsequent episode. In this scenario,
the treatment effect estimate from a mixed-effects model was biased. However, this
bias can be negated by correctly modelling the carryover effect in the analysis (for
instance, by including the term Zi,j−1 as a covariate in the analysis model).

1.6.2.4 Mixed-effects models (binary outcomes)

In our earlier work, we also evaluated mixed-effects logistic models for binary outcomes
[9]. We used simulation to evaluate the type I error rate under a similar data generating
model to model 1.3 (adapted for a binary outcome). We found that mixed-effects logistic
models provided valid type I error rates and had higher power than independence
estimators. We did not evaluate bias in the estimated treatment effects.

Nason and Follmann [14] evaluated a mixture model based on a beta distribution in
the context of trials where only patients who do not experience an event (i.e. Yij = 0)
were re-randomised (i.e. when an event, Yij = 1, precludes future episodes). They used
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an example of a trial of anti-HIV microbicide gels where once a patient experiences an
event (contracts HIV) it no longer makes sense to use a microbicide gel to prevent HIV.
They found using simulation that mixture models provided correct type I error rates
in most settings, except when the number of patients was small and the correlation
between episodes was large. They did not evaluate bias in the estimated treatment
effects.

Takada et al [28] used a simulation study to evaluate a mixed-effects logistic
regression model with a random-intercept (using the same data generating models as
discussed in section 1.6.2.2); they found the type I error rate was valid in all settings.
However, they also found that estimated treatment effects were biased in all scenarios
(except under the null hypothesis, i.e. no treatment effect). This is partly explained by
the non-collapsibility of the odds ratio (i.e. in some scenarios the marginal odds ratio
was compared against an odds ratio conditional on an episode effect). However, this
analysis method was biased even when the analysis model matched the data generating
model, which cannot be explained by the difference between marginal vs. conditional
odds ratios. It is therefore not immediately apparent why this analysis method would
be biased in this scenario; it may be due to a similar issue of using the incorrect ’true’
parameter to evaluate bias (i.e. comparing estimates against the wrong parameter, or
’estimand’; this is described further in chapter 2).

1.6.3 Re-analyses of completed re-randomisation trials

1.6.3.1 High-dose influenza vaccine in adults 65 years or older (NCT01427309)

This trial was discussed earlier in section 1.4.5 [16]. Briefly, this trial compared high-
dose vs. standard-dose influenza vaccine in adults 65 years or older. Patients were
enrolled over two influenza seasons; participants who were enrolled in the first influenza
season could be re-enrolled and re-randomised for the second season.

The aim of their re-analysis [32] was to evaluate whether treatment allocation in
the first episode (season one) affected either the outcome or the treatment effect in
the second episode (season two); that is they wanted to know whether receipt of the
high-dose vaccine in season one either made people less likely to have influenza in
season two, or made the high-dose vaccine more (or less) effective in season two. This
re-analysis only included participants who were enrolled for both seasons.

They evaluated four different definitions of influenza (laboratory confirmed vs.
culture confirmed, any strain vs. vaccine-similar strain). They found no statistical
evidence that season one treatment allocation affected either the outcomes or the
treatment effect in season two. However, the statistical power for these analyses was
low, and consequently the confidence intervals were very wide, and so these results
do not rule out the possibility of season one treatment allocation influencing what
happens in season two.
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1.6.3.2 Web- vs. telephone-based strategies for smoking cessation (NCT01124110)

This trial compared a web-based strategy vs. a telephone-based strategy to reduce
smoking amongst heavy equipment operators [33, 34]. The main outcomes were smoking
cessation rates at 30 days and at 6 months. This trial was initially designed as a parallel
group trial; however, partway through they modified the design to allow patients who
did not manage to quit smoking to be re-enrolled and to try again. They initially
reported episode one results alone (i.e. the results for the first attempt to quit smoking
for each patient) [33]. Their purpose in using re-randomisation was to evaluate whether
any patients successfully quite smoking in their second attempt [34]; if so, this may
indicate that some smoking cessation interventions could be used again for those who
were unsuccessful in previous attempts. Furthermore, the use of a re-randomisation
trial design would allow investigators to evaluate the effectiveness of such interventions
in subsequent episodes.

Of the 145 patients enrolled in the trial, 128 did not successfully quit smoking in
their first attempt; of these 41 (32%) decided to try again, and were re-enrolled and
re-randomised. Overall smoking cessation rates in the second episode were 4/41 (9.8%)
at 30 days and 5/31 (12.2%) at 6 months. The authors concluded that because many
smokers make multiple attempts at quitting, subsequent exposure to interventions
after unsuccessful attempts may increase the number of participants who achieve
smoking cessation.

Because the numbers were so small, comparison between groups in the second
episode was challenging. The quit rate was higher in the web-based group at 30 days
(web group 4/23 [17.4%] vs. phone group 0/18 [0%]), though this difference was not
statistically significant (p=0.118). Quit rates were similar between groups at 6 months
(web group 3/23 [13.0%] vs. phone group 2/18 [11.1%], p=1.00).

1.6.4 Sample size calculations for re-randomisation trials

There have been no formal sample size formulas published for re-randomisation trials.
However, in our earlier work [9] we showed that for a continuous outcome, the standard
error from an independence estimator in a re-randomisation trial was the same as
the standard error from a parallel group design when model 1.3 (constant treatment
effect) was the true data generating model. This means that an independence estimator
from a re-randomisation trial would have equivalent power to a parallel group trial
with the same number of observations. For example, a re-randomisation trial with
200 episodes from 50 patients would have equivalent power to a parallel group trial
with 200 individual patients. Using simulation, we found a similar result for binary
outcomes (i.e. independence estimators also had the same power to a parallel group
design with an equivalent number of observations for binary outcomes).

These findings imply that, under the assumption that model 1.3 is the true
underlying data generating model, the same sample size calculation from a parallel
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group trial could be used, but instead of recruiting the specified number of individual
patients, a re-randomisation trial could recruit the specified number of episodes [9].
For instance, if the sample size calculation for a parallel group design specified 500
patients, then the re-randomisation trial could recruit 500 episodes to have equivalent
power.

We used simulation to evaluate what effect departures from model 1.3 as the true
data generating model would have on power from an independence estimator with a
continuous outcome. We evaluated this for the same scenarios described in section
1.6.2.1. We found that in these scenarios the independence estimator had lower power
than a parallel group trial with an equivalent number of observations, though the
difference was generally quite small (e.g. less than a 3% difference in most cases).

We also found that mixed-effects models usually had much higher power than a
parallel group trial with an equivalent number of observations, for both continuous
and binary outcomes. This implies that re-randomisation could enrol a smaller number
of observations than a parallel group trial and still have equivalent power; however,
sample size calculations for mixed-effects models in re-randomisation trials have not
been developed.

1.6.5 Potential increase to recruitment from re-randomisation

Based on the results in section 1.6.4 above, if we assume that the true data generating
model follows model 1.3, then for a re-randomisation trial we can use the sample size
calculation from a parallel group trial and recruit the specified number of episodes.
Because re-randomisation trials allow patients to be re-enrolled this should allow the
target sample size to be reached more quickly than under a parallel group design. This
gain in recruitment will depend on a number of factors, including how often patients
experience new episodes, the length of the follow-up period, and the length of the trial.

We can see from some of the trials described in section 1.4 what effect re-
randomisation had on recruitment. For example, the trial of high dose vaccine based
their sample size calculation on that of a parallel group trial. Based on this calculation,
they required 30,000 episodes. They ended up enrolling 31,989 episodes from 24,344
patients over two influenza seasons. Using a parallel group design, they would have
had to recruit for at least one additional season to reach their target sample size, and
so using re-randomisation allowed them to cut their recruitment duration from three
years to two years (a 33% reduction).

Similarly, the trial of ambient light for biophysical profiles based their sample size
calculation on that of a parallel group trial. The calculation required 346 evaluable
episodes; they recruited 357 evaluable episodes from 224 patients over approximately 17
months. Assuming a constant rate of recruitment for individual patients of 224/17=13.2
patients/month, they would have required 27 months to recruit 357 patients under a
parallel group design. Therefore, re-randomisation allowed them to cut their recruitment
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duration from 27 to 17 months (a 37% reduction).

As a third example, the trial of pathogen-inactivated platelets in patients with
haematologic malignancies and thrombocytopenia also based their sample size calcula-
tion on that of a parallel group trial. They enrolled 567 episodes from 469 patients over
approximately a 66 month period. Assuming a constant recruitment rate for individual
patients of 469/66=7.1 patients/month, they would have required 79.9 months to
recruit 567 patients under a parallel group design. Re-randomisation therefore allowed
them to complete recruitment 13.9 months earlier than they would have under a
parallel group design (a 17% reduction).

Before I began work on this thesis, I did a modelling study to evaluate how much
re-randomisation might increase recruitment in practice [12]. I looked at three clinical
areas: (i) acute sickle cell pain crises; (ii) severe asthma exacerbations; and (iii) in vitro
fertilisation. Based on different assumptions around the target sample size, length of
recruitment for a parallel group design and rate of new episodes, I calculated how much
more quickly recruitment could be completed by using re-randomisation. Across all the
scenarios considered, I estimated that re-randomisation could reduce the recruitment
time by between 19% and 45% (absolute reductions of between 4 and 22 months).

Although this modelling study is entirely reliant on the assumptions that went
into it, the results are consistent with the increases in recruitment seen in the re-
randomisation trials described in section 1.4. It does appear that using re-randomisation
can help trials achieve their target sample size much more quickly than a parallel
group design in certain settings.

1.6.6 Comparison between re-randomisation and other designs

Nason and Follmann [14] and Takada et al [28] both compared re-randomisation to
other trial designs in the context of a trial where experiencing an outcome event
precludes future episodes (and so only patients who do not experience an event can
be re-enrolled). As discussed in section 1.6.2.4, Nason and Follmann [14] used the
example of a trial of anti-HIV microbicide gels , where patients who contract HIV no
longer require the use of the gel; and Takada et al [28] used the example of a fertility
trial, where those who become pregnant no longer need to undergo further treatment
to induce pregnancy.

Nason and Follmann [14] compared re-randomisation to both a parallel group design
and a crossover design. In the crossover design, patients are switched to the alternate
treatment for their second episode (i.e. if they were allocated to the intervention for
their first episode, they would be switched to the control for their second episode,
and vice versa). Using simulation, they evaluated type I error, precision (i.e. which
design had lower variance), and power; they did not evaluate bias. They evaluated
the different designs under different data generating mechanisms, which included
different degrees of correlation between episodes from the same patients, different
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sample sizes, whether there was a trend across episodes (i.e. whether outcomes differed
across episodes), and whether treatment allocation in the previous episode affected
outcomes in the current episode. They found that both crossover and re-randomisation
trials had higher precision (lower variance) and higher power than parallel group trials
in most settings. Crossover designs generally had higher power than re-randomisation
trials. Type I error rate was generally adequate for all designs in the settings they
considered.

Takada et al [28] compared re-randomisation with a crossover design and a cluster
design (which they call a two-period two-treatment comparison design). In the cluster
design, patients acted as the cluster and received the same treatment for all episodes (i.e.
if they are allocated to intervention in the first episode they also receive intervention
in the second episode, and similarly for control). Using simulation, they evaluated
type I error, power, and bias. They evaluated the different designs under different
data generating mechanisms, which included different degrees of correlation between
episodes from the same patients, different sample sizes, whether there was a trend
across episodes (i.e. whether outcomes differed across episodes). They found that all
designs generally had valid type I error rates, and that crossover designs usually had
the highest power. They found that all designs gave biased estimates of treatment effect
across all settings (except when there was no treatment effect). It is not clear why this
occurred; as discussed earlier in section 1.6.2.2 in relation to re-randomisation trials, it
may be partially explained by the non-collapsibility of the odds ratio. However, they
identified bias even when the analysis method was identical to the data generating
model (i.e. included all the same parameters), and so non-collapsibility cannot fully
explain this bias. As discussed earlier, it may be due to a similar issue of using the
incorrect ’true’ parameter to evaluate bias (i.e. comparing estimates against the wrong
parameter, or ’estimand’; this is described further in chapter 2).

1.7 Thesis focus

The main focus of this thesis is to evaluate the methodological properties of the
re-randomisation design. My primary focus is on whether re-randomisation is able to
provide unbiased estimates of treatment effect.

In chapter 2 I will define a set of estimands that can be used in multi-episode
settings. An estimand is a precise definition of the target we want to estimate (i.e. what
is the treatment effect we wish to estimate from our trial?) [35, 36, 37, 38] Defining the
estimand of interest is essential, as this allows us to choose a trial design and analysis
approach which can provide valid results for the chosen estimand. To my knowledge,
estimands have not been previously defined for multi-episode settings, and so it is not
clear what exactly is being estimated from a re-randomisation trial.

In chapters 3 and 4 I will evaluate whether analysing re-randomisation trials using
either independence estimators or mixed-effects models can provide unbiased estimates
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of the estimands defined in chapter 2. Although independence estimators and mixed-
effects models have been investigated previously [9, 13, 14, 28], these investigations
have mainly assumed a true data generating model where the treatment effect is
constant across episodes and patients, which may not always be realistic. They have
also not been evaluated against the estimands defined in chapter 2. It is therefore
of interest to know whether a re-randomisation design in conjunction with either an
independence estimator or a mixed-effects model can provide unbiased estimates for
relevant treatment effects.

In chapter 5 I will compare re-randomisation with other designs that could be
used in multi-episode settings (parallel group, cluster, or crossover designs). As above,
although the different designs have been compared previously [14, 28], this has been
primarily done under the assumption of a constant treatment effect, and they have
not been compared against the estimands defined in chapter 2.

In chapter 6 I will review a set of trials which evaluated the use of granulocyte colony-
stimulating factor in patients with febrile neutropenia, which contained a mixture of
both re-randomisation and parallel group trials. I evaluate whether treatment effect
estimates were different between re-randomisation and parallel group trials, as well as
some design characteristics for the re-randomisation trials (e.g. method of analysis,
etc). This chapter has been published as a journal article in the Journal of Clinical
Epidemiology [39].

I finish with a summary of results in chapter 7, and discuss further work.

In this thesis I will put some restrictions on the setting for simplicity. I consider a
setting where:

• Patients experience a maximum of two episodes during the trial;

• The main outcome of interest is continuous;

• The treatment allocation in a given episode does not affect whether future
episodes occur (i.e. patients would experience the same number of episodes
during the trial period regardless of which treatments they receive during those
episodes).

These restrictions are intended to make the scope of this thesis manageable. They
are also not uncommon in practice. For instance, the trial of high-dose influenza vaccine
and some trials of granulocyte colony-stimulating factor have enrolled a maximum
of two episodes per patient [39]. Similarly, most trials described in section 1.4 have
at least one continuous outcome. Finally, the trial of ambient light for biophysical
profiles and the SWIM trial described in section 1.2 are examples of trials where
treatment allocation would not affect occurrence of future episodes. For instance, in
the SWIM trial, the interventions under study (ibuprofen, placebo) would not affect
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the occurrence of future episodes (e.g. ibuprofen would not prevent future pain crises
from occurring), and similarly for the trial of ambient light. To clarify, although I do
not consider the setting where treatment allocation precludes the occurrence of future
episodes, I do consider the setting where treatment allocation affects whether patients
re-enrol in the trial for subsequent episodes (the difference between the two settings
being that in the first, future episodes do not exist, whereas in the second they do
exist but the patient may not enrol in the trial for them).
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2 Estimands in multi-episode settings

In this chapter I will define a set of treatment estimands that can be used in multi-
episode settings [35, 36, 37, 38]. An estimand is “the target of estimation to address
the scientific question of interest posed by the trial objective” [35]; i.e. it is a precise
definition of the treatment effect that we wish to estimate in our study. It is important
to define the estimand of interest, so that a trial design and analysis method can be
chosen which can satisfactorily address the estimand; otherwise there is a risk the
study is unable to address its objective.

In section 2.1 I will provide an example which motivates the need for estimands in
the multi-episode setting. In section 2.2 I provide some further description of potential
outcomes, and in section 2.3 I provide some background on informative cluster sizes
(both concepts are used in the estimands defined in this chapter). Then in section 2.4
I provide definitions for a set of estimands that can be used in multi-episode settings.

2.1 Motivating example

If we assume the true data generating mechanism is model 1.3:

Yij = α+ βZij + µi + εij

where the treatment effect is constant across all patients and all episodes, then
we can see that the overall treatment effect (estimand) should be β. However, it
is less clear what the estimand should be under more complicated data generating
mechanisms. For example, imagine if in the SWIM trial patients with more severe
forms of sickle cell disease were pre-disposed to experience a larger number of pain
crises, but were less likely to respond to intervention than patients with less severe
forms. Here, the true underlying data generating mechanism would be:

Yij =

α+ β1Zij + µi + εij if Mi = 1

α+ β2Zij + µi + εij if Mi = 2
(2.1)

Under this data generating mechanism, the treatment effect is β1 for patients
who experience one episode, and β2 for patients who experience two episodes. In this
scenario, it is not immediately clear what the overall treatment effect should be. For
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example, if 50% of patients experience one episode and 50% experience two episodes,
then the average treatment effect across patients is 0.5β1 + 0.5β2, whereas the average
treatment effect across episodes is 0.33β1 +0.67β2 (this difference comes from weighting
the treatment effects by the percentage of patients vs. by the percentage of episodes
that they correspond to).

This highlights the need to define treatment estimands for multi-episode settings, so
that we can define our precise question of interest (e.g. how effective is the intervention
for the typical patient vs. how effective is the intervention for the typical treatment
episode), and identify estimators which can be used to answer these questions.

2.2 Potential outcomes

I will use the potential outcomes framework to define estimands in this thesis [19, 20].
Consider a single-episode setting, where patients experience a maximum of one episode.
Let Yi denote the outcome for patient i, and Zi denote their treatment allocation
(0=control, 1=intervention). Then, Y (Zi=1)

i is the outcome that would occur for patient
i if they were allocated to the intervention, and Y (Zi=0)

i is the outcome that would
occur if they were allocated to control. These are called potential outcomes. For ease,
I will abbreviate these as Y (Z=0)

i and Y (Z=1)
i (i.e. I am omitting the subscripts inside

of the brackets, as these will always match the subscripts outside of the brackets).
We can only ever observe one of these potential outcomes, either Y (Z=0)

i or Y (Z=1)
i ,

depending on whether the patient is allocated to control or intervention.

In the multi-episode setting, there will be potential outcomes for each patient i
at each different episode j. Furthermore, the potential outcomes at episode j might
depend not only on the treatment at episode j, but also on the treatments in previous
episodes (i.e. the treatment history Z̃ij). For example, consider the following data
generating model:

Yij = α+ βZij + γZi,j−1 + µi + εij (2.2)

where Zi,j−1 represents the treatment in a patient’s previous episode (and is defined
as 0 for the patient’s first episode). Under this data generating model, the potential
outcome at episode 2, Y (Z=z)

i2 , is not well defined, as its value will differ depending on
whether Zi1 = 0 or 1. We therefore need to incorporate the treatment history Z̃ij into

the potential outcome definitions, i.e. Y
(
Z=z,Z̃=z̃

)
ij (note I am dropping the subscripts

inside the brackets, as these match the subscripts on the outside of the brackets, i.e.

Y

(
Z=1,Z̃=z̃

)
ij is the same as Y

(
Zij=1,Z̃ij=z̃ij

)
ij .

In this thesis, I will assume that potential outcomes are deterministic, rather than
stochastic. This is most easily explained for a binary outcome, Yij = 0 or Yij = 1. A
deterministic potential outcome means that under a certain treatment (and treatment
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history), the patient will either experience the event or not experience the event

with 100% probability, e.g. Y
(
Z=1,Z̃=(0,1)

)
13 = 1 means that if patient 1 receives the

intervention at episode 3 (having also received control and intervention in their first
two episodes respectively), they are certain to experience an event. In contrast, if
potential outcomes are stochastic then the patient would have a certain probability
of experiencing an event (e.g. 90%). The reason I have chosen to use deterministic
potential outcomes is for simplicity, as these are easier to explain and it makes little
difference to the estimand definitions.

There are two key assumptions I will make about the potential outcomes throughout
this thesis. The first assumption is that there will be no interference. This is also
sometimes referred to as the stable-unit-treatment value assumption (SUTVA for short).
No interference means that a patient’s potential outcome does not depend on any other
patient’s treatment allocation. This assumption could be violated in a trial evaluating
a group intervention (for instance, where patients receive the intervention alongside
other patients) where a patient’s outcome might be affected by their interaction with
other patients. Formally, this assumption is that the value Y (Z=z)

i is not affected by
Zi′ for i 6= i′ [19, 20].

The second assumption is consistency. This means that if the potential outcomes
for the two treatments Z = 0 and Z = 1 are Y (Z=0)

i and Y (Z=1)
i , then if a patient is

allocated to control (Z = 0) their observed outcome Yi is equal to Y (Z=0)
i , and similarly

for if they were allocated to intervention. Formally, this means that Yi = Y
(Z=z)
i for

all values of Zi = zi. One example where this might not be the case is if there are
different versions of the treatment, and outcomes may depend on which version is
received. For example, in a trial comparing surgery vs. no surgery, patient outcomes
may depend on which surgeons performs their surgery, and so the Yi might be different
for different versions of Zi = 1.

2.3 Informative cluster sizes

The multi-episode setting shares some similarities with the informative cluster size
setting [22, 23, 24, 25, 40, 41, 42, 43, 44, 45]. Informative cluster sizes occur in clustered
data when the relationship between covariates and outcomes depends on the size of
the cluster [23]; that is, if E (Y |X,M) 6= E (Y |X), where Y is the outcome, X the
covariate of interest, and M the cluster size [23].

There are two main estimands of interest that have been defined in the informative
cluster size literature [23, 24, 25, 41, 44, 45]; the first relates to the effect in a typical
unit (irrespective of cluster); the second, to a typical unit from a typical cluster.
The difference between these two estimands comes from how each unit is weighted;
in the first, each unit is given equal weight; in the second, each cluster is given
equal weight (and therefore, each unit from larger clusters is given less weight than
each unit from smaller clusters). These estimands are typically defined based on a
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sampling framework. For the first estimand, all units are sampled with equal probability
(irrespective of which cluster they belong to). The second estimand uses a two-stage
sampling procedure; in the first stage, clusters are sampled with equal probability,
and in the second stage, the units within the selected cluster are sampled with equal
probability.

In a multi-episode setting, the cluster size, Mi, is defined by the number of episodes
for which a patient is enrolled in the study. In this setting, cluster size is informative
if the association between Zij and Yij is different across different values of Mi [23].
For example, under data generating model 1.3, the cluster size will not be informative
because the treatment effect is β in all patients, regardless of the number of episodes
they experience. Conversely, under data generating model 2.1, the cluster size is
informative, as the treatment effect is different in those who experience one episode
vs. those who experience two episodes.

One key difference in the multi-episode setting compared to other informative
cluster size scenarios is that in the multi-episode setting episodes occur sequentially in
time, and outcomes or treatment effects in a patient’s current episode may depend
on the treatments they received in previous episodes. For example, consider data
generating model 2.2:

Yij = α+ βZij + γZi,j−1 + µi + εij

Under this data generating model, the effect of the intervention carries forward
into the next episode by the amount γ. Conditional on the same treatment history,
the treatment effect in episode two is β. However, we may wish to assess the effect
of a treatment policy, where patients receive the intervention for all episodes vs. the
control for all episodes (i.e. at episode two it would compare treatment sequences
Z = (1, 1) vs. Z = (0, 0)). In this case, the treatment effect at episode two would be
β + γ, which differs from the treatment effect conditional on treatment history. We
can therefore define different estimands based on different ways of incorporating a
patient’s treatment history.

2.4 Treatment effect estimands for multi-episode settings

In this section, I outline a framework that can be used to define treatment effect
estimands in the multi-episode setting. This framework is based on the sampling
scheme approach used in the informative cluster size setting. The estimands are based
on two main components: (a) the sampling scheme, which denotes the probability with
which each patient and episode is selected; and (b) the type of treatment history (Z̃ij)
that we are interested in.

My aim is to provide a set of estimands that researchers can choose from to answer
their primary question of interest; depending on the specific aims of the trial, different
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estimands may be more or less relevant. Researchers could also use this framework to
define their own estimands if required.

I discuss the two components in this framework (sampling scheme and treatment
history) in sections 2.4.1 and 2.4.2 respectively. In section 2.4.3 I combine these
two components to define a set of estimands for the multi-episode setting, which
are summarised in table 2.1. Section 2.4.4 introduces episode-specific estimands. In
section 2.5 I discuss some of the differences between the estimands, and illustrate these
differences in a simple fictitious example.

2.4.1 Sampling scheme: per-episode vs. per-patient estimands

In this section I discuss two different approaches to defining the sampling scheme,
which lead to two different types of estimands: the per-episode estimand, and the
per-patient estimand. For the moment, I will assume that a patient’s treatment
history Z̃ij does not affect either the potential outcomes or treatment effect in their

current episode, i.e. Y
(
Z=0,Z̃=z̃

)
ij is the same for all values of Z̃ij , and similarly for

Y

(
Z=1,Z̃=z̃

)
ij −Y

(
Z=0,Z̃=z̃

)
ij . Therefore, in this section I will omit Z̃ij from the estimand

definitions; however I will relax this assumption in section 2.4.2.

2.4.1.1 Per-episode estimands

The per-episode estimand (denoted by βE) gives the average effect across all episodes
(i.e. “What is the effect of intervention in a typical episode?”). For instance, consider
data generating model 2.1:

Yij =

α+ β1Zij + µi + εij if Mi = 1

α+ β2Zij + µi + εij if Mi = 2

In this scenario, the per-episode estimand would weight the treatment effects β1

and β2 according to the number of episodes they correspond to.

I define the per-episode estimand as the expected difference in potential outcomes
between intervention vs. control for a randomly selected episode. It is defined based
on a sampling scheme where each episode in the trial has an equal probability of being
selected; because there are MT episodes, the probability of selection for each episode
is P (I = i, J = j) = 1

MT
. The estimand is defined as:

βE = E
(
Y

(Z=1)
(IJ)E − Y

(Z=0)
(IJ)E

)
where (IJ)E denotes a randomly selected episode (selected with probability 1

MT
).

I use E to denote that the sampling scheme is based on a per-episode estimand, and
Y

(Z=1)
(IJ)E = Y

(Z(IJ)E=1)
(IJ)E (as I am omitting subscripts within the brackets). Formally,
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(IJ)E represents
(
IE , JE

)
, where IE and JE are random variables; IE = i with

probability Mi

MT
, and, conditional on IE , JE is uniformly distributed on (1, . . . ,MIE )

(where MIE represents the total number of episodes, Mi, for which patient IE was
enrolled in the trial).

2.4.1.2 Per-patient estimands

The per-patient estimand (denoted by βP ) gives the average effect across patients
(i.e. “What is the effect of intervention in a typical patient?”). Consider again data
generating model 2.1; the per-patient estimand would weight the treatment effects β1

and β2 according to the number of patients they correspond to (rather than according
to the number of episodes, as in the per-episode estimand).

I define the per-patient estimand as the expected difference in potential outcomes
between intervention vs. control for a randomly selected episode from a randomly
selected patient. It is based on a two-stage sampling scheme, where a patient is randomly
selected in the first stage (each with equal probability), then an episode from within
that patient is randomly selected in the second stage (each with equal probability).
Because there are NT patients in the population of interest, the probability of selection
for each patient is 1

NT
, and because each patient has Mi episodes, the probability of

selection for each episode, given that patient i has been selected, is 1
Mi

. Therefore, the
overall probability of selection for each episode is P (I = i, J = j) =

(
1
NT

1
Mi

)
. The

estimand is defined as:

βP = E
(
Y

(Z=1)
(IJ)P − Y

(Z=0)
(IJ)P

)
where (IJ)P denotes randomly selected episode from a randomly selected patient (I

use P to denote that the sampling scheme is based on a per-patient estimand). Formally,
(IJ)P represents IPJP , where IP and JP are random variables; IP has a uniform
distribution on (1, . . . , NT ), and, conditional on IP , JP is uniformly distributed on
(1, . . . ,M IP ) (where MIP represents the value of Mi for the randomly selected patient
IP ).

2.4.2 Treatment history: added-benefit vs. policy-benefit estimands

In this section, I allow for the fact that a patient’s treatment history may influence
the potential outcomes or treatment effect in their current episode (for instance,

that the value of Y
(
Z=0,Z̃=z̃

)
ij may be different for different values of Z̃ij). I discuss

two approaches for incorporating treatment history into the estimand definition: the
policy-benefit estimand, and the added-benefit estimand. For the moment, I do not
distinguish between per-episode and per-patient sampling schemes, and instead use
YIJ as a placeholder for one of these two sampling schemes.
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2.4.2.1 Policy-benefit estimands

The policy-benefit estimand (denoted by βPB) gives the effect of a treatment policy
where patients either receive intervention for all episodes, or control for all episodes
(i.e. “how much benefit is there to always treating vs. never treating?”). For instance,
consider data generating model 2.2:

Yij = α+ βZij + γZi,j−1 + µi + εij

In this scenario, under a treatment policy (intervention for all episodes vs. control
for all episodes) the difference in potential outcomes at episode 2 involves the term
γ (as this term represents benefit carried forward from receiving the intervention in
episode 1), and the policy-benefit estimand therefore would include this term.

I define the policy-benefit estimand as the expected difference in potential outcomes
for a randomly selected episode (based either on a per-episode or per-patient basis),
which has been allocated intervention for the current and all previous episodes vs.
control for the current and all previous episodes. The estimand can be written as:

βPB = E

(
Y

(
Z=1,Z̃=1̃

)
IJ − Y

(
Z=0,Z̃=0̃

)
IJ

)

where Z̃ = 1̃ means the patient has received the intervention for all previous
episodes in the trial, and Z̃ = 0̃ means they received the control for all previous
episodes.

2.4.2.2 Added-benefit estimands

The added-benefit estimand (denoted by βAB) gives the additional effect of receiving
the intervention in the current episode (i.e. “what is the benefit to taking the interven-
tion in this episode, over and above the benefit from previous episodes?”). Consider
again data generating model 2.2; the added-benefit estimand would omit the term γ,
as this represents carried over benefit from previous episodes, rather than any new
benefit from the intervention in the current episode.

One problem in defining this estimand is that the treatment effect may depend
on treatment history, and so the additional benefit of receiving intervention might
be different for different histories. For instance, if the intervention became more or
less effective the more often it is used, then its benefit in a particular episode will

depend on the number of times a patient has received it previously. Let β
AB
(
Z̃=z̃

)
ij =

Y

(
Z=1,Z̃=z̃

)
ij −Y

(
Z=0,Z̃=z̃

)
ij represent the difference in potential outcomes (intervention

vs. control) for patient i at episode j under treatment history Z̃ = z̃; this can be
thought of as the potential treatment effect for patient i at episode j under a specific
treatment history (because I view each of the potential outcomes as deterministic,
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this implies that β
AB
(
Z̃=z̃

)
ij is also deterministic for a specific value of Z̃ = z̃). There

will be 2j−1 different potential treatment histories at episode j, and therefore this

many possible values of β
AB
(
Z̃=z̃

)
ij (for patients with Mi ≥ j). Therefore, in order to

define an added-benefit estimand, we must first define the distribution of Z̃ that we
are interested in.

A simple approach might be to define a single treatment history. For instance,
we could use Z̃ij = 0̃, which indicates the patient received control in all previous

episodes. We could then define the estimand as E
(
Y

(
Z=1,Z̃=0̃

)
IJ − Y

(
Z=0,Z̃=0̃

)
IJ

)
, which

represents the added benefit of receiving intervention in a patient’s current episode,
given they received control in all previous episodes. Alternatively, we could use Z̃ij = 1̃,
which would lead to an estimand that represents the added benefit of receiving
intervention in an episode, given the patient had received intervention in all previous
episodes. One drawback to this approach is that the treatment effect based on the
chosen treatment history may not be representative of other treatment histories. This
is not a problem if we are only interested in the single treatment history specified, but
may be a problem otherwise.

My solution to this issue is to define the added-benefit estimand as a weighted

average across all possible treatment histories, with each value of β
AB
(
Z̃=z̃

)
ij weighted

according to the probability of treatment history Z̃ = z̃ being observed at episode j
for patient i. This probability, denoted as P

(
Z̃ij = z̃ij

)
, depends on two factors; the

allocation probabilities used in the study (e.g. 1:1 allocation ratio vs. 2:1 allocation
ratio), and whether the patient would be enrolled in the trial at episode j under
treatment history Z̃ij = z̃ij (for instance, patients who experience two episodes may
decide to enrol in the trial for their second episode under one treatment history, but
not under a different history). Note that this probability is not known in practice, as
although we know the allocation ratio, we will not know whether patients would be
enrolled in the trial under different treatment histories.

Let Rij denote whether patient i is enrolled in the trial at episode j (where Rij = 1
means the patient was enrolled, and Rij = 0 means they were not enrolled; note that

Rij = 0 if Mi < j), and let R
(
Z̃=z̃

)
ij denote the patient’s potential enrolment status at

episode j under treatment history Z̃ij = z̃ij . Then, P
(
Z̃ij = z̃ij

)
= 0 if R

(
Z̃=z̃

)
ij = 0;

that is, there is no chance that Z̃ij = z̃ij for patient i at episode j if that patient
would not be enrolled in the trial under that treatment history. Under a 1:1 allocation

ratio, all treatment histories Z̃ij = z̃ij for which R
(
Z̃=z̃

)
ij = 1 are equally like to be

observed; hence, a simple average over the β
AB
(
Z̃=z̃

)
ij for which R

(
Z̃=z̃

)
ij = 1 could be

taken. Note that
∑
Z̃ij

P
(
Z̃ij = z̃ij

)
= 1.

Then, I define the added-benefit estimand as:
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βAB = E

(
Y

(
Z=1,Z̃

)
IJ − Y

(
Z=0,Z̃

)
IJ

)

where the expectation is over both the IJ and the distribution of Z̃ (which was
defined above, i.e. the expectation is taken over the different treatment histories
according to their probability of being observed for each patient, P

(
Z̃ij = z̃ij

)
).

Further detail on how this estimand can be related to the potential treatment effects
is given in section 2.4.3.1.

There are several important implications that follow on from this definition. The
first is that the estimand depends on the distribution of Z̃, and so changes to this
distribution may lead to different values of the estimand. For example, in a re-
randomisation trial, changing the allocation ratio from 1:1 to 2:1 will change the
distribution of the treatment history. This implication is inherent to any definition
of the estimand which averages over different treatment histories. Of note, if the

treatment effect is not affected by treatment history (i.e. Y
(
Z=1,Z̃=z̃

)
ij − Y

(
Z=0,Z̃=z̃

)
ij

is the same for all values of Z̃ij = z̃ij), then the added-benefit estimand does not

depend on the distribution of Z̃ (this is the case even if Y
(
Z=0,Z̃=z̃

)
ij is affected by

Z̃ij , e.g. if the treatment effect carries forward as in data generating mechanism 2.2).
Then, the manner in which the treatment histories are weighted does not matter, as
all definitions will be equivalent.

Another implication of this definition is that the estimand excludes values of

β
AB
(
Z̃=z̃

)
ij for which R

(
Z̃=z̃

)
ij = 0. That is, it excludes potential treatment effects for

episodes which correspond to treatment histories that would never be observed in the
trial for that particular patient (for instance because under that treatment history
they would not have re-enrolled in the trial at episode j). One benefit of defining
the estimand to exclude episodes that would not be enrolled in the trial is that this
definition is compatible with the setting where treatment allocation may influence the
occurrence of subsequent episodes (for instance, in a trial evaluating an intervention
to induce pregnancy in couples with difficulty conceiving), as this definition excludes
episodes which would not have occurred under specific treatment histories. Although I
do not consider this setting in this thesis, I feel it is useful for definitions to apply to
more complicated settings when possible.

2.4.3 Main estimands of interest

In this section, I combine the two components (sampling scheme, treatment history)
discussed in the previous sections to define a set of estimands which can be used in
multi-episode settings. A summary of these estimands is provided in table 2.1.

2.4.3.1 Per-episode added-benefit estimand

The per-episode added-benefit estimand (βABE ) is defined as:
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βABE = E

(
Y

(
Z=1,Z̃

)
(IJ)E − Y

(
Z=0,Z̃

)
(IJ)E

)

where Y (Z=1,Z̃)
(IJ)E represents Y

(Z(IJ)E=1,Z̃(IJ)E )
(IJ)E (and similarly for Y (Z=0,Z̃)

(IJ)E ). This
expectation is over both (IJ)E and Z̃(IJ)E . As described in section 2.4.2.2, Z̃(IJ)E is
a random variable which takes on the different treatment histories Z̃ij according to
the probability of that history being observed in the trial for patient i at episode j
(denoted by P

(
Z̃ij = z̃ij

)
).

The estimand can be related to the potential treatment effects for each i, j (the

β
AB
(
Z̃=z̃

)
ij ) through the expression:

βABE = 1
MT

∑
ij

β̄ABij

where β̄ABij is calculated as a weighted average of the β
AB
(
Z̃=z̃

)
ij , with weights

equal to the probability of the treatment history being observed:

β̄ABij =
∑
Z̃ij

β
AB
(
Z̃=z̃

)
ij P

(
Z̃ij = z̃ij

)

where the summation
∑
Z̃ij

(•) is taken across all possible values of Z̃ij at episode
j.

2.4.3.2 Per-episode policy-benefit estimand

The per-episode policy-benefit estimand (βPBE ) is defined as:

βPBE = E

(
Y

(
Z=1, Z̃=1̃

)
(IJ)E − Y

(
Z=0, Z̃=0̃

)
(IJ)E

)

Let βPBij = Y

(
Z=1,Z̃=1̃

)
ij −Y

(
Z=0,Z̃=0

)
ij represent the difference in potential outcomes

for patient i at episode j under a policy of all intervention vs. all control. Because I
view potential outcomes as deterministic, this implies that βPBij is also deterministic
for a particular i, j. Then, the estimand can be related to the potential treatment
effects for each i, j through the expression:

βPBE = 1
MT

∑
ij

βPBij
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2.4.3.3 Per-patient added-benefit estimand

The per-patient added-benefit estimand (βABP ) is defined as:

βABP = E

(
Y

(
Z=1,Z̃

)
(IJ)P − Y

(
Z=0,Z̃

)
(IJ)P

)
This estimand can be related to the potential treatment effects for each i, j through

the expression:

βABP = 1
NT

∑
ij

1
Mi

β̄ABij

where β̄ABij was previously defined in section 2.4.3.1.

2.4.3.4 Per-patient policy-benefit estimand

The per-patient policy-benefit estimand (βPBP ) is defined as:

βPBP = E

(
Y

(
Z=1, Z̃=1̃

)
(IJ)P − Y

(
Z=0, Z̃=0̃

)
(IJ)P

)
This estimand can be related to the potential treatment effects for each i, j through

the expression:

βPBP = 1
NT

∑
ij

1
Mi

βPBij

2.4.4 Episode-specific estimands

I now define episode-specific estimands (denoted by βj for episode j). These estimands
represent the treatment effect at episode j (note that βj only includes patients for
whom Mi ≥ j). For example, β2 represents the treatment effect at episode 2, in
patients with Mi ≥ 2. I note that the per-episode vs. per-patient distinction does not
apply here, as patient’s can be enrolled only once at each episode. These estimands
could be of interest if we wanted to ascertain whether the treatment effect changes
across episodes, or whether the treatment becomes less effective the more often it is
used.

Under the added-benefit framework, the episode-specific estimand is:

βABj = E

(
Y

(
Z=1,Z̃

)
IESj

− Y
(
Z=0,Z̃

)
IESj

)

49



Ta
bl
e
2.
1:

Su
m
m
ar
y
of

es
tim

an
ds

fo
r
m
ul
ti-
ep
iso

de
se
tt
in
gs

E
st
im

an
d

D
efi

ni
ti
on

D
es
cr
ip
ti
on

Pe
r-
ep
iso

de
ad

de
d-

be
ne
fit

β
A
B

E
=
E

( Y

( Z=1
,Z̃
)

(I
J

)E
−
Y

( Z=0
,Z̃
)

(I
J

)E

)
•
P
ro
vi
de
s
th
e
ad

di
tio

na
le

ffe
ct

of
re
ce
iv
in
g
th
e
in
te
rv
en
tio

n
in

th
e

cu
rr
en
t
ep
iso

de
,o

ve
r
an

d
ab

ov
e
th
e
be

ne
fit

of
re
ce
iv
in
g
th
e
in
te
r-

ve
nt
io
n
in

pr
ev
io
us

ep
iso

de
s

•
Pr

ov
id
es

an
av
er
ag

e
eff

ec
t
ac
ro
ss

ep
iso

de
s

Pe
r-
ep
iso

de
po

lic
y-

be
ne
fit

β
P
B

E
=

E

( Y

( Z=1
,
Z̃

=
1̃)

(I
J

)E
−
Y

( Z=0
,
Z̃

=
0̃)

(I
J

)E

)
•
P
ro
vi
de
s
th
e
eff

ec
t
of

a
tr
ea
tm

en
t
po

lic
y
w
he
re

pa
tie

nt
s
ei
th
er

re
ce
iv
e
in
te
rv
en
tio

n
vs
.c

on
tr
ol

fo
r
al
le

pi
so
de
s

•
Pr

ov
id
es

an
av
er
ag

e
eff

ec
t
ac
ro
ss

ep
iso

de
s

Pe
r-
pa

tie
nt

ad
de
d-

be
ne
fit

β
A
B

P
=
E

( Y

( Z=1
,Z̃
)

(I
J

)P
−
Y

( Z=0
,Z̃
)

(I
J

)P

)
•
P
ro
vi
de
s
th
e
ad

di
tio

na
le

ffe
ct

of
re
ce
iv
in
g
th
e
in
te
rv
en
tio

n
in

th
e

cu
rr
en
t
ep
iso

de
,o

ve
r
an

d
ab

ov
e
th
e
be

ne
fit

of
re
ce
iv
in
g
th
e
in
te
r-

ve
nt
io
n
in

pr
ev
io
us

ep
iso

de
s

•
Pr

ov
id
es

an
av
er
ag

e
eff

ec
t
ac
ro
ss

pa
tie

nt
s

Pe
r-
pa

tie
nt

po
lic
y-

be
ne
fit

β
P
B

P
=

E

( Y

( Z=1
,
Z̃

=
1̃)

(I
J

)P
−
Y

( Z=0
,
Z̃

=
0̃)

(I
J

)P

)
•
P
ro
vi
de
s
th
e
eff

ec
t
of

a
tr
ea
tm

en
t
po

lic
y
w
he
re

pa
tie

nt
s
ei
th
er

re
ce
iv
e
in
te
rv
en
tio

n
vs
.c

on
tr
ol

fo
r
al
le

pi
so
de
s

•
Pr

ov
id
es

an
av
er
ag

e
eff

ec
t
ac
ro
ss

pa
tie

nt
s

50



where IES is a random variable which represents a randomly selected patient (with
equal probability) at episode j (from the subset of patients with Mi ≥ j). I use the
ES superscript to denote episode-specific.

This estimand can be related to the potential treatment effects by:

βABj = 1
Nj

∑
i: Mi≥j

β̄ABij

Under the policy-benefit framework, the estimand can be defined as:

βPBj = E

(
Y

(
Z=1,Z̃=1̃

)
IESj

− Y
(
Z=0,Z̃=0̃

)
IESj

)
and can be related to the potential treatment effects by:

βPBj = 1
Nj

∑
i: Mi≥j

βPBij

I note that the estimands above relate to the subset of patients with Mi ≥ j, and so
may not be useful for directly comparing the effect of the intervention across different
episodes. For example, if we want to know whether the intervention is more effective
the first time it is used vs. the second time, a comparison between β1 vs. β2 does not
necessarily tell us this, because β1 applies to patients for whom Mi = 1, whereas β2

does not. If the treatment effect is different in those for whom Mi = 1 compared to
Mi > 1, then β1 and β2 may differ, even if the effect is the same both the first and
second time the intervention is used.

An alternate way to define episode-specific estimands is to restrict the subset of
patients for each βj to those where Mi ≥ c, where c is the number of episodes we are
interested in. For example, if we want to know whether the treatment effect is the
same the first three times the intervention is used, then we could restrict to the subset
of patients for whom Mi ≥ 3 and compare β1(Mi≥3) vs. β2(Mi≥3) vs. β3(Mi≥3).

Although I have included the episode-specific estimands here for completeness, I
do not consider them further in this thesis, as my primary focus is on estimands which
provide an average treatment effect across all patients and episodes, rather than a
subset of patients or episodes.

2.5 Comparison between estimands

I now discuss some of the differences between the per-episode vs. per-patient, and the
added- vs. policy-benefit estimands, and then explore these differences in a simple
fictitious example.
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2.5.1 Comparison between per-episode vs. per-patient estimands

Following on from the literature on informative cluster sizes [23, 24, 25, 44, 45], the
per-episode and per-patient estimands should coincide unless cluster size is informative.
A simple way to evaluate whether the cluster size is informative under a particular
data generating model is to take the mean of the potential treatment effects (either
β̄ABij or βPBij ) across episodes for each patient; then if the mean potential treatment
effect for each patient differs according to Mi, the cluster size is informative (as this
indicates the association between Zij and Yij is different across different values of Mi).

For instance, consider data generating model 1.3, where the treatment effect is
constant across episodes and patients. Then, the mean potential treatment effect is β
for patients with both Mi = 1 and Mi = 2; therefore, βP = βE .

However, consider data generating model 2.1, where the treatment effect is different
between patients where Mi = 1 vs. Mi = 2. Here, the mean potential treatment effect
is β1 for patients where Mi = 1, and β2 for patients where Mi = 2; therefore, βP 6= βE .

Some further examples of scenarios where the estimands differ are shown in section
2.5.3.

2.5.2 Comparison between added-benefit vs. policy-benefit estimands

The added-benefit and policy-benefit estimands will coincide if β̄ABij = βPBij . This

will occur when the treatment history Z̃ij does not affect either Y
(
Z=0,Z̃=z̃

)
ij or

Y

(
Z=1,Z̃=z̃

)
ij − Y

(
Z=0,Z̃=z̃

)
ij (i.e. when Y

(
Z=0,Z̃=z̃

)
ij takes the same value for all values

of Z̃ij , and similarly for Y
(
Z=1,Z̃=z̃

)
ij − Y

(
Z=0,Z̃=z̃

)
ij ). When this is not the case then

the added-benefit and policy-benefit estimands will usually differ.

2.5.3 Differences between estimands in a fictitious example

I now illustrate the similarities and differences between the four estimands of interest
using a simple fictitious example. Consider a trial where patients experience a maximum
of two episodes, with a 1:1 allocation ratio. Further, assume there is no non-enrolment
(i.e. patients who experience two episodes enrol in the trial for both episodes, that is,
Ri2 = 1 for all patients with Mi = 2). Let p denote the proportion of patients in the
trial who enrolled for two episodes (i.e. p = MT (2)

NT
).

I will evaluate the estimands under a variety of different generating mechanism
using the formulas described in section 2.4.3. As a reminder, I repeat these formulas
here.

For the per-episode added-benefit estimand, I use:
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βABE = 1
MT

∑
ij

β̄ABij

Where:

β̄ABij =
∑
Z̃ij

β
AB
(
Z̃=z̃

)
ij P

(
Z̃ij = z̃ij

)

For the per-episode policy-benefit estimand, I use:

βPBE = 1
MT

∑
ij

βPBij

For the per-patient added-benefit estimand, I use:

βABP = 1
NT

∑
ij

1
Mi

β̄ABij

And for the per-patient policy-benefit estimand, I use:

βPBP = 1
NT

∑
ij

1
Mi

βPBij

In these derivations, I will replace MT = NT (1 + p), as this simplifies some
calculations.

I evaluate the estimands under five different data generating models (which I refer
to as ‘treatment effect scenarios’): (a) constant treatment effect (the treatment effect
is the same across all patients and episodes); (b) the treatment effect varies across
episodes (the treatment effect is different in episode 1 vs. episode 2); (c) the treatment
effect varies across patients depending on whether Mi = 1 vs. Mi = 2 (the treatment
effect is different in patients who require treatment less often vs. more often); (d) the
treatment effect carries forward (patients who received the intervention in their 1st
episode have different outcomes in their 2nd episode compared to those who received
control in their 1st episode); and (e) the treatment becomes less effective on re-use
(patients who received the intervention in their 1st episode have different treatment
effects in their 2nd episode compared to those who received control in their 1st episode).
The exact data generating mechanism is shown in each example below.

2.5.3.1 Treatment effect scenario 1: constant treatment effect

Consider data generating model 1.3:
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Yij = α+ βZij + µi + εij

This implies that:

β̄ABij = βPBij = β for all i, j

Therefore, all estimands are the same:

βABE = βPBE = βABP = βPBP = β

2.5.3.2 Treatment effect scenario 2: treatment effect varies across episode

Consider the following data generating model:

Yij =

α+ β1Zij + µi + εij for j = 1

α+ β2Zij + µi + εij for j = 2
(2.3)

This implies that:

β̄ABij = βPBij =

β1 if j = 1

β2 if j = 2

For the derivation of βABE and βPBE we need to split the numerator into two
components: the first component is for episodes for which β̄ABij = βPBij = β1, and the
second is for episodes for which β̄ABij = βPBij = β2. We can see that there are NT
episodes where β̄ABij = βPBij = β1 (because there are NT episodes where j = 1), and
there are NT p episodes where β̄ABij = βPBij = β2 (because there are NT p episodes
where j = 2). Therefore, the first component is NTβ1, and the second component is
NT pβ2. Therefore:

βABE = βPBE = NTβ1 +NT pβ2

NT (1 + p) = β1 + pβ2

1 + p

For the derivation of βABP and βPBP , we need to split the numerator into three
components: the first component is for j = 1 for patients with Mi = 1, the second is
for j = 1 for patients with Mi = 2, and the third is for j = 2 for patients with Mi = 2.

The first component is equal to NT (1− p)
( 1

1
)
β1, where NT (1− p) is the number

of episodes in this component,
( 1

1
)
is the weight ( 1

Mi
), and β1 is the treatment effect.

Similarly, we can see that the second component is equal to NT p
( 1

2
)
β1, and the third

equal to NT p
( 1

2
)
β2. Therefore, the overall estimands are:
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βABP = βPBP = 1
NT

(
NT (1− p)

(
1
1

)
β1 +NT p

(
1
2

)
β1 +NT p

(
1
2

)
β2

)

= (1− p)β1 + p

2β1 + p

2β2 =
(

1− p

2

)
β1 + p

2β2

2.5.3.3 Treatment effect scenario 3: Treatment effect varies across patients with different
values of Mi

Consider data generating model 2.1:

Yij =

α+ β1Zij + µi + εij if Mi = 1

α+ β2Zij + µi + εij if Mi = 2

This implies that:

β̄ABij = βPBij =

β1 for Mi = 1

β2 for Mi = 2

As before, we can split the numerator of βABE and βPBE into the two components,
NT (1− p)β1 (as there are NT (1− p) episodes where Mi = 1) and 2NT pβ2 (because
there are 2NT p episodes where Mi = 2). Therefore:

βABE = βPBE = 1
NT (1 + p) (NT (1− p)β1 + 2NT pβ2)

= (1− p)β1 + 2pβ2

(1 + p)

For the derivation of βABP and βPBP we need to split the numerator into three
components: NT (1− p)

( 1
1
)
β1, NT p

( 1
2
)
β2, and NT p

( 1
2
)
β2. Because components two

and three are the same, these can be combined:

βABP = βPBP = 1
NT

(
NT (1− p)

(
1
1

)
β1 + 2NT p

(
1
2

)
β2

)
= (1− p)β1 + pβ2

2.5.3.4 Treatment effect scenario 4: Treatment effect carries forward into 2nd episode

Consider data generating model 2.2:

Yij = α+ βZij + γZi,j−1 + µi + εij
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For the added-benefit estimands, β
AB
(
Z̃=z̃

)
i2 = β for each value of Zi,j−1, and

β
AB
(
Z̃=z̃

)
i1 = β as well. Therefore, β̄ABij = β for all i, j in this scenario, meaning that
βABE = βABP = β.

For the policy-benefit estimands:

βPBij =

β for j = 1

β + γ for j = 2

Therefore:

βPBE = 1
NT (1 + p) (NTβ +NT p (β + γ)) = β + pγ

(1 + p)

And:

βPBP = 1
NT

(
NT (1− p)

(
1
1

)
β +NT p

(
1
2

)
β +NT p

(
1
2

)
(β + γ)

)
= β + pγ

2

2.5.3.5 Treatment effect scenario 5: Treatment becomes less effective on re-use

Consider the data generating model:

Yij =

α+ βZij + µi + εij for Zi,j−1 = 0

α+ (β + δ)Zij + µi + εij for Zi,j−1 = 1
(2.4)

i.e. the treatment effect is β the first time an intervention is used, and β + δ the
second time it is used (for simplicity, I have coded δ as positive, but we can imagine
it as a negative quantity so that the treatment effect is smaller the second time the
intervention is used).

For the added-benefit estimands, β
AB
(
Z̃=z̃

)
i2 = β for Zi,j−1 = 0, and β

AB
(
Z̃=z̃

)
i2 =

β+ δ for Zi,j−1 = 1 (and β
AB
(
Z̃=z̃

)
i1 = β). Therefore, β̄ABi1 = β, and because treatment

history Zi,j−1 = 0 and Zi,j−1 = 1 both have a 50% probability of occurring at
episode 2 (because there is a 1:1 allocation ratio and no non-enrolment), β̄ABi2 is
1
2 (β + (β + δ)) = β + δ

2 . We can split the numerator for the per-episode estimand
into two components, the first for episodes where j = 1, and the second where j = 2;
there are NT episodes for the first component, NT p for the second components. The
estimand therefore is:

βABE = 1
NT (1 + p)

(
NTβ +NT p(β + δ

2)
)

= β + pδ

2 (1 + p)
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The numerator of the per-patient estimand can be split into three components.
The first is NT (1− p)

( 1
1
)
β (corresponding to j = 1 for patients with Mi = 1), the

second is NT p
( 1

2
)
β (corresponding to j = 1 for patients with Mi = 2), and the third

component is NT p
( 1

2
) (
β + δ

2
)
(corresponding to j = 2 for patients with Mi = 2).

Putting this together, we have:

βABP = 1
NT

(
NT (1− p)(1

1)β +NT p(
1
2)β +NT p(

1
2)(β + δ

2)
)

= β + pδ

4

For the policy-benefit estimands:

βPBij =

β for j = 1

β + δ for j = 2

Then:

βPBE = 1
NT (1 + p) (NTβ +NT p (β + δ)) = β + pδ

(1 + p)

And:

βPBP = 1
NT

(
NT (1− p)(1

1)β +NT p(
1
2)β +NT p(

1
2)(β + δ)

)
= β + pδ

2

2.5.3.6 Summary of differences between estimands

Values for the different estimands under different treatment effect scenarios is shown
in table 2.2.

All four estimands coincide under a constant treatment effect mechanism; this is
because the cluster size is not informative (i.e. the potential treatment effects β̄ABij
and βPBij do not differ according to Mi), and the potential outcomes and potential

treatment effects (Y
(
Z=0,Z̃=z̃

)
ij and Y

(
Z=1,Z̃=z̃

)
ij − Y

(
Z=0,Z̃=z̃

)
ij ) are not affected by

Z̃ij .

When the treatment effect varies across episodes or across patients with different
values of Mi, the per-episode and per-patient estimands differ (because the cluster
size is informative), though the added-benefit and policy-benefit estimands do not
(because treatment history does not affect either the potential outcomes or potential
treatment effects).

When the treatment effect carries forward, the per-episode added-benefit and
per-patient added-benefit estimands coincide, because the β̄ABij treatment effect does
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not differ according to Mi. However, the per-episode and per-patient policy-benefit
estimands differ; this is because the βPBij treatment effects do differ according to Mi.

Finally, when the intervention becomes less effective on re-use, all four estimands
differ. This is because both sets of potential treatment effects (β̄ABij and βPBij ) differ

according to Mi, and the potential treatment effects (Y
(
Z=1,Z̃=z̃

)
ij − Y

(
Z=0,Z̃=z̃

)
ij ) are

affected by Z̃ij .

2.6 Discussion

In this chapter I have proposed a set of treatment estimands that can be used in
multi-episode settings. Each estimand corresponds to a different question around the
usefulness of the intervention. These estimands can be used by researchers to help
decide on their primary question of interest, and then identify a trial design and
method of analysis that matches the chosen estimand. Furthermore, researchers can
use this proposed framework to define alternate estimands if required.

In the next two chapters I evaluate different methods of estimating these estimands
in re-randomisation trials (chapters 3 and 4), and then compare re-randomisation to
other trial designs (parallel group, cluster, crossover) in chapter 5 to see which designs
are best suited to which estimands.
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3 Independence estimators for
re-randomisation trials

In this chapter I will describe a set of independence estimators that can be used to
analyse re-randomisation trials. As described in chapter 1, independence estimators
have been previously evaluated for re-randomisation trials, in the form of analysis
model 1.1:

Yij = α̂+ β̂Zij + εij

Briefly, independence estimators use a working independence correlation structure,
that is, estimates of treatment effect are based on a working assumption that episodes
from the same patient are uncorrelated. Previous articles have evaluated analysis
model 1.1 under a constant treatment effect mechanism (e.g. data generating model
1.3), but have not explicitly evaluated this estimator against any of the estimands
defined in chapter 2.

In this chapter I will propose a set of independence estimators for re-randomisation
trials, one for each estimand in chapter 2 (per-episode added-benefit, per-patient
added-benefit, per-episode policy-benefit, and per-patient policy-benefit). I will then
evaluate the bias of these estimators against their corresponding estimand under a
range of data generating mechanisms and non-enrolment scenarios.

3.1 Independence estimators

3.1.1 Per-episode added-benefit estimator

In order to correspond to the per-episode added-benefit estimand, our estimator must
fulfil two conditions: (1) it must give equal weight to each episode; and (2) it must
compare outcomes between intervention and control at each episode for patients with
the same treatment history.

The simplest way to do this is to take a difference in means between the intervention
and control episodes:

β̂ABE =
∑
ij YijZij∑
ij Zij

−
∑
ij Yij (1− Zij)∑
ij (1− Zij)

(3.1)
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This estimator gives equal weight to each episode, and implicitly compares outcomes
at each episode for patients with the same treatment history (i.e. the above estimator
could be re-written as a weighted average across the different treatment histories at
each episode, with weights based on how often each history had occurred in the trial).

This estimator is identical to analysis model 1.1 (i.e. equation 3.1 is the least-squares
estimate from analysis model 1.1). This implies that previous research evaluating
independence estimators in the form of analysis model 1.1 have been evaluating an
analysis approach which targets the per-episode added-benefit estimand.

3.1.2 Per-patient added-benefit estimator

For the per-patient added-benefit estimator we need to re-write the estimator in
equation 3.1 so that each patient has equal weight, rather than each episode. This
can be done by weighting each patient by the inverse of their number of episodes (i.e.
Wi = 1

Mi
), which leads to the estimator:

β̂ABP =
∑
ijWiYijZij∑
ijWiZij

−
∑
ijWiYij (1− Zij)∑
ijWi (1− Zij)

(3.2)

This estimator is the least squares estimate of analysis model 1.1 when patients
are weighted by Wi = 1

Mi
, which requires minimizing the function:

∑
ij

Wi(Yij − α̂− β̂Zij)
2

3.1.3 Per-episode policy-benefit estimator

To estimate the per-episode policy-benefit treatment effect, we must first estimate the
βPBij ’s (as defined in section 2.4.3.2) and then use these to calculate the overall treatment
effect. We can do this by specifying a causal model for the effect of treatment history
(Z̃ij) on the potential outcomes. For example, in a trial where patients experience a
maximum of two episodes, we might assume the following analysis model:

Yij = α̂+ β̂Zij + γ̂Zi,j−1 + δ̂ZijZi,j−1 + β̂epXepij + εij (3.3)

where Zi,j−1 is the treatment allocation in the previous episode (and is set to 0
for j = 1), and Xepij is an indicator for episode 2 (i.e. Xepij = 1 for episode 2, and
0 otherwise). This model allows the effect of the intervention in episode 1 to carry
forward into episode 2 (the term γ̂), and for the intervention to get more (or less)
effective the 2nd time it is used (the term δ̂).

After obtaining estimates for β̂, γ̂, and δ̂, we can use these to estimate the βPBij ’s;
for example, following on from section 2.4.3.2 and model 3.3 above, the β̂PBij for all
first episodes is β̂, and for all second episodes is β̂ + γ̂ + δ̂.
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We can then use these estimates to get an overall estimate of βPBE using results
from section 2.4.3.2 as follows:

β̂PBE = N1

MT

(
β̂
)

+ N2

MT

(
γ̂ + β̂ + δ̂

)
Although the term β̂ep is not directly used to estimate the treatment effect, it is

necessary to include Xepij in model 3.3, as estimates may be biased otherwise. This is
because Xepij is associated with Zi,j−1, and so may act as a confounder if omitted
from the model, resulting in biased estimates of γ. For trials with j > 2, separate
indicator variables for each episode should be included in the model.

3.1.4 Per-patient policy-benefit estimator

For the per-patient policy-benefit estimator we need to obtain estimates from model
3.3 using weighted least-squares, where each patient is weighted by the inverse of their
number of episodes, Wi = 1

Mi
. After obtaining estimates and calculating the β̂PBij ’s,

the overall treatment effect is calculated as:

β̂PBP = 1
NT

∑
ij

Wiβ̂
PB
ij

Using analysis model 3.3 above, this equates to:

β̂PBP =
MT (1)

NT

(
β̂
)

+
MT (2)

NT

(
1
2 β̂ + (1

2)(β̂ + γ̂ + δ̂)
)

where MT (j) represents the total number of patients for whom Mi = j. In this
equation, MT (1)

NT

(
β̂
)
is the component for patients where Mi = 1, and

MT (2)
NT

(
1
2 β̂ +

( 1
2
) (
β̂ + γ̂ + δ̂

))
is the component for patients where Mi = 2 (with

1
2 β̂ being the 1st episode component, and

( 1
2
) (
β̂ + γ̂ + δ̂

)
being the 2nd episode

component).

3.2 Mathematical derivation of bias

In this section I will evaluate the bias of the independence estimators for the per-episode
and per-patient added-benefit estimands. I evaluate the policy-benefit estimators in a
simulation study in section 3.4. As discussed in chapter 1, I will restrict the setting
to a trial with a 1:1 allocation ratio, where patients experience a maximum of two
episodes.

In section 3.2.1 I will discuss the number of patients in each different treatment
sequence that could occur in a re-randomisation trial in this setting (as this will be
used in the derivation of the expected value of the independence estimators). Then
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in section 3.3 I will derive the expected value of the independence estimators. I will
then compare the expected values against the true estimand values under a range of
different data generating and non-enrolment mechanisms in section 3.3.4.

3.2.1 Number of patients at each episode for different sequences

In this section, I derive the number of episodes in the different treatment sequences
that could occur in a re-randomisation trial; this information is used in the next
section (section 3.3.1). For the moment, I will assume that there is no non-enrolment,
i.e. patients who experience two episodes will re-enrol in the trial for their second
episode. This assumption will be relaxed in sections 3.3.10 and 3.3.11.

Under these assumptions, the asymptotic number of episodes in each treatment
sequence are shown in table 3.1 (where p represents the proportion of patients in the
trial who experience two episodes). As a brief reminder, NT is the total number of
patients enrolled in the trial, MT the total number of episodes, Mi is the number of
episodes for which patient i is enrolled in the trial, and MT (j) denotes the number
of patients for whom Mi = j. Then, p = MT (2)

NT
is the proportion of patients who are

re-enrolled for a second episode.

In this setting, there are six possible treatment sequences (shown in table 3.1).
Let Z denote the treatment sequence; i.e. Z is one of (0), (1), (0, 0), (0, 1), (1, 0),
or (1, 1). There are NT (1− p) patients enrolled for a single episode; therefore, there
are NT

2 (1− p) patients in treatment sequences Z = (0) and Z = (1) respectively.
There are NT p patients enrolled for two episodes; therefore, there are NT p

4 patients in
treatment sequences Z = (0, 0), Z = (0, 1), Z = (1, 0), and Z = (1, 1). The number of
patients at each episode for the different treatment sequences is shown in table 3.1.

Table 3.1: Asymptotic number of patients in each treatment sequence at each episode
in a re-randomisation trial with 1:1 allocation ratio and no non-enrolment

Treatment allocation Number of patients
Sequence Episode 1 Episode 2 Episode 1 Episode 2
Z = (1) 1 − NT

2 (1− p) −
Z = (1, 0) 1 0 NT p

4
NT p

4

Z = (1, 1) 1 1 NT p
4

NT p
4

Z = (0) 0 − NT
2 (1− p) −

Z = (0, 1) 0 1 NT p
4

NT p
4

Z = (0, 0) 0 0 NT p
4

NT p
4

3.3 Expected values of independence estimators

3.3.1 Between- and within-patient estimation components

The treatment sequences in table 3.1 can be split into into three different estimation
components; two are between-patient estimation components and one is a within-
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patient estimation component [9]. I derive these components below. These estimation
components will be used as the basis for the mathematical derivations in this chapter,
as well as in chapters 4 and 5.

Let β̂B1 represent the first between-patient estimation component; it is based on
treatment sequences Z = (0) and Z = (1). It uses between-patient information for
patients who are enrolled for one episode. It is calculated as:

β̂B1 =
∑
i∈Z=(1) Yi1
NT

2 (1− p)
−
∑
i∈Z=(0) Yi1
NT

2 (1− p)

= 1
NT

2 (1− p)

 ∑
i∈Z=(1)

Yi1 −
∑

i∈Z=(0)

Yi1

 (3.4)

i.e. it is the mean of all episodes in treatment sequence Z = (1) vs. the mean of all
episodes in treatment sequence Z = (0) (where the denominators are from table 3.1,
and are derived in section 3.2.1).

Let β̂B2 represent the second between-patient estimation component; it is based on
treatment sequences Z = (0, 0) and Z = (1, 1). It uses between-patient information
for patients who are enrolled for two episodes and allocated to the same treatment for
each episode. It is calculated as:

β̂B2 =
∑
i∈Z=(1,1) (Yi1 + Yi2)

NT p
4 + NT p

4
−
∑
i∈Z=(0,0) (Yi1 + Yi2)

NT p
4 + NT p

4

= 1
NT p

2

 ∑
i∈Z=(1,1)

(Yi1 + Yi2)−
∑

i∈Z=(0,0)

(Yi1 + Yi2)

 (3.5)

i.e. it is the mean of all episodes in treatment sequence Z = (1, 1) vs. the mean of
all episodes in treatment sequences Z = (0, 0) (where the denominators are shown in
table 3.1).

Let β̂W represents the within-patient estimation component; it is based on treatment
sequences Z = (0, 1) and Z = (1, 0). It uses within-patient information for patients
who are enrolled for two episodes and allocated to different treatments for each episode.
It is calculated as:

β̂W =
∑
i∈Z=(1,0) (Yi1 − Yi2)

NT p
4 + NT p

4
−
∑
i∈Z=(0,1) (Yi1 − Yi2)

NT p
4 + NT p

4

= 1
NT p

2

 ∑
i∈Z=(1,0)

(Yi1 − Yi2)−
∑

i∈Z=(0,1)

(Yi1 − Yi2)

 (3.6)
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i.e. it is the mean of intervention episodes for patients on treatment sequences
Z = (0 1) and Z = (1 0) vs. the mean of control episodes for patients on treatment
sequences Z = (0 1) and Z = (1 0) (where the denominators are shown in table 3.1).

3.3.2 Per-episode added-benefit estimator

This estimator can be written in terms of the components β̂B1 , β̂B2 , and β̂W , as:

β̂ABE =
∑
ij YijZij∑
ij Zij

−
∑
ij Yij (1− Zij)∑
ij (1− Zij)

=
NT

2 (1− p) β̂B1 + NT p
2 β̂B2 + NT p

2 β̂W
NT

2 (1− p) + NT p
2 + NT p

2

= (1− p) β̂B1 + pβ̂B2 + pβ̂W
1 + p

(3.7)

Taking the expectation leads to:

E
(
β̂ABE

)
=

(1− p)E
(
β̂B1

)
+ pE

(
β̂B2

)
+ pE

(
β̂W

)
1 + p

(3.8)

3.3.3 Per-patient added-benefit estimator

This estimator can also be written in terms of the components β̂B1 , β̂B2 , and β̂W , by
using equation 3.7 above and weighting each component by 1

Mi
:

β̂ABP =
∑
ijWiYijZij∑
ijWiZij

−
∑
ijWiYij (1− Zij)∑
ijWi (1− Zij)

=

( 1
1
) (

NT
2
)

(1− p) β̂B1 +
( 1

2
) (

NT p
2

)
β̂B2 +

( 1
2
) (

NT p
2

)
β̂W( 1

1
) (

NT
2
)

(1− p) +
( 1

2
) (

NT p
2

)
+
( 1

2
) (

NT p
2

) = (1− p) β̂B1+p

2 β̂B2+p

2 β̂W

(3.9)

Taking the expectation leads to:

E
(
β̂ABP

)
= (1− p)E

(
β̂B1

)
+ p

2E
(
β̂B2

)
+ p

2E
(
β̂W

)
(3.10)

3.3.4 Expected value of estimators under different data generating mechanisms and
non-enrolment scenarios

I now evaluate the expected values of the per-episode and per-patient added-benefit
estimators under a range of data generating and non-enrolment scenarios. I evaluate
seven scenarios in total:

1. Constant treatment effect
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2. Treatment effect varies across episode

3. Treatment effect varies across value of Mi

4. Treatment effect carries forward into second episode

5. Treatment becomes less effective on re-use

6. Constant treatment effect, differential non-enrolment based on outcome in previ-
ous episode

7. Constant treatment effect, differential non-enrolment based on expected outcome
in current episode

The first five scenarios use the same treatment effect mechanisms discussed in
section 2.5.3 of chapter 2, and do not involve any non-enrolment (i.e. patients who
experience two episodes will enrol in the trial for both episodes). The last two scenarios
use a constant treatment effect mechanism (i.e. model 1.3), but some patients who
experience two episodes do not re-enrol for their second episode. In these two scenarios
I examine the impact of differential non-enrolment. In this thesis I define differential
non-enrolment to mean that different types of patients from the episode 1 intervention
and control groups will re-enrol for episode 2. For example, in the episode 1 intervention
group healthier patients are more likely to re-enrol than sicker patients, but in the
episode 1 control group sicker patients are more likely to re-enrol. In scenario 6,
non-enrolment is differential between treatment arms depending on their outcome in
the first episode; patients who received the intervention in episode 1 and had a good
outcome have the same probability of re-enrolling as patients who received control
in episode 1 and had a bad outcome, and vice versa. In scenario 7, non-enrolment
is differential between treatment arms depending on their expected outcome in the
second episode (i.e. their baseline prognosis at episode 2); patients who received the
intervention in episode 1 and have a good baseline prognosis at episode 2 have the
same probability of re-enrolling as patients who received control in episode 1 and had
a bad prognosis, and vice versa. Further details on each of these scenarios is given in
the sections below.

For each scenario, I will assume that α = 0 (this makes calculations slightly easier
and has no impact on the results). Expected values of the components β̂B1 , β̂B2 , and
β̂W under the different scenarios are shown in table 3.2.

3.3.5 Scenario 1 (S1): constant treatment effect

Consider data-generating mechanism 1.3:

Yij = α+ βZij + µi + εij
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Table 3.2: Expected values of between- and within-patient estimators under different
scenarios

Scenario E(β̂B1) E(β̂B2) E(β̂W )
S1 – Constant treat-
ment effect β β β

S2 – Treatment ef-
fect varies across
episode

β1 1
2 (β1 + β2) 1

2 (β1 + β2)

S3 – Treatment ef-
fect varies across
value of Mi

β1 β2 β2

S4 – Treatment ef-
fect carries forward
into second episode

β β + γ

2 β − γ

2

S5 – Treatment be-
comes less effective
on re-use

β β + δ

2
β

S6 – Constant treat-
ment effect, differen-
tial non-enrolment
based on outcome in
previous episode

βtrt+

βXPL
(p01 − p00)
2 (1− p)

βtrt+

βXPL
(p00 − p01)

2p

βtrt

S7 – Constant treat-
ment effect, differen-
tial non-enrolment
based on expected
outcome in current
episode

βtrt
βtrt+

βXEL
4

(
p00 − p01

p

) βtrt−
βXEL

4

(
p00 − p01

p

)

67



The values of E (Yij) for each treatment sequence are shown in table 3.3. From
this we can see that E

(
β̂B1

)
= E

(
β̂B2

)
= E

(
β̂W

)
= β.

Therefore:

E
(
β̂ABE

)
= (1− p)β + pβ + pβ

1 + p
= β

And:

E
(
β̂ABP

)
= (1− p)β + p

2β + p

2β = β

Table 3.3: Value of E (Yij) across each episode and treatment sequence under S1:
constant treatment effect

Treatment allocation E (Yij)
Episode 1 Episode 2 Episode 1 Episode 2
0 − 0 −
0 1 0 β

0 0 0 0
1 − β −
1 0 β 0
1 1 β β

3.3.6 S2: Treatment effect varies across episode

Consider data-generating mechanism 2.3:

Yij =

α+ β1Zij + µi + εij for j = 1

α+ β2Zij + µi + εij for j = 2

The values of E (Yij) for each treatment sequence are shown in table 3.4. Then,
plugging the values from table 3.4 into the formulas from section 3.3.1, we can see
that the expected values of the components, β̂B1 , β̂B2 , and β̂W are:

E
(
β̂B1

)
= β1

E
(
β̂B2

)
= 1

2 (β1 + β2)

E
(
β̂W

)
= 1

2 (β1 + β2)
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Therefore:

E
(
β̂ABE

)
=

(1− p)β1 + p
2 (β1 + β2) + p

2 (β1 + β2)
1 + p

= β1 + pβ2

1 + p

And:

E
(
β̂ABP

)
= (1− p)β1 + p

2
(β1 + β2)

2 + p

2
(β1 + β2)

2 =
(

1− p+ p

2

)
β1 + p

2β2

=
(

1− p

2

)
β1 + p

2β2

Table 3.4: Value of E (Yij) across each episode and treatment sequence under S2:
Treatment effect varies across episode

Treatment allocation E (Yij)
Episode 1 Episode 2 Episode 1 Episode 2
0 − 0 −
0 1 0 β2

0 0 0 0
1 − β1 −
1 0 β1 0
1 1 β1 β2

3.3.7 S3: Treatment effect varies across value of Mi

Consider data-generating mechanism 2.1:

Yij =

α+ β1Zij + µi + εij if Mi = 1

α+ β2Zij + µi + εij if Mi = 2

The values of E (Yij) for each treatment sequence are shown in table 3.5. Then,
plugging the values from table 3.5 into the formulas from section 3.3.1, we can see
that the expected values of the components, β̂B1 , β̂B2 , and β̂W are:

E
(
β̂B1

)
= β1

E
(
β̂B2

)
= β2

E
(
β̂W

)
= β2
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Therefore:

E
(
β̂ABE

)
= (1− p)β1 + pβ2 + pβ2

1 + p
= (1− p)β1 + 2pβ2

1 + p

And:

E
(
β̂ABP

)
= (1− p)β1 + p

2β2 + p

2β2 = (1− p)β1 + pβ2

Table 3.5: Value of E (Yij) across each episode and treatment sequence under S3:
Treatment effect varies across value of Mi

Treatment allocation E (Yij)
Episode 1 Episode 2 Episode 1 Episode 2
0 − 0 −
0 1 0 β2

0 0 0 0
1 − β1 −
1 0 β2 0
1 1 β2 β2

3.3.8 S4: Treatment effect carries forward into the second episode

Consider data-generating mechanism 2.2:

Yij = α+ βZij + γZi,j−1 + µi + εij

The values of E (Yij) for each treatment sequence are shown in table 3.6. Then,
plugging the values from table 3.6 into the formulas from section 3.3.1, we can see
that the expected values of the components, β̂B1 , β̂B2 , and β̂W are:

E
(
β̂B1

)
= β

E
(
β̂B2

)
= β + γ

2

E
(
β̂W

)
= β − γ

2

Therefore:

E
(
β̂ABE

)
=

(1− p)β + p
(
β + γ

2
)

+ p
(
β − γ

2
)

1 + p
= β
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And:

E
(
β̂ABP

)
= (1− p)β + p

2

(
β + γ

2

)
+ p

2

(
β − γ

2

)
= β

Table 3.6: Value of E (Yij) across each episode and treatment sequence under S4:
Treatment effect carries forward into second episode

Treatment allocation E (Yij)
Episode 1 Episode 2 Episode 1 Episode 2
0 − 0 −
0 1 0 β

0 0 0 0
1 − β −
1 0 β γ

1 1 β β + γ

3.3.9 S5: Treatment becomes less effective on re-use

Consider data-generating mechanism 2.4:

Yij =

α+ βZij + µi + εij for Zi,j−1 = 0

α+ (β + δ)Zij + µi + εij for Zi,j−1 = 1

The values of E (Yij) for each treatment sequence are shown in table 3.7. Then,
plugging the values from table 3.7 into the formulas from section 3.3.1, we can see
that the expected values of the components, β̂B1 , β̂B2 , and β̂W are:

E
(
β̂B1

)
= β

E
(
β̂B2

)
= β + δ

2

E
(
β̂W

)
= β

Therefore:

E
(
β̂ABE

)
=

(1− p)β + p
(
β + δ

2
)

+ pβ

1 + p
=

(1 + p)β + pδ
2

1 + p
= β + pδ

2 (1 + p)

And:
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E
(
β̂ABP

)
= (1− p)β + p

2

(
β + δ

2

)
+ p

2β = β + pδ

4

Table 3.7: Value of E (Yij) across each episode and treatment sequence under S5:
Treatment becomes less effective on re-use

Treatment allocation E (Yij)
Episode 1 Episode 2 Episode 1 Episode 2
0 − 0 −
0 1 0 β

0 0 0 0
1 − β −
1 0 β 0
1 1 β β + δ

3.3.10 S6: Constant treatment effect, differential non-enrolment based on outcome in
previous episode

In this section (and in section 3.3.11), I will no longer assume that there is no non-
enrolment. Instead, I will assume that some patients do not re-enrol for their second
episode. In this scenario I consider a situation where non-enrolment is differential
between treatment arms depending on their outcome in the first episode; patients
who received the intervention in episode 1 and had a good outcome have the same
probability of re-enrolling as patients who received control in episode 1 and had a bad
outcome, and vice versa.

Consider the following data generating mechanism:

Yij = α+ βtrtZij + βXPLXPLi + µi + εij (3.11)

where XPLi is an unobserved binary patient-level variable (i.e. it is constant
across episodes). I use the subscript PL to denote ‘patient-level’. This data generating
mechanism is equivalent to model 1.3, but with the addition of XPLi (and βtrt in
place of β), and so the treatment effect is constant across patients and episodes.

In this scenario I assume that high values of Yij are good, which means that
patients for whom XPLi = 1 have better outcomes if βXPL is positive. The purpose
of XPLi in this scenario is to allow the non-enrolment to be differential based on the
episode 1 outcome; this will be explained further below.

Let Ri2 = 1 indicate that patient i is enrolled in the trial for episode 2, and Ri2 = 0
denoting non-enrolment for the second episode. Note that Ri2 = 0 if Mi = 1.

In this scenario, the probability of re-enrolment depends on two factors: treatment
allocation in episode 1 (Zi1) and the value of XPLi . I use XPLi as a marker of the
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patient’s outcome in episode 1; for instance, if βXPL is positive and if patients with
XPLi = 1 are more likely to re-enrol for episode 2, this indicates that patients with
better outcomes in episode 1 are more likely to re-enrol in the trial for their 2nd
episode. Incorporating XPLi into data generating model 3.11 and into the model for
the probability of re-enrolment allows the non-enrolment to be differential between
treatment arms.

Let π = P (XPLi = 1) (i.e. π denotes the probability that XPLi = 1 for patient
i), and let pzx = P (Ri2 = 1|Zi1 = zi1, XPLi = xPLi) (i.e. pzx denotes the probability
of being re-enrolled for a second episode given Zi1 and XPLi). So, for example,
p00 = P (Ri2 = 1|Zi1 = 0, XPLi = 0), and p01 = P (Ri2 = 1|Zi1 = 0, XPLi = 1).

For simplicity, I will assume that π = 0.5, and that p00 = p11 and p01 = p10. This
has two main implications. The first is that an equal number of patients from both
episode 1 treatment arms will re-enrol for a second episode (i.e. P (Ri2 = 1|Zi1 = 0) =
P (Ri2 = 1|Zi1 = 1)). Second, different types of patients will re-enrol from each episode
1 treatment group; for example, sicker patients in the episode 1 control arm and
healthier patients in the episode 1 intervention arm have the same probability of
re-enrolling for a 2nd episode, and vice versa.

Note that in this scenario the following (asymptotic) relationship holds for p
(where p represents the proportion of patients enrolled in the trial for two episodes):
p = P (Ri2 = 1|Zi1 = 0) = P (Ri2 = 1|Zi1 = 1) = (p00)(1−π)+p01π

(1−π)+π = p00 − πp00 +
πp01 = 1

2 (p00 + p01). This will be used below.

The number of episodes and expected outcomes for each combination of treatment
sequence and XPLi value can be seen in table 3.8. For simplicity, I have substituted
p10 and p11 with p01 and p00 respectively, as these are equal in this scenario.

Now, collapsing over XPLi in table 3.8 leads to table 3.9.

The number of observations for each treatment sequence in table 3.9 is obtained
by adding together the numbers for each of XPLi = 0 and XPLi = 1. The expected
values of outcomes in table 3.9 are obtained by a weighted average; this is shown in
appendix A.

Then, plugging the values from table 3.9 into the formulas from section 3.3.1, we
obtain:

E
(
β̂B1

)
=

NT
2 (1− p)
NT

2 (1− p)

(
βtrt + βXPL

(1− p00)
2 (1− p) − βXPL

(1− p01)
2 (1− p)

)
=

βtrt + βXPL
(p01 − p00)
2 (1− p)

And:
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Table 3.8: Number of observations and expected values in each combination of treatment
sequence and value of XPLi in S6: Constant treatment effect, differential non-enrolment
based on outcome in previous episode. E1=episode 1, E2=episode 2

XPLi Treatment
alloca-
tion

Number of obser-
vations

E (Yij)

E1 E2 E1 E2 E1 E2
0 0 − NT

4 (1− p00) − 0 −
1 0 − NT

4 (1− p01) − βXPL −
0 0 1 NT

8 p00
NT

8 p00 0 βtrt

1 0 1 NT
8 p01

NT
8 p01 βXPL βtrt + βXPL

0 0 0 NT
8 p00

NT
8 p00 0 0

1 0 0 NT
8 p01

NT
8 p01 βXPL βXPL

0 1 − NT
4 (1− p00) − βtrt −

1 1 − NT
4 (1− p01) − βtrt + βXPL −

0 1 0 NT
8 p01

NT
8 p01 βtrt 0

1 1 0 NT
8 p00

NT
8 p00 βtrt + βXPL βXPL

0 1 1 NT
8 p01

NT
8 p01 βtrt βtrt

1 1 1 NT
8 p00

NT
8 p00 βtrt + βXPL βtrt + βXPL

Table 3.9: Number of observations and expected values in each treatment sequence in
S6: Constant treatment effect, differential non-enrolment based on outcome in previous
episode. E1=episode 1, E2=episode 2

Treatment
allocation

Number of observations E (Yij)

E1 E2 E1 E2 E1 E2
0 − NT

2 (1− p) − βXPL
(1−p01)
2(1−p) −

0 1 NT
4 p NT

4 p βXPL
p01
2p βtrt + βXPL

p01
2p

0 0 NT
4 p NT

4 p βXPL
p01
2p βXPL

p01
2p

1 − NT
2 (1− p) − βtrt + βXPL

(1−p00)
2(1−p) −

1 0 NT
4 p NT

4 p βtrt + βXPL
p00
2p βXPL

p00
2p

1 1 NT
4 p NT

4 p βtrt + βXPL
p00
2p βtrt + βXPL

p00
2p
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E
(
β̂B2

)
= 1

NT p
2

(
2NT p

4

(
βtrt + βXPL

p00

2p

)
− 2NT p

4

(
βXPL

p01

2p

))
=

βtrt + βXPL
(p00 − p01)

2p

And:

E
(
β̂w

)
=

1
NT p

2

(
NT p

4

(
βtrt + βXPL

p00

2p − βXPL
p00

2p

)
− NT p

4

(
βXPL

p01

2p − βtrt − βXPL
p01

2p

))
= βtrt

Therefore:

E
(
β̂ABE

)
=

(1− p)
(
βtrt + βXPL

(p01−p00)
2(1−p)

)
+ p

(
βtrt + βXPL

(p00−p01)
2p

)
+ pβtrt

1 + p

=
βtrt ((1− p) + p+ p) + βXPL

(
(1−p)(p01−p00)

2(1−p) + p(p00−p01)
2p

)
1 + p

=
βtrt (1 + p) + βXPL

2 (p01 − p00 + p00 − p01)
1 + p

= βtrt

And:

E
(
β̂ABP

)
= (1− p)

(
βtrt + βXPL

(p01 − p00)
2 (1− p)

)
+p

2

(
βtrt + βXPL

(p00 − p01)
2p

)
+p

2βtrt

= βtrt

(
1− p+ p

2 + p

2

)
+ βXPL

(
(1− p) (p01 − p00)

2 (1− p) + p

2
(p00 − p01)

2p

)
= βtrt + βXPL

(p01 − p00)
4

3.3.11 S7: Constant treatment effect, differential non-enrolment based on expected outcome
in current episode

In this scenario I consider a situation where non-enrolment is differential between
treatment arms depending on their expected outcome in the second episode (i.e. their
baseline prognosis at episode 2); patients who received the intervention in episode 1 and
have a good baseline prognosis at episode 2 have the same probability of re-enrolling
as patients who received control in episode 1 and had a bad prognosis, and vice versa.
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Consider the following data generating mechanism:

Yij = α+ βtrtZij + βXELXELij + µi + εij (3.12)

where XELij is an unobserved binary episode-level variable (i.e. it can vary across
episodes). I use the subscript EL to denote ‘episode-level’. This data generating
mechanism is equivalent to model 1.3, but with the addition of XELij (and βtrt in
place of β), and so the treatment effect is constant across patients and episodes.

As in the previous scenario, high values of Yij are good, which means that patients
for whom XELij = 1 have better outcomes in episode j if βXEL is positive. The
purpose of XELij in this scenario is to allow the non-enrolment to be differential based
on the expected outcome at episode 2 (i.e. based on the baseline prognosis at episode
2); this will be explained further below.

In this scenario, I will redefine π as π = P
(
XELij = 1

)
, and set this to π = 0.5.

Similarly I will redefine pzx as pzx = P (Ri2 = 1|Zi1 = zi1, XELi2 = xELi2) (so pzx
represents the probability of re-enrolment for a second episode based on the patient’s
episode 1 allocation and their episode 2 value of XELij ). So, for example, p00 =
P (Ri2 = 1|Zi1 = 0, XELi2 = 0), and p01 = P (Ri2 = 1|Zi1 = 0, XELi2 = 1).

As before, I will assume that p00 = p11 and p01 = p10. This, combined with setting
π = 0.5 above, implies that an equal number of patients from both episode 1 treatment
arms will re-enrol for a second episode (i.e. P (Ri2 = 1|Zi1 = 0) = P (Ri2 = 1|Zi1 = 1)),
and that different types of patients will re-enrol from each episode 1 treatment group
(for example, patients with a worse prognosis at episode 2 who received control in
episode 1 have the same probability of re-enrolling as patients with a better prognosis
at episode 2 who received intervention in episode 1, and vice versa).

As in the previous scenario, note that p = P (Ri2 = 1|Zi1 = 0) = P (Ri2 = 1|Zi1 = 1) =
(p00)(1−π)+p01π

(1−π)+π = p00 − πp00 + πp01 = 1
2 (p00 + p01).

In this scenario, I will assume for simplicity that all patients experienced two
episodes (i.e. Mi = 2 for all patients), but that some of these patients were not
re-enrolled for their 2nd episode. Therefore, even patients who were enrolled for only
a single episode still have a value for XELi2 .

The number of episodes and expected outcomes for each sequence can be seen
in table 3.10; note that for simplicity I have replaced p10 and p11 with p01 and p00

respectively, as these are equal in this scenario.

Now, collapsing over XELij in table 3.10 leads to table 3.11 below.

The expected values of outcomes in table 3.11 are obtained by a weighted average;
this is shown in appendix A.
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Table 3.10: Number of observations and expected values in each combination of
treatment sequence and value of XELi in S7: Constant treatment effect, differential
non-enrolment based on expected outcome in current episode. E1=episode 1, E2=episode
2

XELi Treatment
alloca-
tion

Number of obser-
vations

E (Yij)

E1 E2 E1 E2 E1 E2 E1 E2
0 0 0 − NT

8 (1− p00) − 0 −
0 1 0 − NT

8 (1− p01) − 0 −
1 0 0 − NT

8 (1− p00) − βXEL −
1 1 0 − NT

8 (1− p01) − βXEL −
0 0 0 1 NT

16 p00
NT
16 p00 0 βtrt

0 1 0 1 NT
16 p01

NT
16 p01 0 βtrt + βXEL

1 0 0 1 NT
16 p00

NT
16 p00 βXEL βtrt

1 1 0 1 NT
16 p01

NT
16 p01 βXEL βtrt + βXEL

0 0 0 0 NT
16 p00

NT
16 p00 0 0

0 1 0 0 NT
16 p01

NT
16 p01 0 βXEL

1 0 0 0 NT
16 p00

NT
16 p00 βXEL 0

1 1 0 0 NT
16 p01

NT
16 p01 βXEL βXEL

0 0 1 − NT
8 (1− p01) − βtrt −

0 1 1 − NT
8 (1− p00) − βtrt −

1 0 1 − NT
8 (1− p01) − βtrt + βXEL −

1 1 1 − NT
8 (1− p00) − βtrt + βXEL −

0 0 1 0 NT
16 p01

NT
16 p01 βtrt 0

0 1 1 0 NT
16 p00

NT
16 p00 βtrt βXEL

1 0 1 0 NT
16 p01

NT
16 p01 βtrt + βXEL 0

1 1 1 0 NT
16 p00

NT
16 p00 βtrt + βXEL βXEL

0 0 1 1 NT
16 p01

NT
16 p01 βtrt βtrt

0 1 1 1 NT
16 p00

NT
16 p00 βtrt βtrt + βXEL

1 0 1 1 NT
16 p01

NT
16 p01 βtrt + βXEL βtrt

1 1 1 1 NT
16 p00

NT
16 p00 βtrt + βXEL βtrt + βXEL
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Table 3.11: Number of observations and expected values in each treatment sequence
in S7: Constant treatment effect, differential non-enrolment based on expected outcome
in current episode. E1=episode 1, E2=episode 2

Treatment
allocation

Number of observations E (Yij)

E1 E2 E1 E2 E1 E2
0 − NT

2 (1− p) − βXEL
2 −

0 1 NT
4 p NT

4 p
βXEL

2 βtrt +
βXEL

p01
p00+p01

0 0 NT
4 p NT

4 p
βXEL

2 βXEL
p01

p00+p01

1 − NT
2 (1− p) − βtrt + βXEL

2 −
1 0 NT

4 p NT
4 p βtrt + βXEL

2 βtrt +
βXEL

p00
p00+p01

1 1 NT
4 p NT

4 p βtrt + βXEL
2 βtrt +

βXEL
p00

p00+p01

Then, plugging the values from table 3.11 into the formulas from section 3.3.1, we
obtain:

E
(
β̂B1

)
=

NT
2 (1− p)
NT

2 (1− p)

(
βtrt + βXEL

2 − βXEL
2

)
= βtrt

E
(
β̂B2

)
=

NT p
4

NT p
2

(
βtrt + βXEL

2 + βtrt + βXEL
p00

p00 + p01
− βXEL

2 − βXEL
p01

p00 + p01

)

= 1
2

(
2βtrt + βXEL

(
p00 − p01

p00 + p01

))
= βtrt + βXEL

4

(
p00 − p01

p

)
And:

E
(
β̂w

)
= 1

NT p
2

(
NT p

4

(
βtrt + βXEL

2 − βXEL
p00

p00 + p01
− βXEL

2 + βtrt + βXEL
p01

p00 + p01

))

= 1
2

(
2βtrt − βXEL

(
p00 − p01

p00 + p01

))
= βtrt −

βXEL
4

(
p00 − p01

p

)
Therefore:

E
(
β̂ABE

)
=

(1− p)βtrt + p
(
βtrt + βXEL

4

(
p00−p01

p

))
+ p

(
βtrt −

βXEL
4

(
p00−p01

p

))
1 + p

=
(1− p+ p+ p)βtrt + pβXEL

4

(
p00−p01−p00+p01

p

)
1 + p

= βtrt
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And:

E
(
β̂ABP

)
=

(1− p)βtrt + p

2

(
βtrt + βXEL

4

(
p00 − p01

p

))
+ p

2

(
βtrt −

βXEL
4

(
p00 − p01

p

))
=
(

1− p+ p

2 + p

2

)
βtrt + pβXEL

8

(
p00 − p01 − p00 + p01

p

)
= βtrt

3.3.12 Summary of mathematical results

A summary of results for the per-episode added-benefit and the per-patient added-
benefit estimators are available in tables 3.12 and 3.13.

From table 3.12, we can see that the per-episode added-benefit estimator is unbiased
in all settings considered.

From table 3.13, we can see that the per-patient added-benefit estimator is unbiased,
except when there is differential non-enrolment based on the episode 1 outcome. The
reason for this bias may be that the association between Yij and Mi is different
between treatment groups in this scenario. Consider the following example; imagine
a trial where there is no difference between treatment groups (i.e. a null treatment
effect). However, the association between Yij and Mi differs between groups as follows;
good values of Yij in the control group tend to be associated with episodes where
Mi = 1, whereas good values of Yij in the intervention group tend to be associated
with episodes whereMi = 2. Then, when the weightsWi = 1

Mi
are applied to outcomes

Yij , good values of Yij in the control group are down weighted less than good values
in the intervention group, which would cause a difference between treatment groups
even though none exists.

This is what occurred in this scenario. Patients in the intervention group with
good outcomes in episode 1 were less likely to re-enrol for episode 2. This meant that
episodes with good outcomes in the intervention arm were more likely to have Mi = 1
than in the control group. Likewise, episodes with good outcomes in the control group
were more likely to have Mi = 2 than in the intervention group (formally, there was
a higher proportion of episodes where Mi = 1 and XPLi = 1 in the intervention
arm than in the control, and a higher proportion where Mi = 2 and XPLi = 0 in
the control arm). This lead to good outcomes being weighted differently between the
treatment groups, which caused bias in the estimated treatment effect.

3.4 Simulation study

I conducted a simulation study to evaluate the independence estimators discussed in
the previous section [27]. The main purpose of this simulation study was to evaluate the
policy-benefit estimators (which were not included in the mathematical derivations in
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Table 3.12: Summary of mathematical derivations for the per-episode added-benefit
independence estimator

Scenario E
(
β̂ABE

)
Estimand (per-episode
added-benefit)

S1 – Constant treatment
effect

β β

S2 – Treatment effect
varies across episode

β1+pβ2
1+p

β1+pβ2
1+p

S3 – Treatment effect
varies across value of Mi

(1−p)β1+2pβ2
(1+p)

(1−p)β1+2pβ2
(1+p)

S4 – Treatment effect car-
ries forward into second
episode

β β

S5 – Treatment becomes
less effective on re-use

β + pδ
2(1+p) β + pδ

2(1+p)

S6 – Constant treat-
ment effect, differential
non-enrolment based
on outcome in previous
episode

βtrt βtrt

S7 – Constant treat-
ment effect, differential
non-enrolment based on
expected outcome in
current episode

βtrt βtrt

the previous section), and to evaluate all estimators under more realistic data generating
mechanisms than considered in the mathematical derivations in the previous section
(e.g. with smaller sample sizes, and more complex data generating or non-enrolment
mechanisms).

The main aim of this simulation study was to evaluate bias, though a secondary aim
was to evaluate the coverage of 95% confidence intervals in settings where estimators
were unbiased. I did not evaluate the precision of the different estimators, as each
estimator addressed a different question and so precision is less relevant in deciding
between them.

This simulation study focussed on a setting where patients were enrolled in a trial
for a maximum of two episodes. For most scenarios, I chose parameter values that
are larger than those we would expect to see in practice; this was to ensure that if
estimators were biased in any scenarios, I would be able to identify it.

I describe the estimands, methods of analysis, and performance measures used
across all simulation scenarios in section 3.4.1. In sections 3.4.2, 3.4.3 and 3.4.4 I
describe the data generating models and results of the simulation studies.

All simulations were conducted using Stata v15.1.

80



Table 3.13: Summary of mathematical derivations for the per-patient added-benefit
independence estimator

Scenario E
(
β̂ABP

)
Estimand (per-patient
added-benefit)

S1 – Constant treatment
effect

β β

S2 – Treatment effect
varies across episode

(
1− p

2
)
β1 + p

2β2
(
1− p

2
)
β1 + p

2β2

S3 – Treatment effect
varies across value of Mi

(1− p)β1 + pβ2 (1− p)β1 + pβ2

S4 – Treatment effect car-
ries forward into second
episode

β β

S5 – Treatment becomes
less effective on re-use

β + pδ
4 β + pδ

4

S6 – Constant treat-
ment effect, differential
non-enrolment based
on outcome in previous
episode

βtrt + βXPL
(p01−p00)

4 βtrt

S7 – Constant treat-
ment effect, differential
non-enrolment based on
expected outcome in
current episode

βtrt βtrt

3.4.1 Estimands, methods of analysis, and performance measures

3.4.1.1 Estimands

For all simulation scenarios, I used the following four estimands: (a) per-episode
added-benefit; (b) per-patient added-benefit; (c) per-episode policy-benefit; and (d)
per-patient policy-benefit.

The values of the estimands for each simulation scenario are provided in the sections
describing the data generating mechanisms below.

3.4.1.2 Methods of analysis

I implemented independence estimators corresponding to the estimands listed above.
Details of how these estimators were implemented in Stata is shown in table 3.14 . I
implemented policy-benefit estimators using model 3.3, which allowed the outcome
and treatment effect in episode 2 to depend upon the treatment allocation in episode
1, and included an indicator for episode two. For all estimators, I used cluster-robust
standard errors, with patients acting as the cluster [26].
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Table 3.14: Stata code to implement independence estimators. ‘y’ denotes patient
outcome, ‘z’ denotes treatment allocation, ‘id’ is a unique identifier for patient, ‘m_i’
denotes the number of episodes for which the patient is enrolled in the trial, ‘z_prev’
denotes the patient’s treatment allocation in their previous episode (and is set to 0 if
it is the patient’s first episode), ‘x_ep’ is an indicator for episode 2, ‘prop_1st_ep’
and ‘prop_2nd_ep’ represent the proportion of episodes in the trial which are 1st
and 2nd episodes respectively, and ‘prop_has_1ep’ and ‘prop_has_2ep’ denote the
proportion of patients enrolled in the trial for one and two episodes respectively. In
order to run the above code in Stata, ‘prop_1st_ep’, ‘prop_2nd_ep’, ‘prop_has_1ep’,
and ‘prop_has_2ep’ must be saved as Stata local macros.

Estimator Stata code
Added-
benefit
Per-episode reg y z, vce(cluster id)
Per-patient reg y z [pw=1/m_i], vce(cluster id)

Policy-
benefit
Per-episode reg y z##z_prev x_ep, vce(cluster id)

lincom ///
‘prop_1st_ep’*_b[1.z] + ///
‘prop_2nd_ep’*(_b[1.z]+_b[1.z_prev] + _b[1.z#1.z_prev])

Per-patient reg y z##z_prev x_ep [pw=1/m_i], vce(cluster id)

lincom ///
‘prop_has_1ep’*(_b[1.z]) + ///
‘prop_has_2ep’*((1/2)*(_b[1.z]) + ///
(1/2)*(_b[1.z]+_b[1.z_prev] + _b[1.z#1.z_prev]))

3.4.1.3 Performance measures

My main criterion for evaluating estimators was bias. I measured bias as E
(
β̂
)
− β,

where E
(
β̂
)
represents the mean of the estimates across all simulation replications,

and β represents the true value of the estimand. I compared each estimator against
its corresponding estimand (i.e. β̂ABE vs. βABE , β̂ABP vs. βABP , etc).

I also evaluated coverage of the 95% confidence intervals. I defined coverage as
the proportion of replications for which the 95% confidence interval of the estimator
contained the true value of the estimand.

For each performance measure (bias, coverage) I also assessed the Monte Carlo
standard error (MCSE), which provides a measure of variability for the estimated
performance measure in the simulation study. I present the MCSEs as 95% confidence
intervals alongside the mean bias and coverage, except in cases where this interval
was too small to show up on the figure (i.e. when the width of the confidence interval
was smaller than the size of the dot representing the mean bias or coverage), in which
case I report the range of Monte Carlo standard errors for each performance measure
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across scenarios.

I used 10,000 replications for all simulation scenarios. This was based on my
previous experience conducting simulation studies (e.g. references [46], [47], and [48])
where I have found that 10,000 replications is usually more than sufficient to evaluate
bias and coverage. For example, the MCSE for bias is [49]:

MCSE =

√√√√V
(
β̂
)

reps

where V
(
β̂
)
is the variance of the estimator and reps is the number of replications.

The variance of the per-episode added-benefit estimator under data generating model
1.3 is:

V
(
β̂ABE

)
= 2σ2

MT

In the first simulation scenario (described below), σ2 = 10 and MT = 450, which
means V

(
β̂ABE

)
= 0.044. This implies the MCSE for bias is 0.002, which is sufficiently

small for the purpose of this study. In some other scenarios the MCSE will be larger,
because MT is lower or σ2 is larger, however the MCSE is sufficiently small in all
scenarios to allow us to identify whether estimators are truly biased or not.

Similarly, the MCSE for coverage is [49]:

MCSE =

√
Coverage(1− Coverage)

reps

If the true coverage is 95%, this implies the MCSE will be 0.2%, which is sufficiently
small to identify whether estimators have correct coverage or not.

3.4.2 Simulation study 1: patients enrolled for all episodes they experience

3.4.2.1 Data generating methods

This simulation study is broken into three parts; simulation study 1, 2a, and 2b. In
this section I describe the data generating model for simulation study 1, then describe
the results in section 3.4.2.2. I describe simulation studies 2a and 2b in sections 3.4.3
and 3.4.4.

Simulation study 1 is based on a trial of 300 patients; 150 patients experience
one episode during the trial period, and 150 experience two episodes (i.e. NT = 300,
MT = 450, MT (1) = 150, and MT (2) = 150).

The main purpose of this simulation study is to evaluate estimators in the setting
where patients are enrolled for all episodes they experience; that is, the 150 patients
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Table 3.15: Description of variables used in simulation study 1 (chapter 3)

Variable Description Method of generation
Yij Continuous outcome for

patient i in episode j
Generated based on model
3.13

Zij Treatment allocation
(0=control, 1=interven-
tion) for patient i in
episode j

Bernoulli random variable
with probability of 0.5 (im-
plying simple randomisa-
tion)

Xepij Indicator for episode 2 NA
XMi

Indicator for number of
episodes patient experi-
ences (0=1 episode, 1=2
episodes); equivalent toMi

NA

Zi,j−1 Treatment allocation for
patient i in episode j − 1;
equal to 0 for episode 1

NA

XPLi Unobserved patient-level
binary covariate, which is
constant across episodes

Bernoulli random variable
with probability of 0.5

XELij Unobserved episode-level
binary covariate, which
can vary across episodes

Bernoulli random variable
with probability of 0.5

µi Random intercept for pa-
tient i

∼ N(0, σ2
µ)

εij Random error term for
episode j in patient i

∼ N(0, σ2
ε)

who experienced two episodes were enrolled in the trial for both episodes (i.e. there
are no patients who do not re-enrol for their 2nd episode).

I consider six different data generating mechanisms (described further below); all
were based on the following general model for a continuous outcome:

Yij = α+ βtrtZij + βepXepij + βMXMi
+ βTRTxEPZijXepij + βTRTxMZijXMi

+

γZi,j−1 + δZijZi,j−1 + µi + εij (3.13)

where Xepij is an indicator variable for episode 2, and XMi
is an indicator variable

for patients with Mi = 2. A description of the variables in this model are given in
table 3.15 (this table also contains some variables which are not in equation 3.13, but
are used in the simulation study in section 3.4.3). Higher values of the outcome are
better.

The parameter α is an intercept, βep and βM are the effects of episode 2 and pa-
tient type (whether they experience 1 vs. 2 episodes) on outcome, and βtrt, βTRTxEP ,
βTRTxM , γ, and δ are components of the treatment effect (e.g. βTRTxEP is the inter-
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action between treatment allocation and episode number, βTRTxM is the interaction
between treatment and patient type, and δ is the interaction between treatment
allocation in the current episode and allocation in the previous episode).

In this study, I considered six different treatment effect mechanisms. This involved
varying the parameters that define the treatment effect (βtrt, βTRTxEP , βTRTxM , γ,
and δ); values of these parameters for each scenario are shown in table 3.16, along
with the values of the four estimands for each scenario. For each scenario, I set α = 0,
βtrt = 3, βep = 1, βM = 1, σ2

µ = 5 and σ2
ε = 5. I generated µi and εij independently;

based on the chosen variances, the intraclass correlation between episodes from the
same patient is 0.50 (conditional on the other variables in the data generating model).
I chose the ICC value 0.50 arbitrarily, as the ICC should not influence the level of bias,
and a value of 0.50 seems plausible when patient is the cluster (e.g. a recent review
of correlations between outcomes measured at different time points within the same
patient found the mean correlation was 0.50, SD 0.15 [50]).

I considered the following treatment effect mechanisms:

1. Constant treatment effect: the treatment effect is the same (βtrt) across all
episodes and patients

2. Treatment effect varies across episode: the treatment effect is different in the 1st
episode (βtrt) vs. in the 2nd episode (βtrt + βTRTxEP )

3. Treatment effect varies across patients with different values of Mi: the treatment
effect is different in patients who experience 1 episode (βtrt) vs. those who
experience 2 episodes (βtrt + βTRTxM ).

4. Treatment effect carries forward into the 2nd episode: patients who receive
intervention in the first episode have better outcomes in their 2nd episode (by
the amount γ)

5. Treatment becomes less effective on re-use: patients receiving the intervention
for the 1st time have a different treatment effect (βtrt) than those receiving the
intervention for the 2nd time (βtrt + δ)

6. Treatment effect varies across episodes, across patients with different values ofMi,
carries forward, and becomes less effective on re-use: the treatment effect is βtrt
for patients who experience one episode. For patients who experience two episodes,
the treatment effect is βM+βTRTxM in the 1st episode, βM+βTRTxM+βTRTxEP
in the 2nd episode for patients receiving the intervention for the first time (i.e.
who received control in their 1st episode), and βM + βTRTxM + βTRTxEP + δ

in the 2nd episode for patients receiving the intervention for the 2nd time (i.e.
received intervention in their 1st episode). Patients who receive the intervention
in the first episode also have better outcomes in their 2nd episode, by the amount
γ.
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Figure 3.1: Bias and coverage of independence estimators in simulation study 1. Error
bars are 95% confidence intervals based on Monte Carlo standard errors. Scenario 1:
Constant treatment effect. Scenario 2: Treatment effect varies across episode. Scenario
3: Treatment effect varies across patients with different values of Mi. Scenario 4:
Treatment effect carries forward. Scenario 5: Treatment becomes less effective on re-
use. Scenario 6: Treatment effect varies across episodes, across patients with different
values of Mi, carries forward, and becomes less effective on re-use.

3.4.2.2 Results

Results are shown in figure 3.1. All estimators were unbiased and provided close to
nominal coverage in all scenarios.

3.4.3 Simulation study 2a: some patients do not re-enrol for their 2nd episode

3.4.3.1 Data generating methods

The main purpose of this simulation study is to evaluate estimators when some
of the patients who experience two episodes do not re-enrol in the trial for their
second episode. For example, this may occur if patients find the trial procedures, such
as number of follow-up visits, too burdensome; if they were disappointed at their
treatment allocation in the first episode; or they experienced a poor outcome in their
first episode. Note that this type of non-enrolment is not a form of dropout; patients
only enrol in the trial for a single episode at a time, and there is no expectation that
they must re-enrol for all subsequent episodes.

As before, this simulation study is based on a trial of 300 patients; 150 patients
experience one episode during the trial period, and 150 experience two episodes.
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All patients enrol for their first episode, but a subset of patients who experience
two episodes do not re-enrol for their second episode. Therefore, NT = 300 and
MT (1) = 150, however MT (2) < 150 and MT < 450; the exact values of MT (2) and MT

vary across simulation replications.

I simulated data by first generating outcomes for all 450 episodes (regardless of
whether they were enrolled in the trial for their 2nd episode) using model 3.14 below,
and then generated an indicator for each episode to denote whether it was enrolled in
the trial or not using model 3.15 below. I then performed analysis only on the subset
of enrolled episodes. I used six different treatment effect mechanisms (based on model
3.14 below) and five different non-enrolment mechanisms (based on model 3.15 below),
leading to 6x5=30 total scenarios. The different treatment effect and non-enrolment
scenarios are described below.

I generated continuous outcomes from the model:

Yij = α+ βtrtZij + βepXepij + βMXMi
+ βTRTxEPZijXepij + βTRTxMZijXMi

+

γZi,j−1 + δZijZi,j−1 + βXPLXPLi + βXELXELij + µi + εij (3.14)

This model is identical to model 3.13 from simulation study 1, except it contains
two additional terms: XPLi and XELij . These were explained previously in sections
3.3.10 and 3.3.11; briefly, XPLi and XELij are unobserved binary covariates, with
XPLi being a patient-level covariate which does not vary across episodes, and XELij

being an episode-level covariate which can vary across episodes for the same patient; I
use the subscript PL to denote ‘patient-level’, and EL to denote ‘episode-level’. The
purpose of including XPLi and XELij in this model is explained below. I used positive
values for βXPL and βXEL , so that patients or episodes where XPLi = 1 or XELij = 1
have better outcomes than if XPLi or XELij are 0; exact values of βXPL and βXEL
for each scenario are shown in table 3.17.

In the subset of patients with two episodes, I generated each patient’s probability
of not re-enrolling for the second episode on a linear scale using the following model:

P (Ri2 = 0) = αR2 + γR2Zi,j−1 + βR2
XPL

XPLi + βR2
XEL

XELi2+

δR2
XplZi,j−1XPLi + δR2

XelZi,j−1XELi2 (3.15)

where Rij denotes whether patient i was enrolled for their jth episode (0=not
enrolled, 1=enrolled). Note that Ri2 = 0 for patients who only experience one episode,
and Ri1 = 1 for all patients. I use the superscript R2 for parameters to indicate that
these parameters relate to the probability of not being re-enrolled for the 2nd episode.
I set αR2 = 0.05 and γR2 = 0.10 for all scenarios. This implies that all patients have
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a non-zero probability of not re-enrolling for their second episode, and that patients
who received intervention in episode 1 are more likely to not re-enrol than those in
the control group (irrespective of XPLi and XELi2). Values for other parameters are
shown in table 3.17.

In the models above, I use XPLi as a marker of the patient’s outcome in episode 1,
and XELi2 as a marker for the patient’s expected outcome in episode 2; that is, larger
values of βR2

XPL
denote that patients with better outcomes in episode 1 are less likely

to re-enrol in the trial for their 2nd episode, and larger values of βR2
XEL

denote that
patients with better expected outcomes in episode 2 are less likely to re-enrol for that
episode.

As stated above, I used six treatment effect mechanisms and five non-enrolment
mechanisms. I used the same six treatment effect mechanisms as used in simulation
study 1 (shown in table 3.16), apart from the addition of XPLi and XELij to the
model (as shown in model 3.14). All other parameter values were the same as in
table 3.16, though the estimand values differed (these are described below). The five
non-enrolment scenarios are shown in table 3.17.

For each scenario, I calculated estimands based on the set of episodes enrolled in
the trial. I calculated each estimand by generating a single large dataset of 1,000,000
patients (1,500,000 episodes), and then excluding episodes according to model 3.15
above. I then generated both added-benefit and policy-benefit potential treatment
effects for each episode, and calculated the relevant estimand based on these. These
estimand values are shown in table 3.18.

3.4.3.2 Results

Results are shown in figures 3.2 and 3.3. The per-episode added-benefit estimator was
unbiased across all scenarios, and had close to nominal coverage. The per-patient and
policy-benefit estimators were unbiased across most scenarios, however, I identified
several sources of bias which I discuss further below. Coverage of 95% confidence
intervals was close to nominal for all settings in which estimators were unbiased.

The per-patient added-benefit estimator was biased for non-enrolment scenario
4, where non-enrolment was differential across treatment groups based on previous
outcome. This matches the mathematical derivations from sections 3.3.5-3.3.11. I also
identified a small bias in non-enrolment scenario 5 (where non-enrolment is differential
across treatment groups based on prognosis at episode 2) under treatment effect
scenarios 3 and 6 (when the size of the treatment effect varied across patients with
different values of Mi). This bias was much smaller than that seen in non-enrolment
scenario 4, but may still be large enough to cause concern.

The policy-benefit estimators (both per-patient and per-episode) were biased in
non-enrolment scenarios 4 and 5. This occurred despite the fact that these estimators
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Table 3.18: Estimand values for simulation study 2a. Treatment effect mechanism:
S1 = Constant treatment effect, S2 = Treatment effect varies across episode, S3 =
Treatment effect varies across patients with different values of Mi, S4 = Treatment
effect carries forward, S5 = Treatment becomes less effective on re-use, S6 = Treatment
effect varies across episodes, across patients with different values of Mi, carries forward,
and becomes less effective on re-use. Non-enrolment scenarios: S1 = Non-enrolment
depends on previous treatment allocation, S2 = Non-enrolment depends on previous
treatment allocation and previous outcome, S3 = Non-enrolment depends on previous
treatment allocation and baseline prognosis at episode 2, S4 = Non-enrolment is
differential between treatment groups based on previous outcome, S5 = Non-enrolment
is differential between treatment groups based on baseline prognosis at episode 2.

Treatment effect
mechanism

Non-enrolment
scenario

βABE βABP βPBE βPBP

S1 S1 3 3 3 3
S2 3 3 3 3
S3 3 3 3 3
S4 3 3 3 3
S5 3 3 3 3

S2 S1 3.47 3.34 3.47 3.34
S2 3.42 3.29 3.42 3.29
S3 3.42 3.29 3.42 3.29
S4 3.42 3.29 3.42 3.29
S5 3.42 3.29 3.42 3.29

S3 S1 4.97 4.5 4.97 4.5
S2 4.92 4.5 4.92 4.5
S3 4.92 4.5 4.92 4.5
S4 4.92 4.5 4.92 4.5
S5 4.92 4.5 4.92 4.5

S4 S1 3 3 3.31 3.23
S2 3 3 3.28 3.19
S3 3 3 3.28 3.19
S4 3 3 3.28 3.19
S5 3 3 3.28 3.19

S5 S1 2.56 2.68 2.07 2.33
S2 2.61 2.73 2.16 2.42
S3 2.61 2.73 2.16 2.42
S4 2.67 2.77 2.16 2.42
S5 2.67 2.77 2.16 2.42

S6 S1 4.99 4.52 4.81 4.39
S2 4.95 4.52 4.78 4.40
S3 4.95 4.52 4.78 4.40
S4 5.01 4.57 4.78 4.40
S5 5.01 4.57 4.78 4.40
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Figure 3.2: Bias in estimators across different treatment effect and non-enrolment
scenarios for simulation study 2a. Monte Carlo standard errors ranges: per-episode
added-benefit 0.003-0.006; per-episode policy-benefit 0.004-0.008; per-patient added-
benefit 0.003-0.006; per-patient policy-benefit 0.004-0.007.

correctly modelled the causal effect of the previous treatment allocation on the outcome
and treatment effect. This bias was a result of the model providing biased estimates
of the parameter γ in these scenarios (which represents the effect of the previous
allocation on outcome); because this parameter is used to construct policy-benefit
estimates, these in turn will also be biased.

In these scenarios, episode 1 intervention patients with good outcomes were less
likely to re-enrol for episode 2. At episode 2 therefore, most patients with a good
outcome would have been allocated control in the previous episode. This created a
false association between previous treatment allocation and outcome, which led to
biased estimates of γ.

Interestingly, the per-patient policy-benefit estimator had negligible bias for non-
enrolment scenario 4; this is likely because the per-patient estimator is biased upwards
in this scenario, and the policy-benefit estimator is biased downwards, and the two
biases cancel each other to some degree; however, under different parameter values it
is likely that one of the biases would overtake the other, and the estimator would be
biased. This is explored further in simulation study 2b below.

92



Figure 3.3: Coverage of estimators across different treatment effect and non-enrolment
scenarios for simulation study 2a. Error bars are 95% confidence intervals based on
Monte Carlo standard errors.

3.4.4 Simulation study 2b: further exploring bias associated with per-patient and
policy-benefit estimators under non-enrolment scenarios 4 and 5

3.4.4.1 Data generating methods

In this simulation study, I further explored some of the bias from per-patient and policy-
benefit estimators associated with non-enrolment. I generated outcomes according
to model 3.14, and probability of non-enrolment according to model 3.15. In the
previous simulation study (2a) I used fairly large values for parameters associated with
non-enrolment. In this simulation study, I used a range of values in order to assess how
large the relevant parameter values needed to be in order for bias to become apparent.

Because the treatment effect mechanism did not have a large impact on bias in most
scenarios in simulation study 2a, I opted to use a single treatment effect mechanism
here. I used the constant treatment effect model for all scenarios (treatment effect
mechanism 1); as such, the value of all estimands in these scenarios was 3.

For non-enrolment scenario 4, I varied βXPL and δR2
Xpl (which represents the increase

in the probability of non-enrolment for patients with XPL = 1) in a factorial manner;
I varied βXPL between 0, 2.5, 5, 7.5, and 10, and I varied δR2

Xpl between 0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, and 0.8. This led to 5x9=45 scenarios. I set βXEL = 0 for all
scenarios.

For non-enrolment scenario 5, I varied βXEL and δR2
Xel in a factorial manner; I
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Figure 3.4: Bias in different estimators across non-enrolment scenario 4 in simulation
study 2b. Monte Carlo standard errors ranges: per-episode added-benefit 0.003-0.006;
per-episode policy-benefit 0.004-0.008; per-patient added-benefit 0.003-0.006; per-
patient policy-benefit 0.004-0.007.

varied βXEL between 0, 2.5, 5, 7.5, and 10, and I varied δR2
Xel between 0, 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, and 0.8. This led to 5x9=45 scenarios. I set βXPL = 0 for all scenarios.

3.4.4.2 Results

Results are shown in figures 3.4 to 3.7. The policy-benefit estimators were biased when
either XPLi or XELij had strong associations with both outcome and probability of
non-enrolment. When either association was small, bias was minimal, except when the
other association was extremely large.

Similarly, the per-patient added-benefit estimator was biased when XPLi had a
strong association with both outcome and probability of non-enrolment; when either
of these associations were small, bias was negligible, except when the other association
was extremely large.

Unlike in simulation study 2a, I found the per-patient policy-benefit estimator was
biased in certain settings, indicating that the two competing biases will not always
cancel out.
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Figure 3.5: Bias in different estimators across non-enrolment scenario 5 in simulation
study 2b. Monte Carlo standard errors ranges: per-episode added-benefit 0.003-0.006;
per-episode policy-benefit 0.004-0.007; per-patient added-benefit 0.003-0.006; per-
patient policy-benefit 0.004-0.007.

Figure 3.6: Coverage of different estimators across non-enrolment scenario 4 in simula-
tion study 2b. Monte Carlo standard errors ranges: per-episode added-benefit 0.2-0.2;
per-episode policy-benefit 0.2-0.5; per-patient added-benefit 0.2-0.3; per-patient policy-
benefit 0.2-0.3.
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Figure 3.7: Coverage of different estimators across non-enrolment scenario 5 in simula-
tion study 2b. Monte Carlo standard errors ranges: per-episode added-benefit 0.2-0.2;
per-episode policy-benefit 0.2-0.5; per-patient added-benefit 0.2-0.2; per-patient policy-
benefit 0.2-0.4.

3.5 Discussion

In this chapter I evaluated a set of independence estimators for re-randomisation
trials. I evaluated these estimators under a wide range of data generating mechanisms
and non-enrolment mechanisms. Not all of the scenarios I considered are likely to
be common in practice. For instance, in the SWIM example ibuprofen is unlikely to
become less effective each time it is used. Similarly, there is unlikely to be differential
non-enrolment between treatment groups as the trial is blinded. However, it is useful
to examine methods under unlikely scenarios to see if and when they will break down.
Furthermore, these other scenarios may be more realistic for other trials. For example,
there may be differential non-enrolment in unblinded studies, and drugs with long
half-lives may be more likely to become less effective on reuse.

I found that the per-episode added-benefit estimator was unbiased in all scenarios.
The per-patient estimators and policy-benefit estimators were unbiased under the
assumption of no differential non-enrolment. The policy-benefit estimator also relied
on the assumption that the causal model was correctly specified. If the causal model is
incorrectly specified, then the policy-benefit estimators are likely to be biased. However,
this depends on the type of misspecification. Including an unneeded term is unlikely
to cause bias. For example, including Zi,j−1 in the causal model will not cause bias
if Zi,j−1 does not affect the potential outcomes. However, excluding Zi,j−1 from the
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causal model will lead to bias if Zi,j−1 does affect the potential outcomes.

The results in this chapter show that the per-episode added-benefit estimator
provides valid results in all scenarios considered, and so can be recommended for use
in practice without concern. The per-patient and policy-benefit estimators rely on
certain assumptions about the data and therefore, if these estimators are used, it
would be useful to conduct sensitivity analyses to evaluate to what extent results may
be affected by violations to these assumptions.

97



4 Mixed-effects models

In this chapter I evaluate the use of mixed-effects models in re-randomisation trials.
I discussed mixed-effects models in chapter 1 (section 1.6.1.1). I briefly summarise
this method in section 4.1.1 below, then discuss its potential benefits and downsides
in sections 4.1.2 and 4.1.3. In sections 4.2 and 4.3 I evaluate bias from mixed-effects
models using mathematical derivations and simulation.

4.1 Mixed-effects models

4.1.1 Overview

Mixed-effects models [51] with a random intercept for patient (hereafter referred to as
‘mixed-effects models’) take the form of analysis model 1.2:

Yij = α̂+ β̂MMZij + µi + εij

where µi ∼ N(0, σ̂2
µ) and εij ∼ N(0, σ̂2

ε), and µi and εij are independent. I have
used β̂MM here instead of β̂ to denote this is an estimate from a mixed-effects model.

This analysis model directly models the clustering structure of the data by including
a random intercept for patient (the term µi). Therefore, this analysis model allows
for correlation between episodes from the same patient. It assumes an exchangeable
correlation structure, where the correlation between any two episodes from the same
patient is the same (i.e. all episodes within a patient are equally correlated).

This model is typically estimated using maximum-likelihood (or restricted maximum
likelihood for small sample settings); further information on maximum likelihood and
restricted maximum likelihood is available elsewhere [51, 52, 53].

4.1.2 Potential benefits

The main benefit of mixed-effects models is that they are more efficient than inde-
pendence estimators (that is, they have lower variance and higher power [9]). This
implies that if mixed-effects models are used, the overall sample size could be reduced,
allowing re-randomisation trials to complete recruitment more quickly.
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4.1.3 Potential drawbacks

The main downside for mixed-effects models is that it is not clear whether they are
able to provide unbiased treatment effect estimates in most settings. For instance, as
discussed in chapter 1, we previously evaluated mixed-effects models under some simple
data generating mechanisms [9]. We found they were unbiased when the treatment
effect was constant (data generating model 1.3), but were biased when the treatment
effect carried forward, as in data generating model 2.2:

Yij = α+ βZij + γZi,j−1 + µi + εij

However, we found that this bias could be mitigated by including a term for Zi,j−1

in the analysis model. One implication from this is that, for scenarios where treatment
history (e.g. Zi,j−1) matters, including treatment history in the analysis model may
be sufficient to obtain unbiased estimates.

However, it is not clear whether mixed-effects models are biased for other data
generating mechanisms, such as those considered in chapters 2 and 3 (e.g. when
treatment effect varies by episode or by value of Mi, or becomes less effective on
re-use), and if so, whether it would be possible to modify the analysis model as above
to obtain unbiased estimates.

Previous research in the informative cluster size setting has found that mixed-
effects models are biased for both the per-episode and per-patient treatment effects
when the cluster size is informative [44], so it is plausible the same issue will arise in
re-randomisation trials.

4.2 Mathematical derivation of bias

In this section I derive the expected value of the mixed-effects model estimator β̂MM .
I then compare this against the per-episode added-benefit estimand under a range
of data generating and non-enrolment mechanisms. I do not consider the per-patient
or policy-benefit estimands in this section, as they require either weighting by 1

Mi
or

modelling the causal effect of treatment history, both of which make mathematical
derivations much more complicated.

As before, I restrict the setting to a trial with a 1:1 allocation ratio, where patients
experience a maximum of two episodes. I assume a large sample size, so that asymptotic
results apply. I use the same set of scenarios as in chapter 3:

1. Constant treatment effect

2. Treatment effect varies across episode

3. Treatment effect varies across value of Mi
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4. Treatment effect carries forward into the second episode

5. Treatment becomes less effective on re-use

6. Constant treatment effect, differential non-enrolment based on outcome in previ-
ous episode

7. Constant treatment effect, differential non-enrolment based on expected outcome
in current episode

As before, the first five scenarios do not involve any non-enrolment (i.e. patients
who experience two episodes will enrol in the trial for both episodes). The last two
scenarios use a constant treatment effect mechanism, but some patients who experience
two episodes do not re-enrol for their second episode. In scenario 6, non-enrolment is
differential between treatment arms depending on their outcome in the first episode
(i.e. different types of patients from each treatment arm will re-enrol). For example,
patients who received the intervention in episode 1 and had a good outcome are more
likely to re-enrol at episode 2 than patients who received control in episode 1 and had
a poor outcome. In scenario 7, non-enrolment is differential between treatment arms
depending on their expected outcome in the second episode; for example, patients
who received the intervention in episode 1 and had a good prognosis at baseline for
episode 2 are more likely to re-enrol than patients who received control in episode 1
and have a poor prognosis. Further details on each of these scenarios is given in the
sections below, and in chapter 3. I note that in previous work we derived the expected
value of β̂MM for scenarios 1 and 4 [9], however I repeat these derivations here for
completeness.

For each scenario, I will assume that α = 0. Expected values of the components β̂B1 ,
β̂B2 , and β̂W under the different scenarios are shown in table 3.2 in chapter 3. Let σ̂2

µ, σ̂2
ε ,

and β̂MM denote maximum-likelihood estimates. Then, let V (Yij |Zij) = σ̂2
µ+ σ̂2

ε = σ̂2,
and let ϑ̂ = σ̂2

µ

σ̂2
µ+σ̂2

ε
, i.e. ϑ̂ is the estimated intraclass correlation coefficient (ICC). Then,

let ϑ∗ = E
(
ϑ̂
)
, i.e. ϑ∗ is the expected value of the estimated intraclass correlation

coefficient. Note that the term V (Yij |Zij) denotes an estimated variance; in this thesis,
I use V () to denote V̂ () for simplicity (i.e. I omit the hat from the estimated variances).

In section 4.2.1 I derive the estimated variances of the components β̂B1 , β̂B2 , and
β̂W (as these are used in the derivation of the mixed-effects model estimator). In
section 4.2.2 I derive the mixed-effects model estimator, and then in sections 4.2.3
to 4.2.9 I derive the expected value of this estimator under the seven scenarios listed
above. I provide a summary of results in section 4.2.10.

4.2.1 Estimated variances of estimation components

I now derive the estimated variance for each of the three components β̂B1 , β̂B2 , and
β̂W , based on analysis model 1.2; these variances are used in deriving the overall
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estimator of treatment effect from a mixed-model. These results are shown in table
4.1.

The estimated variance of β̂B1 is:

V
(
β̂B1

)
= V

 1
NT

2 (1− p)

 ∑
i∈Z=(1)

Yi1 −
∑

i∈Z=(0)

Yi1


Because outcomes from different patients are independent, the variance of the sum

is equal to the sum of the variances, and so this expression becomes:

1(
NT

2 (1− p)
)2

 ∑
i∈Z=(1)

V (Yi1) +
∑

i∈Z=(0)

V (Yi1)

 =

1(
NT

2 (1− p)
)2 2

(
σ̂2NT

2 (1− p)
)

= 2σ̂2

NT
2 (1− p)

Next, the estimated variance of β̂B2 is:

V
(
β̂B2

)
= V

 1
NT p

2

 ∑
i∈Z=(1,1)

(Yi1 + Yi2)−
∑

i∈Z=(0,0)

(Yi1 + Yi2)

 =

1(
NT p

2

)2

 ∑
i∈Z=(1,1)

V (Yi1 + Yi2) +
∑

i∈Z=(0,0)

V (Yi1 + Yi2)

 =

1(
NT p

2

)2

( ∑
i∈Z=(1,1)

V (Yi1) + V (Yi2) + 2Cov (Yi1, Yi2)+

∑
i∈Z=(0,0)

V (Yi1) + V (Yi2) + 2Cov (Yi1, Yi2)
)

where Cov (Yi1, Yi2) denotes the covariance between the two outcomes. For episodes
from different patients, this is 0; for episodes from the same patient (as in the above
expression), this becomes:

Cov (Yi1, Yi2) = Corr (Yi1, Yi2)
√
V (Yi1)

√
V (Yi2) = ϑ̂σ̂

2

where Corr (Yi1, Yi2) represents the correlation between the two outcomes, which
is ϑ̂ = σ̂2

µ

σ̂2
µ+σ̂2

ε
.

Then, the variance becomes:
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1(
NT p

2

)2

 ∑
i∈Z=(1,1)

2σ̂2 + 2ϑ̂σ̂
2

+
∑

i∈Z=(0,0)

2σ̂2 + 2ϑ̂σ̂
2

 =

1(
NT p

2

)2

(
2NT p

4

(
2σ̂2 + 2ϑ̂σ̂

2))
= 2σ̂2

NT p
2

(
1 + ϑ̂

)

Finally, the estimated variance of β̂W is:

V
(
β̂W

)
= V

 1
NT p

2

 ∑
i∈Z=(1,0)

(Yi1 − Yi2)−
∑

i∈Z=(0,1)

(Yi1 − Yi2)

 =

1(
NT p

2

)2

 ∑
i∈Z=(1,0)

V (Yi1 − Yi2) +
∑

i∈Z=(0,1)

V (Yi1 − Yi2)

 =

1(
NT p

2

)2

( ∑
i∈Z=(1,0)

V (Yi1) + V (Yi2)− 2Cov (Yi1, Yi2)+

∑
i∈Z=(0,1)

V (Yi1) + V (Yi2)− 2Cov (Yi1, Yi2)
)

This expression becomes:

1(
NT p

2

)2

(
2NT p

4

(
2σ̂2 − 2ϑ̂σ̂

2))
= 2σ̂2

NT p
2

(
1− ϑ̂

)

4.2.2 Overall estimator of treatment effect from a mixed-effects model

For a re-randomisation trial with a maximum of two episodes, the estimator β̂MM

from analysis model 1.2 can be written as [9]:

β̂MM =

β̂B1
V (β̂B1) + β̂B2

V (β̂B2) + β̂W
V (β̂W )

1
V (β̂B1) + 1

V (β̂B2) + 1
V (β̂W )

This can be re-arranged as follows:

β̂MM =

V (β̂B2)V (β̂W )β̂B1 +V (β̂B1)V (β̂W )β̂B2 +V (β̂B1)V (β̂B2)β̂W
V (β̂B1)V (β̂B2)V (β̂W )

V (β̂B2)V (β̂W )+V (β̂B1)V (β̂W )+V (β̂B1)V (β̂B2)
V (β̂B1)V (β̂B2)V (β̂W )

=
V
(
β̂B2

)
V
(
β̂W

)
β̂B1 + V

(
β̂B1

)
V
(
β̂W

)
β̂B2 + V

(
β̂B1

)
V
(
β̂B2

)
β̂W

V
(
β̂B2

)
V
(
β̂W

)
+ V

(
β̂B1

)
V
(
β̂W

)
+ V

(
β̂B1

)
V
(
β̂B2

)
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Substituting in the estimated variances V
(
β̂B1

)
, V

(
β̂B2

)
, and V

(
β̂W

)
from

table 4.1 we get:

β̂MM =

(
1+ϑ̂
p

)(
1−ϑ̂
p

)
β̂B1 +

(
1

1−p

)(
1−ϑ̂
p

)
β̂B2 +

(
1

1−p

)(
1+ϑ̂
p

)
β̂W(
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p

)
+
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p

)
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)
Note that the 2σ̂2

NT
2

terms have cancelled out. We can re-arrange this as follows:

β̂MM =
(1+ϑ̂)(1−ϑ̂)(1−p)β̂B1 +(1−ϑ̂)pβ̂B2 +(1+ϑ̂)pβ̂W

p2(1−p)
(1+ϑ̂)(1−ϑ̂)(1−p)+(1−ϑ̂)p+(1+ϑ̂)p

p2(1−p)

=

(
1 + ϑ̂

)(
1− ϑ̂

)
(1− p) β̂B1 +

(
1− ϑ̂

)
pβ̂B2 +

(
1 + ϑ̂

)
pβ̂W(

1 + ϑ̂
)(

1− ϑ̂
)

(1− p) +
(

1− ϑ̂
)
p+

(
1 + ϑ̂

)
p

The numerator can be arranged as:

(
1 + ϑ̂

)(
1− ϑ̂

)
(1− p) β̂B1 +

(
1− ϑ̂

)
pβ̂B2 +

(
1 + ϑ̂

)
pβ̂W

=
(

[1− p]
[
1 + ϑ̂

]
β̂B1 + pβ̂B2

)(
1− ϑ̂

)
+ p

(
1 + ϑ̂

)
β̂W

And the denominator can be arranged as:

(
1 + ϑ̂

)(
1− ϑ̂

)
(1− p) +

(
1− ϑ̂

)
p+

(
1 + ϑ̂

)
p

=
(

1− ϑ̂2
)

(1− p) + 2p

= 1− ϑ̂2 − p+ ϑ̂2p+ 2p

= 1− ϑ̂2 + ϑ̂2p+ p

Putting the numerator and denominator together, we get:

β̂MM =

(
(1− p)

(
1 + ϑ̂

)
β̂B1 + pβ̂B2

)(
1− ϑ̂

)
+ p

(
1 + ϑ̂

)
β̂W

1− ϑ̂2 + ϑ̂2p+ p
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In the above equation, the terms ϑ̂, β̂B1 , β̂B2 , and β̂W are random variables. We
can take the expectation of β̂MM using a first order Taylor series expansion:

E
(
β̂MM

)
= E


(

(1− p)
(

1 + ϑ̂
)
β̂B1 + pβ̂B2

)(
1− ϑ̂

)
+ p

(
1 + ϑ̂

)
β̂W

1− ϑ̂2 + ϑ̂2p+ p


=

(
(1− p) (1 + ϑ∗)E

(
β̂B1

)
+ pE

(
β̂B2

))
(1− ϑ∗) + p (1 + ϑ∗)E

(
β̂W

)
1− ϑ∗2 + ϑ∗2p+ p

(4.1)

where ϑ∗ is the expected value of ϑ.

4.2.3 Scenario 1: constant treatment effect

Consider data-generating mechanism 1.3:

Yij = α+ β Zij + µi + εij

From chapter 3, we have E
(
β̂B1

)
= E

(
β̂B2

)
= E

(
β̂W

)
= β.

Substituting these expressions into model 4.1 above, we therefore get:

E
(
β̂MM

)
= ((1− p) (1 + ϑ∗)β + pβ) (1− ϑ∗) + p (1 + ϑ∗)β

1− ϑ∗2 + ϑ∗2p+ p
= β

4.2.4 S2: Treatment effect varies across episode

Consider data-generating mechanism 2.3:

Yij =

α+ β1Zij + µi + εij for j = 1

α+ β2Zij + µi + εij for j = 2

From chapter 3, we have:

E
(
β̂B1

)
= β1

E
(
β̂B2

)
= 1

2 (β1 + β2)

E
(
β̂W

)
= 1

2 (β1 + β2)

Therefore:

105



E
(
β̂MM

)
=
(
(1− p) (1 + ϑ∗)β1 + p

2 (β1 + β2)
)

(1− ϑ∗) + p
2 (1 + ϑ∗) (β1 + β2)

1− ϑ∗2 + ϑ∗2p+ p

The numerator can be simplified as follows:

(
(1 + ϑ∗ − p− pϑ∗)β1 + pβ1

2 + pβ2

2

)
(1− ϑ∗) + (1 + ϑ∗)

(
pβ1

2 + pβ2

2

)

= β1

(
1− ϑ∗2 + ϑ∗2p

)
+ β2p

Putting the numerator and denominator together, this expression becomes:

E
(
β̂MM

)
=
β1
(
1− ϑ∗2 + ϑ∗2p

)
+ β2p

1− ϑ∗2 + ϑ∗2p+ p

4.2.5 S3: Treatment effect varies across value of Mi

Consider data-generating mechanism 2.1:

Yij =

α+ β1Zij + µi + εij if Mi = 1

α+ β2Zij + µi + εij if Mi = 2

From chapter 3, we have:

E
(
β̂B1

)
= β1

E
(
β̂B2

)
= β2

E
(
β̂W

)
= β2

Therefore:

E
(
β̂MM

)
= ((1− p) (1 + ϑ∗)β1 + pβ2) (1− ϑ∗) + p (1 + ϑ∗)β2

1− ϑ∗2 + ϑ∗2p+ p

= (1− p) (1 + ϑ∗)β1 − ϑ∗ (1− p) (1 + ϑ∗)β1 + 2pβ2

1− ϑ∗2 + ϑ∗2p+ p

=
(1− p)

(
1− ϑ∗2)β1 + 2pβ2

1− ϑ∗2 + ϑ∗2p+ p
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4.2.6 S4: Treatment effect carries forward into the second episode

Consider data-generating mechanism 2.2:

Yij = α+ β Zij + γ Zi,j−1 + µi + εij

From chapter 3, we have:

E
(
β̂B1

)
= β

E
(
β̂B2

)
= β + γ

2

E
(
β̂W

)
= β − γ

2

Therefore:

E
(
β̂MM

)
=
(
(1− p) (1 + ϑ∗)β + p

(
β + γ

2
))

(1− ϑ∗) + p (1 + ϑ∗)
(
β − γ

2
)

1− ϑ∗2 + ϑ∗2p+ p

= β − γ pϑ∗

1− ϑ∗2 + ϑ∗2p+ p

4.2.7 S5: Treatment becomes less effective on re-use

Consider data-generating mechanism 2.4:

Yij =

α+ βZij + µi + εij for Zi,j−1 = 0

α+ (β + δ)Zij + µi + εij for Zi,j−1 = 1

From chapter 3, we have:

E
(
β̂B1

)
= β

E
(
β̂B2

)
= β + δ

2

E
(
β̂W

)
= β

Therefore:
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E
(
β̂MM

)
=
(
(1− p) (1 + ϑ∗)β + p

(
β + δ

2
))

(1− ϑ∗) + pβ (1 + ϑ∗)
1− ϑ̂2 + ϑ̂2p+ p

=
β ((1− p) (1 + ϑ∗) (1− ϑ∗) + p (1− ϑ∗) + pβ (1 + ϑ∗)) + pδ

2 (1− ϑ∗)
1− ϑ∗2 + ϑ∗2p+ p

=
β
(
1− ϑ∗2 + ϑ∗2p+ p

)
+ pδ

2 (1− ϑ∗)
1− ϑ∗2 + ϑ∗2p+ p

β + pδ (1− ϑ∗)
2
(
1− ϑ∗2 + ϑ∗2p+ p

)
4.2.8 S6: Constant treatment effect, differential non-enrolment based on outcome in

previous episode

This is the same scenario as in section 3.3.10 of chapter 3, where there is differential
non-enrolment based on the patient’s outcome in episode 1. Full details are available
there. Briefly, consider the following data generating mechanism:

Yij = α+ βtrtZij + βXPLXPLi + µi + εij

where XPLi is an unobserved binary patient-level variable (i.e. it is constant across
episodes).

Now, Ri2 = 1 denotes the patient has re-enrolled for episode 2, and Ri2 = 0 denotes
they have not re-enrolled. In this scenario, the probability of re-enrolment depends
on two factors: treatment allocation in episode 1 (Zi1) and the value of XPLi (where
XPLi is a marker of the patient’s outcome in episode 1).

Then, π = P (XPLi = 1), and let pzx = P (Ri2 = 1|Zi1 = zi1, XPLi = xPLi) (i.e.
pzx denotes the probability of being re-enrolled for a second episode given Zi1 and
XPLi). So, for example, p00 = P (Ri2 = 1|Zi1 = 0, XPLi = 0), and p01 = P (Ri2 = 1|Zi1 = 0, XPLi = 1).
For simplicity, I will assume that π = 0.5, and that p00 = p11 and p01 = p10.

Then, from chapter 3, we have:

E
(
β̂B1

)
= βtrt + βXPL

(p01 − p00)
2 (1− p)

E
(
β̂B2

)
= βtrt + βXPL

(p00 − p01)
2p

E
(
β̂w

)
= βtrt
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For the moment, I will focus on the first component of the numerator of equation
4.1:

(1− p) (1 + ϑ∗)E
(
β̂B1

)
+ pE

(
β̂B2

)
=

(1− p) (1 + ϑ∗)
(
βtrt + βXPL

(p01 − p00)
2 (1− p)

)
+ p

(
βtrt + βXPL

(p00 − p01)
2p

)

= (1− p) (1 + ϑ∗)
(

2 (1− p)βtrt + βXPL (p01 − p00)
2 (1− p)

)
+p
(

2pβtrt + βXPL (p00 − p01)
2p

)

= (1 + ϑ∗)
(

2 (1− p)βtrt + βXPL (p01 − p00)
2

)
+
(

2pβtrt + βXPL (p00 − p01)
2

)

= 1
2

(
2 (1− p)βtrt + βXPL (p01 − p00) + 2ϑ∗ (1− p)βtrt + ϑ∗βXPL (p01 − p00) +

2pβtrt + βXPL (p00 − p01)
)

= 1
2

(
βtrt (2 (1− p) + 2ϑ∗ (1− p) + 2p)

+ βXPL ((p01 − p00) + ϑ∗ (p01 − p00) + (p00 − p01))
)

= 1
2 (2βtrt (1 + ϑ∗ − ϑ∗p) + ϑ∗βXPL (p01 − p00))

Next, I will add in the term (1− ϑ∗) which is attached to the component above:

(
(1− p) (1 + ϑ∗)E

(
β̂B1

)
+ pE

(
β̂B2

))
(1− ϑ∗) =

1
2 (2βtrt (1 + ϑ∗ − ϑ∗p) + ϑ∗βXPL (p01 − p00)) (1− ϑ∗)

= 1
2

(
2βtrt (1 + ϑ∗ − ϑ∗p) + ϑ∗βXPL (p01 − p00)−

2ϑ∗βtrt (1 + ϑ∗ − ϑ∗p)− ϑ∗2βXPL (p01 − p00)
)

Then, the final term in the numerator is:
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p (1 + ϑ∗)E
(
β̂W

)
= p (1 + ϑ∗)βtrt = 2pβtrt + 2ϑ∗pβtrt

2

Then, the overall numerator is:

(
(1− p) (1 + ϑ∗)E

(
β̂B1

)
+ pE

(
β̂B2

))
(1− ϑ∗) + p (1 + ϑ∗)E

(
β̂W

)

= 1
2

(
2βtrt (1 + ϑ∗ − ϑ∗p) + ϑ∗βXPL (p01 − p00)− 2ϑ∗βtrt (1 + ϑ∗ − ϑ∗p)−

ϑ∗2βXPL (p01 − p00) + 2pβtrt + 2ϑ∗pβtrt
)

= 1
2

(
βtrt (2 (1 + ϑ∗ − ϑ∗p)− 2ϑ∗ (1 + ϑ∗ − ϑ∗p) + 2p+ 2ϑ∗p) +

βXPL

(
ϑ∗ (p01 − p00)− ϑ∗2 (p01 − p00)

))

= βtrt

(
1− ϑ∗2 + ϑ∗2p+ p

)
+ βXPL

((
ϑ∗ − ϑ∗2) (p01 − p00)

2

)

Putting the numerator and denominator together, we have:

E
(
β̂MM

)
=
βtrt

(
1− ϑ∗2 + ϑ∗2p+ p

)
+ βXPL

(
(ϑ∗−ϑ∗2)(p01−p00)

2

)
1− ϑ∗2 + ϑ∗2p+ p

And so:

E
(
β̂MM

)
= βtrt + βXPL

(
ϑ∗ − ϑ∗2) (p01 − p00)

2
(
1− ϑ∗2 + ϑ∗2p+ p

)
4.2.9 S7: Constant treatment effect, differential non-enrolment based on expected outcome

in current episode

This is the same scenario as in section 3.3.11 of chapter 3, where there is differential
non-enrolment based on the patient’s baseline prognosis at episode 2. Full details are
available there. Briefly, consider the following data generating mechanism:

Yij = α+ βtrtZij + βXELXELij + µi + εij

where XELij is an unobserved binary episode-level variable (i.e. it can vary across
episodes).
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In this scenario, I will redefine π as π = P
(
XELij = 1

)
, and set this to π = 0.5.

Similarly I will redefine pzx as pzx = P (Ri2 = 1|Zi1 = zi1, XELi2 = xELi2) (so pzx
represents the probability of re-enrolment for a second episode based on the patient’s
episode 1 allocation and their episode 2 value of XELij ). So, for example, p00 =
P (Ri2 = 1|Zi1 = 0, XELi2 = 0), and p01 = P (Ri2 = 1|Zi1 = 0, XELi2 = 1). As before,
I will assume that p00 = p11 and p01 = p10.

In this scenario, I will assume for simplicity that all patients experienced two
episodes (i.e. Mi = 2 for all patients), but that some of these patients were not
re-enrolled for their 2nd episode. Therefore, even patients who were enrolled for only
a single episode still have a value for XELi2 .

From chapter 3, we have:

E
(
β̂B1

)
=

NT
2 (1− p)
NT

2 (1− p)

(
βtrt + βXEL

2 − βXEL
2

)
= βtrt

E
(
β̂B2

)
= 1

2

(
2βtrt + βXEL

(
p00 − p01

p00 + p01

))
= βtrt + βXEL

4

(
p00 − p01

p

)

E
(
β̂w

)
= 1

2

(
2βtrt − βXEL

(
p00 − p01

p00 + p01

))
= βtrt −

βXEL
4

(
p00 − p01

p

)

Then, the numerator of E
(
β̂MM

)
is:

E
(
β̂MM

)
=
(

(1− p) (1 + ϑ∗)βtrt + p

(
βtrt + βXEL

4

(
p00 − p01

p

)))
(1− ϑ∗) +

p (1 + ϑ∗)
(
βtrt −

βXEL
4

(
p00 − p01

p

))

For the moment, I will focus on the first component of the numerator. If we let
A = βXEL

4

(
p00−p01

p

)
, then the numerator becomes:

((1− p) (1 + ϑ∗)βtrt + p (βtrt +A)) (1− ϑ∗) + p (1 + ϑ∗) (βtrt −A)

= βtrt ((1− p) (1 + ϑ∗) (1− ϑ∗) + p (1− ϑ∗) + p (1 + ϑ∗))+p (1− ϑ∗)A−p (1 + ϑ∗)A

= βtrt

(
(1− p)

(
1− ϑ∗2

)
+ 2p

)
− 2pϑ∗A = βtrt

(
1− ϑ∗2 + ϑ∗2p+ p

)
− 2pϑ∗A
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Putting the numerator and denominator together, and substituting in for A, we
have:

E
(
β̂MM

)
=
βtrt

(
1− ϑ∗2 + ϑ∗2p+ p

)
− 2pϑ∗ βXEL4

(
p00−p01

p

)
1− ϑ∗2 + ϑ∗2p+ p

And so:

E
(
β̂MM

)
= βtrt −

ϑ∗βXEL (p00 − p01)
2
(
1− ϑ∗2 + ϑ∗2p+ p

)
4.2.10 Summary of mathematical results

In table 4.2 I present the results derived previously alongside the estimand for com-
parison. Mixed-effects models are biased (as defined in section 3.4.1.3) in every setting
considered except when the treatment effect is constant. An exception to this is if
either ϑ∗ = 0 (i.e. the expected value of the estimated intraclass correlation is 0) or
p = 0 (i.e. all patients experience one episode). Additionally, in scenarios 6 and 7, the
mixed-effects model estimate will be unbiased if p01 = p00 (note in these scenarios, if
p = 0 this implies that p01 = p00). These conditions (particularly ϑ∗ = 0 or p = 0) do
not seem plausible for most re-randomisation trials.

The reason for this bias is due to how the components β̂B1 , β̂B2 , and β̂W are
weighted. The mixed-effects model weights each component by its inverse variance.
When the treatment effect is constant, this is useful as it leads to more precise (smaller
variance) estimates that are unbiased. However, when the values of these components
are different to each other, then the mixed-effects model weights them differently to
how they are weighted in the estimand (where each component is weighted by its
number of episodes). The mixed-effects model therefore gives too much weight to some
components and too little weight to others, which leads to systematic differences to
the estimand (i.e. bias). The components β̂B1 , β̂B2 , and β̂W will generally be different
to each other unless the treatment effect is not affected by factors such as j, Mi, or Z̃ij
(implying the cluster size is non-informative), and there is no differential non-enrolment
between treatment groups. These conditions are violated in scenarios S2-S7, and so
mixed-effects models are biased.

4.3 Simulation study

I conducted a simulation study to evaluate the performance of mixed-effects models.
In particular, I wanted to look at their performance in small sample settings (as the
mathematical derivations in the previous section assumed a large sample size), and
to assess their performance under more realistic data generating mechanisms than
considered in the mathematical derivations in the previous section. I also wanted
to look at whether including a causal model for treatment history could reduce or

112



Table 4.2: Summary of mathematical derivations

Scenario E
(
β̂MM

)
Estimand
(per-episode
added-
benefit)

S1 – Constant treatment effect β β

S2 – Treatment effect varies across
episode

β1(1−ϑ∗2+ϑ∗2p)+β2p

1−ϑ∗2+ϑ∗2p+p
β1+pβ2

1+p

S3 – Treatment effect varies across
value of Mi

(1−p)(1−ϑ∗2)β1+2pβ2

1−ϑ∗2+ϑ∗2p+p
(1−p)β1+2pβ2

(1+p)

S4 – Treatment effect carries forward
into the second episode

β − γ pϑ∗

1−ϑ∗2+ϑ∗2p+p β

S5 – Treatment becomes less effective
on re-use

β + pδ(1−ϑ∗)
2(1−ϑ∗2+ϑ∗2p+p) β + pδ

2(1+p)

S6 – Constant treatment effect, dif-
ferential non-enrolment based on out-
come in previous episode

βtrt + βXPL
(ϑ∗−ϑ∗2)(p01−p00)
2(1−ϑ∗2+ϑ∗2p+p) βtrt

S7 – Constant treatment effect, dif-
ferential non-enrolment based on ex-
pected outcome in current episode

βtrt −
ϑ∗βXEL (p00−p01)
2(1−ϑ∗2+ϑ∗2p+p) βtrt

eliminate bias, as this has been shown to be effective in certain scenarios (e.g. including
a term for Zi,j−1 in the model eliminates bias when the treatment effect carries forward,
such as under data generating model 2.2 [9]).

In this simulation study, I focus on the per-episode added-benefit and policy-benefit
estimands. I decided not to evaluate the per-patient estimands as the use of weights in
mixed-effects models can be complicated (for instance, weights cannot be specified for
a linear mixed-effects model in Stata if restricted maximum likelihood is used, which
is the recommended method for obtaining estimates from mixed-effects models with
small sample sizes [52, 53]). Further, I found the results from the simulation study on
the per-episode estimators to be fairly conclusive, and in line with the mathematical
derivations shown earlier, and felt it was reasonable to extrapolate these results to
mixed-effects models with weights (i.e. I felt it was unlikely that adding a weight to
the model would reduce the bias found from the unweighted per-episode model).

I used the same general simulation scenarios and data generating mechanisms as
in chapter 3, except I omitted simulation study 2b (i.e. I only performed simulation
studies 1 and 2a); this was because I felt the results from studies 1 and 2a were
conclusive, and so there was no need for further evaluation in study 2b. The full
methods are available in chapter 3, but I summarise them briefly below. The only
difference in the data generating mechanism from chapter 3 was the value of the
variance parameters (σ2

µ and σ2
ε); in chapter 3 I used values of 5 for both, leading

to an ICC of 0.5. Mixed-effects models are more biased for larger ICCs (as shown in
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sections 4.2.4-4.2.9), and in this simulation study I wanted to evaluate how poorly
these models might perform under a large (but plausible) value. Therefore, I used
values of σ2

µ = 7.5 and σ2
ε = 2.5 to give an ICC of 0.75.

As before, I used 10,000 replications for all scenarios.

4.3.1 Estimands

As discussed above, I used the per-episode added-benefit and per-episode policy-benefit
estimands. Values for each of these estimands for each simulation scenario are provided
in chapter 3.

4.3.2 Methods of analysis

For the per-episode policy-benefit estimand, I used the following mixed-effects model:

Yij = α̂+ β̂Zij + γ̂Zi,j−1 + δ̂ZijZi,j−1 + β̂epXepij + µi + εij (4.2)

Following on from section 3.1.3 in chapter 3, an overall estimate of the treatment
effect is then calculated as: N1

MT

(
β̂
)

+ N2
MT

(
γ̂ + β̂ + δ̂

)
.

For the per-episode added-benefit estimand, I used two different mixed-effects
models. The first was analysis model 1.2 (this is referred to as MM in results). The
second model specified the same causal model for the effect of treatment history (Z̃ij)
on the outcome as model 4.2 for the policy-benefit estimator. The purpose of this
model was to evaluate whether including a causal model for treatment history could
reduce bias. This model is referred to as MM(adj) in results (to denote it is adjusted
for treatment history). An overall estimate of the treatment effect is then calculated
as:

N1

MT

(
β̂
)

+
N2,Z̃=(0)

MT

(
β̂
)

+
N2,Z̃=(1)

MT

(
β̂ + δ̂

)
where N

j,Z̃=z̃ denotes the number of patients enrolled at episode j with treatment
history Z̃ = z̃ (i.e. N2,Z̃=(0) denotes the number of patients enrolled at episode 2 who
were allocated to control in their first episode, and N2,Z̃=(1) is the number allocated

intervention in their first episode). The first term ( N1
MT

(
β̂
)
) is the treatment effect

component for the first episode, the second term
N

2,Z̃=(0)
MT

(
β̂
)
is the treatment effect

component at the second episode for patients who received control in their first episode,
and

N
2,Z̃=(1)
MT

(
β̂ + δ̂

)
is the component at the second episode for patients who received

intervention in their first episode. Note that the reason the added-benefit and policy-
benefit estimators based on model 4.2 calculate the 2nd episode results differently is
the added-benefit effect calculates separate treatment effects depending on treatment
history, whereas the policy-benefit effect does not allow for different treatment histories
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Table 4.3: Stata code to implement mixed-effects models and independence estimators
in simulation study. ‘y’ denotes patient outcome, ‘z’ denotes treatment allocation, ‘id’
is a unique identifier for patient, ‘m_i’ denotes the number of episodes for which the
patient is enrolled in the trial, ‘z_prev’ denotes the patient’s treatment allocation
in their previous episode (and is set to 0 if it is the patient’s first episode), ‘x_ep’
denotes the episode (0=first episode, 1=second episode), and ‘prop_1st_ep’ and
‘prop_2nd_ep’ represent the proportion of episodes in the trial which are 1st and
2nd episodes respectively, and ‘prop_ep2_prevz0’ and ‘prop_ep2_prevz1’ represent
the proportion of episodes which are 2nd episodes where treatment allocation in the
previous episode was 0 and 1 respectively. In order to run the above code in Stata,
‘prop_1st_ep’, ‘prop_2nd_ep’, ‘prop_ep2_prevz0’, and ‘prop_ep2_prevz1’ must be
saved as Stata local macros.

Estimator Stata code
Per-episode, added-benefit

Mixed-effects model
(MM)

mixed y z || id:, iterate(50) reml

Mixed-effects model
(MM [adj])

mixed y z##z_prev x_ep || id:, iterate(50) reml

lincomest
‘prop_1st_ep’*_b[1.z] + ‘prop_ep2_prevz0’*_b[1.z]
+
‘prop_ep2_prevz1’*(_b[1.z] + _b[1.z#1.z_prev])

Independence estima-
tor

reg y z, vce(cluster id)

Per-episode, policy-benefit
Mixed-effects model mixed y z##z_prev x_ep || id:, iterate(50) reml

lincomest ‘prop_1st_ep’*_b[1.z] +
‘prop_2nd_ep’*(_b[1.z]+_b[1.z_prev] +
_b[1.z#1.z_prev])

Independence estima-
tor

reg y z##z_prev x_ep, vce(cluster id)

lincomest ‘prop_1st_ep’*_b[1.z] +
‘prop_2nd_ep’*(_b[1.z]+_b[1.z_prev] +
_b[1.z#1.z_prev])

(i.e. it calculates the treatment effect for intervention in the current and all previous
episodes vs. control in the current and all previous episodes).

The Stata code used to implement these mixed-effects models is shown in table
4.3. All mixed-effects models were estimated using restricted maximum likelihood
[52, 53]. For each simulation study I also included the relevant independence estimator
from chapter 3 for comparison (e.g. for the policy-benefit estimand I include the
same independence policy-benefit estimator used in chapter 3, and similarly for the
added-benefit estimand).
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4.3.3 Performance measures

As before, my main criterion for evaluating estimators was bias (as defined in chapter
3). I also evaluated coverage of the 95% confidence intervals (defined in chapter 3),
and precision [27]. I evaluated the precision of the mixed-effects models against the
independence estimators. The relative % increase in precision for a mixed-effects model
vs. an independence estimator is defined as:

100

V
(
β̂IND

)
V
(
β̂MM

) − 1


Where β̂IND represents the independence estimator, and V

(
β̂MM

)
and V

(
β̂IND

)
represent the empirical variance estimates of the mixed-effects model and independence
estimators respectively (and are estimated as the variance of the treatment effect
estimates across all replications). Therefore, values >1 indicate that mixed-effects
models are giving more precise estimates than independence estimators.

4.3.4 Simulation study 1: patients enrolled for all episodes they experience

Full details are provided in chapter 3; I briefly summarise the key information here.
This simulation study is based on a trial of 300 patients; 150 patients experience one
episode during the trial period, and 150 experience two episodes. I used the same six
different data generating mechanisms as in chapter 3 (apart from the size of the ICC,
as described above), which are:

1. Constant treatment effect

2. Treatment effect varies across episode

3. Treatment effect varies across patients with different values of Mi

4. Treatment effect carries forward into the 2nd episode

5. Treatment becomes less effective on re-use

6. Treatment effect varies across episodes, across patients with different values of
Mi, carries forward, and becomes less effective on re-use

Continuous outcomes were generated based on model 3.13 from chapter 3:

Yij = α+ βtrtZij + βepXepij + βMXMi
+ βTRTxEPZijXepij + βTRTxMZijXMi

+

γZi,j−1 + δZijZi,j−1 + µi + εij
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where Xepij is an indicator variable for episode 2, and XMi
is an indicator variable

for patients with Mi = 2. For each scenario, I set α = 0, βtrt = 3, βep = 1, βM = 1,
σ2
µ = 7.5 and σ2

ε = 2.5. I generated µi and εij independently; based on the chosen
variances, the intraclass correlation between episodes from the same patient is 0.75
(conditional on the other variables in the data generating model).

Values for other parameters are shown in table 3.15 in chapter 3.

4.3.5 Simulation study 2a: some patients do not re-enrol for their 2nd episode

Full details are provided in chapter 3; I briefly summarise the key information here. As
before, this simulation study is based on a trial of 300 patients; 150 patients experience
one episode during the trial period, and 150 experience two episodes. All patients are
enrolled for their first episode, but a subset of patients who experience two episodes do
not re-enrol for their second episode. Therefore, NT = 300 and MT (1) = 150, however
MT (2) < 150 and MT < 450; the exact values of MT (2) and MT vary across simulation
replications.

I used the same six data generating mechanisms, and the same five non-enrolment
scenarios as in chapter 3 (apart from the size of the ICC, as described above). The
data generating mechanisms were listed in the previous section, and the non-enrolment
scenarios are:

1. Non-enrolment depends on previous treatment allocation

2. Non-enrolment depends on previous treatment allocation and previous outcome

3. Non-enrolment depends on previous treatment allocation and baseline prognosis
at episode 2

4. Non-enrolment is differential between treatment groups based on previous out-
come

5. Non-enrolment is differential between treatment groups based on baseline prog-
nosis at episode 2

I simulated data by first generating outcomes for all 450 episodes (regardless of
whether they were enrolled in the trial) using model 3.14 from chapter 3:

Yij = α+ βtrtZij + βepXepij + βMXMi + βTRTxEPZijXepij + βTRTxMZijXMi+

γZi,j−1 + δZijZi,j−1 + βXPLXPLi + βXELXELij + µi + εij

where Xepij is an indicator variable for episode 2, XMi is an indicator variable for
patients with Mi = 2, and XPLi and XELij are unobserved binary covariates, with
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XPLi being a patient-level covariate which does not vary across episodes, and XELij

being an episode-level covariate which can vary across episodes for the same patient.
Values for each parameter are shown in tables 3.16 and 3.17 in chapter 3 (except for
σ2
µ and σ2

ε , which are 7.5 and 2.5 respectively, as described in the previous section).

I then generated an indicator for each episode to denote whether it was enrolled in
the trial or not using model 3.15 from chapter 3:

P (Ri2 = 0) = αR2 + γR2Zi,j−1 + βR2
XPL

XPLi + βR2
XEL

XELi2+

δR2
XplZi,j−1XPLi + δR2

XelZi,j−1XELi2

where Ri2 denotes whether the patient was enrolled at episode 2 (where 1=enrolled,
0=not enrolled).

I then performed analysis only on the subset of enrolled episodes. As before, I set
αR2 = 0.05 and γR2 = 0.10 for all scenarios; values for the parameters βXPL , βXEL ,
δR2
Xpl, and δ

R2
Xel are shown in table 3.17 in chapter 3.

4.3.6 Simulation study (results)

4.3.6.1 Simulation study 1: patients enrolled for all episodes they experience

Results for the per-episode added-benefit estimand are shown in figure 4.1. Mixed-
effects models had much higher precision than independence estimators across all
scenarios. However, they also had high levels of bias in most settings. The unadjusted
mixed-effects model was biased in all settings except when the treatment effect was
constant (scenario 1); the adjusted model removed bias in scenarios 4 and 5, but was
still biased in all other settings. This led to severe under-coverage in most settings.

Results for the per-episode policy-benefit estimand are shown in figure 4.2. Mixed-
effects models had higher precision than independence estimators, but were biased
when the treatment effect varied by episode (scenarios 2 and 6). Coverage was good
except in scenarios where the treatment effect estimate was biased.

4.3.6.2 Simulation study 2a: some patients do not re-enrol for their 2nd episode

Results for the per-episode added-benefit estimand are shown in figures 4.3 to 4.5.
Mixed-effects models were biased across most scenarios. Under certain non-enrolment
scenarios, bias occurred even when the treatment effect was constant. Interestingly, bias
was minimal under non-enrolment scenario 3. This is likely because inclusion of XELij

in the data generating model for the outcome acts to reduce the ICC by a substantial
amount. Because the amount of bias depends on the size of the ICC, a reduction in the
ICC leads to lower bias in these scenarios. The reason the inclusion of XELij serves
to reduce the ICC is that it is an additional source of unexplained variation which is
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Figure 4.1: Bias, coverage, and precision of mixed-effects models compared to in-
dependence estimators for per-episode added-benefit effect in simulation study 1
(no non-enrolment). Ind=independence estimator. MM=mixed-effects model. MM
(adj)=mixed-effects model adjusted for treatment history. Error bars are 95% confi-
dence intervals based on Monte Carlo standard errors.

subsumed into the estimate of σ2
ε . It contributes to σ2

ε rather than σ2
µ because it is not

a patient-level factor (i.e. it varies across episodes and is independent within patients).
The inclusion of XELij also serves to decrease the ICC in non-enrolment scenario
5, although bias is not reduced by as much, possibly because the non-enrolment is
differential between treatment groups in this scenario.

Similarly, the inclusion of XPLi serves to increase the ICC in non-enrolment
scenarios 2 and 4, because the added variability due to XPLi is subsumed in σ2

µ

(because XPLi is a patient level factor). Therefore, bias is higher in these scenarios
than in non-enrolment scenario 1, where XPLi is not included.

Coverage was valid except when estimators were biased, in which case it was too low.
As before, mixed-effects models had higher precision than independence estimators.
However, there was minimal difference under non-enrolment scenarios 3 and 5. This
is also due to the decrease in the ICC from XELij , as the increase in precision from
mixed-effects models depends on the size of the ICC [51].

Results for the per-episode policy-benefit estimand are shown in figures 4.6 to 4.8.
The mixed-effects model was biased across a number of scenarios. Interestingly it was
less biased than independence estimators in non-enrolment scenario 4 under treatment
effect scenarios 1, 4, and 5, though in all other scenarios, independence estimators have
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Figure 4.2: Bias, coverage, and precision of mixed-effects models to independence
estimators for per-episode policy-benefit effect in simulation study 1 (no non-enrolment).
Ind=independence estimator. MM=mixed-effects model. Error bars are 95% confidence
intervals based on Monte Carlo standard errors.

equivalent or smaller bias. It is not clear why mixed-effects models were less biased in
these scenarios. One possible explanation is that the bias for independence estimators
comes from bias in the estimate of γ; it may be that mixed-effects models are able
to obtain valid estimates of γ in these settings due to the within-patient comparison,
and so are less biased.

Under non-enrolment scenario 5 all methods are similarly biased. Coverage of
mixed-effects models was valid except in scenarios where there was bias. Mixed-effects
models were much more precise than independence estimators.

4.3.6.3 Discussion

In this chapter I evaluated the use of mixed-effects models with a random intercept
in re-randomisation trials. As expected, these methods offered much higher precision
compared to independence estimators. However, this came at the expense of increased
bias in most settings. The unadjusted mixed-effects model was biased for the added-
benefit estimand in all settings except those where the treatment effect was constant
across patients and episodes, and non-enrolment was non-differential between treatment
arms. Adjusting for treatment history reduced bias for some, but not all scenarios.
Mixed-effects models performed better for the policy-benefit estimand, but were still
biased in a number of scenarios. They were generally more biased than independence
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Figure 4.3: Bias of mixed-effects models compared to independence estimators for per-
episode added-benefit effect in simulation study 2a (with non-enrolment). NE=Non-
enrolment scenario. Ind=independence estimator. MM=mixed-effects model. MM
(adj)=mixed-effects model adjusted for treatment history. Error bars are 95% confidence
intervals based on Monte Carlo standard errors.

estimators except in a couple of instances.

I therefore recommend that mixed-effects models not be used in re-randomisation
trials, as their potential risks far outweigh their potential benefits. This is particularly
the case as their gain in precision is most pronounced when the ICC is high, however
this is also when they are most biased. This result follows on from the informative
cluster size literature, which has shown that mixed-effects models are not appropriate
when cluster size is informative [45].

Therefore, independence estimators are a preferred option, as they are either
unbiased or less biased in most scenarios. As such, independence estimators should be
the default method of analysis in re-randomisation trials.
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Figure 4.4: Coverage of mixed-effects models compared to independence estimators
for per-episode added-benefit effect in simulation study 2a (with non-enrolment).
NE=Non-enrolment scenario. Ind=independence estimator. MM=mixed-effects model.
MM (adj)=mixed-effects model adjusted for treatment history. Error bars are 95%
confidence intervals based on Monte Carlo standard errors.
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Figure 4.5: Precision of mixed-effects models compared to independence estimators
for per-episode added-benefit effect in simulation study 2a (with non-enrolment).
NE=Non-enrolment scenario. MM=mixed-effects model. MM (adj)=mixed-effects
model adjusted for treatment history. Error bars are 95% confidence intervals based
on Monte Carlo standard errors.
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Figure 4.6: Bias of mixed-effects models compared to independence estimators for
per-episode policy-benefit effect in simulation study 2a (with non-enrolment). NE=Non-
enrolment scenario. Ind=independence estimator. MM=mixed-effects model. Error
bars are 95% confidence intervals based on Monte Carlo standard errors.

Figure 4.7: Coverage of mixed-effects models compared to independence estimators
for per-episode policy-benefit effect in simulation study 2a (with non-enrolment).
NE=Non-enrolment scenario. Ind=independence estimator. MM=mixed-effects model.
Error bars are 95% confidence intervals based on Monte Carlo standard errors.
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Figure 4.8: Precision of mixed-effects models compared to independence estimators for
per-episode policy-benefit effect in simulation study 2a (with non-enrolment). NE=Non-
enrolment scenario. MM=mixed-effects model. Error bars are 95% confidence intervals
based on Monte Carlo standard errors.
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5 Comparing re-randomisation with
other designs

5.1 Overview of other designs

In this chapter, I will compare re-randomisation with other trial designs that could
be used in multi-episode settings. The three other designs I consider are (i) parallel
group designs; (ii) crossover designs; and (iii) cluster designs. These designs are shown
in figure 5.1. I discuss each of these designs below.

5.1.1 Parallel group design

5.1.1.1 Overview

This trial design was briefly discussed in the introduction of this thesis, and its basic
outline is shown in figure 5.1. In a parallel group trial, patients can be enrolled for

Figure 5.1: Overview of re-randomisation, cluster, crossover, and parallel group designs
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only a single episode; they are not eligible to be re-enrolled for subsequent treatment
episodes.

5.1.1.2 Potential benefits

One benefit of the parallel group design is its simplicity; restricting to one episode
per patient leads to a much simpler trial. Unlike for a re-randomisation trial, we do
not need to worry about which estimand to estimate, as the effect of treatment the
first time it is used (the episode 1 effect) is the only estimand available. We also do
not need to worry about how to handle the additional episodes in the analysis (for
instance, how to weight the episodes or how to specify a causal model for a patient’s
treatment history).

If our only aim is to estimate the effect of an intervention the first time it is used,
then it is unlikely any design will be better than a parallel group trial. Although the
re-randomisation design can be used to estimate the episode specific treatment effects,
it will usually have lower precision than a parallel group design for the episode 1
effect. For example, for a trial that requires 300 observations, the parallel group design
would enrol 300 individual patients whereas a re-randomisation trial may recruit 300
episodes from 200 patients. The parallel group design would then use 300 observations
to estimate the episode 1 effect, whereas the re-randomisation trial would use 200
observations for this estimate.

5.1.1.3 Potential downsides

Although the parallel group design is very good at estimating the effect of an interven-
tion the first time it is used, it cannot estimate other treatment effects (e.g. the effect
in subsequent episodes or an average effect across all episodes) without making very
strong assumptions. The parallel group design will only provide unbiased estimates for
other estimands, such as policy-benefit or added-benefit effects, if the treatment effect
in the j = 1 episodes is the same as the treatment effect in the j > 1 episodes. If this
is not the case then estimates from a parallel group design will generally be biased. It
is worth noting that this assumption cannot be assessed from the data collected in a
parallel group design, so the decision to use a parallel group design for these estimands
would rely on strong, untestable assumptions.

Another drawback to a parallel group design is the potential loss of precision
through exclusion of patient’s subsequent episodes. The parallel group trial will either
recruit fewer observations over the same time frame as a re-randomisation design,
or will recruit an equivalent number of observations over a longer time period. For
example, consider a setting where 200 patients experience 300 episodes over a 4 year
period (where 100 patients experience one episode and 100 patients experiencing two
episodes in that time). Over the 4 year period the parallel group trial would recruit 200
patients while the re-randomisation design would recruit 300 episodes. Alternatively,
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the parallel group trial could continue recruiting until it had enrolled 300 patients,
but this would likely take an extra 2 years.

5.1.2 Cluster design

5.1.2.1 Overview

The basic outline of the cluster design is shown in figure 5.1. In this design, patients
act as the cluster, and are allocated to a treatment arm for all episodes they experience
(i.e. instead of randomising episodes to treatments, the cluster design allocates all
episodes within a patient to the same treatment). Note that this design differs to
cluster trials where a hospital or medical site acts as the cluster, and all patients
within the cluster receive the same treatment; instead, the patients themselves are the
clusters, and different patients in the same hospital or medical site may be allocated
to different treatment strategies.

5.1.2.2 Potential benefits

The design of the cluster trial matches the policy-benefit estimand, as patients are
allocated to a treatment policy for all episodes. Therefore estimation of the policy-
benefit effect is very simple in a cluster design, and is just calculated as a difference in
means between groups (for the per-episode estimand); there is no need to specify a
causal model for treatment history as for a re-randomisation trial. Estimation of the
policy-benefit effect will therefore be much more robust in a cluster design, as there is
no chance of bias from a misspecified causal model.

5.1.2.3 Potential downsides

One potential downside of the cluster design is that it cannot estimate the added-benefit
effect, as this requires a comparison between intervention and control patients who
share the same treatment history (which cannot happen in a cluster trial). However,
this is only a downside if we are interested in the added-benefit effect.

Another downside is that this design does not maintain allocation concealment
after the first episode. Because patients are randomised to the same treatment for
all episodes, if they receive the intervention in episode 1 they will know that they
will also receive the intervention if they re-enrol for their second episode (or third, or
fourth, etc). The patient may decide not to re-enrol based on the fact they will get
the intervention, or the clinician or research staff may decide not to ask the patient
to re-enrol on this basis. This type of selection bias is a common concern in cluster
randomised trials which enrol patients after randomisation, and can lead to bias in
the estimated treatment effects [54, 55, 56, 57]. The lack of allocation concealment
may be less of an issue in double-blinded trials, or in trials where patients and the
research staff enrolling patients are blinded [56].
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5.1.3 Crossover design

5.1.3.1 Overview

The basic outline of the crossover design is shown in figure 5.1. Patients are allocated
to a treatment arm for their first episode, and then receive the opposite treatment in
their second episode (i.e. they cross over to the other treatment) [58, 59, 60].

5.1.3.2 Potential benefits

The main benefit of the crossover design is that it provides a within-patient comparison
for all patients with >1 episode. This will lead to much higher precision compared
to designs which allow some patients with >1 episode to be allocated to the same
treatment for both episodes (i.e. the re-randomisation and cluster designs).

5.1.3.3 Potential downsides

The main issue with the crossover design is that it is not designed to match any
particular estimand. For instance, the design of a re-randomisation trial matches the
added-benefit estimand and the design of a cluster trial matches the policy-benefit
estimand, so these trials can provide unbiased estimates of these estimands under
simple assumptions. However, the design of a crossover trial does not match either of
these estimands (or any other useful estimand that I can think of) and so the crossover
trial will only be unbiased for these estimands under quite strong assumptions (i.e.
that treatment history has no impact on the outcome or treatment effect in the current
episode). The reason for this is that estimation of the policy-benefit effect requires
patients who receive the same treatment in consecutive episodes, and estimation of
the added-benefit estimand requires a comparison between intervention and control
patients who share the same treatment history; neither of these requirements is met in
a crossover design. Furthermore, the assumption that treatment history does not affect
current episode cannot be assessed from the data in a crossover trial, and so using a
crossover design for these estimands will rely on strong untestable, assumptions.

Another downside is that, like the cluster design, crossover trials do not maintain
allocation concealment after the first episode (as patients and research staff know
patients will receive the opposite treatment for their next episode). Therefore crossover
designs are also susceptible to selection bias; however, this selection bias may act in a
different manner than in cluster designs, as patients and clinicians will know they will
receive the opposite treatment in their next episode, rather than the same treatment.

5.2 Mathematical derivation of bias

In this section I will evaluate the asymptotic bias of the cluster and crossover designs
in multi-episode settings, for both independence estimators and mixed-effects models
with a random-intercept for patient (hereafter referred to as ’mixed-effects models’). I
will evaluate the cluster design against the per-episode policy-benefit estimand, and
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the crossover design against the per-episode added-benefit estimand; I chose not to
evaluate the crossover design against the policy-benefit estimand as there is such an
obvious mismatch between the two that it is clear the crossover trial should not be
used for this estimand. I also do not evaluate the bias of the parallel group design as
it is obvious that it will be biased in almost all settings where the treatment effect is
not constant across patients and episodes.

As before, I will restrict the setting to a trial with a 1:1 allocation ratio, where
patients experience a maximum of two episodes, and I will assume that treatment
allocation does not affect the occurrence of subsequent episodes.

I will use the same method of derivation as in chapters 3 and 4 (i.e. based on the
between- and within-patient estimation components β̂B1 , β̂B2 , and β̂W ), and will use
the same notation; for instance, in the section for crossover designs, the parameter ϑ∗

will refer to the expected value of the estimated intraclass correlation coefficient based
on the mixed-effects model applied to the crossover design.

I will use the same seven scenarios as in chapters 3 and 4:

• S1 – Constant treatment effect

• S2 – Treatment effect varies across episode

• S3 – Treatment effect varies across value of Mi

• S4 – Treatment effect carries forward into the second episode

• S5 – Treatment becomes less effective on re-use

• S6 – Constant treatment effect, differential non-enrolment based on outcome in
previous episode

• S7 – Constant treatment effect, differential non-enrolment based on expected
outcome in current episode

Further explanation for each scenario (along with a formula for the data generating
mechanism) can be found in chapters 3 and 4.

In section 5.2.1 I will discuss the number of patients in each treatment sequence
for the cluster and crossover designs, then in section 5.2.2 I will discuss the estimation
components β̂B1 , β̂B2 and β̂W . In sections 5.2.3-5.2.6 I will derive estimators for
independence and mixed-effects models for cluster and crossover trials, and will
evaluate the expected value of these estimators under the seven scenarios listed above
in sections 5.2.7-5.2.13. In section 5.2.14 I will compare the expected values of these
estimators against the estimand for each scenario to assess bias.
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Table 5.1: Asymptotic number of patients in each treatment sequence in a cluster trial
with 1:1 allocation ratio

Treatment allocation Number of patients at each episode
Sequence Episode 1 Episode 2 Episode 1 Episode 2
Z = (1) 1 - NT

2 (1− p) -
Z = (1, 1) 1 1 NT p

2
NT p

2

Z = (0) 0 - NT
2 (1− p) -

Z = (0, 0) 0 0 NT p
2

NT p
2

5.2.1 Number of patients at each episode for different sequences

As in chapter 3, we need to calculate the number of patients and episodes in each
treatment sequence for the cluster and crossover designs, as these are used to calculate
the components β̂B1 , β̂B2 and β̂W , which are used to derive the expected values of
estimators for both the cluster and crossover designs.

The number of episodes for each treatment sequence in a re-randomisation trial
that occur asymptotically under a 1:1 allocation ratio were previously shown in table
3.1 in chapter 3. The number of episodes that occur in each treatment sequence in a
cluster or crossover trial is shown in tables 5.1 and 5.2.

As a brief reminder, NT is the total number of patients enrolled in the trial, MT

the total number of episodes, Mi is the number of episodes for which patient i is
enrolled in the trial, and MT (j) denotes the number of patients for whom Mi = j.
Then, p = MT (2)

NT
is the proportion of patients who are re-enrolled for a second episode.

The crossover design omits treatment sequences Z = (0, 0) and Z = (1, 1), and so
has four possible sequences: Z is one of (0), (1), (0, 1), or (1, 0). There are NT (1− p)
patients enrolled for a single episode; therefore, there are NT

2 (1− p) patients for
treatment sequences Z = (0) and Z = (1) respectively. There are NT p patients
enrolled for two episodes; therefore, there are NT p

2 patients for treatment sequences
Z = (0, 1) and Z = (1, 0).

Similarly, the cluster design omits sequences Z = (0, 1) and Z = (1, 0), and so has
NT

2 (1− p) patients for treatment sequences Z = (0) and Z = (1) respectively, and
NT p

2 patients for treatment sequences Z = (0, 0) and Z = (1, 1).

5.2.2 Estimation components for cluster and crossover designs

Now I derive the components β̂B1 , β̂B2 and β̂W for the cluster and crossover designs,
as these will be used to derive the expected value of the estimators. Some further
background into these components is available in chapter 3.

The cluster design uses two between-patient estimation components. The first,
denoted by β̂B1 , is based on treatment sequences Z = (0) and Z = (1); the second,
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Table 5.2: Asymptotic number of patients in each treatment sequence in a crossover
trial with 1:1 allocation ratio

Treatment allocation Number of patients at each episode
Sequence Episode 1 Episode 2 Episode 1 Episode 2
Z = (1) 1 - NT

2 (1− p) -
Z = (1, 0) 1 0 NT p

2
NT p

2

Z = (0) 0 - NT
2 (1− p) -

Z = (0, 1) 0 1 NT p
2

NT p
2

denoted by β̂B2 , is based on treatment sequences Z = (0, 0) and Z = (1, 1). They
are shown below:

β̂B1 = 1
NT

2 (1− p)

 ∑
i∈Z=(1)

Yi1 −
∑

i∈Z=(0)

Yi1



β̂B2 =
∑
i∈Z=(1,1) (Yi1 + Yi2)

NT p
2 + NT p

2
−
∑
i∈Z=(0,0) (Yi1 + Yi2)

NT p
2 + NT p

2

= 1
NT p

 ∑
i∈Z=(1,1)

(Yi1 + Yi2)−
∑

i∈Z=(0,0)

(Yi1 + Yi2)


i.e. β̂B1 is the mean of all episodes in treatment sequence Z = (1) vs. the mean

of all episodes in treatment sequence Z = (0), and β̂B2 is the mean of all episodes in
treatment sequence Z = (1, 1) vs. the mean of all episodes in treatment sequence
Z = (0, 0) (where the denominators are shown in table 5.1, and were derived in the
previous section).

The crossover design uses one between-patient estimation component, and one
within-patient estimation component. The between-patient component, β̂B1 , is the
same as that used for the cluster design above; the within-patient estimation component,
denoted by β̂W , is based on treatment sequences Z = (0, 1) and Z = (1, 0). It is
shown below:

β̂W =
∑
i∈Z=(1,0) (Yi1 − Yi2)

NT p
2 + NT p

2
−
∑
i∈Z=(0,1) (Yi1 − Yi2)

NT p
2 + NT p

2

= 1
NT p

 ∑
i∈Z=(1,0)

(Yi1 − Yi2)−
∑

i∈Z=(0,1)

(Yi1 − Yi2)


i.e. β̂W is the mean of intervention episodes for patients on treatment sequences

Z = (0, 1) and Z = (1, 0) vs. the mean of control episodes for patients on treatment
sequences Z = (0, 1) and Z = (1, 0).
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Note that the component β̂B1 is equivalent to that used in the derivations for the
re-randomisation design; however, calculation of the components β̂B2 and β̂W differs to
how the components for the re-randomisation design are calculated, as they include the
term NT p

2 in the denominator rather than the term NT p
4 as for the re-randomisation

design. This is because the re-randomisation design has two additional treatment
sequences, and so fewer patients with two episodes are allocated to each of the possible
sequences. However, this difference does not change the value of β̂B1 , β̂B2 or β̂W
for either the cluster or crossover design compared to the re-randomisation design;
this is because although the denominator is different, so is the numerator (as the
summation goes to NT p

2 rather than to NT p
4 as in the re-randomisation design), and so

the difference cancels out. This means the expected values of the components β̂B1 , β̂B2

and β̂W are identical for each of the three designs (cluster, crossover, re-randomisation)
for each scenario. Values of these components are shown in table 5.3 for reference.

5.2.3 Independence estimators for cluster designs

The independence estimator for the cluster design, β̂CL,ind, can be calculated as a
difference in means for all intervention episodes vs. control episodes, and can be
re-arranged as:

β̂CL,ind =
∑
ij YijZij∑
ij Zij

−
∑
ij Yij (1− Zij)∑
ij (1− Zij)

=
NT

2 (1− p) β̂B1 +NT pβ̂B2
NT

2 (1− p) +NT p
= (1− p) β̂B1 + 2pβ̂B2

1 + p

Taking the expectation leads to:

E
(
β̂CL,ind

)
=

(1− p)E
(
β̂B1

)
+ 2pE

(
β̂B2

)
1 + p

5.2.4 Mixed-effects models for cluster designs

The estimated treatment effect for a mixed-model (β̂CL,MM ) for the cluster design
is the same as for the re-randomisation design, but with the term β̂W omitted (i.e.
it is a weighted average of each of its components, with weights equal to the inverse
variance from each component [51]):

β̂CL,MM =

β̂B1
V (β̂B1) + β̂B2

V (β̂B2)
1

V (β̂B1) + 1
V (β̂B2)

where V
(
β̂B1

)
and V

(
β̂B2

)
represent the estimated variances; in this chapter (as

in chapter 4), I use V () to denote V̂ () for simplicity.
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Table 5.3: Expected values of between- and within-patient estimation components
for cluster, crossover, and re-randomisation designs under different treatment effect
mechanisms.

Scenario E(β̂B1) E(β̂B2) E(β̂W )
S1 – Constant treat-
ment effect β β β

S2 – Treatment ef-
fect varies across
episode

β1 1
2 (β1 + β2) 1

2 (β1 + β2)

S3 – Treatment ef-
fect varies across
value of Mi

β1 β2 β2

S4 – Treatment ef-
fect carries forward
into second episode

β β + γ

2 β − γ

2

S5 – Treatment be-
comes less effective
on re-use

β β + δ

2
β

S6 – Constant treat-
ment effect, differen-
tial non-enrolment
based on outcome in
previous episode

βtrt+

βXPL
(p01 − p00)
2 (1− p)

βtrt+

βXPL
(p00 − p01)

2p

βtrt

S7 – Constant treat-
ment effect, differen-
tial non-enrolment
based on expected
outcome in current
episode

βtrt
βtrt+

βXEL
4

(
p00 − p01

p

) βtrt−
βXEL

4

(
p00 − p01

p

)
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To work out the expected value of β̂CL,MM we need to derive the estimated
variances of its components. The estimated variance of β̂B1 is the same as under the
re-randomisation design:

V
(
β̂B1

)
= 4σ̂2

NT (1− p)

The estimated variance of β̂B2 under the cluster design is:

V
(
β̂B2

)
= V

 1
NT p

 ∑
i∈Z=(1,1)

(Yi1 + Yi2)−
∑

i∈Z=(0,0)

(Yi1 + Yi2)



= 1
(NT p)2

V
 ∑
i∈Z=(1,1)

(Yi1 + Yi2)

+ V

 ∑
i∈Z=(0,0)

(Yi1 + Yi2)



= 1
(NT p)2

2
∑

i∈Z=(1,1)

(V (Yi1) + V (Yi2) + 2COV (Yi1, Yi2))



= 1
(NT p)2

(
(2)
(
NT p

2

)(
2σ̂2 + 2ϑ̂σ̂2

))

=
2σ̂2

(
1 + ϑ̂

)
NT p

Then, the denominator of β̂CL,MM is:

1
V
(
β̂B1

) + 1
V
(
β̂B2

) = NT (1− p)
4σ̂2 + NT p

2σ̂2
(

1 + ϑ̂
)

=
NT (1− p)

(
1 + ϑ̂

)
+ 2NT p

4σ̂2
(

1 + ϑ̂
) =

NT

(
1 + p+ ϑ̂− ϑ̂p

)
4σ̂2

(
1 + ϑ̂

)
And the numerator of β̂CL,MM is:

β̂B1

V
(
β̂B1

) + Eβ̂B2

V
(
β̂B2

) =
NT (1− p)

(
1 + ϑ̂

)
β̂B1 + 2NT pβ̂B2

4σ̂2
(

1 + ϑ̂
)

Putting these together, we get:
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β̂CL,MM =

(
1− p+ ϑ̂− ϑ̂p

)
β̂B1 + 2pβ̂B2(

1 + p+ ϑ̂− ϑ̂p
)

And taking the expectation (using a first order Taylor series expansion) we get:

E
(
β̂CL,MM

)
=

(1− p+ ϑ∗ − ϑ∗p)E
(
β̂B1

)
+ 2pE

(
β̂B2

)
(1 + p+ ϑ∗ − ϑ∗p)

5.2.5 Independence estimators for crossover designs

The independence estimator for the crossover design, β̂CO,ind, can be calculated as
a difference in means for all intervention episodes vs. control episodes, and can be
re-arranged as:

β̂CO,ind =
∑
ij YijZij∑
ij Zij

−
∑
ij Yij (1− Zij)∑
ij (1− Zij)

=
NT

2 (1− p) β̂B1 +NT pβ̂W
NT

2 (1− p) +NT p

= (1− p) β̂B1 + 2pβ̂W
1 + p

Taking the expectation leads to:

E
(
β̂CO,ind

)
=

(1− p)E
(
β̂B1

)
+ 2pE

(
β̂W

)
1 + p

5.2.6 Mixed-effects models for crossover designs

The estimated treatment effect for a mixed-model β̂CO,MM for the crossover design
is the same as for the re-randomisation design, but with the term β̂B1 omitted (i.e.
it is a weighted average of each of its components, with weights equal to the inverse
variance from each component [51]):

β̂CO,MM =

β̂B1
V (β̂B1) + β̂W

V (β̂W )
1

V (β̂B1) + 1
V (β̂W )

To work out the expected value of β̂CO,MM we need to derive the estimated
variances of its components. The estimated variance of β̂B1 is the same as under the
re-randomisation design:

V
(
β̂B1

)
= 4σ̂2

NT (1− p)
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The estimated variance of β̂W under the crossover design is:

V
(
β̂W

)
= V

 1
NT p

 ∑
i∈Z=(1,0)

(Yi1 − Yi2)−
∑

i∈Z=(0,1)

(Yi1 − Yi2)



= 1
(NT p)2

V
 ∑
i∈Z=(1,0)

(Yi1 − Yi2)

+ V

 ∑
i∈Z=(0,1)

(Yi1 − Yi2)



= 1
(NT p)2

2
∑

i∈Z=(1,0)

(V (Yi1) + V (Yi2)− 2COV (Yi1, Yi2))



= 1
(NT p)2

(
(2)
(
NT p

2

)(
2σ̂2 − 2ϑ̂σ̂2

))

=
2σ̂2

(
1− ϑ̂

)
NT p

Then, the denominator for β̂CO,MM is:

1
V
(
β̂B1

) + 1
V
(
β̂W

) = NT (1− p)
4σ̂2 + NT p

2σ̂2
(

1− ϑ̂
)

=
NT (1− p)

(
1− ϑ̂

)
+ 2NT p

4σ̂2
(

1− ϑ̂
) =

NT

(
1 + p− ϑ̂+ ϑ̂p

)
4σ̂2

(
1− ϑ̂

)
And the numerator for β̂CO,MM is:

β̂B1

V
(
β̂B1

) + β̂W

V
(
β̂W

) =
NT (1− p)

(
1− ϑ̂

)
β̂B1 + 2NT pβ̂W

4σ̂2
(

1− ϑ̂
)

Putting these together, we get:

β̂CO,MM =

(
1− p− ϑ̂+ ϑ̂p

)
β̂B1 + 2pβ̂W(

1 + p− ϑ̂+ ϑ̂p
)

And, taking the expectation using a first order Taylor series expansion, we get:

E
(
β̂CO,MM

)
=

(1− p− ϑ∗ + ϑ∗p)E
(
β̂B1

)
+ 2pE

(
β̂W

)
(1 + p− ϑ∗ + ϑ∗p)

137



5.2.7 S1: constant treatment effect

In this scenario (and all other scenarios), the expected value of the different estimators
is calculated by substituting in the expected values for the components β̂B1 , β̂B2 and
β̂W from table 5.3 into the formulas for the expected value of each estimator derived
in the previous sections.

5.2.7.1 Cluster design, independence estimator

The expected value is:

E
(
β̂CL,ind

)
= (1− p)β + 2pβ

1 + p
= β

5.2.7.2 Cluster design, mixed-effects model

The expected value is:

E
(
β̂CL,MM

)
= (1− p+ ϑ∗ − ϑ∗p)β + 2pβ

(1 + p+ ϑ∗ − ϑ∗p) = β

5.2.7.3 Crossover design, independence estimator

The expected value is:

E
(
β̂CO,ind

)
= (1− p)β + 2pβ

1 + p
= β

5.2.7.4 Crossover design, mixed-effects model

The expected value is:

E
(
β̂CO,MM

)
= (1− p− ϑ∗ + ϑ∗p)β + 2pβ

(1 + p− ϑ∗ + ϑ∗p) = β

5.2.8 S2: treatment effect varies across episode

5.2.8.1 Cluster design, independence estimator

The expected value is:

E
(
β̂CL,ind

)
=

(1− p)β1 + 2p
(
β1+β2

2

)
1 + p

= β1 + pβ2

1 + p

5.2.8.2 Cluster design, mixed-effects model

The expected value is:
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E
(
β̂CL,MM

)
=

(1− p+ ϑ∗ − ϑ∗p)β1 + 2p
(
β1+β2

2

)
(1 + p+ ϑ∗ − ϑ∗p)

= (1 + ϑ∗ − ϑ∗p)β1 + pβ2

(1 + p+ ϑ∗ − ϑ∗p)

5.2.8.3 Crossover design, independence estimator

The expected value is:

E
(
β̂CO,ind

)
=

(1− p)β1 + 2p
(
β1+β2

2

)
1 + p

= β1 + pβ2

1 + p

5.2.8.4 Crossover design, mixed-effects model

The expected value is:

E
(
β̂CO,MM

)
=

(1− p− ϑ∗ + ϑ∗p)β1 + 2p
(
β1+β2

2

)
(1 + p− ϑ∗ + ϑ∗p)

= (1− ϑ∗ + ϑ∗p)β1 + pβ2

(1 + p− ϑ∗ + ϑ∗p)

5.2.9 S3: treatment effect varies across patients with different values of Mi

5.2.9.1 Cluster design, independence estimator

The expected value is:

E
(
β̂CL,ind

)
= (1− p)β1 + 2pβ2

1 + p

5.2.9.2 Cluster design, mixed-effects model

The expected value is:

E
(
β̂CL,MM

)
= (1− p+ ϑ∗ − ϑ∗p)β1 + 2pβ2

(1 + p+ ϑ∗ − ϑ∗p)

5.2.9.3 Crossover design, independence estimator

The expected value is:

E
(
β̂CO,ind

)
= (1− p)β1 + 2pβ2

1 + p
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5.2.9.4 Crossover design, mixed-effects model

The expected value is:

E
(
β̂CO,MM

)
= (1− p− ϑ∗ + ϑ∗p)β1 + 2pβ2

(1 + p− ϑ∗ + ϑ∗p)

5.2.10 S4: treatment effect carries forward into the second episode

5.2.10.1 Cluster design, independence estimator

The expected value is:

E
(
β̂CL,ind

)
=

(1− p)β + 2p
(
β + γ

2
)

1 + p

= (1 + p)β + pγ

1 + p
= β + pγ

1 + p

5.2.10.2 Cluster design, mixed-effects model

The expected value is:

E
(
β̂CL,MM

)
=

(1− p+ ϑ∗ − ϑ∗p)β + 2p
(
β + γ

2
)

(1 + p+ ϑ∗ − ϑ∗p)

= (1 + p+ ϑ∗ − ϑ∗p)β + pγ

(1 + p+ ϑ∗ − ϑ∗p) = β + pγ

(1 + p+ ϑ∗ − ϑ∗p)

5.2.10.3 Crossover design, independence estimator

The expected value is:

E
(
β̂CO,ind

)
=

(1− p)β + 2p
(
β − γ

2
)

1 + p
= β − pγ

1 + p

5.2.10.4 Crossover design, mixed-effects model

The expected value is:

E
(
β̂CO,MM

)
=

(1− p− ϑ∗ + ϑ∗p)β + 2p
(
β − γ

2
)

(1 + p− ϑ∗ + ϑ∗p)

= (1 + p− ϑ∗ + ϑ∗p)β − pγ
(1 + p− ϑ∗ + ϑ∗p) = β − pγ

(1 + p− ϑ∗ + ϑ∗p)
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5.2.11 S5: treatment becomes less effective on re-use

5.2.11.1 Cluster design, independence estimator

The expected value is:

E
(
β̂CL,ind

)
=

(1− p)β + 2p
(
β + δ

2
)

1 + p

= (1 + p)β + pδ

1 + p
= β + pδ

1 + p

5.2.11.2 Cluster design, mixed-effects model

The expected value is:

E
(
β̂CL,MM

)
=

(1− p+ ϑ∗ − ϑ∗p)β + 2p
(
β + δ

2
)

(1 + p+ ϑ∗ − ϑ∗p)

= (1 + p+ ϑ∗ − ϑ∗p)β + pδ

(1 + p+ ϑ∗ − ϑ∗p) = β + pδ

(1 + p+ ϑ∗ − ϑ∗p)

5.2.11.3 Crossover design, independence estimator

The expected value is:

E
(
β̂CO,ind

)
= (1− p)β + 2pβ

1 + p
= β

5.2.11.4 Crossover design, mixed-effects model

The expected value is:

E
(
β̂CO,MM

)
= (1− p− ϑ∗ + ϑ∗p)β + 2pβ

(1 + p− ϑ∗ + ϑ∗p) = β

5.2.12 S6: constant treatment effect, non-enrolment scenario 4

5.2.12.1 Cluster design, independence estimator

The expected value is:

E
(
β̂CL,ind

)
=

(1− p)
(
βtrt + βXPL

(p01−p00)
2(1−p)

)
+ 2p

(
βtrt + βXPL

(p00−p01)
2p

)
1 + p

=
(1− p+ 2p)βtrt + βXPL

(
(1−p)(p01−p00)

2(1−p) + 2p (p00−p01)
2p

)
1 + p
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= βtrt + βXPL
((p01 − p00) + 2 (p00 − p01))

2 (1 + p)

= βtrt + βXPL
p00 − p01

2 (1 + p)

5.2.12.2 Cluster design, mixed-effects model

The expected value is:

E
(
β̂CL,MM

)
=

(1− p+ ϑ∗ − ϑ∗p)
(
βtrt + βXPL

(p01−p00)
2(1−p)

)
+ 2p

(
βtrt + βXPL

(p00−p01)
2p

)
(1 + p+ ϑ∗ − ϑ∗p)

=
(1− p+ ϑ∗ − ϑ∗p+ 2p)βtrt + βXPL

(
(1− p+ ϑ∗ − ϑ∗p) (p01−p00)

2(1−p) + (p00 − p01)
)

(1 + p+ ϑ∗ − ϑ∗p)

=
(1 + p+ ϑ∗ − ϑ∗p)βtrt + βXPL

(
(1− p+ ϑ∗ − ϑ∗p) (p01−p00)+2(1−p)(p00−p01)

2(1−p)

)
(1 + p+ ϑ∗ − ϑ∗p)

= βtrt + βXPL
((1− p+ ϑ∗ − ϑ∗p) (p01 − p00)− 2 (1− p) (p01 − p00))

2 (1− p) (1 + p+ ϑ∗ − ϑ∗p)

= βtrt + βXPL
(p01 − p00) (1− p+ ϑ∗ − ϑ∗p− 2 + 2p)

2 (1− p) (1 + p+ ϑ∗ − ϑ∗p)

= βtrt + βXPL
(p01 − p00) (−1 + p+ ϑ∗ − ϑ∗p)

2 (1− p) (1 + p+ ϑ∗ − ϑ∗p)

= βtrt + βXPL
(p00 − p01) (1− p− ϑ∗ + ϑ∗p)
2 (1− p) (1 + p+ ϑ∗ − ϑ∗p)

5.2.12.3 Crossover design, independence estimator

The expected value is:

E
(
β̂CO,ind

)
=

(1− p)
(
βtrt + βXPL

(p01−p00)
2(1−p)

)
+ 2pβtrt

1 + p

=
(1− p)βtrt + 2pβtrt + βXPL

(p01−p00)
2

1 + p
= βtrt + βXPL (p01 − p00)

2 (1 + p)
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5.2.12.4 Crossover design, mixed-effects model

The expected value is:

E
(
β̂CO,MM

)
=

(1− p− ϑ∗ + ϑ∗p)
(
βtrt + βXPL

(p01−p00)
2(1−p)

)
+ 2pβtrt

(1 + p− ϑ∗ + ϑ∗p)

=
(1− p− ϑ∗ + ϑ∗p)βtrt + 2pβtrt + βXPL

(1−p−ϑ∗+ϑ∗p)(p01−p00)
2(1−p)

(1 + p− ϑ∗ + ϑ∗p)

=
(1 + p− ϑ∗ + ϑ∗p)βtrt + βXPL

(1−p−ϑ∗+ϑ∗p)(p01−p00)
2(1−p)

(1 + p− ϑ∗ + ϑ∗p)

= βtrt + βXPL (1− p− ϑ∗ + ϑ∗p) (p01 − p00)
2 (1− p) (1 + p− ϑ∗ + ϑ∗p)

5.2.13 S7: constant treatment effect, non-enrolment scenario 5

5.2.13.1 Cluster design, independence estimator

The expected value is:

E
(
β̂CL,ind

)
=

(1− p)βtrt + 2p
(
βtrt + βXEL

4

(
p00−p01

p

))
1 + p

=
(1 + p)βtrt + βXEL

(
p00−p01

2
)

1 + p
= βtrt + βXEL

p00 − p01

2 (1 + p)

5.2.13.2 Cluster design, mixed-effects model

The expected value is:

E
(
β̂CL,MM

)
=

(1− p+ ϑ∗ − ϑ∗p)βtrt + 2p
(
βtrt + βXEL

4

(
p00−p01

p

))
(1 + p+ ϑ∗ − ϑ∗p)

=
(1− p+ ϑ∗ − ϑ∗p+ 2p)βtrt + βXEL

(
p00−p01

2
)

(1 + p+ ϑ∗ − ϑ∗p)

= βtrt + βXEL
p00 − p01

2 (1 + p+ ϑ∗ − ϑ∗p)
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5.2.13.3 Crossover design, independence estimator

The expected value is:

E
(
β̂CO,ind

)
=

(1− p)βtrt + 2p
(
βtrt −

βXEL
4

(
p00−p01

p

))
1 + p

=
(1 + p)βtrt − βXEL

(
p00−p01

2
)

1 + p
= βtrt −

βXEL (p00 − p01)
2 (1 + p)

5.2.13.4 Crossover design, mixed-effects model

The expected value is:

E
(
β̂CO,MM

)
=

(1− p− ϑ∗ + ϑ∗p)βtrt + 2p
(
βtrt −

βXEL
4

(
p00−p01

p

))
(1 + p− ϑ∗ + ϑ∗p)

=
(1 + p− ϑ∗ + ϑ∗p)βtrt − βXEL

(
p00−p01

2
)

(1 + p− ϑ∗ + ϑ∗p)

= βtrt −
βXEL (p00 − p01)

2 (1 + p− ϑ∗ + ϑ∗p)

5.2.14 Bias in cluster and crossover designs

5.2.14.1 Cluster designs

The independence and mixed-effects model estimators are shown against the true
value of the policy-benefit estimand for scenarios 1-7 in table 5.4. Mixed-effects models
for cluster designs are biased in all scenarios considered except when the treatment
effect is constant. Independence estimators are unbiased in all scenarios when there
is no non-enrolment; they are biased for scenarios 6 and 7, where non-enrolment is
differential based on the outcome in the previous episode or on the baseline prognosis
in the current episode respectively.

5.2.14.2 Crossover designs

The independence and mixed-effects model estimators are shown against the true value
of the added-benefit estimand for scenarios 1-7 in table 5.5. Mixed-effects models for
crossover designs are biased in all scenarios considered except when the treatment effect
is constant. Independence estimators are biased when treatment history affects the
current episode (scenario 4, treatment effect carries forward; and scenario 5, treatment
becomes less effective on re-use), or under scenarios 6 and 7, where there is differential
non-enrolment. They are unbiased for scenarios 1-3 (when treatment effect is constant,
or varies by episode or by value of Mi).
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Table 5.4: Bias of the cluster design for the per-episode policy-benefit estimand.
Derivation of these estimands is shown in chapter 2.

Scenario Estimand Independence
estimator

Mixed-effects model

S1 – Constant treat-
ment effect

β β β

S2 – Treatment ef-
fect varies across
episode

β1+pβ2
1+p

β1+pβ2
1+p

(1+ϑ∗−ϑ∗p)β1+pβ2
(1+p+ϑ∗−ϑ∗p)

S3 – Treatment ef-
fect varies across
value of Mi

(1−p)β1+2pβ2
(1+p)

(1−p)β1+2pβ2
1+p

(1−p+ϑ∗−ϑ∗p)β1+2pβ2
(1+p+ϑ∗−ϑ∗p)

S4 – Treatment ef-
fect carries forward
into the second
episode

β + pγ
(1+p) β + pγ

1+p β + pγ
(1+p+ϑ∗−ϑ∗p)

S5 – Treatment be-
comes less effective
on re-use

β + pδ
(1+p) β + pδ

1+p β + pδ
(1+p+ϑ∗−ϑ∗p)

S6 – Constant treat-
ment effect, differen-
tial non-enrolment
based on outcome in
previous episode

βtrt βtrt +
βXPL

p00−p01
2(1+p)

βtrt +
βXPL

(p00−p01)(1−p−ϑ∗+ϑ∗p)
2(1−p)(1+p+ϑ∗−ϑ∗p)

S7 – Constant treat-
ment effect, differen-
tial non-enrolment
based on expected
outcome in current
episode

βtrt βtrt +
βXEL

p00−p01
2(1+p)

βtrt + βXEL
p00−p01

2(1+p+ϑ∗−ϑ∗p)

5.3 Simulation study (design)

In this section I describe the methods used to implement a simulation study to
compare the performance of the four different designs (re-randomisation, parallel
group, crossover, and cluster). For the parallel group design, I evaluate two different
scenarios, which are based on enrolling a different number of patients. The number
of individual patients in the first scenario, labelled PG(big), is based on matching
the total number of episodes enrolled by the re-randomisation, cluster, and crossover
designs. The number of individual patients in the second scenario, labelled PG(small),
is based on matching the total number of individual patients enrolled by the re-
randomisation, cluster, and crossover designs. For example, in a setting where 300
individual patients experience 450 episodes, PG(big) would enrol 450 individual
patients whereas PG(small) would enrol 300 individual patients.

As in chapters 3 and 4, the main purpose of this simulation study is to evaluate
the designs under smaller sample sizes and with more complicated data generating
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Table 5.5: Bias of the crossover design for the per-episode policy-benefit estimand.
Derivation of these estimands is shown in chapter 2.

Scenario Estimand Independence
estimator

Mixed-effects model

S1 – Constant treat-
ment effect

β β β

S2 – Treatment ef-
fect varies across
episode

β1+pβ2
1+p

β1+pβ2
1+p

(1−ϑ∗+ϑ∗p)β1+pβ2
(1+p−ϑ∗+ϑ∗p)

S3 – Treatment ef-
fect varies across
value of Mi

(1−p)β1+2pβ2
(1+p)

(1−p)β1+2pβ2
1+p

(1−p−ϑ∗+ϑ∗p)β1+2pβ2
(1+p−ϑ∗+ϑ∗p)

S4 – Treatment ef-
fect carries forward
into the second
episode

β β − pγ
1+p β − pγ

(1+p−ϑ∗+ϑ∗p)

S5 – Treatment be-
comes less effective
on re-use

β + pδ
2(1+p) β β

S6 – Constant treat-
ment effect, differen-
tial non-enrolment
based on outcome in
previous episode

βtrt βtrt +
βXPL (p01−p00)

2(1+p)

βtrt +
βXPL (1−p−ϑ∗+ϑ∗p)(p01−p00)

2(1−p)(1+p−ϑ∗+ϑ∗p)

S7 – Constant treat-
ment effect, differen-
tial non-enrolment
based on expected
outcome in current
episode

βtrt βtrt −
βXEL (p00−p01)

2(1+p)

βtrt −
βXEL (p00−p01)
2(1+p−ϑ∗+ϑ∗p)

mechanisms than were considered in the mathematical derivations in the previous
section.

I describe the estimands, methods of analysis, and performance measures, and data
generating mechanisms below. I used 10,000 replications for all simulation scenarios.

5.3.1 Estimands

In this simulation study, I focus on the per-episode added-benefit and the per-episode
policy-benefit estimands. I decided not to evaluate the per-patient estimands as I felt
the per-episode estimands were sufficient to illustrate the pros and cons of each design
(for instance, the bias exhibited in the crossover design when treatment history affects
current episode will be there regardless of whether it is a per-episode or per-patient
estimand).

I did not evaluate each trial design against each estimand; for instance, I did
not assess whether the cluster design gave unbiased estimates for the added-benefit
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estimand, as this trial is essentially designed to estimate the policy-benefit effect, and
so will naturally not perform well against the added-benefit estimand. Similarly, I did
not assess the crossover design against the policy-benefit estimand.

Therefore, for the per-episode added-benefit estimand I evaluated the (i) re-
randomisation design; (ii) parallel group design; and (iii) crossover design. For the
per-episode policy-benefit estimand, I evaluated the (a) re-randomisation design; (b)
parallel group design; and (c) cluster design. A summary of this is given in table 5.6.

In the simulation study I generated data so that the same set of episodes were
enrolled for each of the re-randomisation, cluster, and crossover designs, and so that
the treatment history was the same for each design (further detail on this is given in
the data generating sections below). This implies that each design can be compared
against the same value of the estimand (as the specific estimand value can depend on
the exact set of episodes enrolled in the trial and the distribution of the treatment
history in the trial). For example, different distributions of the treatment history will
lead to different values of the added-benefit estimands under data generating model
2.2 (where the treatment effect carries forward); forcing the treatment history to be
the same for each trial design means that we can evaluate results from each design
against the same value of the estimand. Note that it is only possible to force the
re-randomisation, cluster, and crossover designs to have the same treatment history
because of the maximum limit of two episodes in each trial, as this means the treatment
history is based only on the episode 1 treatment allocation, which is independent of
trial design.

I also evaluated the parallel group design against the same estimand values that
were used for the other designs (i.e. against an estimand that was based on the set of
episodes enrolled in the re-randomisation, cluster, and crossover designs, rather than
the set of episodes enrolled in the parallel group design). This was to allow the parallel
group design to be compared directly against the other designs, to see how well it
was able to estimate the added-benefit and policy-benefit estimands in multi-episode
settings.

5.3.2 Methods of analysis

I analysed data from the parallel group design using a linear regression model with
treatment allocation as a covariate. I analysed data from the re-randomisation design
using independence estimators (i.e. the same approach as in chapter 3); the one
difference to chapter 3 was that I included an indicator variable for episode number in
the model for the added-benefit estimand (the model for the policy-benefit estimand
already included this term).

For the cluster and crossover designs, I used independence estimators with cluster-
robust standard errors, with patients acting as the cluster. I also included an indicator
variable for episode number for each of these designs. The Stata code for each estimator
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Table 5.6: Summary of which trial designs are evaluated against which estimands

Trial design Estimand(s) against which the trial is
evaluated

Parallel group

• Per-episode added-benefit

• Per-episode policy-benefit

Re-randomisation

• Per-episode added-benefit

• Per-episode policy-benefit

Cluster

• Per-episode policy-benefit

Crossover

• Per-episode added-benefit

is provided in table 5.7.

The reason I included an indicator variable for episode number in the added-benefit
model was to facilitate a more fair comparison with the parallel group design. Variation
in outcomes across episodes affected re-randomisation, cluster, and crossover designs,
but not parallel designs, which would increase the precision of the parallel group design
compared to the other designs. Given that this source of variability can be controlled
at the analysis stage for the re-randomisation, cluster, and crossover designs, it seemed
most fair to do so, in order to compare precision based on the elements which cannot
be controlled for in the analysis stage.

I decided not to include mixed-effects models for cluster or crossover designs in
this simulation study. This is because we know they can be extremely biased in
most settings considered in this thesis (based on the results from the mathematical
derivations shown previously), and so comparing each design (re-randomisation, cluster,
crossover, parallel group) based on the best method of analysis for that design seemed
like the most fair approach.

5.3.3 Performance measures

I will evaluate the different designs in terms of bias, coverage, and the precision
compared to re-randomisation trials. Bias, coverage, and precision were defined in
chapters 3 and 4.

For bias and coverage, I omit results for the PG(small) design and instead only
present results for the PG(big) design. This is because bias and coverage are the
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Table 5.7: Stata code to implement independence estimators. ‘y’ denotes patient
outcome, ‘z’ denotes treatment allocation, ‘id’ is a unique identifier for patient, ‘m_i’
denotes the number of episodes for which the patient is enrolled in the trial, ‘z_prev’
denotes the patient’s treatment allocation in their previous episode (and is set to 0 if
it is the patient’s first episode), ‘x_ep’ denotes the episode (0=first episode, 1=second
episode), and ‘prop_1st_ep’ and ‘prop_2nd_ep’ represent the proportion of episodes
in the trial which are 1st and 2nd episodes respectively. In order to run the above
code in Stata, ‘prop_1st_ep’, ‘prop_2nd_ep’, ‘prop_has_1ep’, and ‘prop_has_2ep’
must be saved as Stata local macros. All analyses are for per-episode estimands.

Estimator Stata code
Re-randomisation

Added-benefit reg y z x_ep, vce(cluster id)
Policy-benefit reg y z##z_prev x_ep, vce(cluster id)

lincom ///
‘prop_1st_ep’*_b[1.z] + ///
‘prop_2nd_ep’*(_b[1.z]+_b[1.z_prev]
+ _b[1.z#1.z_prev])

Parallel group reg y z
Cluster reg y z x_ep, vce(cluster id)
Crossover reg y z x_ep, vce(cluster id)

same in expectation for both designs, and so omitting the PG(small) design does not
discard any important information and will make figures easier to read. Conversely,
for precision I will include results for both the PG(big) and PG(small) designs, as the
precision of the two designs is not the same.

5.3.4 Data generating methods

I based the simulations in this chapter on simulation studies 1 and 2a in chapter
3 (sections 3.4.2 and 3.4.3), with some differences which I discuss below in sections
5.3.4.1 and 5.3.4.2. I did not use simulation study 2b as I felt the results from studies
1 and 2a were sufficiently conclusive to demonstrate when each design is (and is not)
appropriate, and that including study 2b would not add any additional information.

5.3.4.1 Simulation study 1: patients enrolled for all episodes they experience

This simulation study is based on a trial of 300 patients; 150 patients experience one
episode during the trial period, and 150 experience two episodes.

I used the same six data generating mechanisms as in chapter 3, described in table
5.8. Data for re-randomisation, cluster, and crossover designs was generated based on
the following general model for a continuous outcome:
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Yij = α+ βtrtZij + βepXepij + βMXMi
+ βTRTxEPZijXepij

+βTRTxMZijXMi
+ γZi,j−1 + δZijZi,j−1 + µi + εij

For each scenario, I set α = 0, βtrt = 3, βep = 1, βM = 1, σ2
µ = 5 and σ2

ε = 5.
I generated µi and εij independently; based on the chosen variances, the intraclass
correlation between episodes from the same patient is 0.50 (conditional on the other
variables in the data generating model). Values for other parameters are shown in
table 5.8.

For each of the three designs (re-randomisation, cluster, crossover) I generated Zi1
(the episode 1 treatment allocation) using simple randomisation (based on a Bernoulli
random variable with probability 0.5). I used the same value of Zi1 for each of the three
designs (i.e. the treatment allocation in episode 1 for a particular patient would be the
same under each design). I then generated Zi2 (the episode 2 treatment allocation) as
follows: (a) for re-randomisation I used a Bernoulli random variable with probability
0.5 (generated independently from Zi1); (b) for the cluster design, I set Zi2 to be the
same as Zi1; and (c) for the crossover design, I set Zi2 to be the opposite of Zi1 (i.e. if
Zi1 = 0 then I set Zi2 = 1, and vice versa).

Data for the two parallel group designs, PG(big) and PG(small), were generated
using the following general model for a continuous outcome:

Yi = α+ βtrtZi + βMXMi
+ βTRTxMZiXMi

+ εPGi

Note that this model omits terms associated with episode 2 (i.e. βepXepij ,
βTRTxEPZijXepij , γZi,j−1, and δZijZi,j−1); this is because in the parallel group design
there is only one episode. The other main difference compared to the data generating
model for the re-randomisation, cluster, and crossover designs is the inclusion of
the term εPGi in place of the terms σ2

µ and σ2
ε . εPGi is a residual error term which

encompasses both within- and between-patient variation, where εPGi ∼ N
(
0, σ2

µ + σ2
ε

)
.

Therefore, V
(
εPGi

)
= σ2

µ + σ2
ε (i.e. the residual variation in the parallel group designs

is the same as in the re-randomisation, cluster, and crossover designs). I used the
same values for all other parameters as in table 5.8. For PG(small) I used 300
individual patients (equivalent to the number of individual patients enrolled in the
re-randomisation, cluster, and crossover designs), and for PG(big) I used 450 individual
patients (equivalent to the number of episodes enrolled in the re-randomisation, cluster,
and crossover designs).

5.3.4.2 Simulation study 2a: some patients do not re-enrol for their 2nd episode

As before, this simulation study is based on a trial of 300 patients; 150 patients
experience one episode during the trial period, and 150 experience two episodes. All
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Table 5.8: Simulation parameters for different scenarios (simulation scenario 1). For
all scenarios, I set α = 0, βtrt = 3, βep = 1, βM = 1, σ2

µ = 5 and σ2
ε = 5.

Scenario βTRTxEP βTRTxM γ δ

Scenario 1: Constant treatment
effect

0 0 0 0

Scenario 2: Treatment effect
varies across episode

1.5 0 0 0

Scenario 3: Treatment effect
varies across patients with differ-
ent values of Mi

0 3 0 0

Scenario 4: Treatment effect car-
ries forward

0 0 1 0

Scenario 5: Treatment becomes
less effective on re-use

0 0 0 -3

Scenario 6: Treatment effect
varies across episodes, across pa-
tients with different values of Mi,
carries forward, and becomes less
effective on re-use

1.5 3 1 -3

patients are enrolled for their first episode, but a subset of patients who experience
two episodes do not re-enrol for their second episode. Therefore, NT = 300 and
MT (1) = 150, however MT (2) < 150 and MT < 450; the exact values of MT (2) and MT

vary across simulation replications.

I used the same six data generating mechanisms, and the same five non-enrolment
scenarios as in chapter 3. For re-randomisation, cluster, and crossover designs I
simulated data by first generating outcomes for all 450 episodes (regardless of whether
they were enrolled in the trial) using the model:

Yij = α+ βtrtZij + βepXepij + βMXMi
+ βTRTxEPZijXepij + βTRTxMZijXMi

+

γZi,j−1 + δZijZi,j−1 + βXPLXPLi + βXELXELij + µi + εij

I then generated an indicator for each episode to denote whether it was enrolled in
the trial or not using the model:

P (Ri2 = 0) = αR2 + γR2Zi,j−1 + βR2
XPL

XPLi + βR2
XEL

XELi2+

δR2
XplZi,j−1XPLi + δR2

XelZi,j−1XELi2

where Ri2 denotes whether the patient was enrolled at episode 2 (where 1=enrolled,
0=not enrolled).
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I then performed analysis only on the subset of enrolled episodes. The different
treatment effect and non-enrolment scenarios are described below.

It should be noted that 2nd episode non-enrolment does not affect parallel group
trials (as there is no 2nd episode in these designs). However, I present results from
parallel group designs under each non-enrolment scenario for comparison. For PG(small)
I used 300 individual patients (equivalent to the number of individual patients enrolled
in the re-randomisation, cluster, and crossover designs), and for PG(big) I used
MT individual patients (equivalent to the number of episodes enrolled in the re-
randomisation, cluster, and crossover designs); note that the number of patients for
PG(big) therefore varied across simulation replications. I generated outcomes for the
parallel group designs using the model:

Yij = α+ βtrtZij + βMXMi + βTRTxMZijXMi + βXPLXPLi

+βXELXELi + µi + εPGi

where εPGi was described in the previous section.

I used the same parameter values to generate outcomes as in the previous section,
except I included the parameters βXPL and βXEL . To generate non-enrolment, I set
αR2 = 0.05 and γR2 = 0.10 for all scenarios; values for the parameters βXPL , βXEL ,
δR2
Xpl, and δ

R2
Xel are shown in table 5.9; all other parameter values are the same as in

the previous section.

5.4 Simulation study (results)

A summary of when the different designs were biased is given in table 5.10.

5.4.1 Simulation study 1: patients enrolled for all episodes they experience

Results for the per-episode added-benefit estimand are shown in figure 5.2. As shown
in chapter 3, the re-randomisation design was unbiased in all settings. The crossover
design was biased in scenarios where the treatment history affected the current episode
(scenarios 4-6), but was unbiased when treatment history had no effect (scenarios 1-3).
The parallel group trial design was biased in all scenarios except when the treatment
effect was constant (scenario 1) or when the treatment effect carried forward (scenario
4). All designs had good coverage for settings in which they were unbiased. The
crossover design had much higher precision than the re-randomisation design in all
scenarios. The parallel group design with a large sample size had similar precision
to re-randomisation in most settings, whereas with a small sample size it had lower
precision than re-randomisation in all scenarios.

Results for the per-episode policy-benefit estimand are shown in figure 5.3. The
re-randomisation and cluster designs were unbiased in all scenarios. The parallel group
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Table 5.9: Simulation parameters for different scenarios (simulation scenario 2a). For
all scenarios, I set α = 0, βtrt = 3, βep = 1, βM = 1, σ2

µ = 5, σ2
ε = 5, αR2 = 0.05 and

γR2 = 0.10

Scenario βR2
XPL

βR2
XEL

βXPL βXEL δR2
Xpl δR2

Xel

Scenario 1 – Non-enrolment de-
pends on previous treatment allo-
cation

0 0 0 0 0 0

Scenario 2 – Non-enrolment de-
pends on previous treatment allo-
cation and previous outcome

0.25 0 10 0 0 0

Scenario 3 – Non-enrolment de-
pends on previous treatment allo-
cation and baseline prognosis at
episode 2

0 0.25 0 10 0 0

Scenario 4 – Non-enrolment is
differential between treatment
groups based on previous out-
come

0 0 10 0 0.5 0

Scenario 5 – Non-enrolment is
differential between treatment
groups based on baseline progno-
sis at episode 2

0 0 0 10 0 0.5

design was biased in all scenarios except when the treatment effect was constant.
All designs had good coverage for settings in which they were unbiased. The cluster
and parallel group design with a large sample size were both more precise than the
re-randomisation design in all scenarios. The parallel group design with a small sample
size was more efficient than re-randomisation in most, but not all scenarios.

The reason the policy-benefit estimate from a re-randomisation trial was generally
less precise than other designs is likely because this estimator is based on a linear
combination of parameters, some of which are estimated with very low levels of
precision. For example, the parameter δ is based on the interaction ZijZi,j−1 which
has far fewer patients than the main effect (based on Zij), and so has higher variance.
Conversely, both the cluster and parallel group designs are estimated using a single
parameter (which is based only on the term Zij) and do not require estimation of
interactions or combinations of parameters, and so have lower variance.

5.4.2 Simulation study 2a: some patients do not re-enrol for their 2nd episode

Results for the per-episode added-benefit estimand are shown in figures 5.4-5.6. As
shown in chapter 3, the re-randomisation design was unbiased across all treatment
effect mechanisms and non-enrolment scenarios. For non-enrolment scenarios 1-3
the crossover design was biased in treatment effect scenarios where the treatment
history affected the current episode (treatment effect scenarios 4-6), but was unbiased
when treatment history had no effect (treatment effect scenarios 1-3); however, in
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Table 5.10: Summary of simulation results (scenario 1 and 2a)

Design and target esti-
mand

Biased when:

Parallel group
Per-episode added-benefit

• Treatment effect is not constant

Per-episode policy-benefit

• Treatment effect is not constant

• Treatment effect carries forward

Re-randomisation
Per-episode added-benefit

• NA (unbiased in all settings)

Per-episode policy-benefit

• There is differential non-enrolment between
treatment arms based on outcome in previ-
ous episode or prognosis in current episode

Cluster
Per-episode policy-benefit

• There is differential non-enrolment between
treatment arms based on outcome in previ-
ous episode or prognosis in current episode

Crossover
Per-episode added-benefit

• Treatment history affects outcome or treat-
ment effect in current episode

• There is differential non-enrolment between
treatment arms based on outcome in previ-
ous episode or prognosis in current episode
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Figure 5.2: Bias, coverage, and precision of re-randomisation, crossover, and parallel
group designs for the per-episode added-benefit effect in simulation study 1 (no
non-enrolment). RR(ind)=re-randomisation design. Crossover(ind)=crossover design.
PG(big)=parallel group design with 450 patients. PG(small)=parallel group design
with 300 patients. Error bars are 95% confidence intervals based on Monte Carlo
standard errors. Precision is calculated relative to the re-randomisation design with
independence estimator.

Figure 5.3: Bias, coverage, and precision of re-randomisation, cluster, and parallel
group designs for the per-episode policy-benefit effect in simulation study 1 (no
non-enrolment).
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non-enrolment scenarios 4 and 5 the crossover design was extremely biased for all
treatment effect scenarios. All designs had good coverage for settings in which they
were unbiased. Results for precision were broadly similar to when there was no non-
enrolment, although the precision of the crossover design increased in non-enrolment
scenarios 2 and 4 and decreased in non-enrolment scenarios 3 and 5 compared to
re-randomisation. The reason for these changes is that the inclusion of XPLi and
XELij in the data generating model for the outcome changes both the ICC and the
overall variance (with XPLi increasing the ICC and XELij reducing the ICC, and both
increasing the overall variance), which affects the precision of each design differently.

Results for the per-episode policy-benefit estimand are shown in figures 5.7-5.9. The
re-randomisation and cluster designs were both unbiased in non-enrolment scenarios
1-3, and were both biased in non-enrolment scenarios 4-5. All designs had good coverage
for settings in which they were unbiased. Results for precision were similar to when
there was no non-enrolment, though as above changes to the ICC due to inclusion
of XPLi and XELij in the data generating model for the outcome in non-enrolment
scenarios 2-5 has an impact on the precision.

5.5 Discussion

In this chapter I compared the re-randomisation design with three alternate design
choices for multi-episode settings; (a) parallel group design; (b) cluster design; and (c)
crossover design. There are several key takeaways here. First, mixed-effects models are
biased for cluster and crossover designs whenever the treatment effect is not constant,
or under certain non-enrolment mechanisms. Therefore, mixed-effects models should
not be used with these designs, and independence estimators should be used instead.
This is a similar conclusion to that of chapter 4, which evaluated mixed-effects models
in re-randomisation trials. It also follows on from the informative cluster size literature,
which has shown that mixed-effects models are not appropriate when cluster size is
informative [44].

The second takeaway is that the choice of which design to use will depend on the
specific aims of the study. If our main aim is to estimate a policy-benefit effect, then
either re-randomisation or a cluster design could be used, and each has its own benefits
and drawbacks. The benefits of the re-randomisation design are that it maintains
allocation concealment across all episodes, and that it can be used to estimates other
effects in addition to the policy-benefit effect. Its drawbacks are that it requires
specification of a causal model for treatment history in order to estimate the policy-
benefit effect, which may lead to bias if the model is wrong. Even if the causal model is
correct, it can still be biased for the policy-benefit effect under certain non-enrolment
mechanisms. Furthermore, the policy-benefit estimates from the re-randomisation
design can be imprecise.

The benefits of the cluster design are that the policy-benefit effect can be estimated
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Figure 5.4: Bias of re-randomisation, crossover, and parallel group designs for the per-
episode added-benefit effect in simulation study 2a (with non-enrolment). RR(ind)=re-
randomisation design. Crossover(ind)=crossover design. PG(big)=parallel group design
with MT patients. PG(small)=parallel group design with 300 patients. Error bars are
95% confidence intervals based on Monte Carlo standard errors. NE sc = non-enrolment
scenario.

Figure 5.5: Coverage of re-randomisation, crossover, and parallel group designs for the
per-episode added-benefit effect in simulation study 2a (with non-enrolment).
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Figure 5.6: Precision of crossover and parallel group compared to re-randomisation
designs for the per-episode added-benefit effect in simulation study 2a (with
non-enrolment). RR(ind)=re-randomisation design with independence estimator.
Crossover(ind)=crossover design with independence estimator. PG(big)=parallel group
design with MT patients. PG(small)=parallel group design with 300 patients. Error
bars are 95% confidence intervals based on Monte Carlo standard errors. Precision is
calculated relative to the re-randomisation design with independence estimator. NE sc
= non-enrolment scenario.

without assuming any sort of causal model for treatment history. It also has higher
precision for the policy-benefit effect than the re-randomisation design. Its drawbacks
are that it does not maintain allocation concealment past the first episode, and so is
at risk of bias from selective enrolment. It can also provide biased estimates under
the same non-enrolment scenarios as the re-randomisation design. Furthermore, it is
only suited to estimating the policy-benefit effect, so if both the policy-benefit and
added-benefit effects are of interest the cluster design may not be suitable. The decision
on which design to use may come down to whether the risk of selection bias through
the cluster design is thought to be greater than the risk of bias from misspecification
of the causal model for treatment history in the re-randomisation design; though as a
secondary consideration, it is worth noting that the re-randomisation design can at
least ensure unbiased estimates of at least one effect (added-benefit), while the cluster
design can offer no such guarantee.

For the added-benefit effect, the crossover design is biased when treatment history
affects current episode or under certain non-enrolment scenarios. In comparison, the
re-randomisation design is unbiased for the added-benefit effect across all scenarios.
Although the crossover design has much higher precision than the re-randomisation
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Figure 5.7: Bias of re-randomisation, crossover, and parallel group designs for the per-
episode policy-benefit effect in simulation study 2a (with non-enrolment). RR(ind)=re-
randomisation design. Crossover(ind)=crossover design. PG(big)=parallel group design
with MT patients. PG(small)=parallel group design with 300 patients. Error bars are
95% confidence intervals based on Monte Carlo standard errors. NE sc = non-enrolment
scenario.

Figure 5.8: Coverage of re-randomisation, crossover, and parallel group designs for the
per-episode policy-benefit effect in simulation study 2a (with non-enrolment).
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Figure 5.9: Precision of crossover and parallel group compared to re-randomisation
designs for the per-episode policy-benefit effect in simulation study 2a (with
non-enrolment). RR(ind)=re-randomisation design with independence estimator.
Crossover(ind)=crossover design with independence estimator. PG(big)=parallel group
design with MT patients. PG(small)=parallel group design with 300 patients. Error
bars are 95% confidence intervals based on Monte Carlo standard errors. Precision is
calculated relative to the re-randomisation design with independence estimator. NE sc
= non-enrolment scenario.

design, this increased precision is not worth the major risk in bias from using the
crossover design. Therefore, I recommend the crossover design not be used, and that
re-randomisation should be the design of choice for the added-benefit effect.

The parallel group design is not appropriate for either the added-benefit or policy-
benefit effect. However, it is appropriate for the effect of the first time an intervention
is used (the episode 1 effect). If the main study aim is to estimate the episode 1 effect,
then the parallel group design is a valid choice. An alternative approach in this setting
would be to either use a re-randomisation or cluster design that was powered for the
episode 1 effect (i.e. enrolled the same number of individual patients as a parallel
group trial), but also enrolled patients for their second (or later) episodes. This way, in
addition to getting the same episode 1 effect estimate as you would in a parallel group
design, you could also answer additional questions about the intervention, such as
the episode 2 effect, or the added-benefit or policy-benefit effect across episodes. This
approach may not be powered for these secondary aims, but an imprecise estimate
of these effects may still be better than no estimate at all. The main downside to
this approach is the additional expense from enrolling additional episodes (though it
should be noted this design would not require any additional time for recruitment, as
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it would finish enrolling the required number of individual patients as a parallel group
design).

I therefore recommend that (i) the re-randomisation design be used for the added-
benefit effect; (ii) the re-randomisation or cluster design be used for the policy-benefit
effect; (iii) the parallel group, cluster, or re-randomisation design be used for the
episode 1 effect (provided they are appropriately powered for this effect); (iv) the
crossover design not be used in multi-episode settings; and (v) mixed-effects models
not be used for designs in multi-episode settings, and independence estimators be used
instead.
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6 A review of re-randomisation trials in
febrile neutropenia

In this chapter I review a set of re-randomisation trials in febrile neutropenia. Febrile
neutropenia occurs when neutropenic patients (those with abnormally low neutrophil
granulocyte counts) develop fever. It is often a complication for patients with cancer
who receive chemotherapy regimens which suppress bone marrow activity. Because
chemotherapy is usually given in multiple cycles, patients may develop febrile neu-
tropenia multiple times during the course of their cancer treatment, and each episode
of febrile neutropenia would require medical intervention. Standard care for febrile
neutropenia is broad-spectrum antibiotics. However, it has been suggested that granu-
locyte colony-stimulating factor (G-CSF) could be useful in this setting, as it regulates
the production of the neutrophil lineage. Re-randomisation could be an appropriate
design in the setting of febrile neutropenia, as some patients experience multiple
episodes and require treatment for each episode, and the intervention (G-CSF) and
patient follow-up duration are typically short-term.

In 2014, Mhaskar et al [61] published a Cochrane systematic review and meta-
analysis which evaluated the use of G-CSF with antibiotics vs. antibiotics alone in
patients with febrile neutropenia. This systematic review included trials published up
to 2014. It included 14 trials in total, 9 of which used a parallel group design, and 5
which used a re-randomisation design. The trials which used a parallel group design
allowed patients to enrol for a single episode of febrile neutropenia only; they were not
allowed to enrol for any subsequent episodes of febrile neutropenia. Conversely, the
trials which used a re-randomisation design did allow patients to be re-enrolled and
re-randomised for subsequent episodes of febrile neutropenia (one of these trials was
described in chapter 1, section 1.4.3).

The systematic review by Mhaskar et al [61] presents a unique opportunity to look
at how some re-randomisation trials have been designed and analysed, and how the use
of re-randomisation may have impacted results. I have four objectives for this review:
to evaluate (1) design and analysis characteristics of the re-randomisation trials; (2)
the impact re-randomisation had on recruitment; (3) whether re-randomisation led
to higher rates of non-compliance or loss-to-follow-up in subsequent episodes; and
(4) whether treatment effect estimates from the re-randomisation trials were different
to those from the parallel group trials. I summarise the methods below, and further
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detail on each of these objectives is given in the sections below. This chapter has been
published as an article in the Journal of Clinical Epidemiology (Kahan, B.C., et al.,
Re-randomization increased recruitment and provided similar treatment estimates as
parallel designs in trials of febrile neutropenia. J Clin Epidemiol, 2018. 97: p. 14-19 )
[39].

6.1 Methods

Full details of the search strategy, inclusion criteria, and data collection procedure
are available in the publication by Mhaskar et al [61]. For each article, I extracted
relevant information relating to the objectives above. In order to ensure there were no
errors in data extraction, another reviewer (Tim Morris, Medical Research Council
Clinical Trials Unit at UCL) extracted data in parallel. We compared extractions, and
discrepancies were resolved through discussion.

6.1.1 Design and analysis characteristics of re-randomisation trials

I evaluated whether the five re-randomisation trials in the review had been designed
according to the two core design requirements described in chapter 1 (section 1.3,
table 1.1); (i) patients are only re-enrolled if they have completed the follow-up period
from their previous randomisation; and (ii) randomisations for the same patient are
performed independently.

I also looked at whether these trials placed any constraints on the number of
episodes for which patients could be enrolled (for example, saying patients could be
enrolled for a maximum of four episodes), and whether trials explicitly reported the
number of episodes that each patient was enrolled for.

I also evaluated how these trials were designed and analysed. In chapter 1, I
described previous research showing that the sample size from a parallel group trial
could be used for a re-randomisation trial (section 1.6.4). I therefore assessed how
many trials based their sample size calculation on that of a parallel group design.
For the analysis, I looked at whether they used an independence estimator or used a
method that allowed for correlation between episodes from the same patient, such as a
mixed-effects model. I also looked at whether they analysed data on a per-episode or
per-patient basis; I did not look at whether they used an added-benefit or policy-benefit
estimator, as I had not developed these estimands at the time of doing this review.
However, this information was retrospectively completed (this is discussed further in
section 6.2.1).

6.1.2 Impact of re-randomisation on recruitment

For the five re-randomisation trials I evaluated to what extent recruitment had been
increased through the use of re-randomisation. I did this by looking at the number of
individual patients enrolled and the number of episodes enrolled in each trial. I then
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divided the number of episodes by the number of individual patients; this measure
represents the extra number of episodes each trial gained by using a re-randomisation
design instead of a parallel group design.

6.1.3 Treatment compliance and loss-to-follow-up in re-randomisation trials

It is plausible that in some settings repeated enrolments in re-randomisation trials
may place undue burden on patients due to increased treatment or follow-up burden,
and may lead to higher rates of non-compliance or loss-to-follow-up in subsequent
enrolments. For instance, this may occur in trials where patients must fill out numerous
long questionnaires at each follow-up visit. Due to their length, they may find these
questionnaires frustrating to complete, and may become more frustrated each time they
are required to complete the questionnaires. Then, the more times they are re-enrolled,
the more likely they are at some point to stop filling out the questionnaires.

For the five trials which used re-randomisation, I looked at whether the use of
re-randomisation may have led to higher rates of non-compliance or loss-to-follow-up in
later episodes. I assessed the number of episodes for which patients did not comply with
the treatment protocol, and for outcomes reported by two or more re-randomisation
trials, the number of episodes excluded from the analysis due to missing data. I wanted
to look at this data separately for each episode (i.e. for the first episode vs. the second
episode, etc), to assess whether non-compliance and missing data was higher in later
episodes. However, this information was not reported separately by episode number
(i.e. first vs. second episode) in any trial, and so I instead looked at the overall rates
of non-compliance and loss-to-follow-up across all episodes.

6.1.4 Difference in treatment effect estimates between re-randomisation and parallel group
trials

As discussed in chapters 1 and 5, re-randomisation trials and parallel group trials
may give different treatment effect estimates. This is because they target different
estimands; parallel group trials target the episode 1 effect (the effect of the intervention
the first time it is used), whereas re-randomisation trials can target estimands based
on all episodes (not just the first). Therefore, we would expect results from parallel
group and re-randomisation trials to differ when these estimands differ, e.g. when the
treatment effect in episode 1 is different to the effect in subsequent episodes.

The best way to evaluate whether the inclusion of subsequent episodes affects
results would be to re-analyse each re-randomisation trial by restricting the analysis to
only 1st episodes to see if this changes the estimates. However, this requires individual
patient data, which I do not have access to for these trials. An alternative approach
is to compare the estimated treatment effects from re-randomisation and parallel
group trials. This will give an unbiased estimate of the effect of allowing enrolment of
subsequent episodes under the assumption of no confounding (i.e. that there are no
confounding factors that influence both a trial’s design and its observed treatment
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effect). Note that these results would be conditional on the type of analysis implemented
in the re-randomisation trials (i.e. the difference in estimates between parallel and
re-randomisation trials would depend on whether the re-randomisation trials used
per-episode added-benefit vs per-patient policy-benefit estimators, etc).

In order to implement this analysis, I extracted the treatment effect estimate and
95% confidence interval for each outcome reported in each of the 14 trials included
in the review. However, I only compared treatment effects between parallel and re-
randomisation trials for outcomes that were reported for at least two re-randomisation
and two parallel group trials. This was to avoid having results being entirely reliant on
a single trial. This led to five outcomes being included in the analysis; overall mortality,
infection related mortality, hospital stay > 10 days, duration of neutropenia, and time
to recovery from fever.

For each of these five outcomes, I used the Stata package metareg to conduct a
random-effects meta-regression model to estimate the difference in treatment effect es-
timates between re-randomisation and parallel group trials. Treatment effect estimates
were log(hazard ratio) (log(HR)) for time-to-event outcomes, log(risk ratio) (log(RR))
for binary outcomes, and standardised mean differences for continuous outcomes. A
negative difference in effect sizes indicates that re-randomisation trials showed a more
beneficial treatment effect than parallel group trials.

I found that two re-randomisation trials did not have any events for overall mortality,
and two trials (one re-randomisation, one parallel group) did not have any events
for infection-related mortality. These trials were excluded from the analysis of these
outcomes, as it was impossible to estimate either a treatment effect or standard error.
One parallel group trial included three treatment arms (two active, one control),
and involved two treatment comparisons (both active interventions vs. control). The
meta-analysis by Mhaskar et al [61] included both treatment comparisons in the
analysis as separate trials; I therefore used the same approach here.

6.2 Results

6.2.1 Design and analysis characteristics of re-randomisation trials

Results are shown in table 6.1. None of the five trials explicitly stated whether
randomisations for the same patient were independent, or that patients were only
re-enrolled once the follow-up period from their previous enrolment was complete.

One trial reported placing a limit on the number of times patients could be enrolled
(they set a maximum limit of four episodes per patient). None of the other four trials
reported using a limit (or reported that no such limit existed). Three trials reported
the number of episodes for which each patient was enrolled (in two trials all patients
were enrolled for one or two episodes, and in the third most patients were enrolled for
one or two treatment episodes and a small proportion were enrolled for three or more
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episodes); the other two did not report this information.

Of the three trials that reported a sample size calculation, all three based their
calculation on a parallel group design. All five trials analysed the data on a per-episode
basis, and each of the five analysed data using an independence estimator.

Although I did not explicitly look at whether trials used added-benefit or policy-
benefit estimators, all trials analysed data as if it were a parallel group trial where
episodes were individual patients (e.g. using a two-sample t-test on episodes); this
method of analysis is essentially equivalent to the per-episode added-benefit estimator
in chapter 3 (i.e. analysis model 3.1), implying that all five trials used a method of
analysis which targeted the per-episode added-benefit estimand.

6.2.2 Impact of re-randomisation on recruitment

Amongst the five trials using re-randomisation, the median number of individual
patients recruited was 40 (range 28 to 112) and the median number of episodes of
febrile neutropenia enrolled was 58 (35 to 186). The median increase in the sample size
obtained through the use of re-randomisation was 25% (range 16% to 66%), indicating
that using a re-randomisation design allowed trials to recruit between 16% and 66%
more episodes of febrile neutropenia than they would have under a parallel group
design.

6.2.3 Treatment compliance and loss-to-follow-up in re-randomisation trials

Results are shown in table 6.2. The median percent of episodes which were non-
compliant with the protocol was 1.7% (range across trials 0% to 8.9%). None of the
five outcomes I assessed excluded any episodes from the analysis due to missing data.

6.2.4 Difference in treatment effect estimates between re-randomisation and parallel group
trials

Differences in treatment effect estimates between re-randomisation and parallel group
trials are shown in figure 6.1. In this figure, the two blue lines denote the point estimate
and 95% CI for the re-randomisation and parallel group trials (the top blue line is for
re-randomisation), and the red line shows the difference in point estimates between the
two designs (re-randomisation vs. parallel group), with a 95% CI for the difference. If
the point estimate for the red line is far away from 0, this means that the two designs
are showing different estimates; if it is close to 0, it means the two designs are showing
similar estimates.

I found that treatment effect estimates for the two designs were similar for each of
the five outcomes, and none of the differences were statistically significant. However,
confidence intervals were wide, indicating that differences are possible.
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Table 6.1: Design and analysis characteristics of re-randomisation trials

Re-
randomisation
trials (n=5)

Explicitly stated that randomisations for the same patient
were independent

No 5 (100)
Yes 0 (0)

Explicitly stated that patients were only re-randomised
when the follow-up period from their previous enrolment
was complete

No 5 (100)
Yes 0 (0)

Placed limit on maximum number of times each patient
could be enrolled in the trial

No 0 (0)
Yes 1 (20)
Not reported 4 (80)

Based sample size calculation on a parallel group design
No 0 (0)
Yes 3 (60)
No sample size calculation reported 2 (40)

Analysed data on a per-episode or per-patient basis
Per-episode 5 (100)
Per-patient 0 (100)
Both 0 (100)

Did analysis account for correlation between treatment
episodes from the same patient?

No (independence estimator) 5 (100)
Yes (e.g. mixed-effects model) 0 (0)

Reported the number of treatment episodes for each patient
No 2 (40)
Yes 3 (60)
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Table 6.2: Compliance and loss-to-follow-up in re-randomisation trials

Number
of trials
reporting
measure

Median
(range)

Percent of episodes non-complying with treatment
protocol

5 1.7 (0, 8.9)

Percent of episodes excluded from analysis due to
missing data

Overall mortality 5 0 (0, 0)
Infection related mortality 4 0 (0, 0)
Hospitalisation >10 days 3 0 (0, 0)
Duration of grade IV neutropenia 2 0 (0, 0)
Time to recovery from fever 3 0 (0, 0)

6.3 Discussion

In this chapter I used a Cochrane review of granulocyte colony-stimulating factors for pa-
tients with febrile neutropenia which include both parallel group and re-randomisation
trials to assess how re-randomisation trials are designed and analysed, what impact
re-randomisation had on recruitment, whether it led to higher rates of non-compliance
or missing data, and whether treatment estimates differed between the two designs.

I found that investigators tended to design and analyse the re-randomisation trials
as if they were parallel group trials. For instance, all trials which reported a sample
size calculation used the sample size calculation for a parallel group trial, and recruited
the specified number of episodes. As discussed in chapter 1, this is a valid approach to
the sample size calculation under certain assumptions. Similarly, all trials analysed
data as though it were a parallel group trial, and the episodes were patients. This
corresponds to a per-episode added-benefit estimator, which, as shown in chapter 3, is
an unbiased estimator for the per-episode added-benefit estimand. Therefore, using a
re-randomisation design rather than a parallel group trial design does not necessarily
require additional methodological complexity, and can be done in a very simple way.

I found that the five re-randomisation trials recruited between 16-66% more episodes
than they would have had they used a parallel group design. There was no missing
data in the re-randomisation trials for any of the outcomes considered, and there were
very low rates of non-compliance, implying that increased patient burden due to trial
re-enrolment was not an issue in this setting. This may be because most outcomes
were recorded by the trial team, rather than by the patients themselves.

I did not find any difference in treatment effect estimates between re-randomisation
and parallel group trials, though confidence intervals for the estimated differences were
wide.
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Figure 6.1: Difference in effect sizes between re-randomisation and parallel group
trials. The blue lines represent the estimated treatment effect and 95% CI from the
re-randomisation and parallel group trials. The red lines represent the difference in the
treatment effect estimates between re-randomisation and parallel group trials (and a
95% CI for this difference). If the red line is close to 0, it means that re-randomisation
and parallel group trials are providing similar estimates of treatment effect; if it is
far away from 0, then re-randomisation and parallel group trials are giving different
estimates of treatment effect. The x-axis shows the size of the effect for both the blue
and red lines, however the x-axis text (whether re-randomisation or parallel group
trials show more beneficial effects) applies only to the red line. RR=re-randomisation,
PG=parallel group, CI=confidence interval, Std. Mean Diff.=standardized mean differ-
ence. Reproduced from Kahan BC, Morris TP, Harris E, Pearse R, Hooper R, Eldridge
E. Re-randomization increased recruitment and provided similar treatment estimates
as parallel designs in trials of febrile neutropenia. Journal of Clinical Epidemiology 97
(2018) 14-19. DOI: https://doi.org/10.1016/j.jclinepi.2018.02.002 with permission.
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There were some limitations to this review. There was only a small number of
trials available. This led to wide confidence intervals for the differences in treatment
effect estimates, meaning that I could not rule out differences between designs. I also
focused only on one clinical area, and so these results may not be generalisable to other
settings. Furthermore, reporting of key trial characteristics in the re-randomisation
trials was often inadequate, which may in part reflect a lack of guidance on good
reporting practice at the time these trials were conducted.

Overall, these results suggest that in the setting of febrile neutropenia, use of
the re-randomisation design can increase recruitment compared to parallel group
designs while providing similar results, without increasing rates of missing data or
non-compliance.
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7 Discussion

In multi-episode settings some patients may require treatment on more than one
occasion. For instance, patients who experience acute sickle cell pain crises will require
medication to relieve symptoms each time they present to hospital with a new pain
crisis. Randomised trials in multi-episode settings are most often conducted using a
parallel group design, where patients are allowed to be enrolled for a single episode
only, and are not eligible to be re-enrolled for subsequent treatment episodes. This
approach can be inefficient as it discards a portion of the available treatment episodes.
Furthermore, results may not be generalisable if the treatment effect in the eligible
episodes differs to the effect in the excluded episodes.

The re-randomisation design has been proposed as an alternative approach in
multi-episode settings, as it allows patients to be re-enrolled and re-randomised for
each new treatment episode they experience. Potential benefits of the re-randomisation
design include increased recruitment and efficiency through inclusion of additional
episodes, and increased generalisability. However, to date there has been very little
methodological work done on re-randomisation trials, and so it is not entirely clear
whether these trials can generally provide valid results. As such, there has been
relatively slow uptake of these designs in practice.

In this thesis I evaluated the methodological considerations around re-randomisation
trials in order to address this issue. In particular, I looked at what treatment effects
re-randomisation trials actually estimate, how to analyse these designs to ensure they
are unbiased, and in what settings they are preferable to other design options. I
summarise the main results of this thesis in section 7.1 below. I then discuss future
work related to this topic in section 7.2, and make concluding remarks in section 7.3.

7.1 Summary of thesis

7.1.1 Chapter 2: estimands in multi-episode settings

In chapter 2 I defined a set of estimands that may be of interest in multi-episode settings.
I defined four main estimands of interest: (i) per-episode added-benefit; (ii) per-episode
policy-benefit; (i) per-patient added-benefit; and (i) per-patient policy-benefit. The
per-episode estimands represent an average treatment effect across episodes, while
the per-patient estimands represent an average treatment effect across patients. The
policy-benefit estimands represent the treatment effect in an episode given a policy
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of intervention for all episodes vs. control for all episodes, whereas the added-benefit
estimands represent the additional benefit of the intervention in an episode based on
the treatment history in previous episodes. These estimands can be helpful in deciding
which research question is of most interest, and choosing a study design and analysis
method which is best able to answer this question.

7.1.2 Chapter 3: Independence estimators for re-randomisation trials

In chapter 3 I evaluated the use of independence estimators to analyse re-randomisation
trials. Independence estimators use a working independence correlation structure to
estimate treatment effects. I found that independence estimators are unbiased for the
per-episode added-benefit estimand. They are also unbiased for the other estimands
in many settings, though can be biased in certain scenarios. They can be biased for
the policy-benefit estimands if the causal model for treatment history is misspecified.
They can also be biased for the per-patient and policy-benefit estimands under certain
non-enrolment scenarios (e.g. when there is differential non-enrolment across treatment
groups).

7.1.3 Chapter 4: Mixed-effects models for re-randomisation trials

In chapter 4 I evaluated the use of mixed-effects models to analyse re-randomisation
trials. Although mixed-effects models can offer much better precision compared to
independence estimators, they are biased for most scenarios in which the treatment
effect is not constant across patients or episodes. They can also be biased under some
non-enrolment scenarios even when the treatment effect is constant. Therefore, mixed-
effects models should not be used in re-randomisation trials. Instead, independence
estimators should be the default method of analysis.

7.1.4 Chapter 5: Comparing re-randomisation trials with other design

In chapter 5 I compared the re-randomisation design with cluster, crossover, and
parallel group designs in multi-episode settings. I found that although crossover trials
are the most efficient design, they are biased in many settings and I recommend
they not be used. Parallel group designs are useful if the aim is to estimate the
effect of an intervention the first time it is used. However, they are biased for other
estimands in many settings. They are also less precise than re-randomisation designs
in many settings. Cluster designs can be useful to estimate policy-benefit effects,
and do not rely on specifying a causal model for treatment history in order to be
unbiased. However, they do not maintain allocation concealment, and can be biased
in certain non-enrolment scenarios. Re-randomisation trials are also biased for the
policy-benefit effect in the same non-enrolment scenarios as the cluster design, however
the re-randomisation design can at least provide an unbiased estimate of at least one
treatment effect (per-episode added-benefit) in these scenarios, which is not the case
for the cluster design.
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7.1.5 Chapter 6: Re-randomisation in febrile neutropenia trials

In chapter 6 I used a Cochrane review of granulocyte colony-stimulating factors for pa-
tients with febrile neutropenia which include both parallel group and re-randomisation
trials to assess what impact re-randomisation had on recruitment, whether it led to
higher rates of non-compliance or missing data, and whether treatment estimates
differed between the two designs. I found that the five re-randomisation trials recruited
between 16-66% more episodes than they would have had they used a parallel group
design. There was no missing data in the re-randomisation trials for any of the out-
comes considered, and there were very low rates of non-compliance. I did not find any
difference in treatment effect estimates between re-randomisation and parallel group
trials, though confidence intervals for these difference were wide.

These data suggest that in this setting, use of the re-randomisation design can
increase recruitment compared to parallel group designs while providing similar results,
without increasing rates of missing data or non-compliance.

7.2 Future work

Given the scarcity of methodological research about re-randomisation trials, there is a
large scope for future work. I restricted the work in my thesis to the simplest setting
where patients experience a maximum of two episodes, and treatment allocation does
not affect the occurrence of subsequent episodes. It would be useful to extend this
work to more complex settings.

For instance, with a larger number of episodes it will be more difficult to specify a
causal model for treatment history for the policy-benefit estimands. As a motivating
example, one of the trials evaluating granulocyte colony-stimulating factor in febrile
neutropenia from the review in chapter 6 had some patients who enrolled for up to
four episodes. The reason that specifying a causal model for treatment history is more
difficult with four episodes rather than two is because the number of potential variables
to include in the model will increase quite quickly with each additional episode. With
two episodes we can specify the effect of treatment history using two variables (Zi,j−1

and ZijZi,j−1), which allow the outcome and treatment effect to depend on treatment
allocation in the previous episode. However, with three episodes we could specify
the effect of treatment history using up to six variables (Zi,j−1, Zi,j−2, Zi,j−1Zi,j−2,
ZijZi,j−1, ZijZi,j−2, ZijZi,j−1Zi,j−2), which allows both the outcome and treatment
effect to depend on the treatment allocations in the previous two episodes, and for these
associations to also depend on whether the intervention was received in both previous
episodes or only one of the two episodes. As the number of episodes increases there will
very quickly be too many possible variables to reasonably include in the model, and
we will need to decide which variables to omit, or whether we can make simplifying
assumptions in order to reduce the number of variables. For example, we could assume
that only the treatment allocation in the previous episode matters, or that the effect

172



of treatment history can be accurately captured from a single variable representing the
number of previous episodes in which the patient received the intervention. Further
research on how best to specify these causal models for treatment history when there
are a large number of episodes would be useful.

In this thesis I assumed the treatment allocation had no effect on the occurrence of
subsequent episodes. Although this is a reasonable assumption in some settings, there
are other settings where it will be false. For example, some trials may have terminating
endpoints (i.e. where a treatment success or failure precludes future episodes) such as
mortality, or pregnancy in a fertility study. Several of the trials discussed in chapter 1
had terminating endpoints. For example, the trials of granulocyte colony-stimulating
factor in febrile neutropenia and albumin for complications from cirrhosis both included
mortality as an outcome. It would therefore be useful to extend the estimands defined
in chapter 2 to this setting, and evaluate whether the re-randomisation design is
able to provide unbiased estimates. This setting is complicated by the fact that some
treatment histories are impossible, i.e. that certain episodes may not exist under an
alternate treatment history. This presents a challenge for the policy-benefit estimand;
if an episode would only exist under one of the two treatment histories of interest (all
intervention vs. all control) it is unclear how to define the treatment effect at this
episode. One solution might be to use a principal stratification approach [35, 62, 63, 64],
where the policy-benefit effect is defined within the subset of episodes that would exist
under both treatment histories. However, it is not clear whether this effect is clinically
useful, or whether it would be possible to estimate it from re-randomisation or other
designs without using unrealistic assumptions.

Conversely, the per-episode added-benefit estimand should be directly applicable to
the setting where treatment allocation affects occurrence of future episodes. Because
it averages over treatment histories according to their probability of being observed, it
is already defined in a way that excludes treatment histories under which an episode
would not exist (as these treatment histories have 0 probability of being observed).
Until the other estimands are extended to this setting, re-randomisation trials in which
treatment allocation may affect occurrence of subsequent episodes (i.e. trials with
terminating endpoints) should use the per-episode added-benefit effect to ensure their
estimand is defined in a valid way.

In this thesis I primarily focussed on bias, and did not explicitly look at the best way
to estimate standard errors in re-randomisation trials. For the independence estimators
in the simulation studies in chapters 3-5 I used a robust standard error which allowed
for clustering of episodes within patients. However, there is some evidence to suggest
that model-based standard errors from independence estimators (which completely
ignore clustering) are valid in many settings [9]. It would be useful to directly compare
these two approaches to determine whether one is preferable.

Currently there are no formula for sample size calculations available for re-
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randomisation trials. It has previously been shown that under certain assumptions
the sample size calculation for a parallel group trial could also be used for a re-
randomisation design (where the re-randomisation design would recruit the specified
number of episodes). However, this approach is only valid for the per-episode added-
benefit effect, and assumes a constant treatment effect mechanism. It would be useful
to develop a more general approach to sample size calculations that works under any
treatment effect mechanism, and to develop sample size formulas for the per-patient
and policy-benefit estimands.

7.3 Concluding remarks

The re-randomisation design can be a useful design option in multi-episode settings.
It can increase the recruitment rate, allowing trials to finish earlier, and facilitate
estimation of different treatment effects, allowing researchers to answer multiple
questions about the treatments. It can provide unbiased treatment effect estimates,
though for some estimands the effects are only unbiased under certain assumptions;
careful consideration of these assumptions should be undertaken to evaluate their
plausibility. The re-randomisation design compares favourably with other design
options that could be used in multi-episode settings, though depending on the specific
research question other designs may be more appropriate in certain instances. In
conclusion, re-randomisation can be a safe and useful option, and should be used more
often.
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A Calculating expected values in tables
3.9 and 3.11

A.1 Calculating the expected values of outcomes at each episode in table
3.9

The expected values of the outcomes in table 3.9 (chapter 3, section 3.3.10) are obtained
by a weighted average. I show this below.

For E (Yij) of sequence Z = (0), j = 1:

E (Yij) = βXPL (1− p01) + 0 (1− p00)
(1− p01) + (1− p00) = βXPL

(1− p01)
2 (1− p)

For E (Yij) of sequence Z = (0, 1), j = 1, and sequence Z = (0, 0), j = 1, 2:

E (Yij) = βXPLp01 + 0p00

p01 + p00
= βXPL

p01

2p

For E (Yij) of sequence Z = (0, 1), j = 2:

E (Yij) = (βtrt + βXPL) p01 + βtrtp00

p01 + p00
= βtrt + βXPL

p01

2p

For E (Yij) of sequence Z = (1), j = 1:

E (Yij) = (βtrt + βXPL) (1− p00) + βtrt (1− p01)
(1− p00) + (1− p01) = βtrt + βXPL

(1− p00)
2 (1− p)

For E (Yij) of sequence Z = (1, 0), j = 1, and sequence Z = (1, 1), j = 1, 2:

E (Yij) = (βtrt + βXPL) p00 + βtrtp01

p00 + p01
= βtrt + βXPL

p00

2p

And for E (Yij) of sequence Z = (1, 0), j = 2:

E (Yij) = βXPLp00 + 0p01

p00 + p01
= βXPL

p00

2p
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A.2 Calculating the expected values of outcomes at each episode in table
3.11

The expected values of the outcomes in table 3.11 (chapter 3, section 3.3.11) are
obtained by a weighted average. I show this below.

For E (Yij) of sequence Z = (0), j = 1:

E (Yij) = 0 (1− p00) + 0 (1− p01) + βXEL (1− p00) + βXEL (1− p01)
2 (1− p00) + 2 (1− p01) = βXEL

2

(note that NT
8 cancels out in the numerator and denominator)

For E (Yij) for j = 1 for sequence Z = (0, 1) and Z = (0, 0):

E (Yij) = 0 (p00) + 0 (p01) + βXELp00 + βXELp01

2p00 + 2p01
= βXEL

2

For E (Yij) for j = 2 of sequence Z = (0, 1):

E (Yij) = p00βtrt + p01 (βtrt + βXEL) + p00βtrt + p01 (βtrt + βXEL)
2p00 + 2p01

= 2βtrt (p00 + p01) + 2βXELp01

2 (p00 + p01) = βtrt + βXEL
p01

p00 + p01

For E (Yij) for j = 2 of sequence Z = (0, 0):

E (Yij) = 0 (p00) + βXELp01 + 0 (p00) + βXELp01

2p00 + 2p01
= βXEL

p01

p00 + p01

For E (Yij) of sequence Z = (1), j = 1:

E (Yij) = βtrt (1− p01) + βtrt (1− p00) + (βtrt + βXEL) (1− p01) + (βtrt + βXEL) (1− p00)
2 (1− p01) + 2 (1− p00)

= 2βtrt (2− p01 − p00) + βXEL (2− p01 − p00)
2 (2− p01 − p00) = βtrt + βXEL

2

For E (Yij) for j = 1 of sequences Z = (1, 0) and Z = (1, 1):

E (Yij) = p01βtrt + p00βtrt + p01 (βtrt + βXEL) + p00 (βtrt + βXEL)
2p00 + 2p01

= βtrt + βXEL
2
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And for E (Yij) of sequence Z = (1, 0), j = 2:

E (Yij) = 0 (p01) + βXELp00 + 0 (p01) + βXELp00

2p00 + 2p01
= βXEL

p00

p00 + p01

And for E (Yij) of sequence Z = (1, 1), j = 2:

E (Yij) = p01βtrt + p00 (βtrt + βXEL) + p01βtrt + p00 (βtrt + βXEL)
2p00 + 2p01

= βtrt+βXEL
p00

p00 + p01
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