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Abstract 
 

HER2 protein overexpression in breast cancer patients is a predictor of poor prognosis and 

resistance to therapies. Despite significant advances in the development of targeted therapies 

and improvements in the 5-year survival rate of metastatic HER2 positive breast cancer 

patients, new approaches are needed to better understand the disease at an early stage in 

order to identify means to inhibit its progression.  An inducible breast cancer transformation 

system allows examination of early molecular changes at high temporal resolution. Here, we 

show that HER2 overexpression to similar levels as those observed in a subtype of HER2 breast 

cancer patients is sufficient to induce transformation of MCF10A cells. We found that HER2 

activation generated gross morphological changes in 3D cell culture, increased anchorage-

independent growth of cells and altered the transcriptional programme of various genes 

associated with oncogenic transformation. Global phosphoproteomic analysis during early 

transformation uncovered numerous signalling changes associated with cancer upon HER2 

overexpression. Candidate pathways included chromatin regulators, in addition to known 

cascades such as MAPK, focal adhesion, mTOR, and HER signalling pathways. To understand 

the effect of kinase signalling on chromatin accessibility landscape, we performed ATAC-seq on 

acini isolated from 3D cell culture. This enables elucidation of HER2 induced signalling effects 

on chromatin architecture and its contribution to transformation at temporal resolution. 

Uniquely, we identify that HER2 overexpression promotes reprogramming-associated 

heterogeneity, with a subset of cells acquiring a stem-like phenotype, expressing breast stem 

and cancer stem cell markers, making them likely targets for malignant transformation. Our 

preliminary data show that this population of cells, which counterintuitively enriches for 

relatively low HER2 protein abundance, possesses transformational drive, resulting in 

increased anchorage-independent growth in vitro compared to cells not enriching for stem 

markers. Our data provide a discovery platform for signalling to chromatin pathways in HER2-
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driven cancers, offering an opportunity for biomarker discovery and identification of novel 

drug targets. 
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Chapter 1 

1. Introduction 
 

1.1 Neoplastic transformation 
 

1.1.1 The process of transformation 

 

Transformation takes place when cells acquire the key hallmarks of cancer (1). These include; 

morphological changes, increased migration and invasion potential, anchorage-independent 

growth, foci formation, as well as differences in the genetic and epigenetic landscape between 

normal and transformed cells (2-4). One of the methods to achieve neoplastic transformation 

of cells is the introduction of cancer associated oncogenic lesion(s). Transformation of normal 

human cells has been achieved by a step wise process of immortalisation and then conversion 

of the immortalised cells to metastatic transformation (5). Studies have shown that 

transformation of normal rodent cells can be achieved by the activation of a single oncogene in 

immortalised rodent cell lines, as they have already undergone genetic and/or epigenetic 

changes (6, 7). However, primary rodent cells are transformed by the co-expression of two 

distinct co-operating oncogenes or in combination with mutation or inactivation of a tumour 

suppressor gene (8).  

Similar strategies have been used to convert normal primary human cells to tumourigenic 

state. It is suggested that three distinct oncogenic “hits” may be required, which lead to 

growth-regulating alterations to transform primary human cells (9). The foreskin fibroblasts 

(BJ), human mammary epithelial cells (HMECs) and human embryonic kidney cells (HEK) were 

transformed by genomic versions of H-Ras, hTERT and SV-40 LT genes (9-11). This suggests that 

there are fundamental differences for transformation in rodent versus human cells. An 

explanation has emerged that may elucidate such differences. The primary rodent cells are 
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easier to immortalise compared to the primary human cells (12). The latter rarely undergo 

spontaneous, immortalisation, whereas the rodent cells can be spontaneously immortalised, 

which indicates that the control of cellular lifespan between the two different cells is very 

different (13, 14). This change could partially be attributed to telomere biology. Unlike rodent 

cells, the human cells lack detectable telomerase activity and have relatively shorter 

telomeres, which erodes and triggers cellular senescence (15, 16). Interestingly, both inbred 

and wild type mice have telomerase activity, with wild type mice having shorter telomere 

length as similarly observed in humans, however, the growth characteristics between wild type 

and inbred animals are similar (17). However, it could be that inbred mice have a more 

“permissive” genetics, which make them more prone to immortalisation.  

The vast majority of the in vivo and in vitro transformation models have been able to study the 

events occurring between normal and already transformed cells. This has made it impossible 

to track the early aberrant events taking place during the process of transformation upon an 

oncogene induction. Many experimental models both in vivo and in vitro have implicated a 

variety of mechanisms involved in oncogene-mediated transformation, but a unified 

mechanistic system cannot yet be proposed, in part due the lack of understanding of the early 

events in oncogene mediated tumourigenesis. To overcome the challenge in characterising the 

earliest changes, such as those in the signalling network and chromatin dynamics during 

transformation upon oncogene induction, an inducible model could be utilised.  

1.1.2 Signalling by HER proteins 

 

The human epidermal receptor (HER) family of proteins belong to the type I transmembrane 

growth factor receptors that function to activate a rich network of intracellular signalling 

pathways in response to extracellular signals (18, 19). The HER family has four members that 

are structurally and functionally very similar; HER1 (EGFR, or ErbB1), HER2 (ErbB2 or neu), 

HER3 (ErbB3), and HER4 (ErbB4). Their structure consists of an extracellular ligand-binding 
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domain, a transmembrane domain and an intracellular tyrosine kinase domain. This group of 

receptors have individual features which include the ligand-deprived HER2 receptor and a 

kinase-inactive HER3 receptor (20). In mammalian cells, at least 12 ligands are known to induce 

dimerisation, with each ligand favouring a specific combination of receptor dimerisation in a 

specific hierarchical order. However, there is a marked preference of HER2 as a dimerising 

partner of the three other partners (21, 22). The HER2 heterodimer with HER3 generates the 

most potent intracellular signal compared to those originating from other combinations, 

because HER2 contains the strongest catalytic kinase activity (23). In addition, HER2 

heterodimers have slow ligand dissociation, prolonged firing, rapid recycling, slow endocytosis, 

slow ligand dissociation and internalisation (24). The HER proteins are normally widely 

expressed in numerous non-haematopoietic cells and are functionally important (25). The 

receptors are essential in tissue growth and development and knock out models have shown 

that they are critical for the development of organs such as lung, brain, gastrointestinal tract 

and skin (26-28).  

The extracellular binding domain of the receptors except HER2 can be in active (open) or 

inactive (closed) conformation. Upon ligand binding, the extracellular binding domain of the 

HER protein undergoes structural change to an active conformation, which promotes 

dimerisation of the receptors. This leads to auto-phosphorylation of the intracellular tyrosine 
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kinase domain, which initiates a plethora of downstream signalling pathways and cross talks 

with other signalling proteins, leading to the regulation of numerous cellular activities (29, 30).  

 

 

Figure 1.1: A simplified outline of HER signalling network. For simplicity only 5 ligands are shown out of 

the 12 that have been identified in mammalian cells. Number in each receptor circle or semi-circle 

indicate the respective receptor of the HER family. HER2 does not bind to any ligand hence a closed 

(circular) conformation, other HER receptors have an open conformation and the green blocks indicate 

the respective ligand that induces the dimerisation. HER3 has an inactive catalytic intracellular tyrosine 

kinase domain indicated by a cross. HER2-HER3 heterodimer is coloured in red because they generate 

the most potent signals. Signalling is transmitted to the adaptor proteins and enzymes, which activate a 

large network of signalling cascades of which only some of them are shown here. Signalling pathways 
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activate various transcription factors but at present time, their translation to a specific type of output is 

not fully understood.   

HER2 does not require a specific ligand as its extracellular binding domain is always in a 

constitutively open (active) conformation, unlike its family members (Figure 1.1). In normal 

cells with endogenous levels of HER2 expression, the activation of pathways carefully regulates 

normal cell growth, adhesion, survival, and differentiation and other biological processes as 

the dimerisation of receptors and the ensuing activation are temporary and spatially 

controlled. Furthermore, in normal cells the excess signalling induces apoptosis due to the 

presence of a wild type p53 and other tumour suppressor genes (31). Expectedly, p53 

inactivation is associated with HER2 induced tumours (32).  

1.1.3 Transformation potential of HER2 

 

The data supporting the ability of HER2 to transform human cells is compelling. HER2 protein 

over expression or gene amplification in breast epithelial cells has been shown to cause 

morphological alterations in the mammary acini and induce proliferation (33). HER2 over 

expression alone in NIH-3T3 cells is sufficient to transform cells in vitro and its over expression 

in invasive breast cancer cell line (MCF-7) is known to enhance tumourigenicity (34, 35).  The 

evidence showing the transformation potential of neu (nomenclature of HER2 for rodent 

counterparts) in rodents is also robust and rodent cells are simpler to transform compared to 

the human cells (36). Transgenic mice with active neu developed mammary adenocarcinomas 

in a step-wise progression and neu was sufficient to induce transformation (37). Wild type 

(WT) neu over expression in the basal layer of mouse epidermis allowed for proliferation and 

tumour formation as early as six weeks (38). Numerous other studies have shown the potent 

transforming potential of neu inducing malignant transformation in a variety of organs and 

model systems (39-45).  
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1.1.4 Transformation of MCF10A cell line 

 

To study the transformational events upon oncogene expression, the focus has historically 

been on the immortalised yet non-tumourigenic cell lines as a starting model. MCF10A cell 

line, the human mammary epithelial cells have been extensively used for this purpose. Forced 

ectopic over expression of constitutively active and inducible oncogenes such as Ha-Ras (46), 

HER1 (47), B-Raf (48), MYC (BHLH Transcription Factor) (49) NCT (Nicastrin) (50), RANK 

(Receptor activator of nuclear factor κ B) (51) and HER2 (3, 52) in the mammary epithelial cells 

produced many transformation associated phenotypic and transcriptional changes. These 

alterations include the morphological disruption in 3-dimensaional (3D) cell cultures and 

transcriptomic differences between the oncogene induced transformation relative to control 

cells (3). 

Furthermore, HER2 gene in breast cancer appears to hold the transformational potential 

through its amplification alone. Therefore, to investigate the effects of HER2 over expression in 

tumourigenesis, a cell line that contains either “low” or endogenous levels of HER2 would be 

an ideal starting model to appropriately quantify the impact of HER2 and changes that occur 

consequently. MCF10A cell line is thought to have very low levels of endogenous HER2. 

Moreover, since HER receptors work closely with each other the expression of HER2 family 

members are also of importance in breast cancer. MCF10A cells express “normal” levels of 

EGFR and very low endogenous levels of HER3 (53, 54). This is essential to understand the first 

steps of HER2 over expression to dissect its effects and to reliably attribute the changes to the 

HER2 levels alone without ambiguity from other factors.  

MCF10A cells expresses markers associated with basal/myoepithelial and luminal phenotype 

as is seen in the normal breast (55). When grown in 3D cell culture of matrigel and collagen 

mixture, MCF10A cells form a lumen as a result of apoptotic (e.g. anoikis) conditions in the 

centre of the acini (56, 57). This resembles the acini of the normal breast tissue with clustered 
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lobules, connecting the interlobular ductules with each other (58). This shows that overall 

MCF10A is a good initial model to study the transformational changes in the context of human 

mammary breast cancer, and analysis from this model could be further extended. 

1.1.5 Epithelial to mesenchymal transition in transformation 

 

Epithelial to mesenchymal transition (EMT) is a reversible cellular process that is known to 

have important roles in morphogenesis, wound healing, embryogenesis, development, tumour 

invasiveness and malignant transformation (59-61). During the EMT process, epithelial cells 

progressively lose their phenotype, which involves remodelling of the cell-extracellular matrix 

and cell-cell interactions. This results in the detachment of the epithelial cells from each other 

and the underlying base membrane, resulting in the activation of a new transcriptional 

programme that encourages the mesenchymal state (62). A widely studied phenotype of cells 

that have undergone EMT is the transformation of their normal compact – epithelial-cell-like 

morphology to a more elongated, spindle-like - mesenchymal morphology (63-65). Since EMT 

is a reversible process, mesenchymal cells can revert back to epithelial cells, known as the 

mesenchymal to epithelial transition (MET). 

Moreover, normal epithelial cells are held together by tight junctions, gap junctions, 

desmosomes and adherens junctions, which consist of cell surface epithelial cadherin (E-

cadherin) genes. This structure is critical for the integrity of epithelial cells. Upon EMT 

induction, the E-cadherins are downregulated alongside the repression and activation of other 

markers, leading to the arising of mesenchymal cells. This involves the breakdown of normal 

morphology of cells and acquisition of a more fibroblastic mesenchymal phenotype (60).  The 

malignant transformation of many different tumours is dependent on EMT activation (66, 67). 

In transformation, the consequences of EMT activation are the degradation of the underlying 
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basement membrane, disruption to cell-cell interactions and cell polarity, as well as the 

abnormal reorganisation of the extracellular matrix (68) (Figure 1.2).  

 

 

Figure 1.2: Schematic of EMT programme. Epithelial cells are held together by adherens junction, tight 

junctions, and are linked to the basement membrane by hemi-desmosomes. These cells express genes 

that are associated with the epithelial state and sustain polarity of cells (list of genes in light yellow box). 

The epithelial state has downregulation of molecules associated with mesenchymal state. EMT induction 

results in the expression of genes associated with mesenchymal state (listed in the orange box) and the 

concomitant down regulation of the epithelial genes. The alterations in gene expression in epithelial 

state leads to disruption of tight junctions, adherens junctions and the disassembly of cell-cell and cell-

basement membrane attachments. Epithelial cells progressively lose their features by the acquisition of 

intermediate stage and associated gene expression. In certain circumstances, full EMT features occur 

but cells rarely advance to complete mesenchymal state. EMT is a reversible programme, and cells can 

revert back by undergoing MET.   

In addition, prominent genes that are associated with the epithelial state, such as cytokeratin 

and E-cadherin are repressed, whilst at the same time, expression of genes that are linked to 

the mesenchymal state are activated. These include fibronectin, N-cadherin and vimentin (69).  
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Furthermore, in clinical setting, the protein markers that are associated with EMT activation 

could be used as specific indicators of high grade malignant transformation by pathologists 

(70). However, the transition from epithelial to mesenchymal state does not work as a binary 

switch and cancer cells do not always execute the complete EMT reprogramming to drive cells 

to an unequivocal mesenchymal state. The process appears to be more dynamic, and that is 

crucial for driving tumourigenesis, which contributes to full malignant transformation (62, 71).  

Likewise, in cancer progression it has been widely known that during early carcinomas, cells 

are in the epithelial-cell-like state, and as the transformation progresses, cells gradually gain 

more mesenchymal features. The EMT activation in cancer cells has been associated with 

higher resistance to several therapies (68). Additionally, in breast cancer cells, the EMT 

programme is known to associate with more cancer stem-like phenotype, which in turn has a 

higher transformational potential (72). 

1.1.6 Breast cancer progression – the role of HER2 over expression 

 

It has been documented that upregulated levels of HER2 expression can be detected in 

mammary tissues that show features of partial transformation, but are not yet completely 

transformed. Generally, HER2 is expressed at low levels or is absent in benign breast lesions 

(73, 74). For example, HER2 is almost undetectable in terminal ductal lobular units (TDLUs), 

and has been detected at very low levels (0-9%) in atypical ductal hyperplasia (ADH) (75).  In 

contrast, HER2 protein over expression and gene amplification are readily detected in the pre-

invasive stage, in ductal carcinoma in situ (DCIS), with approximately 70% of patients exhibiting 

HER2 over expression (76-78). The progression from low HER2 expression levels – or its 

absence – in the benign breast biopsies to high incidence of HER2 over expression in the pre-

invasive stage of the disease suggests that HER2 over expression is an early lesion in breast 

tumourigenesis. However, not all of the DCIS cases possess the ability to invade and 

metastasise, since about 20%-30% of the invasive breast cancers have HER2 over 
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expression/amplification. Thus, this points to the possibility of there being underlying 

differences causing some of the pre-invasive breast disease to either remain stable or progress 

to an invasive stage. It has been known that minor aberrations in HER2 over expressions cases 

are sufficient to induce transformation (79). Additional alterations alongside HER2 over 

expression may also play an important role in the progression of HER2 positive breast cancers 

from benign to invasive disease, such as associated abnormalities in p53 and E-cadherin genes 

(80, 81).    

On the other hand, there is evidence to suggest that HER2 over expression does not change 

between primary tumours and those that metastasise. For instance, there was no drastic 

change in HER2 expression between primary tumours and lymph node metastatic cases, as 

HER2 over expression was found in 55% of primary disease, but also in metastatic cases at the 

same incidence rate (82). Indeed, there are many studies that have shown very little to no 

difference in HER2 over expression status between primary tumours and the corresponding 

metastatic breast cancer stage (83-87). 
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1.2 HER2 in cancer 
 

1.2.1 HER2 over expression in cancer 

 

The data from the experimental models is well supported by a significant body of clinical data 

from patients. HER2 is over expressed in approximately 20-30% of breast and ovarian cancers 

and is correlated with worse prognosis (88, 89). In addition, over expression of HER2 is 

observed in lung, head and neck, endometrial, oesophageal and kidney cancers and is also 

associated with worse prognosis (90) (Figure 1.3). HER2 over expression is a significant and 

early event in breast tumourigenesis and its expression is sustained through the different 

stages of breast cancer, from early detection, to invasive disease, to node and finally distal 

metastasis (91, 92). However, despite HER2 being maintained throughout disease progression, 

its over expression in early stage defines a sub type of breast cancer (HER2 positive), 

notwithstanding its expression at later stages (92-95). 

 

Figure 1.3: HER2 protein over expression in various malignancies. HER2 gene amplification and protein 

over expression has been identified in many cancer types. Only a few different types of cancers are 
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selected here out of the many other HER2 over expressing cancers. HER2 over expression shown here is 

determined by IHC and/or FISH. 

Different studies have reported that within the same cancer type there is a wide range of 

variation/heterogeneity in the pattern of HER2 over expression, despite the same standardised 

fluorescence in situ hybridisation (FISH) and immunohistochemistry (IHC) analysis being used 

for detection (96). The source(s) of variation in HER2 expression is not yet elucidated, it could 

however be the intra-laboratory techniques, or that this subtype of breast cancer is extremely 

heterogeneous. The effect of HER2 over expression in breast cancer is well characterised. 

However, the clinical behaviour of HER2 in patients displaying varying levels of heterogeneity 

require much additional study. The intra-heterogeneity of HER2 expression within the same 

patient requires additional investigation to dissect if different levels of HER2 expression have 

different transformation potential. 

1.2.2 HER2 positive breast cancer 

 

HER2 over expression is the result of HER2 gene amplification and/or increased transcription. 

The extent of HER2 over expression can be evaluated at mRNA level by Real-Time PCR (RT-PCR) 

and FISH, or by IHC to quantify the protein levels. Currently, breast cancer patients undergo 

testing to check for HER2 positivity but the ideal way to evaluate the HER2 positive status 

remains unclear and controversial, because there is no standardised criteria for assessing HER2 

as a prognostic marker (97). However, the guidelines have been updated in 2013 and more 

recently focused updated in 2018 by the American Society of Clinical Oncology (ASCO)/College 

of American Pathologists (CAP) (98, 99). The guidelines are based on HER2 gene and/or HER2 

protein assessment and recommend the use of FISH and IHC assays to inform diagnoses of 

HER2 positivity in breast cancer. The utility of RT-PCR to diagnose or serve as a substitute for 

either FISH or IHC remains unclear because of high rates of false negative results and 

insufficient evidence to support its use as it is not fully validated in diagnostic settings (100).  
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The extent of HER2 protein over expression is firstly diagnosed by IHC to grade the tumour. If 

the protein staining results in unequivocal 0 or 1+ grade, the cancer is considered HER2 

negative. If the results are unequivocal 3+ grade, the cancer is considered HER2 positive. If it is 

graded equivocal 2+, subsequent FISH analysis is used to determine the positivity of HER2 gene 

amplification (101). 

In a phase III clinical trial (CLEOPATRA), women who have higher HER2 mRNA or protein over 

expression corresponds to a higher magnitude of benefit from Trastuzumab (Herceptin) (102). 

However, this is not true in all clinical cases as Trastuzumab treatments of lower HER2 

expressing tumours are still associated with clinical benefit (103). This might account for the 

spatial heterogeneity and variation of HER2 expression which under appreciates the bona fide 

percentage of HER2 positivity in cells. 

1.2.3 Clinical evidence of anti-HER2 therapies 

 

Over the past 20 years, there have been significant advances in the therapeutic strategies 

employed for the treatment of HER2 positive breast cancer. The commonly recommended 

anti-HER2 therapies include trastuzumab, lapatinib, ado-trastuzumab emtansine (T-DM1), and 

pertuzumab (104). Trastuzumab was approved as a first-line treatment alongside paclitaxel for 

metastatic HER2 positive breast cancer after it was approved in 1998 (105). The benefit of 

trastuzumab in treating patients with metastatic disease has been well documented in clinical 

trials led by the North Central Cancer Treatment Group (NCCTG) and the National Surgical 

Adjuvant Breast and Bowel Project (NSABP). The results of the trials compared chemotherapy 

with or without trastuzumab. They found, after a follow up of two years, that there were 133 

events in the trastuzumab group compared to 261 events in the chemotherapy treated 

patients without trastuzumab. The percentages of patients alive in the trastuzumab treated 

group were 87.1% compared to 75.4% in the control group in the medial follow-up of two 

years. At four years, the percentage of patients alive with trastuzumab were 85.3%, compared 
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to 67.1% in the control group (106). Therefore, trastuzumab in combination with paclitaxel in 

adjuvant setting significantly improved patients’ disease-free survival (DFS) and overall survival 

(OS).  

Furthermore, lapatinib – which is known to target the intracellular tyrosine kinase domain of 

the HER2 receptor (107) – was shown to be effective in treating HER2 positive breast cancer 

tumours that were resistant to trastuzumab (108, 109). Several clinical trials have shown that 

the combination of lapatinib with trastuzumab had significantly better progression-free 

survival (PFS) than lapatinib treatment alone (110). The median survival for the combination 

treatment was 12 weeks compared to 8.1 weeks with lapatinib alone (111).  

 

Figure 1.4: Kaplan-Meier curves depicting disease-free survival (DFS) (A) and overall survival (OS) (B) of 

patient treated with chemotherapy alone (control) vs Trastuzumab and chemotherapy.  

1.2.4 Inducible transformation models in cancer 

 

To achieve dose-dependent, reversible and uniform temporal control of a gene of interest, an 

inducible system has obvious advantages in many experimental settings. Numerous inducible 
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systems have been developed to understand the function of specific lesions in different 

diseases. For instance, a mouse embryonic cell line called C3H/10T1/2 with ras oncogene 

under the transcriptional control of the inducible mouse metallothionein-I promoter induced 

by heavy meal (zinc) ions induced conditional and reversible transformation (112). In addition, 

it has been shown that mutations in the DNA methyltransferase (DNMT3a) using Cre-inducible 

(cyclisation recombination) system and nucleophosmin (NMP1) enhanced clonogenic potential 

and eventually induced transformation in experimental mice (113). Furthermore, a doxycycline 

(dox) inducible H-RAS V12G mutation induced in the melanocytes of mice resulted in them 

developing spontaneous melanomas that eventually regressed upon withdrawal of doxycycline 

(114). Inducible HER2 over expression in primary human mammary cells induced various 

tumourigenic alterations to the ductal bilayer observed in early breast tumorigenesis (115).  

The inducible models mentioned above and others provide advantages over conventional non-

inducible systems. Firstly, in some cases the expression of constitutively active gene could be 

toxic to the cells, therefore the ability to control the timing and levels of ectopically expressed 

transgenes is extremely valuable. Secondly, inducibility grants the ability to track and 

characterise the very early molecular changes that occur upon gene induction, which would be 

impossible to capture otherwise. Thirdly, the reversibility of gene expression and phenotype 

upon withdrawal of the inducing agent can be useful to investigate because once the stimulus 

is removed, an inducible gene returns to inactive, basal level.  

The inducible systems in published works have been valuable to show the combination of 

oncogenes required for transformation. However, in many cases they do not reflect the 

endogenous expression of oncogenes or the inactivation of tumour suppressor genes as 

presented clinically in patients. They are based on the forced ectopic expression of genes that 

are not normally seen in tumours. Therefore, there is a need for an inducible in vitro system to 

model transformation in a way that better reflects the early progression of HER2 breast 
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cancer, with endogenous levels of expression of oncogene(s) comparable to those observed in 

physiological conditions.   

1.2.5 Inducible transformational vectors 

 

1.2.5.1 Tetracycline inducible system 

 

Conditional gene expression tools that can control the induction and reversibility of a gene are 

essential tools in research with broad applications. The tetracycline inducible vector is a 

responsive and tightly regulated system that produces robust expression of a gene of interest 

in the target cells (116). There are two subtypes of tetracycline inducible system.  

Firstly the Tet-On, which is based on the reverse tetracycline controlled transactivator (rtTA). 

The rtTA consists of VP16 transactivation domain and the TetR repressor. The tetracycline 

response element (TRE), which is the inducible element (promoter) contains the Tet operator 

(TetO) sequence can bind the rtTA in the TRE of the target transgene in the presence of 

doxycycline (dox). Thus, the addition of dox regulates the expression of the gene of interest 

quantitatively and temporally (Figure 1.4). The Tet-Off system functions in the opposite 

manner, in the presence of dox, expression from the TRE is reduced, resulting in blocking of 

transcription (116, 117). 
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Figure 1.5: Schematic of tetracycline (ON) inducible system. In the presence of an inducing agent (dox), 

rtTA is bound by it, which binds to the TRE and induces the expression of HER2. Withdrawal of dox 

leaves the rtTA empty and therefore, transcription of HER2 is blocked.   

1.2.5.2 Cre-Lox Inducible technology 

 

Cre-Lox inducible model derived from the P1 bacteriophage is a specific and potent system for 

conditional control of gene expression. The inactivation of the allele is maintained by an 

inhibitory cassette called the lox-STOP-lox or LSL. The cre recombinase enzyme recognises the 

loxP sites (34bp recognition site), which results in the recombination reaction and the removal 

of one loxP site and the STOP cassette making the LSL cassette dysfunctional and thus permits 

the activation of a target gene (6, 118). 

These two inducible systems are the most widely used and reported in the literature out of the 

many other inducible models that exists. In our study, we have used the Tet-On system 

because it offers tight control of gene expression and is reversible upon dox withdrawal and as 

we require the activation of gene occasionally upon dox treatment, using the Tet-On system is 

the most appropriate model.  
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1.3 Chromatin and transcriptional regulation 
   

1.3.1 Mechanisms of transcriptional regulation 

 

1.3.1.1 The structure of chromatin 

 

In eukaryotic cells, the genomic DNA is not found naked but is bound by proteins which is 

tightly and efficiently packaged. The combination of the compacted proteins and DNA is 

known as chromatin. The canonical nucleosome, which is the repeating unit of chromatin, is 

formed by wrapping approximately 145-147 base pairs of DNA around the histone octamer 

(H2A, H2B, H3, H4  - two molecules of each histone) (119, 120). Nucleosomes are connected to 

each other by linker DNA to form nucleosomal arrays, also known as the beads-on-a-string 

structure (10 nm fibre), where each nucleosome is linearly and individually organised. Fibre-

fibre interactions can contribute to higher order conformations and cause chromatin to 

become condensed (121). This generates the secondary chromatin structure (a 30 nm fibre) 

and eventually produces the high-order chromatin known as the tertiary structure, which can 

compact the original DNA by an extraordinary 10,000-fold of its original length (122). 

The chromatin structure is dependent on environmental cues and stimuli, which can make 

chromatin highly accessible or inaccessible. Therefore, chromatin structure has a significant 

impact on transcriptional regulation. Chromatin is classified into two states: heterochromatin 

and euchromatin. Heterochromatin is highly compact and condensed (“inactive”) chromatin 

and covers approximately 96% of the mammalian genome. Euchromatin refers to 

decondensed or open (“active”) chromatin and comprises approximately 2-3% of the entire 

DNA sequence but captures over 90% of transcription factors (TFs) bound to it (123) (Figure 

1.5). There are ever increasing numbers of post-translational modifications (PTMs) that are 

being identified, alongside nucleosome-binding proteins, architectural chromatin proteins 

(ACPs) and ATP-hydrolysis dependent chromatin re-modellers (such as the SN1/SWF family re-
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modellers) impacting the conformation, and essentially the active and inactive states of 

chromatin at all levels. 

 

Figure 1.6: Simplified model of chromatin states. Majority of DNA is packaged into inactive (closed) 

chromatin marked by the repressive histone modifications and methylated CpG islands. Permissive 

chromatin is sufficiently dynamic to be modified by active histone modifications, which mediate 

remodelling and establishes an open chromatin state. The topological organisation of nucleosomes 

regulate chromatin accessibility through various distinct mechanisms such as altering the transcription 

factor binding to the DNA. The graph shows closed chromatin (blue) indicated by a lower peak, lower 

accessibility. Permissive chromatin (yellow), which is an intermediate stage has open chromatin with the 

nucleosomes arranged linearly and individually, shows an increase in chromatin accessibility. The open 

chromatin (green), is below sub-nucleosomal level and has a higher peak indicating chromatin is open 

and accessible.     

 



34 
 

 

 

 

1.3.2 Transcription by epigenetic regulation 

 

DNA methylation, catalysed by one of the DNA methyltransferases (DNMTs), is an epigenetic 

modification and has been associated with both activation and repression of genes (124). In 

cancer cells, some CpG islands in promoter sequences become highly methylated, resulting in 

transcriptional repression of tumour suppressor genes. The gene bodies are generally 

methylated in normal cells, and this pattern is reversed in cancer cells (125). Histone 

methyltransferases (HMTs) are specific enzymes catalysing the methylation of histone tails. 

The lysine methylation marks are both linked to activation and inactivation. For example, 

HEK9me3 and H3K27me3 are both repressive methylation marks (126). The H3K79me, 

K3K4me3 and HEK36me3 are associated with active transcription (127).  

Acetylation of histone residues is generally associated with transcriptional activation. The 

histone acetyl-transferases (HATs) are recruited to the histone tails to catalyse the addition of 

an acetyl group, which promotes transcription. The histone de-acetyl-transferases (HDACs) are 

repressors and reverse this modification (128). Several activatory acetylation marks include 

H4K16ac and H3K14ac (129, 130).  

Furthermore, the activity of kinases associated with intracellular signalling pathways have 

been linked to changes in gene expression. For instance, MAPK, c-Jun, and PKC can directly 

catalyse the phosphorylation of various histones and have been correlated with gene 

activation (131).  

1.3.2.1 Chromatin accessibility in cancer 

 

Recent technological developments have dramatically improved our ability to measure 

chromatin accessibility by decreasing the amount of biological material required to levels that 
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are clinically achievable. This has made it possible to catalogue chromatin architectural 

changes between normal and transformed cells (132, 133). The phenotypic changes observed 

in tumour progression would most likely require transcriptional and/or epigenetic changes 

that drive migration, invasion, and metastasis (134). At present time, it appears that there is 

no universal signature of chromatin accessibility of normal versus cancer cells. 

However, it has been shown that the over expression of a transcription factor known as Nfib 

(nuclear factor I B) is sufficient to globally alter the chromatin state (135). Nfib was shown to 

transform cells in vivo and induce widespread increase in the chromatin accessibility. In 

addition, there was a dramatic increase in the chromatin accessibility between primary 

tumours and metastatic cancer (135). Furthermore, SETD2 mutation was found to alter the 

chromatin organisation in primary human kidney tumours (97). It has been found that there 

was widespread decompaction of heterochromatin in actively transcribed genes of cancer cells 

compared to normal cells. These chromatin accessibility changes were associated with defects 

in RNA processing (136).  

Additionally, it is known that, as cells progress from an embryonic stem cell state to a more 

differentiated state, the proportion of accessible chromatin regions is reduced. In transformed 

cells, the accessible chromatin landscape, which is normally repressed in the developmental 

programme is re-activated. It has been shown that, whilst the chromatin accessible landscape 

of normal cells is clearly distinct, cancer chromatin accessible regions resemble those found in 

embryonic stem cells (132). Accessible regions in pancreatic, prostate and lung 

adenocarcinoma cells coincide with endodermal stage of development, whereas malignant 

melanoma and mammary ductal carcinoma open chromatin loci converge with ectodermal 

stage of development. Overall, the majority (88-97%) of the accessible chromatin regions 

found in tumourigenesis of 21 different cancer cell lines were also found in normal foetal and 

adult cells or tissues (132). Furthermore, ATAC-seq (Assay for Transposase-Accessible 
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Chromatin using sequencing) analysis of cutaneous T cell lymphoma (CTCL) displayed distinct 

open chromatin signatures as patient samples aligned very well with H3K27ac (active histone 

modification mark), showing that the detected regions of the DNA are accessible and open. 

They found that the sites that were highly accessible in normal cells were less accessible in 

cancer cells, indicating disease-specific signatures between normal and cancer cells (137).  

Interestingly, the acidosis-adapted colorectal cancer cell line (SW60-AA), showing enhanced 

invasion and metastasis in vivo, had 12,010 fewer ATAC-peaks, indicating a reduction in the 

overall accessibility compared to non-acidosis-adapted SW60 cell line (138). Furthermore, 

knockdown of ARID1A and ARID1B in colorectal carcinoma cells resulted in decreased ATAC-

chromatin accessibility at 112,623 sites (12.5%) but showed increase in chromatin accessibility 

at 5264 sites (5.2%). The effect of decreased accessibility by ARID1B was only possible when 

ARID1A was not present, as ARID1B knock down had no effect (139). Moreover, over 

expression of nuclear auto-antigenic sperm protein (NASP) induces in vitro transformation in 

hepatocellular carcinoma and forms tumours in vivo. NASP over expression is also known to 

decrease chromatin accessibility, as its knock down leads to enhanced chromatin accessibility 

and transcription (140).  

1.3.3 Signalling to chromatin 

 

Accessibility of DNA within chromatin is an important feature that impacts DNA-dependent 

functions such as replication, transcription and repair. The structure of chromatin can be 

locally and globally altered by interactions with architectural proteins such as High-Mobility 

Group (HMG) proteins that influences chromatin accessibility (141). The activation of MAPK 

signalling pathway by the addition of a stimulus such as EGF, propagates signalling from the 

cellular membrane through to the nucleus, resulting in histone tail modification and induction 

of transcription (142). The induction of MAPK pathway leads to the activation of nuclear 

kinases such MSK1 and MSK2 that phosphorylate histone H3 on serine 10 and serine 28. These 
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phosphorylation events are rapid, occurring within minutes of stimulation with factors such as 

UV irradiation, Anisomycin, and EGF. This leads to the activation of immediate-early genes (e.g. 

junB, c-myc, c-fos, junD, fosB) regulating chromatin accessibility (143).  

Furthermore, the phosphorylation and mutations in transcription factors such STAT5 and 

STAT3 can activate the JAK-STAT pathway. It is known that STAT3 acetylation by histone 

acetyltransferases can promote transcriptional activation as a result of chromatin remodelling 

(144). The silencing of the JAK-STAT pathway can globally affect the heterochromatin through 

the disruption of HP1 binding. This is especially important in differentiation, as the formation 

of heterochromatin leads to silencing of genes whose inactivation is required during 

differentiation (145, 146).     

1.3.4 Cellular hierarchy in the breast tissue 

 

Breast cancer is extremely heterogeneous and has been categorised into at least five different 

subclasses (147-149). These are luminal A, luminal B, basal, normal-like, and HER2 over 

expressing breast cancers. It has been widely recognised that the mammary compartment is 

made up of the inner luminal cells, which is covered by the outer layer of myoepithelial cells. 

Nevertheless, there is growing evidence which suggests that the mammary epithelium 

compartment exists as a cellular hierarchy spanning from stem cells, to biprogenitor cells, to 

the fully differentiated cells (150-152).  The mammary stem cells, also known as MaSCs, have 

the self-renewal ability and organise the development of the breast gland during embryonic 

development.  In the stem cell hierarchy model, stem and progenitor cells are of great interest, 

as they are possible targets for initial transformational events and cancer cells are generated 

from the stem cell population (153, 154).  

Evidence has shown the existence of breast cancer stem cells that express surface stem 

proteins, such as CD44 +ve and CD24 -ve phenotype, exhibit increased tumour formation 

ability compared to other breast cancer tumours (155). The markers of cancer stem cells in the 
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human mammary gland are inferred from in vitro assays, flow cytometry and 

xenotransplantation. Generally, existing data has shown that the MaSCs are enriched for CD44 

+ve, ALDH1 +ve, CD49F +ve, EpCAM -ve, and MUC1 -ve, with a more basal-like phenotype in 

the mammary compartment (154-156). The second most abundant cell type in the mammary 

epithelial hierarchy are the bipotent progenitors that have MUC1 -ve, EpCAM -ve and CD49F 

+ve phenotype, which are characterised as being more luminal-like. These cells can diverge 

into ductal epithelial cells or ductal myoepithelial cells, which enrich for the CD49 +ve or 

EpCAM -ve phenotype. 

It appears that there is no universal breast cancer stem cell set of markers, since combinations 

of different stem markers have been associated with different breast tumours. For example, 

the CD44 +ve, EpCAM +ve, CD24 -ve phenotype was found in more than 80% of tumours 

analysed in a study (155). Furthermore, mammospheres generated from CD44 +ve and CD24 -

ve cells resulted in tumours in immunodeficient mice (157). In other cases, the expression of 

ALDH1 protein is a predictor of poor outcome in patients, and its expression alongside CD44 

+ve and CD24 -ve phenotype is associated with heightened tumourigenicity (158, 159). 
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1.4 Tumour heterogeneity 
 

1.4.1 Intra- and inter- tumoural heterogeneity in cancer 

 

Intra-tumoural heterogeneity, which has long been recognised, refers to the existence of 

distinct cellular populations with specific phenotypic features/markers within a tumour (160, 

161). This phenomenon has been well-characterised in many different types of cancers 

including breast cancer (162), colorectal cancer (163), ovarian cancer (164, 165), brain cancer 

(166), and kidney cancer (167). Within cancers, variations can occur by multiple biological 

processes. These could be alterations in the genetic code or in the epigenome between single 

cells, or macroscopic heterogeneity involving changes in the morphology between regions of 

the same tumour. There is significant evidence of intra-tumoural heterogeneity shown in the 

early breast cancer, in ductal carcinoma in-situ (DCIS) stage of the disease (168). The evidence 

for heterogeneity is provided by traditional histopathology, biomarker expression (169), 

genetic signature (170) and non-genomic lesions such epigenomics (171), metabolomics (172, 

173), and transcriptomics (174, 175). The histopathological intra-tumoural heterogeneity in 

DCIS include mitotic features, chromatin rearrangements, nuclear size and nucleolar 

prominence (176-178). About 50% of DCIS cases exhibit multiple architectural characteristics 

such as concurrent cribriform and solid and micro-papillary features, concurrent cribriform and 

micro-papillary features, and concurrent cribriform and solid features and so on (179-182). 

Furthermore, most cases of DCIS present some degree of heterogeneity when evaluated for 

biomarker expression. Approximately 70% of DCIS cases are oestrogen receptor (ER) positive  

(183). Similarly, HER2 over expression is observed heterogeneously in DCIS, with clusters of 

spatially intense regions to adjacent unamplified regions (184). Other markers such as p16, 

COX-2, p53, and ki67 also exhibit heterogeneous expression (185-187).  

One of the mechanism for generating intra-tumoural heterogeneity is the presence of stem-

like phenotype in tumours (“stemness”) (188). It is known that a subset of stem cells within a 
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tumour can self-renew and differentiate into many other types of cells, each type having its 

own capabilities and phenotypes (189-191). As the process of differentiation takes place, 

tumours are organised into a hierarchy of distinct cell types, including tumourigenic cancer 

stem cells, which can give rise to intermediate progenitors and differentiated cells (189). 

Therefore, these cancer stem cells are a source of intra- and inter- heterogeneity as well as 

being drivers of tumour initiation (190).  

Other types of heterogeneity have also been described in cancer biology. The most well-known 

is inter-patient heterogeneity, which suggests that any two patients carrying the same sub-

type of tumour are not the same and will have distinct clinical behaviour before and/or after 

treatment. This could be due to a variety of factors such as differences in the epigenome, 

mutations that arise within the tumour of individual patients, germline alterations and the 

tumour microenvironment (192). The resulting metastasis from primary tumours can give rise 

to distinct cellular populations, which consequently gives rise to heterogeneity in metastases 

from the same subtype of tumour, known as inter-metastatic heterogeneity (192). Moreover, 

each heterogeneous metastatic cancer can independently evolve and acquire different genetic 

mutations and/or epigenetic changes, which results in intra-metastatic heterogeneity (192). 

The intertumour heterogeneity in early breast carcinoma is illustrated by disease stage based 

on imaging and physical examinations.  

1.4.2 How cancer heterogeneity arises 

 

Tumour heterogeneity can be the consequence of genetic and non-genetic sources. The latter 

include epigenetic alterations or concerted or stochastic biological and biochemical processes 

within each cell and heterogeneous cancer cell microenvironment (193, 194). The epigenetic 

factors can include upregulation of polycomb group proteins of transcriptional repressors such 

as EZH2 and BMI-1, which are associated with normal stem cell self-renewal. These can have 

heterogeneous expression levels in tumours and contribute to tumourigenesis (195). The 
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genetic causes include cancers that spontaneously arise through clonal evolution and acquire 

“driver” mutations, which impact the cancer cell survival and proliferation, alongside 

“passenger” events that are believed to be phenotypically repressed and do not grant the 

tumour a selective fitness advantage (196).  

One model for clonal evolution in cancer is that most cancers arise from a single previously 

normal cell, which gives it a sequential selective advantage over the adjacent normal cell 

triggering many other clonal expansions and the acquisition of driver aberrations, which will 

eventually outgrow and outcompete the normal cell in a typical Darwinian-like clonal 

evolution. This model does not suggest that a single mutation cannot affect other cells in the 

tissue, but suggests that the tumour results in linear steps and that the developing tumour 

evolves from the progeny of a single cell (197).  Nevertheless, evidence is increasingly showing 

that cancer populations have multiple separate subpopulations that have distinct genetic 

make-up, at different locations that co-exist within the same tumour, rather than being the 

consequence of a series of gradual intermediates (198) (Figure 1.6).  
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Figure 1.7: Cancer metastasis and Intra-tumoural heterogeneity. Primary cancers comprises many 

distinct types of sub clones which may be subjected to a variety of selection pressures such as 

chemotherapy. Under such type of selection pressures, sub clones (green) that are sensitive to therapies 

are diminished as a result of therapy. Sub clones (red) with de novo resistance outgrow and dominate 

the tumour mass, contributing to cancer progression. Other sub clones (yellow) may also emerge as the 

tumour acquires secondary mutations, which could potentially lead to cancer metastasis.   

 

1.4.3 Evidence of heterogeneity in HER2 positive breast cancer 

 

HER2 positive breast cancers exhibit cell to cell, temporal, and spatial heterogeneity both at 

inter- and intra-tumoural levels, as has been acknowledged for some time. The heterogeneous 

nature of this cancer might explain why it remains a challenging task to treat it, despite having 

well established treatments such as Trastuzumab and Lapatinib. The HER2 protein staining and 
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gene amplification can be highly heterogeneous (199, 200), and can ultimately impact disease-

free survival (DFS) (201). Some cases of HER2 positive cancers can have gene amplifications by 

FISH without protein over expression, or protein over expression by IHC without gene 

amplification, or substantial intra-tumoural heterogeneity (202). The amplification of HER2 

gene in a single location of a tumour is sufficient to categorise a tumour as HER2 amplified. 

This maximises patient eligibility for personalised medicine without consideration of clinical 

implications of intra-tumoural heterogeneity (203). Heterogeneous expression of other 

markers in HER2 positive cancer has been noted and these include HER1 (EGFR)  (204), c-myc 

(205), p53 (199), PCNA (Proliferating cell nuclear antigen) (206), and cyclin D1 amongst other 

proteins (205). Epigenetic silencing of RASSF1A (Ras Association Domain Family Member 1) 

(207) and p16 (208) has also been recorded. 

Interestingly, the borderline equivocal (2+) cases of HER2 positive cancers tend to have a 

higher HER2 biomarker heterogeneity than the unequivocal (3+ or 0/1+) cases, which tend to 

have a more homogenous HER2 expression. This is clinically relevant to Trastuzumab response, 

as the unequivocal cases respond better to Trastuzumab therapy compared to the borderline 

cases, indicating challenges to overcome HER2 biomarker variations (209). 

Various stem cell markers have been proposed to identify cancer stem cells in HER2 positive 

breast cancer patients. Breast cancer stem cells express cell surface markers in vitro such as 

high levels of CD44, ALDH1, and low levels of CD24 (210, 211). High expression of CD44 and 

low expression of CD24 are also associated with EMT. The expression of stem like markers is a 

possible mechanism of Trastuzumab resistance (212). HER2 interaction with other signalling 

pathways is involved in the regulation of cancer stem cells through the Wnt, PI3 kinase, and 

AKT signalling pathways (213). For example, in HER2 positive breast cancers, HER2 has been 

shown to interact with CXCR1, and the blockade of CXCR1 leads to apoptosis of CSCs via the 

FAK/AKT/FOXO3A axis (214, 215). 
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1.18 Reprogramming-associated heterogeneity in transformation 
 

The acquisition of stem like phenotype has been associated with human neoplastic 

transformation. It has been shown that DU145 prostate cancer cells were activated by 

heregulin growth factor (HGF) through Notch signalling, which induces a molecular signature 

associated with stem cells. This consists of upregulation of CD49f, CD49b, SOX9, and CD44 and 

downregulation of CD24 (216). Furthermore, loss of the transcription factor ETS is known to 

determine EMT and transformation in prostate epithelial cells. The knockdown of ETS also 

increased several genes associated with stem-like phenotype, which include NANOG, POU5F1, 

STAT3, and BMI-1 (217). In U251 glioma cells, tumour-like characteristics such as migration, 

invasion and proliferation were enhanced by exosome induction. This was also associated with 

the upregulation of markers associated with “stemness” such as Nestin and CD133 (218). 

Moreover, Scaffidi et al have shown that fibroblasts transformed by stable ectopic expression 

of H-Ras-V12, h-TERT, and SV40 LT and Small ST antigens exhibited differential expression of a 

stem marker known as stage-specific embryonic antigen (SSEA-1) in approximately 1% of 

transformed cells, but which was absent in the control cells (219).  

During oncogene-induced transformation, cells reprogramme from a differentiated state to a 

more primitive, stem-like state that has high degree of plasticity, which gives the cells the 

ability to self-renew and differentiate into multiple lineages. It is interesting to note that 

various genes implicated in normal reprogramming from stem cell stage to differentiation are 

also involved in transformation, such as SOX2 in breast cancer (220), and the expression of 

KLF4 in human gastrointestinal cancer (221). This indicates that normal reprogramming and 

transformation occur through similar pathways/processes. 

Furthermore, cancer by and large arises due the combination of genetic aberrations and 

epigenetic lesions that induces growth advantage in afflicted cells (222). It has been shown 

that histone modifications, DNA methylation, and chromatin remodelling can have a profound 
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influence in cellular transformation (223). Chromatin becomes condensed as differentiation 

proceeds, this process is reversed by cellular reprogramming. Cellular reprogramming involves 

local and genome-wide changes to the chromatin architecture as cells enter into a state of 

plasticity during reprograming. The chromatin of embryonic stem cells (ESCs) is open and 

accessible, which is reflected in the elevated activity of transcriptional programme as it is 

associated with enrichment of active histone marks such as H3K14ac, H3K9ac, H3K36me, 

H3K4me3, and H3K36me2 (224). Pioneering work by Yamanaka showed that differentiated 

cells can be reprogrammed back to more primitive or ‘induced’ pluripotent cells (iPS) by the 

addition of four transcription factors; SOX2, KLF4, OCT4, and c-Myc (225). During the transition 

to iPS, transcription factor mediated chromatin activation and associated transcriptional 

dynamics occur rapidly and early as is shown by the increase levels of euchromatin mark, 

H3K4me2 (226). Transformation gives rise to distinct cell types establishing subclones with 

heterogeneous genetic profile that has an epigenetic hierarchy, which may include aberrant 

chromatin state and DNA methylation changes (227). Cellular reprogramming involves the 

acquisition of epigenetic changes similar to those observed in cellular transformation such as 

promoter-specific DNA hyper-methylation and the inactivation of DNA methyltransferase 

enzymes (227).   
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1.19 Aims and Objectives: 
 

Cancer cells display profound rearrangements of the signalling and epigenetic landscape but 

how such changes unfold is not fully understood. A limited number of studies have focused on 

the very early transformational events in transition from normal to cancer cells but rarely in 

the context of the chromatin. More specifically, how re-wiring of the signalling events can 

impact the epigenetic landscape, which can pave the way to fully transformed cells is not yet 

elucidated. To understand this, we used a relatively simple experimental in vitro system to 

characterise the events that enable emergence of transformed cells. The aims of the project 

were to: 

• Establish and characterise the HER2 inducible transformation in breast epithelial cells 

(MCF10A cell line). 

• Investigate the dynamics of global early signalling changes upon HER2 over expression. 

• Assess the genome-wide chromatin accessibility alterations in HER2 induced 

transformation. 

• Investigate HER2 induced reprogramming-associated heterogeneity. 
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Chapter 2 
 

2. Materials and Methods 
 

2.1 Monolayer cell culture 
 

MCF10A cells were examined using a light microscope at 4X or 10X magnifications, and were 

passaged before they could reach 70% confluency. These cells were plated in either a 6-well 

plate, T25 cm², or a T75 cm² flask depending on the experimental setting. To split the cells, 

medium was aspirated, and cells were washed using phosphate-buffered saline (PBS) (1X) 

(GIBCO #14190-094). Cells were then incubated for 15 minutes with Trypsin-

ethylenediaminetetraacetic acid (EDTA) (GIBCO #R-001-100) at 37 °C. Flask or plates were then 

gently tapped to detach adhering cells attached to the plastic, and trypsin was immediately 

inactivated using full growth medium. Cell suspension was gently pipetted upon and down to 

create single cell suspension and remove any formed clumps and directly added to a 15 mL 

falcon tubes. Cells were then centrifuged at 1200 RMP for 3 minutes at room temperature. The 

supernatants were discarded and cells were resuspended in fresh growth medium. Cells were 

then seeded into an appropriate new flask depending on the experimental requirements. The 

flask/plate was gently swirled in a figure of 8 to distribute the cell content evenly in the plate. 

MCF10A cell medium consists of Dulbecco’s Modified Eagle’s Medium (DMEM/F12) (SIGMA 

#D8347) supplemented with 5% Horse Serum (SIGMA #H1138), 0.5 µg/mL Hydrocortisone 

(SIGMA #H0888), 20 ng/mL Epidermal Growth Factor (EGF) (SIGMA #E4127), 100 ng/mL 

Cholera Toxin (SIGMA #C8052), 10 µg/mL Insulin (SIGMA #i9278) and 1X Pen/Strep. To induce 

the overexpression of HER2, 1 µg/mL of Doxycycline (SIGMA #DN891) was added to the media.  

HEK293T cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (SIGMA#D5796) 

in 10% foetal bovine serum (FBS) with 1X Pen/Strep. Cells were cultured in appropriate sized 
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sterile cell culture flask/plate depending on the experimental requirements. To detach cells from 

the flask/plate, cells were flashed with full growth media to remove any adherent cells attached 

to the plastic. 

2.1.1 Freezing 
 

Cells were cultured as above (see section 2.1) and centrifuged to obtain a cell pellet. The cell 

pellet was resuspended in full fresh growth medium containing 10% dimethyl sulfoxide (DMSO) 

(FISHER CHEMICAL #D/412/PB08), and aliquoted in 1 mL in cryovials and transferred to a Mr. 

Frosty freezing containers and stored in a -80 °C freezer for 24 hours. Cells were then transferred 

to liquid nitrogen for long term storage. 

2.1.2 Thawing 
 

Cells were retrieved from the liquid nitrogen in dry ice to prevent defrosting prematurely. The 

cryovial containing cells were placed in the 37 °C water bath for approximately 2-3 minutes. Cells 

were immediately transferred to a 15ml falcon tube containing 5ml full growth medium and 

resuspended. Cells were centrifuged at 1200 RPM for 3 minutes at room temperature. The 

supernatants were removed and cells were resuspended in 1ml of full growth medium, and 

plated in an appropriate cell culture dish. 

2.1.3 Cell counting 
 

To count a specific number of cells, a haemocytometer (BRIGHT LINE #520188) or automated 

cell counting device such as the Luna cell counter (LOGOBIO #L20001). For counting with 

haemocytometer 10 µL cells were resuspended in 90 µL of 0.4% trypan blue solution (GIBCO 

#15250-061) in a 96-well plate and added to the counting chamber to be counted under a light 

microscope (LIFE TECHNOLOGIES, EVOS XL CORE) using 10X magnification. For the Luna cell 

counter, 10 µL of cells were mixed with 10 µL of trypan blue and added to the counting slide 
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(LUNA #10182907) and inserted into the instrument, to quantify cell number. Readings were 

generally taken twice and averaged to get the correct number of cells. 

2.1.4 3D cell culture 
 

Matrigel (CORNING #356230) was thawed on ice at 4 °C overnight and aliquoted into 2 mL 

eppendorf tubes followed by freezing at -20 °C until required. Pipette tips were kept in -20 °C 

for 30 minutes and then used to prevent matrigel from solidifying whilst pipetting. To neutralise 

the acidic pH of collagen type I (CORNING #11563550) , it was required to add 62.5 µL of 10X 

PBS (THERMOFISHER # 70011044) and 62.5 µL of 0.1M NaOH (SIGMA ALDRICH #43617) to 500 

µL of collagen. This helped neutralise the pH and allow cells to proliferate in the medium. To 

prepare one 8-well chamber slide 300 µL of matrigel and 200 µL of collagen mixture is required. 

They are both mixed whilst on ice to prevent it from solidifying and is pipetted up and down 

gently until a homogenous mixture is formed. 42 µL of this mixture is added to the centre of the 

well and a 10 µL pipette tip is used to spread the mixture evenly to create a layer of the mixture 

covering the entire well, without overspreading to the edges. The chamber is then placed in the 

incubator for 30-45 minutes to solidify. Meanwhile, cells are trypsinised and counted using a 

haemocytometer (see section 2.1.3). Cell mixture is resuspended thoroughly to avoid cell 

clamping and to make a single cell suspension before plating on to the wells.  A cell suspension 

of 10,000 cells per mL was made and in each well 400 µL cell suspension containing 4000 cells 

was plated. 2% of matrigel mixture is added to the 400 µL cell suspension and carefully added 

to the wells by pipetting evenly into the well. Cells are re-fed with the 2% matrigel containing 

medium the next day and then medium is replaced as normal thereafter, until experimental 

endpoint.  
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2.2 Lentiviral transduction and generation of HER2 inducible cell line 
 

HEK293T cells were used for the production of lentiviral particles due to their high transfectibilty. 

HEK293T cells were plated in a 6-well plate in full growth media until they were approximately 

90% confluent the next day. For transfections, jetPRIME transfection reagent (POLYPLUS #114-

15). The following plasmids were prepared: 5 µg of the HER2 (ADDGENE #23888) plasmid, which 

was sub-cloned into pINDUCER21 (ADDGENE #46948) plasmid as described in (116), 1.75µg 

pMD2.G (ADDGENE #12259) [envelope plasmid], and 3.25µg of pCMV delta R8.2 (ADDGENE 

#12263) [packaging plasmid]. The appropriate amount of jetPRIME buffer was added to the 

plasmid DNA and a ratio of 1:2 of DNA to jetPRIME reagent was used, briefly vortexed and 

incubated for 10 minutes at room temperature. The transfection mix was then added to the cells 

in a 6-well plate and incubated for 24 hours at 37 °C. The next day, lentiviral particles were 

harvested from HEK293T cells by collecting the media from cells and transferring it to a 15 mL 

falcon tube and centrifuging it for 1 hour, at 1500 RPM at 4 °C. The freshly produced lentiviral 

particles were added to the MCF10A cells to infect them, which were approximately 30% 

confluent, for an additional 48 hours. 
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2.2.1 Plasmid maps 
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Figure 2.1. Plasmid construction. (A) The HER2 plasmid containing WT human HER2 sequence was 
cloned into the (B) inducible vector (pINDUCER21) plasmid to construct an inducible HER2 plasmid. The 
inducible plasmid map shows GFP gene which was used to select for HER2 positive cells. (C) plasmid 
map for the non-inducible GFP vector. 

 

2.3 Preparation of protein lysates 
 

Cells were seeded in a 6-well plate in full growth medium before protein analysis. For 

identification of phosphoproteins cells were seeded in serum starved medium (without horse 

serum and EGF) overnight. The following day, medium was removed and cells were stimulated 

with full medium for a desired time point depending on the experimental requirement. For the 
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analysis of total proteins, medium was removed and cells were washed with PBS. Cell lysis 

buffer, 200µl of either NP40 (ABCAM #142227) or RIPA buffer (THERMOFISHER #89900) 

containing complete cocktail of the protease inhibitors (SIGMA #P38340) or phosphatase 

inhibitors (SIGMA #P8340) when probing for phosphorylated proteins were added onto the cells. 

Cells were scraped off using a cell scraper and added to a 1 mL labelled eppendorf tubes on ice, 

for 30 minutes, with occasional vortexing for 5 seconds every 10 minutes in between. The 

suspension was then centrifuged at 4 °C, for 10 minutes at 10,000 g. The supernatant containing 

the protein was transferred to newly labelled eppendorf tubes and kept on ice until BCA assay 

(THERMOFISHER #23225). 

2.4 BCA (Bicinchoninic Acid) Protein Assay 
 

A BCA assay was used to determine the protein concentration of samples. In a 96-well plate, 200 

µL of BCA reagent A and BCA reagent B (ratio 50:1) was added followed by the BCA protein 

standards and each sample in duplicates. The absorbance of each well was quantified using a 

plate reader (DYNEX TECHNOLOGIES OPSYS MR #CG34328) at an excitation of 562 nm. The plate 

reader automatically generates a standard curve and an equation using linear regression, whilst 

also giving us the concentrations of proteins in µg/µL. The required, but equal amount of protein 

(in concentration and in volume – equalised by adding some lysis buffer) was added to new 1 

mL eppendorf tubes with the sample buffer (INVTROGEN #2020067) to a final concentration 1X 

and proteins denatured by placing the samples in a heat block (EPPENDORF THERMOSTAT PLUS) 

at 95 °C for 5 minutes. 

2.5 SDS-PAGE 
 

Proteins samples were resolved using 4-10% Bis-Tris mini gels (THERMOFISHER #NP0301). The 

tank was filled with 1X MOPS running buffer (THERMOFISHER # NP000102), and equal amounts 

of protein were loaded in wells ,alongside a colour pre-stained protein ladder (NEW ENGLAND 
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BIO-LABS #P7712). The gel was run at 70V for the first 20 minutes and then at 150V for another 

50-60 minutes making sure the proteins have resolved to a sufficient degree, or until the blue 

down has reached the bottom of the running tank. 

 

2.6 Protein transfer and antibody incubation 

 
After successful running of the gel, proteins were transferred to a PVDF membrane (IMMOBILON 

#IPVH15150) by either wet transfer or semi-dry transfer (TRANSFER STACKS #AB401002) using 

i-Blot. For the wet transfer, 1 litre of 1X transfer buffer (THERMOFISHER #NP0006) containing 

20% methanol and milli-Q water. The gel was removed from the tank and a transfer ‘sandwich’ 

was made. This was done by placing a sponge, followed by filter paper, and the gel. The PVDF 

membrane was activated by placing it in methanol for 1 minute and placed on top of the gel. 

This was followed by placing another filter paper and a sponge, the cassette was closed and 

placed in the chamber, in the transfer tank. A cold pack was placed in the side of the tank and 

the tank was filled to the top with the transfer buffer. The tank was placed at 4 °C overnight and 

20V was applied to allow the negatively charged proteins to transfer to the membrane.  

For the semi-dry transfer, gels were carefully removed from the plastic cassette and placed onto 

the “bottom” transfer stack so that the gel is facing the PVDF membrane.  A filtered paper was 

paced on the back of the gel following by placing the “top” transfer stack. For smaller proteins 

ranging from 20-50 kDa, the transfer time was set up to 6 minutes, for larger proteins 

(approximately 180 kDa), transfer time was increased to 11 minutes.  

This was followed by incubation of the PVDF membrane in 5% semi-skimmed milk (SIGMA 

ALDRICH 70166) for blocking to avoid non-specific antibody binding, for 1 hour at room 

temperature. Membranes were cut to size and appropriate antibody (see table 2.1) was added 

in 5 mL of BSA solution and incubated overnight at 4 °C, with gentle rocking or rolling in a 50 mL 



55 
 

falcon tube. Membranes were washed 3 times, 15 minutes each in 0.5% PBS-Tween (SIGMA 

ALDRICH P1379) followed by the incubation of the appropriate, species-specific secondary (see 

table 2.1) antibody diluted in 5 mL of BSA solution for 1 hour, at room temperature, gently rolling 

in a 50 mL falcon tube.  

2.7 Detection of proteins 
 

A 1:1 mixture of SuperSignal™ West Pico PLUS Chemiluminescent Substrate (THERMOFISHER 

#34580) was added to a 15 mL falcon tube and briefly vortexed. An appropriate volume (usually 

1 mL) of the mixture was added to the membrane making sure that the entire membrane is 

covered and incubated at room temperature for 3-5 minutes. ECL was removed and the 

membrane was placed in a clear plastic film and exposed using Chemidoc (AMERSHAM IMAGER 

600 #56930330) for an appropriate length of time. 

Protein Antibody Source Dilution 

HER2 HER2/ERBB2 Rabbit mAb CELLSIGNALLING #2165 1:5000 

pAKT Phospho-AKT (Ser473) CELLSIGNALLING #9271 1:5000 

tAKT total AKT CELLSIGNALLING #9272 1:5000 

GAPDH GAPDH CELLSIGNALLING #2118 1:2500 

Alpha-Tubulin Anti-alpha tubulin 

antibody (DM1A) 

ABCAM #7291 1:5000 

p53 p53 (7F5) Rabbit mAb 

#2527 

CELLSIGNALLING #2527 1:1000 

Anti-rabbit 

secondary 

GE HEALTH CARE LIFE 

SCIENCES  

Amersham ECL Rabbit IgG, 

HRP-linked whole Ab #NA934 

1:5000 
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p21 p21 Waf1/Cip1 (12D1) 

Rabbit mAb 

CELLSIGNALLING #2947 1:1000 

p27 p27 Kip1 (D69C12) XP® 

Rabbit mAb 

CELLSIGNALLING #3836 1:1000 

ACTIN (dye) Rhodamine Phalloidin THERMOFISHER # R415 1:200 to 

1:500 

Table 2.1: Antibody list with name, dilution and source. 

 2.8 Soft agar colony formation assay 

The ultra-pure culture grade agarose (THERMOFISHER #16500500) were first diluted down to 

1% in PBS and placed in a microwave to melt the agarose and then autoclaved. Soft agar assays 

were performed in either 12 well tissue culture plates or 24 well plates. Firstly, 0.8% of ultra-

pure agarose layer (mixed with an appropriate medium) was made at the base of the wells and 

allowed to settle for 30 minutes at room temperature. Secondly, 10,000 cells for 12-well plates 

or 5000 cells for 24-well plates were mixed with 0.3% agarose and plated evenly, drop-wise, on 

top of the base layer and incubated for 21 days, with medium changed every 2 days. This was 

performed with three technical triplicates. After 21 days, medium was aspirated and cells 

washed with PBS. Colonies were fixed using 4% formaldehyde (PFA) at room temperature for 

20-30 minutes. PFA was removed and colonies were washed with PBS and permeabalised by 

adding 100% methanol for 2 minutes at room temperature. Methanol was removed and 

colonies were washed by PBS. Colonies were stained by adding 0.05% of crystal violet dye 

diluted in PBS for 1 hour at room temperature. Crystal violet was removed and added to a 15 

mL falcon tube to be used again. Colonies were washed with PBS, 3 times to make sure no dye 

remains. Images were taken of nearly the entire well using a dissecting microscope. Images 

were then quantified using imageJ. 
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2.9 Immunofluorescence 
 

Autoclaved glass coverslips were placed in a 12-well tissue culture plates and appropriate 

number of cells seeded on the coverslips one day before immunofluorescence assay. The 

following day, media was removed and cells were washed with PBS 3 times, and an immuno-

pen was used to draw a barrier around the glass cover to prevent spill over of buffers and 

antibodies. Cells were fixed by 4% PFA at room temperature, for 15 minutes and then washed 

in PBS 3 times. Cells were blocked in blocking solution (2% FBS/PBS) for 1 hour at room 

temperature. The blocking solution was removed, and appropriate antibodies were added 

onto the cells for 1 hour at room temperature. The antibodies were removed, and coverslips 

washed by PBS 3 times, 5 minutes each. The appropriate secondary antibodies were added to 

the cells for 1 hour at room temperature in the dark. Cells were washed 3 times in PBS 5 

minutes each. A drop of mounting media either Glass anti-fade reagent (INVITROGEN 

#B36982) was added to the coverslips and were inverted into the glass sides and allowed to 

settle in dark for 30 minutes at room temperature. Excess mounting media was removed using 

tissue and a nail varnish was used to draw around coverslips to make sure they stay unmoved. 

Cells were imaged using the fluorescence microscope.  

2.9 Immunofluorescence of acini in 3D cell culture  
 

Media was aspirated from each well of the chamber and wells are washed with PBS carefully 

not to detach the layer of matrigel from the wells. Acini were fixed with 4% PFA for 30 minutes 

at room temperature. PFA was removed and acini washed with PBS 1 time.  Acini were 

permeabalised with 0.5% Triton-X for 10 minutes at room temperature. Acini are then blocked 

in 10% goat serum in PBS-Tween, for 1 hour at room temperature. Acini are stained with 

Phalloidin dye over night at 4°C. Phalloidin dye was removed and acini washed with PBS 3 
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times, 10 minutes each at room temperature. At this point, the detachable chambers are 

removed and acini mounted in mounting media reagent and allowed to dry in the dark at room 

temperature for 4 hours. Once dried, slides are visualised using a confocal or a fluorescence 

microscope.  

2.10 Transwell migration/invasion assay 
 

Matrigel or collagen was diluted 1:5 with chilled growth factor reduced medium and pipetted 

up and down slowly to generate a homogenous mixture. 90µl of chilled diluted matrigel or 

collagen mixture was directly pipetted on the centre of an 8 µm pore size transwell inserts 

(MILLICELL #MCEP12H48) that was placed onto a 12-well plate. No matrix was placed onto the 

transwell insert if migration was measured. The 12-well plate was placed into an incubator for 

30 minutes to allow the matrix and collagen to solidify. Meanwhile, 500µl of full medium 

containing growth factors (chemoattractant) was added to the wells in the 12-well plate. Cells 

were detached by trypsinisation and 150,000 cells were added in 200µl reduced growth factor 

medium, which were pipetted onto the transwell insert either coated with a matrix or the 

uncoated inserts. Plates were placed in the incubator for 16 hours. Highly invasive cells had 

invaded towards the chemoattractant, which were then stained with 0.05% of crystal violet 

dye. Images of random regions are taken using a standard light microscope and quantified 

using imageJ. 

2.11 Sample preparation for flow cytometry and flow sorting 
 

Cells were trypsinised and 500,000 cells were added to 1 mL of 2% horse serum/PBS in a 

polystyrene round bottomed tubes. Cells were centrifuged 5 minutes, 1200 RPM, at room 

temperature. Whilst cells were centrifuging, the lights in the cell culture hood were turned off 

and the antibody master mix was prepared in 1.5 mL eppendorf tubes. Cells were retained 

from the centrifuge and supernatants discarded. Antibodies were added to the polystyrene 
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tubes containing cells and thoroughly resuspended. Cells with antibodies were incubated for 

20 minutes at room temperature, covered with kitchen foil in the dark. After 20 minutes, cells 

were resuspended in 2% horse serum/PBS and centrifuged for 5 minutes, 1200 RPM, at room 

temperature. Whilst centrifuging, DAPI suspension was made in 2% horse serum/PBS in 1:2000 

dilution. Cells were retained from the centrifuge, and supernatants were discarded. Cells were 

washed again in 1 mL 2% horse serum/PBS by centrifugation for 5 minutes. DAPI suspension 

was added to the cells or just the staining buffer for unstained controls. 

Fluorescence minus-one-controls (FMOs) were made for appropriate interpretation of the flow 

cytometry data, to make sure that the gating is based on the context of data spread in a panel 

with multiple fluorochromes. To do this, the FMO control contains all the antibodies except 

one in the designed panel with the same dilutions as shown in table 2.2. 

For compensation, AbC™ Total Antibody Compensation Bead Kit (INVITOGEN #A10513) was 

used. The total compensation capture beads (component A) and negative beads (component 

B) were vortexed for 10 seconds before use. Flow cytometry tubes were labelled with the 

respective antibody name and 1 drop of component A was added to each tube. Pre-titrated 

amount of each antibody was directly added to the bead suspension and mixed well and 

incubated for 15 minutes at room temperature, protected from light. The beads/antibody 

mixture were washed by adding 3 mL of PBS by centrifugation at 250 x g, for 5 minutes. 

Supernatants were removed and the bead pellet was resuspended by adding 500 µL of PBS to 

the tubes. 1 drop of component B was added to the tubes and mixed well. The samples and 

bead pellets were kept on ice, protected from light and proceeded to flow cytometry analysis.  

For flow sorting, same protocol as above was employed. Additionally, the required number of 

15 mL falcon tubes or polystyrene tubes containing the appropriate medium was taken to 

obtain the sorted cells for further propagation in cell culture. 



60 
 

Protein Antibody Source Dilution 

HER2 BV650 Mouse Anti-Human Her2/Neu  

Clone  NEU 24.7   (RUO) 

BD Biosciences 1:100 

EpCAM APC Mouse Anti-Human EpCAM  

Clone  EBA-1   (RUO (GMP) 

BD Biosciences 2:100 

MUC1 BV786 Mouse Anti-Human MUC1 (CD227)  

Clone  HMPV   (RUO) 

BD Biosciences 2:100 

CD44 PE Mouse Anti-Human CD44  

Clone  515   (RUO) 

BD Biosciences 1:100 

CD24 Brilliant Violet 711™ anti-human CD24 Antibody BD Biosciences 2:100 

CD49F  BV650 Rat Anti-Human CD49f  

Clone  GoH3   (RUO) 

BD Biosciences 1:100 

Table 2.2: List of antibodies used for flow cytometry or flow sorting with source and dilutions. 

2.12 qRT PCR  
 

Cells were grown and passaged in 6-well plates as previously described and resuspended in 1 

mL of medium. The cell suspension was transferred to a 1.5 mL eppendorf tubes and 

centrifuged at 250 g for 5 minutes to obtain a cell pellet. The supernatants were discarded and 

cells were lysed in an appropriate volume (for 1 million cells use 300 µL) of TRI reagent (ZYMO 

(R2050-1-200) (kept in 4 °C) by pipetting up and down thoroughly. An equal volume (to the TRI 

reagent) of 100% ethanol and was added and mixed. RNA extraction was performed using 

Zymo kit (#R2050). The mixture was transferred to a Zymo-Spin Column placed in a collection 

tube and centrifuged at 10,000 g for 30 seconds. The column was transferred to a new 
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collection tube and the flow through was discarded. Next, 400 µL of Direct-zol RNA PreWash 

was added to the column and centrifuged at 10,000 g for 30 seconds. Flow through was 

discarded and this step was repeated again. 700 µL of RNA wash Buffer was added to the 

column and 10,000 g for 2 minutes. The column was carefully transferred into a labelled 

RNase-free tube. RNA was eluted by adding 50 µL of DNA/RNase-free water directly onto the 

column matrix and centrifuged at 10,000 g for 30 seconds. The extracted RNA was then 

subjected to DNase treatment using DNA-free kit (INVITROGEN #AM1906). This reaction was 

performed in 10 µL. Firstly, 0.1 volume (e.g. 1 µL in a 10 µL reaction) 10X DNase I buffer and 1 

µL rDNase I was added to the RNA and gently mixed. This was incubated at 37 °C for 20-30 

minutes. Then the resuspended DNase Inactivation Reagent (0.1 volume) was added to the 

mixture and mixed well by pipetting up and down. Tubes were incubated at room temperature 

for 2 minutes. Samples were centrifuged at 10,000 g for 90 seconds and RNA transferred to a 

clean 1.5 mL labelled eppendorf tubes. RNA was diluted in RNase free water to a concentration 

of 200 ng/µl.  

RNA was reverse transcribed into a cDNA using the high capacity cDNA reverse transcription 

kit (APPLIED BIOSYSTEMS #4368814).The master mix consisted of the following components: 

Component Volume/Reaction 

10 RT Buffer 2 µL 

25X dNTP Mix (100 mM) 0.8 µL 

10X RT Random Primers 2 µL 

MultiScribe Reverse Transcriptase 1 µL 

Nuclease-free water 4.2 µL 

Total per reaction 10 µL 
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Table 2.3: Reagents and volume of the cDNA master mix to convert RNA to cDNA.  

The master mix was placed on ice and gently mixed. Per each reaction, 10 µL of RNA was 

mixed added to 10 µL RT (reverse transcriptase) master mix in PCR tubes. Tubes were briefly 

centrifuged to spin down the contents and eliminate any existing air bubbles. Tubes were then 

placed into a thermal cyclers under the following conditions: 

 Step 1 Step 2 Step 3 Step 4 

Temperature 25 °C 37 °C 85 °C 4 °C 

Time 10 minutes 120 minutes 5 minutes - 

Table 2.4: PCR conditions required cDNA synthesis. 

After the reaction was completed, cDNA was then analysed by qRT PCR in three technical 

replicates using SsoAdvanced™ Universal SYBR® Green Supermix, (#1725274). 1 µL of cDNA 

was added per 10 µL reaction. The master mix contained 0.275 µL forward and reverse 

primers, 5.5 µL SYBR probe (Bio-Rad kit), and 3.95 µL nuclease-free water). 

At the endpoint of qPCR Ct values are generated, which were used to analyse expression levels 

using the (2-ΔΔCt) [delta-delta Ct) method. 18S was used as a house keep gene. The primers 

used for qPCR are listen in the table below: 

Gene Forward Primer Reverse primer 

HER2 TGACACCTAGCGGAGCGA GGGGATGTGTTTTCCCTCAA 

BMP6 ACATGGTCATGAGCTTTGTGA ACTCTTTGTGGTGTCGCTGA 

BMPR2 GCCCAGGGGAGGAAGATA TGGTGCCATATATCTGATAGTGC 

LOX GGGAATGGCACAGTTGTCA ACTTGCTTTGTGGCCTTCAG 
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VEGFC TGCCAGCAACACTACCACAG GTGATTATTCCACATGTAATTGGTG 
 

ILK AACACGGAGAACGACCTCAA 
 

CATCTCAACCACAGCAGAGC 
 

18S AAACGGCTACCACATCCAAG CCTCCAATGGATCCTCGTTA 

Table 2.5: List of forward and reverse primers used for RT-PCR. 

2.13 ATAC-seq library preparation  
 

300,000 cells per condition were grown in chamber wells as per the 3D cell culture overlay 

method described in section 2.1.4. Cells were isolated from the matrigel/collagen mixture 

using the cell recovery solution (Corning™ Cell Recovery Solution #354253). The cell recovery 

was done by removing the medium from the cells and washing cells with cold PBS. The 

removable chambers were detached from the slides and 2 mL of recovery solution was added. 

The matrix (matrigel/collagen mixture) was gently scraped using a sterile cell scraper onto an 

ice cold 15 mL falcon tube. The slides were rinsed again with 1mL of recovery solution onto the 

falcon tube to make sure all of the matrix and cells are recovered. The falcon tube is inverted a 

few times and placed on ice for 30 minutes until the matrix has been completely dissolved. The 

falcon tube is flicked with the finger tips back and forth to speed up the procedure. After about 

15 minutes, cells begin to settle at the bottom of the falcon tube, indicating that the 

matrigel/collagen is dissolving. After 30 minutes, the matrix would have completely dissolved 

and cells are then pelleted to the bottom of the falcon tube by centrifugation at 200-300 g, for 

5 minutes at 4 °C. The supernatants are discarded and cells were washed with PBS and 

centrifuged again for 5 minutes at 4 °C. Finally, cells were resuspended in 1 mL PBS for 

counting.  

Cells were counted using the Luna counting device. 50,000 cells were used from each 

condition and time point to perform ATAC seq library preparation. In this experiment, we have 

used the OMNI-ATAC protocol with some optimisations (228). 50µl of cold ATAC-Resuspension 
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Buffer (RSB) containing 0.1% NP40, 0.1% Tween-20 AND 0.01% Digitonin was added to the cell 

pellet (in 1.5 mL eppendorf tube) and pipetted up and down 3 times. Cell pellet was incubated 

on ice for 3 minutes. The lysis was washed with 1 mL of cold ATAC-RSB containing 0.1% Tween-

20 but no digitonin or NP40 and the eppendorf tube was inverted 3 times to mix. Nuclei were 

pelleted at 500 RCF for 10 minutes, at 4 °C. The tubes were retained and supernatants 

discarded using two separate pipetting steps, to be careful not to touch the almost visible cell 

pellet. To do this, remove 900 µL of the supernatant first with a p1000 pipette and use a p200 

pipette to aspirate the remaining 100 µL supernatants. The cell pellet was then resuspended in 

50 µL of the transposition mixture by pipetting up and down 6 times. The transposition 

mixture consisted of: 25 µL 2x TD buffer, 2.5 µL transposase (100 nM final), 16.5 µL PBS, 0.5 µL 

digitonin, 0.5 µL of 10% Tween-20, and 5 µL of water. The reaction was incubated at 37 °C for 

30 minutes in a thermomixer with 1000 RMP mixing. 

The reaction was cleaned up with a Zymo DNA Clean and Concentrator-5 kit (ZYMO #D4014). 

To do this, 250 µL of the DNA binding buffer was added to the DNA samples and DNA was 

transferred to a Zymo-Spin columns in a collection tubes. The column was centrifuged at 1000 

g, for 30 seconds and flow through was discarded. 200 µL of DNA wash buffer was added to 

the columns, centrifuged for 30 seconds. This step was repeated 1 more time. Finally, DNA was 

eluted in 21 µL sterile water.  

The ultra-pure DNA was now subjected to amplification by PCR. For amplification conditions 

see table below: 

Lastly, the PCR samples were cleaned up using the Zymo DNA Clean and Concentrator-5 kit 

(ZYMO # D4014) as described above. 

The DNA library profile was viewed using the automated electrophoresis tool, the Agilent 

TatpeStation System (serial number DEDAA01244). All the reagents were equilibrated to room 

temperature for 30 minutes. 1 µl of DNA sample was mixed with 1 µ1 of high sensitivity 
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(D1000) sample buffer (AGILENT #5067-5585) in strips (AGILENT #401428) and closed with 

caps (AGILENT #401425). Samples were vortexed for 60 seconds and span down and were 

analysed by the TapeSation.  

 

2.14 Phosphoproteomic sample preparation 
 

Cell medium was aspirated from cells in 6-well plates and 1 mL of ice cold PBS containing 

phosphatase and protease inhibitors (Add 20 µL NaF and 100 µL Na3VO4 to 10 mL of PBS) 

were added onto the wells whilst keeping the flask on ice. PBS was aspirated and this step was 

repeated again. 500 µL of lysis buffer was added to each well, cells were scraped off and 

transferred to a 1.5 mL eppendorf tubes.  The cell suspension were sonicated at 50% intensity 

for 15 seconds, then rested for 10 seconds. This step was repeat two further times. Cell 

suspension was centrifuged at 20,000 g for 10 minutes, at 4 °C. Supernatant were recovered to 

a 1.5 mL eppendorf protein Lo-bind tube.  

2.14.1 In Solution Tryptic digestion 
 

Protein quantification was performed by BCA assay as described in 2.1.7. All samples were 

normalised to 250 µg concentration of total protein in a final volume of 300 µL. An appropriate 

volume of 1 M DTT to a final concentration of 10 mM (e.g. 3 µL in 300 µL) was added and 

incubated at room temperature, for 30 minutes with agitation (in the dark). Then, 415 mM 

iodoacetamide (IAM) was added to a final concentration of 16.6 mM (e.g. 12 uL in 300 µL). This 

was incubated at room temperature for 30 minutes with agitation (in the dark). Tubes are 

retained and 0.04 µL beads/µL of lysate containing 250 µg protein is added for the digest (e.g.  

0.02 µl beads/ µg of protein). Appropriate volume of beads from stock beads container and 

aliquoted into a 1.5 mL Lo-bind Eppendorf tubes and centrifuged at 2,000 g for 5 min; 4 °C. 

HEPES buffer was added in equal volume to that of the beads (i.e. 1:1) and centrifuged at 

2,000 g for 5 min at 4 °C. Supernatants was removed and replaced with fresh HEPES buffer 
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(1:1). The last two steps were repeated two further times. Samples were diluted 4X with HEPES 

buffer after the IAM incubation (e.g. 900 µL HEPES buffer to 300 µL lysate; 1200 µL total). The 

appropriate amount of conditioned beads (48 µL of beads for a 1200 µL digest containing 250 

µg of protein) and incubated overnight at 37 °C with agitation. The next day, samples were 

transferred onto ice and centrifuged at 2,000 g for 5 min at 4 °C. Supernatants were 

transferred to a Lo-bind protein eppendorf tubes on ice. Meanwhile, vacuum manifold was 

setup to ~5 inHg. Samples were equilibrated at room temperature and loaded onto the 

vacuum manifold using the lowest flow rate possible. Samples were washed with 1 mL 

desalting loading buffer. Samples were retained and eluted with 0.5 mL Elution buffer A.  

2.14.2 Phosphopeptide enrichment 
 

An appropriate amount of TiO₂ beads from stock vial (50 µg beads/1 µg protein) were re-

suspended in 1% TFA and vortexed. This was kept at 4 °C, when not in use. All the OASIS eluted 

fraction(s) volumes were adjusted to 500 µL with 1 M Glycolic acid in 80% ACN/ 5% TFA. 25 µL 

(i.e. 12.5 mg) of re-suspended TiO₂ beads were added to the OASIS eluted fraction(s) and 

vortexed. The TiO₂ beads were resuspended between samples before adding them, this is to 

ensure the same quantity of TiO₂ beads is added. Samples were incubated for 5 minutes with 

rotation/agitation. For spintips equilibration: the spintip(s) were placed in normal 2 mL 

eppendorfs and 200 µL 100% ACN applied to spintip(s), followed by centrifugation for 3 min at 

1,500  g and flow through was discarded. Samples were incubated with TiO₂ for 5 minutes and 

then span down for 30 seconds, at 1500 g. The supernatants were transferred to protein Lo-

bind 1.5 mL eppendorf tubes on ice. The TiO₂ beads were resuspended in the remaining 100 µL 

of solution and vortexed. 100 µL of re-suspended samples were applied to the empty spintip(s) 

and centrifuged for 2 min at 1,500 g. 100 µL 1 M Glycolic acid in 80% ACN/ 5% TFA was added 

to the sample tubes and the remaining TiO₂ beads were resuspended. Vortexed and span for 

10 seconds. The remaining TiO₂ beads were applied to the spintip(s) and centrifuged for 2 min 
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at 1,500 g. Flow through was discarded. The 400 µL remaining aliquots was removed from ice 

to equilibrate at room temperature. The 400 µL of remaining sample was applied to the TiO₂-

filled spintip(s); 2 x 200 µL batches – centrifuged for 3 min at 1,500 g. Flow through was 

discarded. 100 µL 1M Glycolic acid in 80% ACN/ 5% TFA was applied to the spintip(s). 

Centrifuged for 2 minutes at 1,500 g. Flow through was discarded to remove non-

phosphorylated peptides. 100 µL 100 mM Ammonium Acetate (25% ACN) was applied to the 

spintip(s). Centrifuged for 2 minutes at 1,500 g. Flow through was discarded to remove acidic 

non-phosphorylated peptides. 100 µL 90/10 H₂O/CAN was applied to spintip(s). Centrifuged 

for 2 min at 1,500 g. Flow through was discarded. The last step was repeated twice to remove 

any salts and HILIC-mode bound non-phosphorylated peptides from the TiO₂ layer before the 

elution step. The spintip(s) were transferred to fresh 2 mL protein Lo-bind eppendorf tubes. 50 

µL 5% NH4OH (10% ACN) was applied to the spintip(s) and centrifuged for 2 min at 1,500 g. 

The flow-through(s) were kept and pooled to elute phosphopeptides from the TiO₂ layer. This 

step was repeated 3 more times. Samples were snap-frozen and placed in speed-vac to dry 

overnight. Samples were then subjected to mass spectrometry analysis.  

2.15 Image J quantification 
 

Image J software was used to perform densitometry analysis on the western blots. A 

rectangular area around the first band was drawn using the “rectangular select” tool. 

Sequentially, a rectangle is drawn and selected for all of the bands of interest. Additionally, to 

compensate for the background noise, five random representative regions of the same size as 

the bands of interest were also selected. Once all the bands were selected, CTRL 3 was pressed 

and another image with histograms appear for each selected region. To obtain the results, we 

selected the “magic wand” button and clicked in each histogram. The average of five different 

random regions were subtracted from the band of interest to compensate for the background 

and results were plotted using prism as shown by bar graphs. 
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2.16 Bioinformatics analysis  

The ATAC-seq data was provided as FASTQ files. The initial quality control checks were 

performed on each sample using the FastQC tool. The adapter sequences were removed with 

cutadapt using: 

Cutadapt -a CTGTCTCTTATACACATCT -A CTGTCTCTTATACACATCT -o out.1.fastq -p out.2.fastq 

infastqfile1 infastqfile2 

 Samples were aligned to the human genome, Genome Reference Consortium Human Build 38 

patch release 13 (GRCh38.p13), using bowtie2, and a SAM file was obtained. 

bowtie2 index -1 trimmed FASTQ file -2 trimmed FASTQ file –S 1.sam 

SAM files were converted to BAM files (binary files) using the following command: 

Samtools view –Sb in.samfile > out.bamfile 

Bam files were sorted using: 

Samtools sort in.bamfile -o out.bamfile 

The sorted files were then indexed using: 

Samtools index in.bamfile 

The ATAC-seq files can have a large number of reads (40-60%) that align to the mitochondrial 

DNA which should be removed using: 

Samtools view –h in.bamfile | removeChrom - - chrM | Samtools view - b - > out.bamfile  

PCR duplicates were removed from the files using Picard tools: 

Java -jar picard.jar MarkDuplicates  I=in.bamfile  O= out.bamfile M=dups.txt 

REMOVE_DUPLICATES=true VALIDATION_STRIGENCY=LENIENT 
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Samples were downsampled to 25 million reads by working out the ratio (which was done by 

dividing 25 million by the total number of reads were in that specific file. The reason for down 

sampling/normalising all reads in each sample to 25 million was because there were drastically 

uneven number of reads (ranging from 27-55 million reads) obtained from our ATAC-seq data. 

To make sure we account for the differences in sequencing depth between the different 

samples, all samples were trimmed to 25 million reads prior to analysis to bring different 

samples onto a common scale. The logic behind down sampling to the lowest number of 

sequences produced from any sample is generally unreported, but presumably it is to 

compromise between data set balance and information loss. This down sampling is only 

performed when visualising and checking the quality of the data. The differential analysis 

would be performed by the raw BAM files, and programmes such as DiffBind would have an 

internal control to compensate for the differences in coverage. 

samtools view -b -s 0.5 in.bam > out.Downsampled.bam 

Peaks were called using the MACS2 tool for each bam file separately using: 

MACS2 callpeak -t inbamfile -f BAMPE -n in.bamfile -g ce –keep-dup all 

The two biological replicates were intersected using bedtools with the following script: 

Bedtools intersect -a peakfile.1 -b peakfile.2 -f 0.50 -r > out.bedfile 

To report unique entries we used: 

Bedtools intersect -a bed.file -b bedfile.2 -v > 1.bed 

To report overlap entries we used: 

Bedtools intersect -a bed.file -b bed.file2 -u > 1.bed 

To create a matrix to then generate a heatmap, we first converted the bam files to bigwif files 

using:  



70 
 

bamCoverage -b in.bam -o coverage.bw 

computeMatrix reference-point –referencePoint center –S in.bigwigfile.1 bigwigfile.2 –R 

bedfile.1 –a 1000 –b 1000 –o matrix.1 

To plot a heatmap: 

plotHeatmap –m marix.1 –o Heatmap.png 

To plot correlation we first produced a multiBamSummary and and multibigWigSummary 

using: 

multiBamSummary bins --bamfiles file1.bam file2.bam -o results.npz 

multiBigwigSummary bins -b file1.bw file2.bw -o results.npz 

Then the correlation were plotted using: 

plotCorrelation –n result.npz – corMethod Pearson –skipZeros – plotTitle “Pearson 

Correlation” --whatToPlot heatmap --colorMap RdYlBu--plotNumbers--o heatmappearson.png 

To plot profile we used the following script: 

plotProfile -m matrix.mat.gz --perGroup --kmeans 2  -plotType heatmap   -

outExampleProfile1.png 

Number of peaks were counted using: 

samtools view -c in.bam 

2.17 Statistics  

The appropriate statistics were performed using either GraphPad Prism 5.4 or Microsoft Excel 

2013. For each experiment see accompanying figure legend.  
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Chapter 3 
 

Establishment and characterisation of HER2 inducible 

transformation model 
 

3.1 Introduction 
 

To overcome significant challenges in delineating early transformational events of normal cells 

progressing towards cancer, we took advantage of the tetracycline (Tet-On) inducible system. 

HER2 over expression is observed in up to 30% of breast cancers and have been found to 

promote tumourigenesis. However, the early changes occurring upon HER2 over expression, 

particularly those regarding intracellular signalling, chromatin architecture and cell physiology 

need further investigation. The main advantage of this model lies in the ability to control the 

levels and timing of expression of the gene of interest. Furthermore, it provides us with a 

platform to investigate the events leading to oncogenic transformation in a reproducible 

experimental setting, which to date have not been fully exploited. The over expression of HER2 

using Tet-On system in human mammary epithelial (MCF10A) cells represents a simple, yet 

versatile model for the study of early changes in the process of transformation. This system 

post establishment and characterisation will provide novel insights into the effects of HER2 

over expression on signalling and chromatin conformation changes.  

3.2 Generation of HER2-MCF10A cell line using tetracycline inducible 

system 
 

To generate a stable inducible HER2 over expressing cell line we used a third generation stable 

lentiviral transduction system. We transiently co-transfected the human embryonic kidney 

epithelial (HEK) 293T cell line with pCMV delta R8.2 (packaging vector), pMD2.G (envelope 

vector) and the Tet-On inducible pINDUCER21 HER2 construct containing a surrogate marker, a 
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constitutively active GFP (green fluorescent protein) gene for tracking and selection purposes 

(Figure 3.1). This plasmid has been generated in a series of inducible vectors for inducible 

control of gene function (116). It has been previously used to investigate the relationship 

between myoepithelial-luminal cells in progression of breast cancer (115). In parallel, as a 

control for our subsequent experiments, 293T cells were co-transfected with an empty 

constitutively expressed pLV-eGFP vector along with the same packaging and envelope 

vectors. Lentiviral particles were harvested 24 hours post transfection and MCF10A cells were 

infected with the viral particles for an additional 48 hours.  

 

Figure 3.1: Schematic of third generation lentiviral transduction. pINDUCER21 vector containing 

wildtype HER2 insert was co-transfected with the packaging (pCMV delta R8.2) and envelope (pMD2.G) 

vectors in HEK293T cells. Viral particles were purified with centrifugation 24 hours after transient 

transfection by the labelled vectors. MCF10A cells were infected with the freshly produced virus for 48 

hours.  

 

In control cells, expression of GFP, which is under the control of the constitutively active 

cytomegalovirus immediate-early (CMV) promoter, was readily detected using the 

fluorescence imaging microscope in the HEK293T cells and subsequently in the infected control 

GFP-MCF10A cells (Figure 3.2A.). However, barely detectable levels of GFP were observed in 

HEK293T and MCF10A cells transduced with the inducible pINDUCER21 HER2 construct. GFP in 



73 
 

the pINDUCER21 HER2 construct is expressed from a weak constitutively active human 

elongation factor 1α (EF1α) promoter. Therefore, to adequately quantify the percentage and 

relative intensity of the GFP positive cells, flow cytometry was performed. It showed that GFP 

expression is notably lower in the pINDUCER21 HER2 transduced cells, with a 2.27% 

transduction efficiency. This is in comparison to GFP-MCF10A cells, which exhibited a 35.6% 

transduction efficiency (Figure 3.2B). The successfully transduced cells were flow sorted at high 

purity (approximately 90%) based on GFP expression from the non-transduced background 

population. The purity check is routinely performed directly after FACS sorting has been 

completed and we found that the GFP positive cells were purified at 90%. Subsequently, from 

the pINDUCER21 HER2 transduced cells, the GFP positive cells were separated into two 

populations for propagation with either doxycycline hyclate (dox), to induce HER2 expression 

(DOX +ve cells), or without dox as a parental control (DOX -ve cells).  

Furthermore, to investigate if GFP efficiency remains stable over time. We passaged cells for 

an additional 6 times and 8 times respectively and measured the GFP expression of cells by 

flow cytometry. We found that that there was a decrease in GFP expression from the original 

90% of pure GFP population to approximately 65% GFP expression (Figure 3.2C). 
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Figure 3.2: Generating a HER2 inducible MCF10A cell line using lentiviral transduction. (A) 

Fluorescence images of HEK293T cells transfected with pINDUCER21 HER2 and control empty GFP 

plasmids 24 hours post transfection. MCF10A cells were infected with the virus for 48 hours resulting in 

fluorescence in GFP transduced cells but not in the pINDUCER21 HER2 transduced cells (B) Scatter plots 

of flow cytometric analysis of MCF10A cells transduced with pINDUCER21 HER2 and control GFP 

expressing virus to check for transduction efficiency. (C) Flow cytometry analysis of cells cultured for 6 

and 8 passages after the initial transduction and GFP expression measured by flow cytometry. 
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3.3 Dose and time dependent HER2 expression 
 

To investigate inducibility of HER2 expression at the protein level, we selected five different 

concentrations of dox and cultured cells for 24 hours. Some of these concentrations selected 

here have been previously used to induce the expression of gene of interest (115, 229). HER2 

over expression was readily and efficiently induced in the infected MCF10A cells upon 

exposure of cells to dox. Typically, HER2 expression was induced by dox in a dose-dependent 

manner. It also shows that protein expression is tightly regulated, as there is no “leaky” 

expression of HER2 in the DOX -ve cells (Figure 3.3A). We wished to examine whether this 

model could be used to express similar levels of HER2 protein as seen in a subset of HER2 over 

expressing breast cancer patients, with the aim to generate a more physiologically relevant 

human context (230). Using Real-Time Polymerase Chain Reaction (RT-PCR), we verified the 

increase in HER2 expression at gene expression level with increasing concentration of dox. In 

addition, we determined that there is approximately 18-fold more HER2 mRNA transcripts in 

the DOX +ve cells when cells are exposed to 1 µg/ml of dox relative to normal MCF10A cells 

(Figure 3.3B). We found that the HER2 gene expression is relatively similar to levels observed 

in the 2+ grade tumours in some HER2 positive breast cancer patients (231, 232) 

Immunofluorescence (IF) staining was performed to confirm the cellular localisation of HER2 

protein in DOX +ve cells, after cells were cultured in 1 µg/ml of dox for 24 hours. As a cell 

surface receptor, HER2 localised around the plasma membrane as expected, whereas in 

normal MCF10A cells, HER2 levels were negative or below the detection threshold of IF (Figure 

3.3C). Additionally, we noted that HER2 was expressed heterogeneously, with some cells 

appearing brighter than others and a fraction of cells not exhibiting any fluorescence. Next, we 

sought to quantify the levels of HER2 in DOX +ve cells in a time-dependent manner. We 

selected 12 different time points, ranging from 0 hours to 17 hours, with samples collected 

every 1.5 hours. As shown in Figure 3.3D, HER2 expression increased in a time-dependent 
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manner until the 10.5-hour time point, after which it remained constant. This shows that 10.5 

hours of dox induction is sufficient to cause saturation of the cell receptor (HER2). 
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Figure 3.3: Doxycycline induces HER2 over expression. (A and B) HER2 expression analysis by western 

blot and the densitometry analysis of HER2 expression normalised to GAPDH (loading control) using 

Image J (n=1).  (C) RT-PCR in MCF10A cells infected with inducible HER2 lentiviral particles and cultured 

in various concentration of dox (0.01, 0.05, 1.0, 0.5, and 1.0 µg/ml) for 24 hours. 18S was used as 

internal control for RT-PCR (n=2). (D) Fluorescence microscopy performed 24 hours after inducing HER2 

expression by dox. Cells were stained with DAPI and HER2 antibody for nuclear and protein visualisation 

respectively. Alexafluor 555 was used as a secondary antibody. Scale bars represent 100µm. (E and F) 

Western blot analysis of time-dependent HER2 expression for the indicated time points and the 

densitometry analysis of HER2 expression normalised to GAPDH control using Image J (n=1).   

 

3.4 HER2 over expression induces morphological changes 

A key hallmark of transformed cells is the loss of cell organisation, and proliferation, as well as 

cell to cell membrane contact and cell to cell adhesion to their control counterparts (56). In 

monolayer cell culture, un-transduced MCF10A and DOX -ve cells grew in expanding colonies 

with the cobblestone-like structure characteristic of epithelial cells. However, DOX +ve cells 

exhibited a more fibroblastic and spindle-like shape after being in 2-dimensional (2D) culture 

for 7 days (Figure 3.4A). We extended our analysis by studying the morphology of cells in 3-

dimensional (3D) basement membrane cell culture (rBM) in overlay or “on-top” 

matrigel/collagen assay over a period of 9 days. The MCF10A cell morphology progression 

series grown in 3D rBM cultures is a powerful system to study human mammary 

transformation and is simple to track morphological changes compared to 2D cultures. At day 

0, both DOX -ve and DOX +ve cells anchored into the matrix and formed similarly-sized 

spherical masses of cells termed “acini”. After day 3 and until day 9, the acini of DOX -ve cells 

continued to grow in size while retaining their overall spherical structure with smoother outer 

edges. During the same time, the DOX +ve cells became easily distinguishable, as they 

appeared flat and lacked even edges. They not only grew in size, but appeared to have 
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produced a multi-acinar conformation with branched connections. The cells exhibited a more 

irregular, disorganised, arm-protruding, and invasive-like structure as they became denser and 

darker (Figure 3.4B). Moreover, we questioned whether the morphological alterations could 

have been due to the addition of dox and not HER2 over expression. To answer this, we added 

the same amount (1 µg/ml) of dox to an empty vector (GFP) transduced MCF10A cells and DOX 

+ve cells. Indeed, the addition of dox had no impact on GFP-MCF10A cell morphology, as they 

retained circular organised acini conformation similar to DOX -ve cells, but the DOX +ve did not 

(Figure 3.4C). This shows that dox addition is not the cause of morphological changes but HER2 

over expression.  
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Figure 3.4: HER2 over expression disrupts normal MCF10A morphology. (A) HER2 expression was 

maintained for 7 days in monolayer cell culture. Bright-field images of MCF10A and DOX -ve cells show 

normal cobble-stone like morphology. DOX +ve cells show a more spindle-like appearance as a result of 

HER2 expression. Scale bars represent 250µm. (B) DOX -ve and DOX +ve cells were cultured in 3D matrix 
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over 9 days. DOX -ve cells formed spherical acini which increased in size over time. DOX +ve cells formed 

flat projecting cells of complex masses, typical of transformed cells. (C) 1µg/ml dox was added to GFP-

transduced MCF10A and DOX +ve cells. Dox had no effect on MCF10A cell morphology without HER2 

expression. Scale bars represent 50µm. 

 

3.5 Effects of lapatinib and dox absence on HER2 expressing cells 
 

Lapatinib is a dual HER1 and HER2 kinase inhibitor and thus is effective in inhibiting 

downstream signals through the MAPK signalling pathway (233, 234). To explore the effects of 

lapatinib on phosphorylated ERK (phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) in our 

system, cells were acutely treated with four different concentrations of lapatinib for 3 hours. 

Such short-term treatment times have been previously reported and it has been shown that 

even one hour of lapatinib treatment of HER2 over expressing cells may be sufficient to 

decrease HER2 signalling (234, 235). Indeed, lapatinib treatment decreased pERK abundance in 

DOX +ve cells in a dose-dependent manner (Figure 3.5A). Furthermore, to determine if HER2 

activity is required to sustain the aberrant morphological phenotype of DOX +ve acini in 3D, we 

investigated the effect that long-term treatment with lapatinib has on the morphology of 

MCF10A cells. Therefore, we maintained lapatinib treatment of HER2 over-expressing acini for 

5 days. Indeed, cells did not progress to the aberrant morphology, as observed in the 

untreated DOX +ve cells (positive control). At the same time, established aberrant acini formed 

after 4 days were treated with 5µM of lapatinib for 24 hours (Figure 3.5B). This confirmed that 

inhibiting HER2 activity after the formation of invasive morphology induced a significant 

reversal of the aberrant morphology of DOX +ve acini. 

To test whether the induction of HER2 protein expression from the DOX +ve cells is reversible, 

HER2 expression was induced by the addition of dox for 24 hours, followed by the removal of 

dox by three consecutive PBS washes. Western blot analysis at 24, 48 and 72 hours after 

removal of dox showed that HER2 expression decreased over time, but did not reach the basal 
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levels of un-transduced MCF10A or DOX -ve cells within 72 hours (Figure 3.5C). This shows 

that, as expected, this system provides reversible and temporal control of protein expression, 

but may require more time for reversal of HER2 expression to the uninduced state. The HER2 

expression remains at low levels despite dox removal and the half-time of HER2 protein is 

known to be 19.6 hours (236). 
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Figure 3.5: Inhibition of HER2 and its signalling. (A and B) Cells were serum starved for 24 hours and 

treated with various concentrations (0.1, 0.5, 1.0, and 2.0 µM) of lapatinib for three hours. Cells were 

then stimulated with full serum media for 10 minutes before harvesting protein lysates. Western blot 

analysis shows dose-dependent reduction of pERK signalling and the associated densitometry analysis 

normalised to GAPDH control (n=1). (C) DOX +ve cells were treated with 5 µM of lapatinib for 5 days or 

treated on day 4 for 24 hours. DOX -ve and DOX +ve cells served as controls. Scales bars represent 50 

µM (n=1). (D and E) HER2 was induced for 24 hours and cells were washed with PBS three times 

consecutively. Western blot analysis was performed at 24, 48, 72 hours. HER2 levels decreased over 

time but did not reach the basal levels observed in 72 hours as is also shown in the densitometry 

analysis (n=1).  

3.6 HER2 induces invasion of cells and activates associated pathway 
 

An indication of cells progressing towards transformation is their ability to invade the 

surrounding tissue (3, 237). To test the effect of HER2 over expression on the ability of cells to 

invade through matrix barriers, we performed in vitro transwell migration and invasion assays. 

We maintained HER2 over expression in DOX +ve cells for 5 days and plated 150,000 cells in 

parallel to DOX -ve cells on 8µm transwell filters for 16 hours in a low serum media. The 

transwell filters were either matrigel-coated, collagen-coated, or left uncoated to estimate 

migration through the transwell filters. We demonstrated that the DOX +ve cells exhibit 

considerably higher migration and invasion capacity towards the full serum containing media 

compared to the DOX -ve cells (Figure 3.6A). This shows that within 5 days of HER2 over 

expression, cells have acquired an invasive phenotype. 

Previously, microRNAs (miRNAs) such as miR-21 has been shown to enhance invasion and 

metastatic potential in HER2 over expressing cells (238). To confirm the invasive phenotype 

observed through the transwells, we investigated and confirmed a known HER2 signalling 

pathway that induces the expression of miR-21 through the MAPK signalling pathway, which is 

known to contribute to the increased invasive phenotype observed in DOX +ve cells compared 
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to DOX -ve cells. We grew cells in 3D cell culture in a mixture of matrigel/collagen assay for 5 

days to be comparable to the functional invasion assay performed. We determined that HER2 

over expression dysregulates this pathway at gene expression level as it increased the levels of 

a known transcription factor (ETS-1). This upregulates the expression of primary transcript 

coding for miR-21 (pri-miR-21), which is further processed into miR-21. The Pri-miR21 

subsequently decrease the expression of PDCD4 (programmed cell death 4) and/or other 
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unidentified genes allowing active cell invasion relative to control cells (Figure 3.6B) (238). 

 

Figure 3.6: HER2-associated migration and invasion. (A) Cell migration was analysed through the 

transwell membranes over 16-hour period of chemotactic migration towards full serum media. The 

ability of cell invasion was measured in collagen or matrigel coated transwells (n=3). Student’s t-test was 

performed and statistical significance is shown as * for p-value < 0.05, ** for p-value < 0.01. (B) Gene 

expression analysis by RT-PCR of a known pathway associated with HER2-induced invasion. Cells were 

grown in 3D cell culture for 5 days and acini recovered. PDCD4 levels decreases via upregulation of ETS1, 

and primary mir-21 (n=2).  
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3.7 HER2 over expression induces anchorage-independent growth 

Transformed cells have the ability to grow large colonies compared to normal cells in the soft 

agar, a characteristic known as anchorage-independent growth, and a hallmark for in vitro 

transformation (239, 240). The formation of domed-shaped colonies are strongly correlated 

with formation of tumours in experimental mice (241, 242). We tested the anchorage-

independent growth capability of DOX +ve and DOX -ve cells by growing 5000 cells mixed with 

a low percentage (0.3%) of ultra-pure agarose on top of a 0.8% layer of ultra-pure agarose. 

Cells were replenished with fresh media containing dox to maintain HER2 over expression over 

the course of 21 days and colonies were quantified after imaging by a dissecting microscope. 

HER2 over expression in DOX +ve cells induced anchorage-independent growth in the soft 

agar, but the control cells did not (Figure 3.7A). Some DOX +ve cells grew large colonies (above 

100µm perimeter) but DOX -ve cells did not aggregate or form larger colonies after 21 days of 
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being in the soft agar. The DOX +ve cells increased in their sizes and became more 

distinguishable after 10 days, some of which were very large, round structures (Figure 3.7B).  

 

Figure 3.7: HER2 induces MCF10A cell anchorage-independent growth. (A) Colony growth of DOX -ve 

and DOX +ve cells in 0.3% ultra-pure agarose. ImageJ analysis of six different size colonies were 

quantified. Student’s t-test was performed and statistical significance is shown as * for p-value < 0.05, 

** for p-value < 0.01, *** for p-value <0.001. n=3 (B) Representative microscopic images of colonies 

stained with crystal violet after three weeks. Images are at 1.6x magnification. Scale bars represent 

1000µm. 
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3.8 Discussion 

Previously, inducible transformation models have studied various differences occurring 

between normal and transformed cells, for example by inducing over expression of HER2/neu 

in mouse models (243, 244) and primary luminal cells to characterise a phenotype of 

transformation, namely the filling of the lumen (115). Whilst this has been valuable to 

understand the role of HER2 in driving transformation, it has an important limitation in that is 

not suitable to track the alterations that occur at the very outset of transformation with 

physiological levels of HER2 expression. Here, we ectopically generated a stable MCF10A cell 

line transduced with inducible HER2 gene using the Tet-On system that allows for 

characterisation of the earliest changes. The wild type HER2 over expression alone is sufficient 

to transform the immortalised, yet normal MCF10A cell line (245). We anticipate to fully 

exploit this system in understanding the genome-wide early signalling and chromatin structure 

changes upon HER2 induction.  

To work with the successfully transduced HER2 MCF10A cells, we FACS selected only the very 

high 2.3% of cells based on GFP expression, which is expressed from the weak EF1α promoter, 

despite the HER2 being driven by a distinct strong inducible TRE (tetracycline response 

element) promoter. The FACS selection of GFP cells with high fluorescence intensity would 

have ensured that the majority of the transduced cells contained more than one viral 

integration per cell. However, there would still be variation in the HER2 levels among different 

MCF10A cells within the same population as is shown by the IF. This variation in HER2 levels 

could present key caveats due to the rapidly evolving heterogeneity in HER2 expression or due 

to outgrowth of one clone over others in cell culture affecting the inducibility and the overall 

expression of HER2 over time. This limitation of the inducible system cannot be differentiated 

from the response of cells to dox, as it is already known that there is variation in inducibility 
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over long periods of time, with cells having reduce response to dox, resulting in significantly 

decreased inducibility (246).  

An essential feature of an inducible system is its high inducibility in the presence of an inducing 

agent (dox) and its low background or leakiness in the transduced cells in the absence of dox. 

Our results show tightness of dox-regulation as the DOX -ve cells are identical to the 

untransduced MCF10A cells exhibiting no “leakiness” of HER2 protein in absence of dox. In 

addition, the system displays that HER2 expression is strictly dependent on dox treatment, as 

the plasmid enables the expression of HER2 in a graded fashion by titrating the dox 

concentration. Furthermore, the plasmid encodes GFP as a surrogate marker, which can only 

help to monitor the successful delivery of the plasmid into the target cells. This marker cannot 

be used to monitor the expression of gene of interest (HER2), as both of the genes are driven 

by two different prompters and are therefore, transcribed and expressed at different levels.    

The 3-dimensional basement membrane cell culture offers significant insights compared to 2D 

cultures of normal cells progressing to cancer, making it an ideal system for us to study the 

morphogenesis in a more physiological relevant context. We monitored the morphological 

transformation of cells over a period of 9 days. DOX +ve clearly showed an aberrant 

morphology whereas the DOX -ve did not. The normal MCF10A and DOX -ve cells are known to 

exhibit growth arrest, which appear to be delayed or does not occur in the transformed cells. 

This growth arrest in the DOX -ve cells results in a notable lumen formation after 10 days of 

being in 3D cell culture. Interestingly, the transformed cells demonstrate lack of apoptosis and 

hence the lack of lumen formation. We have not been able to observe this phenotype in our 

experiments since our experimental end point was 9 days, with the lumen formation 

appearing after 10 days. Nevertheless, we show that HER2 over expression disrupts the normal 

MCF10A morphology within 3 days and this invasive morphology is maintained by HER2 

expression, which was the main objective of our experiment. 
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Our results show a marked increase in the ability of DOX +ve cells to form colonies compared 

to DOX -ve cells. Intriguingly, some of the DOX -ve cells also have the ability of colony 

formation. The colony forming ability of normal MCF10A cells to this extent has not been 

reported before. Previous reports show only some colony formation or the complete inability 

of MCF10A cells to grow in the soft agar compared to oncogene-induced transformed MCF10A 

cells (247-250).  However, these reports do not take into consideration the sizes of the 

colonies, whereas we show that approximately 100 colonies were detected in DOX -ve cells 

compared to the 350 colonies in DOX +ve cells when 10µm perimeter size was set as a 

threshold. Moreover, there is an incremental reduction in the number of colonies detected in 

the DOX -ve cells as the size threshold was increased. For example, no colonies were detected 

in the DOX -ve cells when the threshold was increased to 100um perimeter compared to 10 

large colonies detected in the DOX +ve cells. Another explanation that may explain this 

discrepancy is that MCF10A cells are extremely adherent, form round domed-shaped colonies, 

and generally aggregate together and therefore, the colonies observed in the DOX -ve cells are 

a mere characteristic of these cells exhibited in the ultra-pure agarose and are not relevant to 

transformation.  
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Chapter 4 
 

Investigating the dynamics of early signalling changes 

upon HER2 over expression 
 

4.1 Introduction 
 

Signalling pathways convey cellular information into the nucleus in response to external stimuli 

by various post translational modifications (PTMs) to proteins (251). The PTMs contribute to 

vital roles by regulating biological processes such as cell growth, survival, invasion, 

differentiation, and protein turnover. Importantly, reversible phosphorylation events play a 

central role in the growth of tumours. For example, the HER receptor family is activated by 

various ligands, which in turn can initiate a cascade of widespread phosphorylation in 

downstream signalling pathways to promote tumour development (251, 252). Indeed, 

phosphorylation in cancer cell signalling has been actively studied in various biological 

contexts, but there is a need for network-wide analysis of each signalling dynamics to define 

the signalling machinery at the system level. 

To better characterise the phenotypic consequences we have observed through HER2 

mediated cellular neoplastic transformation, we undertook a detailed global study to 

investigate the molecular signalling events in the phosphoproteome driven by HER2 expression 

by an unbiased and comprehensive phosphoproteomic approach. We were particularly 

interested in determining the molecular changes that take place at the very outset of HER2 

protein induction and transformation. We aimed to assess the effect of HER2 over expression 

at short time points after protein induction, in the absence of any other genetic or epigenetic 

alterations except from those already occurring in the immortalised MCF10A cell line. In this 

system, HER2 protein levels increase in a time depend manner upon doxycycline addition. 
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Therefore, the low-level sequential activation of HER2 in early time points may mimic 

physiological signalling events as observed in cancer cells. Indeed, in many different cancers, 

wild type HER2 is over expressed as is the case in this system. 

4.2 Detection of downstream signalling events upon HER2 induction 
 

To establish if the HER2 inducible construct transduced in the MCF10A cells is functioning, we 

first assessed the phosphorylation status of known proteins activated by HER2 protein 

induction. The DOX -ve and DOX +ve cells were cultured in serum free media (by removing EGF 

and horse serum) for 24 hours to lower pathway activities close to basal levels. Cells were then 

stimulated with full media (containing EGF and horse serum) for either 5, 10, 15 minutes or left 

untreated in the serum free media, as a negative control. Western blotting analysis revealed 

notably higher phosphorylation of ERK in DOX +ve cells compared to DOX -ve cells, as is shown 

by the increase in phosphorylation of the activatory modification (ERK[1/2] Thr/202/Tyr204) 

levels upon stimulation with full media, in two biological replicates (Figure 4.1A). Moreover, to 

determine the phosphorylation changes occurring upon the activation of the PI3K-AKT 

signalling pathway, we performed western blotting for AKT activatory modification at serine 

473 (S473). Cells were serum starved for 24 hours and then stimulated with full media for 

either 15, 30, 45 minutes or left untreated in the serum free media. We chose longer time-

points of stimulation compared to ERK phosphorylation as it is known that AKT 

phosphorylation is slower compared to rapid transmission of signalling through the MAPK 

signalling pathway. Interestingly, HER2 over expression did not have an effect on the activation 

of AKT at this specific residue (Figure 4.1B).  
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Figure 4.1: Detection of ERK and AKT activation upon HER2 protein over expression. (A) To detect ERK 

activation DOX -ve and DOX +ve cells were gown in serum starved cell media for 24 hours and then 

stimulated with full media for the indicated time points or left in the serum starved media as a negative 

control. Detection of phospho-ERK (Thr202/Tyr204) is shown. After stripping, the same membrane was 

blotted for total-ERK (ERK 1/2) and GAPDH was used a loading control. n=2. (B) Densitometry analysis of 

pERK expression normalised to GAPDH (loading control) was performed using Image J (n=2). (C) For AKT 

activation DOX -ve and DOX +ve cells were gown in serum starved cell media for 24 hours and then 

stimulated with full media for the indicated time points or left in the serum starved media as a negative 

control. Detection of phospho-AKT (S473) is shown. After stripping, the same membrane was probed 

with a total-AKT antibody and GAPDH was used as a control. n=1. (D) Densitometry analysis of pAKT 

expression normalised to GAPDH (loading control) was performed using Image J (n=1). 

4.3 HER2 over expression increases expression of genes related to 

angiogenesis and adhesion mediators 
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To validate the expression of genes that are known to be enhanced upon HER2 over 

expression and in the presence of exogenous EGF, we performed RT-PCR for 6 different genes 

known to be involved in transcriptional induction of adhesion, morphogenesis and 

angiogenesis (3). HER2 over expression was maintained in DOX +ve cells for 5 days in 2D cell 

culture and RT-PCR was carried out on total RNA from both DOX -ve and DOX +ve cells. We 

found that there was no significant change in the expression of angiogenic and adhesion 

factors including LOX, BMPR2, ILK, VEGFC, BMP6, and LOXL2 when cells are grown in 2D cell 

culture (Figure 4.2A). We thought that this because these genes are relevant to the processes 

of cell adhesion and angiogenesis and there expression may not be directly significant in 2D 

cell culture. Therefore, we extended our analysis to 3-dimensional (3D) cell culture and plated 

DOX -ve and DOX +ve cells in a mixture of matrigel and collagen overlay (“on top”) 3D cell 

culture method for the same number of days (5 days) as the 2D cell culture.  Acini from 3D cell 

culture were recovered and expression of the same genes as above were validated by RT-PCR. 

Intriguingly, HER2 over expression increased the transcription of adhesion and angiogenic 

molecules in the acini of the MCF10A cells (Figure 4.2B).  
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Figure 4.2: Transcriptional effects of HER2 over expression. mRNA expression of genes known to be 

upregulated upon HER2 over expression. (A) Total RNA was isolated after 5 days of HER2 over 

expression in MCF10A cells in 2D cell culture, subjected to reverse transcription and analysed by RT-PCR. 

Light green and bars represent DOX +ve cells and white bars show DOX -ve cells (n=2). (B) HER2 was 

induced in 3D cell culture for 5 days, acini recovered and RT-PCR was performed. Green bars represent 

relative expression of DOX +ve cells compared to DOX -ve cells (n=2). Two-tailed student t-test was 

performed and is depicted as significant [* < 0.05 p-value]. 

4.4 Phospho-proteomic analysis of HER2 activation – an overview of 

experimental design 
 

In order to map the early molecular signalling events induced by HER2 protein over expression 

and cellular transformation, we performed liquid chromatography tandem-mass spectrometry 
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(LC-MS/MS) based phospho-proteomic analysis. To ensure reproducibility of minor 

quantitative changes, the experiment was repeated in 3 biological replicates and each sample 

was analysed twice by mass spectrometry. We selected 4 different time points for DOX -ve 

cells and added doxycycline to induce HER2 protein expression at 0 hours, 0.5 hours, 4 hours, 

and 7 hours to capture signalling dynamics at early and early-immediate points. The decision of 

selecting these time points was based on the western blotting of HER2 over expression in a 

time-dependent manner, and we saw that HER2 is expressed early upon dox addition, we 

wanted to study signalling changes at the very outset of HER2 protein expression (Figure 4.3).  

As a control, we added doxycycline to an empty GFP vector transduced in MCF10A cells at the 

same time points. The analysis compared the signalling changes in a time-dependent manner 

by comparing each time point to the 0 hour time point (0.5 hours vs 0 hours, 4 hours vs 0 

hours, and 7 hours vs 0 hours) to capture the earliest changes during the process of 

transformation (Figure 4.3). To obtain differentially regulated phospho-peptides from our 

dataset, we filtered out background phosphorylation events occurring natively and by the 

addition of dox in the GFP transduced MCF10A cells. We defined a phospho-peptide to be 

significantly differentially regulated if changes in phosphorylation intensity, such as increases 

or decreases in expression had a False Discovery Rate (FDR) corrected p-value of less < 0.05.  
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Figure 4.3: Schematic of experimental outline and phospho-proteome dataset overview. GFP 

transduced MCF10A cells and DOX -ve cells were stimulated by dox and collected at time points labelled. 

Samples were then subjected to mass spectrometry analysis. Collectively, over 4000 unique proteins 

were found to be modified and post our analysis pipeline, more than 1000 phospho-peptides were 

found to have differential phosphorylation levels. 

4.5 Overview of the phosphorylation changes upon HER2 activation 
 

In total, our data analysis workflow revealed changes in 4089 proteins containing one or more 

phosphopeptide. The differentially regulated phosphorylation changes were observed in 800 

proteins, which equalled to 1004 phosphopeptides. From this, 383 proteins were enriched in 

phosphorylation and 417 proteins were depleted of phosphorylation. We also quantified 

phosphorylation changes occurring at each time point upon HER2 activation. We found that 

there were 310 differentially regulated phospho-peptides at 0.5 hours (that may or may not 

also be significantly changing at other time points), 701 at 4 hours and 663 at 7 hours upon 

HER2 induction. The effects of HER2 on all proteins in our experimental setting was also 

quantified (Figure 4.4). Of those proteins that showed increase in phosphorylation, less than 
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15 proteins that contained a phospho-site that showed higher than 5 fold increase in 

phosphorylation abundance at any time point. Fewer than 100 proteins across all time points 

exhibited increase in phosphorylation between 1 to 5 fold intensity. Interestingly, most of the 

affected proteins exhibited a decrease in abundance of phosphorylation because at every time 

point the downregulated phosphorylation sites outnumbered those that were upregulated.   

 

Figure 4.4: Quantification of protein phosphorylation. HER2 effect on phosphorylation of proteins that 

show varying fold changes of phosphorylation. 

To ensure that the experimental design has been correctly executed we first checked if known 

proteins were activated upon HER2 induction. The proteins that should be phosphorylated in 

this model are HER2 and its family member HER1 (EGFR). As expected we observed an increase 

in both the HER2 and HER1 phosphorylation levels at sites T701 and Y1110 in a time-

dependent manner (Figure 4.5).  
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Figure 4.5: An internal quality control (QC) for phospho-proteomic analysis. (A) HER2 phosphorylation 

modification (T701) increases in a time dependent manner. (B) EGFR (Y1110) also becomes marginally 

activated in a time dependent manner compared to control cells. [* FDR corrected p-value of < 0.05. 

4.6 HER2 induced time-dependent differentially regulated phosphorylation 

events 
 

Having screened the phospho-proteome of MCF10A cells upon HER2 activation, we next 

analysed how this phospho-proteome is impacted by cellular transformation induced by HER2 
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protein expression. A volcano plot for the 0.5 hours’ time point is shown in the Figure 4.6A. 

This shows the immediate early phosphorylation events of 310 proteins, which include the 

upregulation of the HER1 (EGFR), the transcription factor JUN, the activation of PAK2, and 

NKTR, but also the downregulation of a novel DNMT1 phospho-peptide amongst many other 

changes. More specifically, of the 310 differentially and significantly changing phospho-

peptides, 153 were significantly depleted (log2 fold change < -0.5, FDR corrected p-value of < 

0.05), whereas 94 were significantly enriched (log2 fold change > 0.5 fold, FDR corrected p-

value < of 0.05). We used the 0.5 log2 fold cut off for upregulation and downregulation 

(represented by the dotted vertical line), since most of these peptides exhibited only marginal 

phosphorylation change. To understand how many phospho-sites are significantly increasing 

with a higher fold change, we picked a 2 log2 fold cut off and found that only 39 phospho-

peptides were changing significantly and 4 phospho-peptides were significantly down-

regulated with a cut off of log2 fold change <-2.  The phospho-peptides that were changing 

(upregulated or downregulated) at 0.5 hours were subjected to ontology enrichment analysis 

(Figure 4.6B). Using the DAVID bioinformatics functional annotation, we identified the 

biological processes that are significantly altered upon HER2 over expression in 0.5 hours. The 

clusters consisted of establishment of RNA localisation (cluster 1), cell-cell adhesion (cluster 4), 

chromosome organisation (cluster 5), and gene silencing (cluster 6). KEGG PATHWAY analysis 

and DISEASE annotations did not reveal any significant terms in any pathway or disease 

clusters, respectively, at the 0.5 hours’ time point.  
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Figure 4.6: Volcano plot of showing the phospho-proteome of HER2 induced changes in MCF10A cells 

at 0.5 hours. The red circles show the significant differential phosphorylation changes and the black 

circles show non-significant changes. The labelled phospho-peptides are indicated by red/black circles. 

The statistical significance was –log10 of the FDR corrected p-values (y axis) and the fold change is 

shown on the x axis. The vertical dotted line indicates a 0.5-fold change. (B) Gene ontology analysis of 

biological processes using DAVID of all the changes occurring at 0.5 hour upon HER2 induction and 



104 
 

transformation. The resulting Benjamini p-values for each term were –log10 transformed with a 

threshold of 0.05.  

Next, we assessed the differential phosphorylation changes of 390 phospho-peptides upon 4 

hours of HER2 induction and transformation. These alterations are visualised in a volcano plot 

(Figure 4.7A). There were 125 phospho-peptides significantly depleted (log2 fold change < -0.5, 

FDR corrected p-value of < 0.05) and 168 were significantly upregulated (log2 fold change > 0.5 

fold, FDR corrected p-value < of 0.05). We find the emergence of HER2 phosphorylation, and 

the activation of PAK2 alongside the hyper phosphorylation of a known HER2 interactor, 

EPS8L2. Interestingly, the downregulation of p53 binding protein was noted, and the sustained 

downregulation of the same phospho-site of DNMT1 observed in the earlier 0.5 hours’ time 

point. To investigate how many phospho-sites are significantly increasing with a higher fold 

change, we picked a higher cut off threshold of 2 log2 fold cut off and found that only 35 

phospho-sites were upregulated and 10 were significantly down-regulated with a cut off of 

log2 fold change <-2.  Ontology analysis of these phosphorylated proteins identified biological 

processes enriched for various terms, such as Ras protein signal transduction (cluster 1), cell-

cell adhesion (cluster 5), and the regulation of signalling (cluster 7) (Figure 4.7B). Similar to the 
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0.5 hours’ time point, KEGG PATHWAY and DISEASE annotation analysis did not enrich for any 

significant terms.  
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Figure 4.7: Volcano plot of showing the phospho-proteome of HER2 induced changes in MCF10A cells 

at 4 hours. The red circles show the significant differential phosphorylation changes and the black circles 

show non-significant changes. The statistical significance was –log10 of the FDR corrected p-values (y 

axis) and the fold change is shown on the x axis. The vertical dotted line indicates a 0.5-fold change. (B) 

Gene ontology analysis of biological processes using DAVID of all the changes occurring at 4 hours upon 

HER2 induction and transformation. The resulting Benjamini p-values for each term were –log10 

transformed with a threshold of 0.05.  

We next examined the differential phosphorylation changes upon 7 hours of HER2 induction 

and cellular transformation, which resulted in 455 differentially regulated phospho-peptides, 

visualised by a volcano plot (Figure 4.8A). Of these, 157 phospho-peptides were significantly 

depleted (log2 fold change < -0.5, FDR corrected p-value of < 0.05) and 213 were significantly 

enriched (log2 fold change > 0.5 fold, FDR corrected p-value < of 0.05). Indeed, there is an 

overlap of phospho-peptides that were observed in the 0.5 hours or 4 hours’ time points, as 

the HER2 (T701), DNMT1 (S487), TP53BP1 (S1067), PAK2 (S58), are all maintained indicating 

that these changes are not transient. However, novel changes that were not observed in the 

previous two time points also appear. These include a second HER2 phospho-peptide (HER2 

T1060) as well as the activation of NKTR and PTK2 (FAK2) amongst many other alterations. To 

investigate how many phospho-peptides are significantly upregulated with a higher fold 

change, we picked a higher cut off threshold of 2 log2 fold cut off and found that only 45 

phospho-sites were upregulated and 14 were significantly down-regulated with a cut off of 

log2 fold change <-2. To understand the biological significance of these alterations, we 

performed ontology analysis of the changes occurring at the 7 hours’ time point. There were 

overlapping enrichment of biological processes such as cell-cell adhesion (cluster 1), nuclear 

chromosome segregation (cluster 3), cell projection organisation (cluster 4) and cell 

development (cluster 6), amongst others (Figure 4.8B). Interestingly, KEGG PATHWAY analysis 
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revealed significant changes in 3 different pathways, including the ErbB (HER) signalling 

pathway (Figure 4.8C).  
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Figure 4.8: Volcano plot of showing the phospho-proteome of HER2 induced changes in MCF10A cells 

at 7 hours. The red circles show the significant differential phosphorylation changes and the black circles 



109 
 

show non-significant changes. The statistical significance was –log10 of the FDR corrected p-values (y 

axis) and the fold change is shown on the x axis. The vertical dotted line indicates a 0.5-fold change. (B) 

Gene ontology analysis of biological processes using DAVID of all the changes occurring at 7 hours upon 

HER2 induction and transformation. (C) Pathway enrichment analysis using DAVID. The resulting 

Benjamini p-values for each term were –log10 transformed with a threshold of 0.05.  

4.7 Multisite protein phosphorylation 
 

Multisite protein phosphorylation is a major mechanism of regulating the activity of proteins 

(253). We found that across all time points in the upregulated or the downregulated phospho-

peptides, single phosphorylation sites per protein were strongly represented compared to 

multi-sites phospho-peptides (Figure 4.9A). Approximately 80% of the identified peptides were 

phosphorylated on just one residue, whereas the remaining 20% were phosphorylated at 

multiple sites of 2 or more. As we observed that many proteins could potentially have multi-

site protein phosphorylation, we next asked if they were activatory or inhibitory. We detected 

changes in the phosphorylation status of several regulators and kinases activated upon HER2 

expression with a multitude of phosphorylation modifications. These included HER2, SRC 

substrate cortactin, EGFR, FAK1, and P63 amongst many others (Figure 3.9B). We then 

manually inspected the multiplicity of phospho-peptides of several proteins to assess if they 

are associated with the activation or the inhibition of that protein. Interestingly, out of the 12 

proteins we searched for on PhosphoSitePlus, 5 of them had an activating (inducing) function 

(coloured red) or the function is not yet known. The other 7 phospho-peptide function 

(activatory or inhibitory) is yet to be elucidated (white bars) and no protein was found to have 

an inhibitory effect (Figure 4.9B). Compared to single site phosphorylation, multi-site protein 

phosphorylation maybe considered as an on/off switch for protein function and it increases 

the possibilities for protein regulation, with each phospho-site have a distinct characteristic 

(254).   
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Furthermore, of the 800 differentially regulated proteins we investigated a possible correlation 

with HER2 activity by calculating the Pearson’s correlation coefficient (R²) between the HER2 

phospho-peptide (HER2 T701) and the abundance of other phosphorylated peptides following 

similar intensity as the HER2 T701 modification. By applying a cut off value of 0.8, we identified 

148 proteins strongly following the trend of HER2 fold increase pattern (Figure 4.9C).  
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Figure 4.9: Phospho-proteome identification. (A) Pie charts represent the multi-site protein 

phosphorylation of the identified phospho-peptides. Percentage of phospho-peptides carrying either a 

single (blue), double (orange) or more than three residues (grey) are indicated. (B) Bar chart showing the 

multiplicity of the phosphorylation sites of some proteins. The red bars show the already known 

activating phospho-peptides. The white bars represent the activatory or inhibitory effects that are not 
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yet known. No inhibitory effect was found. (C) Pearson’s ranked phosphorylation changes of phospho-

peptides following the intensity of HER2 T701 residue.  

 

4.8 Quantitative phospho-proteomic analysis of HER2 induced changes 
 

To determine the signalling pathways activated upon HER2 induction at all time points (from 0 

to 7 hours) in the neoplastic transformation, we interrogated our dataset of 1004 differentially 

phosphorylated peptides using DAVID bioinformatics. We found at least 13 terms significantly 

enriched (Benjamini corrected p-value of below 0.05). These included enrichment for ErbB 

(HER) signalling pathway, mTOR signalling pathway, endometrial cancer, and MAPK signalling 

pathway amongst others (Figure 4.10A). To check which components of the HER signalling 

pathway are enriched, a schematic of the canonical KEGG pathway is shown in figure 4.10B. 

The red stars represent the proteins either activated or depleted in our system upon HER2 

over expression at all time points. The data shows the homodimerisation between HER1-HER1 

and HER2-HER2 partners, but also the heterodimerisation between HER1-HER2 family 

members. Interestingly, HER3 and HER4 remain inactive. A novel observation exhibits the 

neuregulin (NRG4) ligand itself is being activated. The predominant pathway that showed 

phosphorylation events was the MAPK signalling pathway, which enriched for SHC, SOS, RAF, 

ERK, and MYC.  However, some proteins of other pathways were also enriched, including FAK, 

PAK, and the activation of AKT and p21, indicating HER2 is able to induce phosphorylation 

changes through many distinct pathways. These changes were only exhibited in the HER2 

transduced cells as none of these changes were significant in the GFP-transduced MCF10A cells 

(Figure 4.10B).   

Furthermore, to understand the biological significance of these results, the same phospho-

peptides were subjected to ontology analysis (Figure 4.10C). Phospho-peptides associated with 

cell-cell adhesion were enriched similarly to the gene ontology (GO) terms we determined for 

each time point, indicating that this cellular process is very sensitive to alterations in the HER 
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signalling. The analysis also revealed the enrichment of a number of other biological processes 

GO terms associated with chromatin organisation, cell projection organisation, cell ageing, and 

regulation of signal transduction pathways amongst other terms.  Lastly, the only disease 

significantly enriched was breast cancer.  
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Figure 4.10: Signalling and biological function analysis of the early immediate changes in 

transformation. (A) Signalling pathway analysis using the DAVID KEGG PATHWAY tools of the 
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differentially phosphorylated events at all time points upon the HER2 protein induction is shown. (B) 

Selection of the canonical ErbB signalling pathway, shown the changes in our system indicated by the 

red stars. (C) Gene ontology analysis of the enrichment biological processes. 

4.9 Time dependent changes upon HER2 over expression 
 

To gain a better understanding of HER2 regulated time-dependent changes, we selected only 

those phospho-peptides that are changing in the 0.5 hour time point and then continuously 

maintained until the final 7 hour time point. We first applied a FDR corrected p-value of at 

least < 0.05 to focus on phospho-peptides that showed statistically significant differential 

regulation (up or down regulation) compared to DOX -ve cells. We found that by applying such 

a stringent threshold it would likely represent fewer but genuine phosphorylation events, thus 

overall only 57 phosphopeptides were differentially regulated, of which 32 phospho-peptides 

were marked as being down regulated and 25 hyper phosphorylated or up regulated. Some of 

the significant down regulated phospho-peptides included DNA methyltransferase (DNMT1 

S387), AKT2 [T451], and ELF4 [S186]. One of the hyper phosphorylated peptides was LAP3 

[R440], which is involved in the turnover of intracellular proteins, but the specific function for 

this phospho-site is not yet known and it has not been associated with breast lesions or HER2 

positive breast cancer.  
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Figure 4.11. Time dependent phosphorylation events. Heatmap displaying differentially regulated 

phosphorylation changes that are time-dependent (significant) that occur in all time points analysed 

upon HER2 over expression but none of these changes are significant in the control cells. [* FDR 

corrected p-value of < 0.05, **FDR corrected p-value of < 0.001, *** FDR corrected p-value of < 0.001]. 

4.10 Activation of chromatin regulators and transcription factors 
 

As we identified various biological processes enriched for proteins associated with 

chromosome organisation, nuclear chromosome segregation, sister chromatid segregation and 

other processes related chromatin, we wanted to assess if there were any transcription factors 

or regulators of chromatin in our dataset that have a molecular effect on transcription of 

genes that are significantly changing upon HER2 over expression that do not alter significantly 

in the GFP transduced cells. We identified 29 phospho-peptides that satisfy those conditions 

by checking their molecular function on PhosphoSitePlus. The alterations included the 

activation of NFkB, JUN, SIRT1, and SOX13 amongst other changes (Figure 4.11). It is 

interesting to note that the majority (72%) of these changes affecting the transcription 

factors/chromatin regulators incidentally occur at the later time points of 4 hours and 7 hours 

and the remaining 28% at 0.5 hours. This is in contrast to the activation of for example, the 

HER signalling pathway, in which the majority (70%) of the proteins become active at either 0.5 

or 4 hours’ time points. These changes were not significant in the GFP transduced cells.  
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Figure 4.12: Identification of transcription factors and chromatin regulators. A list of transcription 

factors and chromatin regulators becoming differentially regulated upon HER2 expression in at least one 

time point is shown. [* FDR corrected p-value of < 0.05, **FDR corrected p-value of < 0.001, *** FDR 

corrected p-value of < 0.001].  

 

Many proteins of the HER signalling pathway and others we have identified here are known to 

directly impact transcription factors, which can ultimately alter chromatin architecture (i.e. its 

accessibility or inaccessibility (255, 256)). Therefore, it would be extremely valuable to 
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understand the association between HER2 induced signalling changes and its effects on 

chromatin organisation, which ultimately plays an important role in transcription. To achieve 

this, we have performed ATAC-seq (Assay for Transposase-Accessible Chromatin using 

sequencing) analysis to interrogate the architectural chromatin alterations upon HER2 over 

expression and during the early stages of cellular transformation. Indeed, we have already 

shown that the components of the HER/MAPK signalling pathway are activated rapidly at 0.5 

and 4 hours’ time points, but the various chromatin regulators become activated at the later 

time points (which can impact chromatin organisation), indicating a series of events in a time-

dependent manner that can ultimately alter chromatin state and contribute to transformation. 

Therefore, performing ATAC-seq alongside our phospho-proteomic data set will help us dissect 

the mechanism(s) by which HER2 induces transformation in an experimental setting and help 

understand the contribution of signalling and chromatin structural changes to transformation 

(Figure 4.12).  
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Figure 4.13: Potential mechanism of HER2 induced transformation in MCF10A cells. The phenotypic 

changes such as morphological alterations, high invasion potential, and anchorage-independent growth 

of HER2 over expressing MCF10A cells will most likely accompany changes at the molecular level. Here, 

we hypothesise that the signalling changes induced by HER2 over expression will result in gross 

chromatin organisational changes. Those changes may include accessible regions of the chromatin at 

where various proto-oncogene reside (potentially activating them) and inaccessible regions of 

chromatin may be enriched where tumour suppressor genes reside (potentially inactivating them), 

contributing the transformative phenotypes we have observed with various functional assays 

performed. 
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4.11 Discussion 
 

In this investigation, we have carried out an in-depth characterisation of the phospho-

proteome of early-immediate signalling changes in the process of cellular transformation. This 

study provides a detailed picture of the downstream consequences (at the phospho-peptide 

level), of neoplastic transformation induced by the activation of a proto-oncogene. The 

phospho-proteomic changes in MCF10A cells upon HER2 protein induction and neoplastic 

transformation of our dataset is in contrast with the other studies that have examined the 

effects of HER2 activation in transformed cells. This is because those systems study already 

transformed cells, or examine the effects of mutations at long time points, when presumably 

other genetic and/or epigenetic aberrations have taken place. To achieve the aim of dissecting 

signalling changes at the very outset of transformation and HER2 expression, our HER2 

inducible MCF10A system provides obvious advantages. The low levels of HER2 activation at 

early time points may closely mimic, to a partial extent, the early signalling changes occurring 

in HER2 positive breast cancer patients. The signalling changes at global scale of low level HER2 

induction has not been performed to date. 

We have previously shown by western blotting that HER2 protein levels increase in a time-

dependent manner by the addition of 1µg/ml of doxycycline, and that the protein levels fully 

saturate after 12 hours in doxycycline containing media. However, our phospho-proteomic 

analysis was performed at the final time point of 7 hours, by which the HER2 expression would 

not be fully induced. Therefore, our phospho-proteomic screen is constrained to the acute 

effects of HER2 activation, since HER2 is not fully expressed; as a result, we have not measured 

the signalling activity of a fully induced HER2 protein. 

Furthermore, MCF10A cells require the addition of ligands to survive, as they induce signalling 

to allow the cells to divide and proliferate. Our simple model requires the exogenous addition 

of a single ligand, which is the epidermal growth factor (EGF). This causes the 



122 
 

heterodimerisation between HER1-HER2 or homodimerisation between HER1-HER1, and the 

non-ligand independent homodimerisation between HER2-HER2 receptors. The deprivation of 

additional available ligands in our model results in lack of dimerisation between the other 

HER2 binding partners and family members such as HER3 and HER4. This system is therefore 

restricted in characterising the signalling changes upon just three combinations of 

dimerisation. However, in mammalian cells, 12 different ligands have been identified that can 

induce signalling which would not be reproduced by this system, suggesting the lack of 

complexity in this model to recapitulate the phosphorylation events occurring in HER2 positive 

breast cancer patients. 

Moreover, despite the ectopic over expression of HER2 in cells at early time points, we 

identified less than 2% of phosphotyrosine peptides even though a large number of tyrosine 

kinases are present in the genome and it is known that tyrosine phosphorylation occurs earlier 

on compared to phoshotheronine and phosphoserine. This may be attributed to the technical 

aspect of the experimental setting, such as the use of titanium dioxide (TiO₂), which is known 

to bind to tyrosine phosphorylations less favourably compared to serine and threonine 

modifications, which may explain the lower enrichment of phosphotyrosines (257). There are 

several known biological reasons for the relatively low phosphotyrosine sites identified. Firstly, 

phosphotyrosines become activated only during specific circumstances (258). Secondly, 

phosphotyrosines have a short half-life, due to high levels of activity of phosphotyrosine 

phosphatases or PTPs, unless the phosphotyrosines are protected by the PTP and SH2 domains 

(259). Lastly, since the number of phosphopeptides observed in our system is not high, this 

may correlate to the fewer phosphotyrosines identified. This is because it is known that 

tyrosine phosphorylation occurs on proteins with high abundance. Nevertheless, it appears 

that there is an inherent bias due the method employed for identifying fewer 

phosphotyrosines compared to threonine and serine modifications, but is difficult to dissect if 

that is due to a biological effect, which might be vital or a technical caveat. If technical, then it 
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means that many important phosphopeptides were not identified that may be critical for the 

process of transformation (257). However, since the focus of our study was not only to identify 

phosphotyrosines, but also serine and threonine phosphorylations, the relatively low 

enrichment of tyrosine phosphorylations did not pose a major concern.  
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Chapter 5 
 

Assessing global chromatin accessibility alterations in 

HER2 induced transformation 
 

5.1 Introduction 
 

The opening of chromatin that is accessible for binding by transcription factors is correlated 

with biological activity at a specific genomic region (133). The phenotypic changes induced 

upon HER2 over expression in our model during cellular transformation are likely to be driven 

by alterations in the gene expression, which are themselves governed by the accessibility and 

inaccessibility of chromatin architecture. There are reports that have documented the 

chromatin landscape differences between normal and transformed cells, and have begun to 

define the chromatin state of cancer cell lines (132, 136).  However, the specific changes in 

chromatin state driving the transition from normal to transformed cells are still remaining to 

be explored. More specifically, the over expression of a cell surface receptor and the ensuing 

activation of a plethora of signalling networks and its effects on chromatin landscape is not yet 

elucidated. Here, we attempt to understand the impact of signalling events on the chromatin 

state, and how that contributes to cellular transformation.  
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5.2 ATAC-seq library preparation – attacking the chromatin 
 

To probe for DNA accessibility with a sensitive and fast alternative to other methods such as 

DNase-seq or Mnase-seq, we employed ATAC-seq with next generation sequencing. This 

method uses a hyperactive Tn5 transposase enzyme that inserts sequencing adapters to 

random DNA sequences, but only in accessible regions of the chromatin (260). In an attempt to 

be partially physiologically relevant to the in vivo microenvironment, we prepared DNA 

libraries for ATAC-seq from 50,000 cells from acini grown in 3D cell cultures in contrast to cells 

growing in 2D cell culture. However, the sensitivity of library preparation for ATAC seq from 

acini recovered from 3D cell culture proved challenging initially, because of the difficulty in 

isolating cells that are homogenous population (intact and free from any debris) and also that 

they are the correct number, as the ratio of cell number to transposase enzyme is critical for 

success library preparation.  

50,000 cells were thus recovered from 3D cell culture and libraries prepared as per protocol 

(see 2.13). DNA library profiles were analysed by a bio-analyser, and a representative profile is 

shown in figure 5.1A. At the beginning, it appeared that we were transposing fewer than 

50,000 cells despite counting with a haemocytometer twice and using the average of those 

values, as the fragments appears to be “over-transposed” with a preponderance of shorter 

fragments lacking the periodicity as is generally expected in ATAC-seq libraries. To overcome 

this, we switched to counting the cells with Luna automated cell counter and performed the 

library preparation. The library profile was then as expected for ATAC-seq, and the rest of the 

libraries were prepared in the same manner (Figure 5.1B).  
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Figure 5.1: ATAC-seq library profiles. (A) Library profile for incorrect number of cells, which has been 

over-transposed. (B)  The correct library profile, with periodicity of Tn5 cutting chromatin at different 

fragment lengths.  

5.3 Quality metrics and validation 
 

To identify genome-wide changes in the chromatin accessibility during cellular transformation, 

we analysed 6 different time points. These were 0 hour, 1 hour, 4 hours, 7 hours, 24 hours, 

and 48 hours in two biological replicates, encompassing early and late time points upon HER2 

induction (DOX +ve cells) and their control counterparts, DOX -ve cells. Here, we will confine 
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our analysis to the early time points of transformation only, taking into consideration just the 

first three time points. These are 0 hours DOX -ve, 1 hour DOX +ve, and 4 hours DOX +ve time 

points. For these sample, we obtained on average 57.94% mappability to the human genome.  

We first assessed the fragment length distribution which has 124 base pairs (bp) adapter 

sequence removed, a representative plot is shown in figure 5.2A. This shows more than half of 

the reads tend to be shorter than 150 bp, which are sub-nucleosomal and approximately half 

of the reads appear to be larger than 150 bp. This as it has been previously shown, is an 

expected profile of ATAC-seq library (260). 

To ensure that the biological replicates are reproducible we clustered the samples based on 

Pearson correlation coefficient. The correlation coefficient indicates how strong the 

relationship between two samples is, which consists of numbers from -1 to 1 (where 1 

indicates perfect correlation and -1 indicates perfect anti-correlation). This method is used to 

determine if different samples can be separated. For example, generally it would be expected 

that samples from two biological replicates of the same condition would have greater 

similarity between them, compared to samples from two different conditions.  In our case, it 

appears that the biological replicates are more similar to each other than samples collected at 

different times within the same condition (Figure 5.2B). The PCA plot shows that DOX +ve 

sample cluster together and broadly there is a clear separation between the DOX -ve and DOX 

+ve samples (Figure 5.2C).  
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Figure 5.2: Fragment size and evaluation of reproducibility. (A) Insert size as determined by high 

throughput sequencing, adapter sequences are an additional ~124 base pairs. (B) Correlation heatmap 

using peak caller score data across all the time points in biological replicates. (C) PCA plot showing the 

clustering between DOX -ve and DOX +ve samples and their biological replicates. 

To visualise the enrichment ATAC-seq signal over specific target regions, we plotted heatmaps 

of the signal coverage between the two biological replicates. The y-axis of the heatmap shows 

the regions of accessible chromatin i.e. peaks. The x-axis shows the read counts were 

“centered” on the center of each peak region, which were extended to include 1000 bp of 

upstream of each peak start and 1000 bp downstream of each peak end. This simple peak 

calling with default parameters generated consistent regions between the biological replicates 

(Figure 5.3).  
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Figure 5.3: ATAC-seq quality metrics. Heatmaps showing normalised read coverage for ATAC-seq 

enrichment signal ± 1000 base pairs from the center of the peak for the biological replicates. The scale 

shows highly accessible regions in blue and inaccessible regions in red, based on the fold-change value 
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from each peak. Each row represents one peak. The heatmaps were created using a matrix, which 

requires BigWig files and a BED file. The BigWig file is an indexed, compressed and binary file of the 

genome-wide signal data for various types of calculations. The BED file is a text file format, containing 

the chromosome name, the chromosome start position and end position. Therefore, the matrix used to 

create the heatmaps are all ordered in the same way for the different samples. They rows are ordered 

by the chromosome name, and the start position.   

5.4 Overview of chromatin accessibility landscape 
 

Next, we intersected the two biological replicates and measured the total number of peaks 

(open chromatin regions) in each time point using default MACS2 settings and without 

applying filters or any statistical power. In total we identified dynamic DNA access (71,699 

peaks) at the 0 hour DOX -ve time point, 73,457 peaks in the 1 hour DOX +ve time point, and 

74,375 peaks in the 4 hours DOX +ve point. The majority of the peaks were identified across 

the samples, representing a total of 61,162 shared peaks. However, a number of them were 

also unique to each point (Figure 5.4). It appears that chromatin accessibility between the 

three samples is approximately the same, potentially reflecting that HER2 overexpression does 

not cause large scale changes in chromatin accessibility. 
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Figure 5.4: Quantification of accessible chromatin. Venn diagram shows the peaks that overlap and 

those that are unique to the specific time point. All the samples were downsampled (normalised) to 25 

million reads. Peaks were called by MACS2 and the different number of peaks were counted by 

samtools.  

 The data revealed categories of peaks that are either unique to, or are overlapping between 

the different time points. For instance, a peak associated with SHNG5 is overlapping between 

all the time points and is enriched in all the biological replicates, whereas a peaks associated 

with FAM19A2 and KRT17 are only unique to the time points with HER2 expression, in 1 and 4 

hours DOX +ve time points, with background noise peaks for the DOX -ve replicates (Figure 

5.5). 
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Figure 5.5: Visualising the peaks and associated genes. Integrative Genomics Viewer (IGV) for ATAC-seq 

signal for the indicated genes across the biological replicates and time points. 

To visualise the significant and differential chromatin accessible peaks between the different 

time points and the biological replicates, we generated a heatmap with all the regions that are 

changing (Figure 5.6A). These plots were made after statistically significant peaks were 

selected by setting the threshold with an FDR corrected p-value of 9 and fold-change of at 

least 7. There is a high degree of similarity between the biological replicates and there is a 

distinct pattern in the accessible chromatin from 0h time point to 1 hour time point. The 

heatmap also shows the clustering between the DOX -ve samples and the DOX +ve samples. To 

identify which data points are identified as being differentially chromatin accessible regions, 

we plotted an MA plot (log2 fold change vs. mean average) to visualise changes in chromatin 
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accessibility for all peaks. In total, we identified 22,296 differentially accessible changes (Figure 

5.6B). The MA plot takes into account all the changes between DOX -ve and DOX +ve samples 

at all the time points (0 hour, 1 hour, and 4 hours). Without taking into account the time-

specific changes, there appears to be a decrease in the global chromatin accessibility, since 

more of accessible regions have decrease intensities (< -0.5 fold change) (Figure 5.6B). 



135 
 



136 
 

 

Figure 5.6: Profiling of chromatin accessibility at early time points upon HER2 over expression. (A) 

Heatmap displaying relative chromatin accessibility. (B) Sites that have differentially accessibility are 

coloured in pink. The differentially accessible regions have an absolute log fold difference of at least 0.5. 
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5.5 Discussion 
 

We provide a non-comprehensive and simple initial quality metrics and visualisation of our 

ATAC-seq data for some of our samples. We performed some very basic tests to check if our 

dataset that has been aligned to human genome meet our expectations.  

A technical aspect of the this ATAC-seq experimental setting included the isolation of acini 

from a 3D matrix at 4°C using the cell recovery solution, to depolymerise the matrigel/collagen 

mixture. Although there is no direct evidence to suggest that such a recovery method would 

impact the chromatin dynamics, the cellular microenvironment between the physiological 

growth conditions at 37 °C and the conditions during the detachment of cells from the matrix 

are quite different. It has been previously shown that the phosphoproteome of cells recovered 

with the recovery solution has significant impact on the phosphoproteomic status of cells 

(261). Therefore, it is conceivable to think that the use of recovery solution may also have an 

effect on the chromatin landscape. 

Furthermore, we used DOX -ve cells as a parental control for ATAC-seq analysis, which does 

not have the addition of dox that is added to the DOX +ve cells for HER2 protein induction. It is 

worth bearing in mind that addition of dox may induce chromatin changes that are not 

associated with HER2 expression. However, there are reports of using dox as an inducing agent 

where a separate control for dox was not performed (262, 263), whereas others have included 

a dox control (264).  

Finally, there is ongoing comprehensive analysis of this dataset across all the time points to 

help understand the impact of HER2 induced transformation on the chromatin architecture, 

with a more specific aim of understanding the effect of HER2 signalling on DNA accessibility.  



138 
 

To achieve this we anticipate to address the following:  

1. It will be important to address whether HER2 overexpression creates a chromatin 

accessibility pattern early on after induction, a pattern that is maintained throughout 

the subsequent time points; or is it the case that differential chromatin regions (DCRs) 

are dynamic and time-dependent (i.e specific to time points). 

2. One way of exploring the implication of signalling on chromatin changes is to integrate 

the phosphoproteomic dataset with ATAC-seq data. Accessible chromatin have peaks 

at specific genomic regions and these can be used to identify motifs for transcription 

factor binding. Transcription factors found in the phosphoproteomic data that 

correspond to these genomic motifs could be targets for further investigation as they 

may be involved in regulating chromatin architecture at these regions.  

3. Since transcriptomic changes (chromatin changes) are very closely related to 

epigenetic changes, it would be useful to perform RNA-seq and DNA methylation 

analysis (or use available datasets) to identify chromatin accessibility in differentially 

methylated regions and to correlate the accessible peaks with gene expression by 

RNA-seq. This will give us a combined dataset that could be explored from different 

angles at high temporal resolution. In fact, our collaborators are performing single-cell 

RNA-seq experiments upon HER2 induction and during the transformation process 

with the aim of mapping the transcriptional process of HER2 induced transformation 

and the heterogeneity of the process. 

4. Since the morphological changes take place early upon HER2 induction in our model 

system, it would be interesting to see if the chromatin accessibility changes that occur 

in the early time points play a driving role in the morphological changes we observed, 

or whether these chromatin changes are independent, or facultative, of the process of 

transformation. 
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Chapter 6 
 

Investigating HER2 induced reprogramming associated 

heterogeneity 
 

6.1 Introduction 
 

Breast cancer can originate from different cells in the differentiation hierarchy, and can 

present different survival outcomes, mutational landscapes, and have distinct biological and 

clinical phenotypes (265-267); hence it can be categorised into several distinct subtypes based 

on the genetic and histopathological signatures. An example of this is the classification 

proposed by Perou et al. using microarrays (148), which has led to the formulation of five 

defined intrinsic subtypes, namely luminal A, luminal B, normal-like, HER2 enriched, and basal-

like. The newly diagnosed breast cancers can now be designated to one of these subtypes 

based on the gene expression patterns of the PAM50, which are the 50 informative genes 

(148). However, the model of somatic cells acquiring mutations sequentially may be overly 

simplistic, and the concept of breast cancer stem cells has gained significant attention recently 

(268). These are thought to reside within the basal compartment of the gland because they 

share gene expression profiles and cell surface with the basal cells (269). The heterogeneity in 

cancer incidence, patient prognosis and patient response to therapies can also be ascribed to 

committed cells in the mammary compartment acquiring a stem cell-like phenotype during 

breast tumourigenesis (270-272). 

Aberrant signalling events (273), induction of EMT transition (274), mutations in genes (275), 

and oncogene over expression (276) can induce cells to undergo tumour-reprogramming 

processes and enrich for markers known to be active in stem cells. The acquisition of the stem-

like phenotype is associated with higher transformational potential (277, 278), leading to more 

aggressive forms of cancers because of their ability to self-renew (279, 280). The reason for 
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this is that it allows stem cells to produce a large number of progeny cells, thus increasing the 

probability of cells to acquire further genetic and/or epigenetic aberrations. 

Our first observation was that in the in vitro transformation assays (measuring anchorage-

independent growth of cells) of HER2-induced MCF10A cells, only a small fraction of cells 

plated out of the total population were able to form colonies. This could have been caused by 

cell death that can occur when cells are placed in relatively harsh conditions in this assay. 

Nevertheless, we also considered that perhaps not all cells have the potential to form colonies, 

and that upon induction of HER2 overexpression, a subset of cells would acquire markers 

associated with breast stem cells, which would increase their ability to form colonies. We 

therefore investigated the “stemness” of MCF10A cells upon HER2 protein induction and its 

control counterparts and hypothesised that the sub-population of cells with enrichment of 

stem-like markers will exhibit a higher transformative potential compared to bulk population 

or those that have non-stem like markers. 

6.2 Identification of stem cell markers upon HER2 protein induction 
 

To investigate if HER2 protein over expression induces reprogramming-associated 

heterogeneity in early cellular transformation, we tested the expression of proteins associated 

with breast stem-like phenotype. As a starting reference into identifying possible stem cell 

proteins that may be differentially expressed in DOX +ve cells compared to DOX -ve cells, we 

explored existing literature and investigated the cell surface markers proposed in the 

mammary epithelial cell hierarchy (154), as well as markers associated with embryonic stem 

cells, and cancer stem cells. We induced HER2 over expression for 72 hours and used DOX -ve 

parental population as control. Firstly, we began by performing immunofluorescence analysis 

to check for the expression of stem markers such as SOX2 (SRY-Box 2) and KLF4 (kruppel-like 

factor 4), which are enriched in pluripotent stem-like cells, and the expression of MUC1 

(CD227), which is depleted in breast stem cells (154). We found that there was no difference in 
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the protein expression of SOX2 and KLF4 between DOX -ve and DOX +ve cells, with both cell 

types exhibiting homogenous and depleted levels of the cell surface proteins (Figure 6.1). 

Therefore, SOX2 and KLF4 were disqualified from our panel of markers for identifying the 

stemness of cells due the lack of differential expression between DOX -ve and DOX +ve cells. 

However, we observed heterogeneous expression of the MUC1 protein (Figure 6.1). MUC1 is a 

type I transmembrane, which is normally expressed at low levels in the luminal epithelial cells 

of the mammary gland, and its expression is low or negative in normal breast stem cells (154, 

281, 282). DOX -ve cells showed no variability in its protein expression as most cells were 

expressing similar levels of MUC1. On the other hand, DOX +ve cells (72 hours after induction 

of HER2) exhibited heterogeneous expression of MUC1, with some cells being negative for 

MUC1 expression or below the detection threshold of immunofluorescence analysis. 
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Figure 6.1: Investigating the acquisition of stem-like phenotypic features. DOX +ve and DOX -ve cells 

were grown for 3 days, fixed and subjected to staining by the indicated antibodies to stain for 

stem/progenitor cells using immunofluorescence assay. DAPI was used as a nuclear stain. Magnification: 

20X for SOX2 and KLF4 images and 40X for MUC1 images. Scale bars represent 50µm in MUC1 images 

and 100µm for KLF4 and SOX2 images. 

 

We moved on from using immunofluorescence analysis, which gives us a static image of 

protein expression, to flow cytometry to quantitatively measure the protein abundance. We 
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further investigated the protein expression of CD44 (cluster of differentiation 44) and CD49F 

(α6-Integrin subunit), both of which are highly expressed in mammary stem cells (283). 

Mammary cancer stem cells have been previously isolated by high expression of CD44 

alongside CD24 -ve and Lin -ve markers (155). The co-expression of CD49F +ve with EpCAM -ve 

(epithelial cellular adhesion molecule) expression have also been used as prognostic markers 

for breast cancer (284). As with the previous experiment, HER2 expression was maintained for 

72 hours, and flow cytometry analysis for the two proteins performed. Interestingly, flow 

cytometry analysis confirmed the high expression of CD44 and CD49F in both DOX -ve and DOX 

+ve cells in two independent biological replicates (Figure 6.2). For this reason, we also 

disqualified these markers of heterogeneity from our system, despite them being detected at 

high levels in both cell types as is seen in breast stem cells. 
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Figure 6.2: Determining the expression of stem markers. Flow cytometric analysis of single stains of 

CD44 and CD49F in in two independent biological replicates of DOX -ve and DOX +ve cells. The gating 

was based on the negative control. 

6.3 Characterising HER2 induced MCF10A cells for stemness 
 

We continued our investigation to identify stem markers that may be heterogeneously 

expressed upon HER2-induced transformation, and have differential expression between DOX 

+ve and DOX -ve cells. It has been shown that decreased expression of MUC1 and the EpCAM 

is associated with the most primitive cells in the mammary epithelial stem cell hierarchy (154). 
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We confirmed our previous observation by flow cytometry that MUC1 has decreased 

expression in DOX +ve cells compared to DOX -ve cells (Figure 6.3). 
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Figure 6.3: Relative abundance of MUC1 protein expression. Flow cytometry analysis of single stains of 

MUC1 in two independent biological replicates of DOX -ve and DOX +ve cells. The negative gating was 

based on unstained cells. 

 

Additionally, we found that EpCAM has decreased expression upon HER2 over expression, 

resulting in a subpopulation of cells exhibiting a stem-like phenotype (“stemness”). We verified 

the expression of MUC1 and EpCAM in two independent biological replicates and found 

variable percentage of MUC1 -ve and EpCAM -ve cells in both DOX +ve and DOX -ve cells, with 

consistently higher enrichment of MUC1 -ve and EpCAM -ve population in the DOX +ve cells 

relative to DOX -ve cells. The variability in MUC1 and EpCAM expression may show that 
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acquisition of the stem-like phenotype is a stochastic process or is a result of technical aspects 

of the experiment (Figures 6.3 and 6.4).  



151 
 

 



152 
 

Figure 6.4: Relative abundance of EpCAM protein expression. Flow cytometric analysis of single stains 

of EpCAM in two independent biological replicates of DOX -ve and DOX +ve cells. The gating strategy 

was based on unstained cells. 

To find out if the identified stem markers are co-expressed and co-localised as a result of HER2 

over expression we carried out flow cytometry for the expression of MUC1, EpCAM, and added 

CD24 (cluster of differentiation 24), which is absent in breast cancer stem cells (285). The lack 

of CD24 expression alongside CD44 +ve expression in breast cells have been associated with 

enhanced tumourigenicity, and the conclusions from several investigations have shown a role 

in cancer initiation and metastasis (285-287). We identified that in the DOX +ve cells there 

were approximately 60% of cells expressing HER2 protein. Of these, we found 19.4% MUC1 -ve 

cells, of which 26.2% were EpCAM -ve cells. All of the MUC1 -ve/EpCAM -ve cells were also 

CD24 -ve (Figure 6.5). This was in contrast to the DOX -ve cells, which had depleted levels of 

stem markers. We identified 5.45% MUC1 -ve cells, of which 2.93% were EpCAM -ve. All of the 

MUC1 -ve/EpCAM -ve cells were also CD24 -ve (Figure 6.5). This suggests that in vitro 

transformation of MCF10A cells upon HER2 protein over expression favours/selects a 

subpopulation of cells enriched for cells with proteins expressed in stem cells based on the 

MUC1/EpCAM/CD24 -ve phenotype. 
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Figure 6.5: Outline of flow cytometry strategy of identifying the MUC1/EpCAM/CD24 co-expression in 

DOX +ve and DOX -ve cells. HER2 was induced for 72 hours and cells were treated with the combination 
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of antibodies as labelled. Cells were gated on HER2 expressing cells, which were further gated for the 

absence of MUC1, and thereafter for the absence of EpCAM and CD24. The negative gates were set on 

relative fluorescence minus one (FMO) controls whereby at least 99% of cells were selected. 

We further wanted to know if variable HER2 expression (HER2 biomarker heterogeneity) 

induces differential expression levels of stem markers. At this point, we hypothesised that 

increased HER2 expression, more specifically the highest HER2 expressing cells in this 

experiment, would drive a more rapid acquisition of the stem state. We therefore selected the 

top 20% of HER2 expressing cells, and surprisingly, the stem-like markers were less enriched 

compared to the bulk HER2 positive population (6.6). This is because the enrichment of the 

stemness MUC1 -ve (11.6%) and EpCAM -ve (16.1%) had decreased compared to the bulk 

HER2 over expressing cells. Next, we selected the lowest 20% of HER2 expressing cells, and 

unexpectedly, we found that the stem cell markers have enriched in this population (Figure 

6.6). There was an enrichment of stem markers, as MUC1 -ve (24.4%) and EpCAM -ve (30.1%) 

expression was higher compared to the high HER2 expressing cells, but also higher than the 

bulk HER2 positive cells (Figure 6.6).  
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Figure 6.6: Identification of stemness based on HER2 biomarker heterogeneity. Of the DOX +ve cells, 

cells were gated based on 20% highest HER2 expression and 20% lowest HER2 expression. Cells were 

thereafter gated on the absence of MUC1, followed by the absence of EpCAM and CD24. The negative 

gates were set on relative fluorescence minus one (FMO) controls whereby at least 99% of cells were 

selected.  

To enquire the stem-like phenotype of the medium HER2 expressing cells, we selected the 

middle 30% of HER2 expressing cells juxtaposed between the high and low HER2 positive cells. 

The resulting marker enrichment was the intermediate of the high HER2 and low HER2 

expressing cells, with MUC1 -ve (23.4%) and EpCAM -ve (28.8%) (Figure 6.7). 
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Figure 6.7: Enrichment of stem markers based on “intermediate” expression of HER2. ~About 30% of 

HER2 medium expressing cells were first gated and thereafter on MUC1 –ve cells, which were further 

gated for EpCAM -ve and CD24 -ve cells. The negative gates were set on relative fluorescence minus one 

(FMO) controls whereby at least 99% of cells were selected. 

To find out the percentage of stem cell markers based on the co-expression of 

MUC1/EpCAM/CD24 -ve proteins in the different subtypes of cells present in the total 

population, we plotted the enrichment of stem cell markers as a percentage value for simple 

visualisation. We see as previously shown that the low HER2 expressing cells have the most 

pronounced stem-like phenotype, followed by cells expressing “medium” HER2 expression.  

 

Figure 6.8: Determining enrichment of stem cell markers in subpopulations of HER2 positive cells. Cells 

were analysed by flow cytometry and HER2 positive cells were divided into three subpopulations of low, 

medium and higher HER2 expression as described above. The enrichment of stem markers is shown as a 

proportion of the total number of cells exhibiting MUC1 -ve, EpCAM -ve, and CD24 -ve phenotype. 
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6.4 Cells enriched for breast stem cell markers are associated with 

increased colony formation in vitro 
 

As different HER2 expression levels correlate with distinct stem cell markers in our model 

based on the three proteins (MUC1, EpCAM, and CD24), where the expression of stem markers 

is especially enriched in the low HER2 expressing cells, we investigated the differences in the 

transformational potential between cells based on HER2 biomarker heterogeneity. The 

expression of HER2 was maintained for 72 hours in the DOX +ve cells and then cells were flow 

sorted based on the expression of HER2 protein. We sorted cells into three groups: the highest 

~20% of HER2 expressing cells, the lowest ~20% of HER2 expressing cells, and the intermediate 

~35% of cells, whilst using DOX -ve and DOX +ve cells as negative and positive controls (Figure 

6.9A). To assess the ability to form colonies of the three sorted cell populations and associated 

controls, we performed soft agar colony formation assay by plating 5000 cells from each group 

in each well containing ultra-pure agarose. Interestingly, we found that the low HER2 

expressing cells had a greater anchorage-independent growth capacity relative to the high or 

medium HER2 protein expressing cells, as they grew more colonies in the semi-solid media 

(Figure 6.9B). 
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Figure 6.9. Anchorage-independent growth of cells based on stem-like phenotype. (A) HER2 expression 

was induced for 3 days and cells were sorted based on HER2 expression into low, medium and high 

HER2 expression. (A) 5000 cells from each condition were plated into ultra-pure agarose to investigate 

their transformational potential over 21 days. N=2. 

In the above experiment, we can see that DOX +ve cells have an enhanced colony formation 

ability compared to the low HER2 expressing cells or the others. However, the DOX +ve and 

DOX -ve cells were not flow sorted again in this experiment. We only FACS separated the DOX 

+ve cells into low, medium and high HER2 expressing cells. However, to make appropriate 

comparisons between the different types of cells, all of them must be subjected to the same 

procedures. To satisfy this, we FACS selected the cells into low, medium and high HER2 

expressing cells, but also sorted the DOX +ve and DOX -ve cells. As previously, 5000 cells were 

then plated onto ultra-pure agarose to measure the anchorage-independency. Similar results 

to the previous experiments were observed. This is because the DOX +ve cells formed the 

highest number of colonies followed by the cells expressing low levels of HER2 (Figure 6.10).    
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Figure 6.10: Measuring transformational potential of cells based on stem-like phenotype. As above, 

HER2 expression was induced for 3 days and cells were separated based on HER2 expression and then 

subjected to soft agar colony formation assay for 21 days. This experiment was performed in 3 technical 

replicates. 

6.5 Investigating oncogene-induced senescence 
 

Our results thus far indicate that high HER2 expressing cells form fewer colonies relative to the 

low and medium HER2 expressing cells. To understand why this was the case, we hypothesised 

that the cells with high HER2 expression undergo senescence, due to a phenomenon known as 

oncogene-induced senescence or OIS. Indeed, OIS has been previously observed with other 

oncogenes, such as Ras (288, 289). The high expression of HER2 is known to drive 

tumourigenesis, but paradoxically can also induce senescence (290). It has been found to 

induce senescence by upregulating various tumour suppressor proteins such as p16 (291). OIS 

is known to upregulate other tumour suppressor proteins such as p53, p27, and p21 (292). To 

test if high HER2 over expression leads to senescence, we carried out western blot analysis on 

proteins known to be upregulated in senescence. We investigated the senescence protein 
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expression in DOX -ve, low HER2, medium HER2, high HER2 expressing and DOX +ve cells. As 

positive controls we used DLD1 (colorectal cell line), expressing p53 and p27 and HCT166 cell 

line (human colon cancer cell line) expressing p53, p27, and p21. Another positive control was 

Naïve hESC (naïve human embryonic stem cells), which are also positive for p53, and NALM6 

(acute lymphoblastic leukaemia (ALL) cell line) which is positive for p27 and p53. From this 

preliminary analysis, we concluded that there was no difference in the expression of proteins 

implicated in OIS. Therefore, high HER2 expressing cells do not induce OIS and so another 

mechanism may be responsible for the low colony growth in agarose. However, the loading 

controls (GAPDH and tubulin) are not equal as the high HER2 expressing have less protein 

loaded compared to other cell types. This analysis requires further attention to ensure 

appropriate conclusions are made (Figure 6.11). 
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Figure 6.11: Investigating oncogene-induced senescence. (A and B) Western blot and densitometry 

analysis of the indicated proteins known to have higher expression in cells that have undergone OIS. 
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Protein lysates were prepared from cells sorted based on HER2 expression as previously (Figure 4.9). 

HER2 was induced in cells for 3 days (DOX +ve cells) and then FACS separated based on HER2 expression 

into three different subtype (low, medium, and high HER2 expressing cells). Cells were grown in culture 

and protein lysates were prepared. DOX -ve and DOX +ve cells were used as controls. DLD1, HCT116, 

Naïve hESC, and NALM6 protein lysates were used as positive controls (n=2).  

As a way to explain why low HER2 expressing cells have a higher anchorage-independent 

growth compared to cells with medium or high HER2 expression, we hypothesised that 

medium and high HER2 expressing cells may have lower signalling activity of the MAPK 

signalling network relative to low HER2 expressing cells, which could be contributing to their 

weakened ability to form colonies. This could be caused by negative feedback loops acting to 

limit MAPK signalling in cells expressing very high levels of HER2 protein. To determine if there 

are differences in signalling between cells expressing varying levels of HER2, we as previously 

induced HER2 protein expression for 72 hours. Cells were serum starved for 24 hours (whilst 

maintaining HER2 expression). Cells were then stimulated for 5 minutes with full growth media 

to activate the signalling and protein lysates were prepared for western blot analysis. The 

preliminary western blot shows that there is no difference in the activation of ERK activity as 

the expression of phospho-ERK remained the same across the different populations. It appears 

that high HER2 expressing cells have lower ERK activation, but that is likely due to the lower 

protein loading as indicated by the lower total-ERK, tubulin and GAPDH protein expression 

(Figure 6.12). However, we consistently observed low levels of protein abundance in the high 

HER2 expressing cells based on the loading controls, despite multiple repeats of protein 

quantifications. This possibly indicates to a biological effect in high HER2 expressing cells, 

potentially during FACS selection, when cells are under stress, with high HER2 cells being more 

affected than other subpopulation of cells.    
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Figure 6.12: ERK phosphorylation in cells expressing differential levels of HER2 protein. (A and B) 

Western blot and densitometry analysis for HER2, phosphorylated-ERK, total-ERK, loading controls 

(GAPDH and tubulin) in cells expressing varying levels of HER2 protein (n=1).  



167 
 

One of the earliest and consistent phenotypic alterations observed upon HER2 induction in 

MCF10A cells in this system is the aberrant morphological changes in 3D cell culture. To assess 

this phenotype we cultured the DOX -ve, DOX +ve low HER2, medium HER2, and high HER2 

expressing cells in 3D culture for 3 days. We found that all cell populations were characterised 

by flattened morphology with protrusions, expect for DOX -ve cells that formed normal round 

conformation as previously shown. However, the extent of protrusions was variable between 

the cell types. The DOX +ve cells had the most pronounced invasive morphology, followed by 

the low HER2 expressing cells. To a large extent, the medium and high HER2 expressing cells 

also form aberrant structures, but there were also some normal, round acini as observed in the 

DOX -ve cells, which were absent in the DOX +ve and low HER2 expressing cells (6.13).  
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Figure 6.13: Morphology observed for the labelled cell populations grown in matrigel/collagen. 

Representative fluorescence images of cells cultured in overlay 3D cell culture method for 3 days. Blue: 

nuclear staining with DAPI. Red: Actin staining by phalloidin dye. Magnification: 10X. n=1. 

6.6 Discussion  
 

Our results indicate that in vitro transformation of MCF10A cells as a result of HER2 protein 

over expression results in generation of markers present in stem cells. We find that there is an 

emergence of a subset of cells that have enrichment for markers of stem cells, which may have 

a higher transformational potential. Interestingly, these subpopulation of stem cells marked by 

the decreased levels of MUC1, EpCAM, and CD24 are counterintuitively enriched for low HER2 

protein abundance compared to cells expressing high HER2 protein levels.  
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Since independent clones of HER2 transduced cells resulted in different percentages of cells 

giving rise to the stem-like subpopulation may suggest that the emergence of the stem-like 

phenotype in this model is a stochastic transition, indicating that the behaviours of the cells 

may partly be due the over expression of HER2 but also other unknown intrinsic and/or 

extrinsic factors. This results points to heterogeneous cancer stem cell population as distinct 

subset of cells acquires the capability to present the stem cell phenotype. 

In this system, we have observed that the enrichment for stem-like cells arises three days after 

HER2 protein induction. However, this is an arbitrary time-point we had chosen and have 

continued our subsequent experiments at the three day time point, and we do not know 

precisely when exactly these stem-like cells are emerging. It may be that it arises much earlier 

than the three day time point such as at 24 hours or 48 hours and those time points may be 

associated with a more expanded stem-like phenotype. In that case, we would have missed 

the most critical stage of the transition to stem-like phenotype. Our work so far does not show 

the plasticity of these cells to reprogram back to dedifferentiated cells and cannot yet 

ascertain if these cells expand the stem cell population, or if the transition is static or is 

decreased as the HER2 over expression is maintained for longer. 

As for the high HER2 expressing cells that grow fewer colonies in the ultra-pure agarose, we 

reject our hypothesis based on high HER2 cells inducing OIS. It is conceivable think that 

because there is lack of growth in high HER2 expressing cells, they might be undergoing 

apoptosis as high HER2 expressing cells in isolation may be toxic. It would be interesting to 

study the expression of markers associated with apoptosis such as caspase and PARP. 

Furthermore, it has been shown that non-malignant cells upregulates IRF6 (Interferon 

Regulatory Factor 6) (293), which leads to the blockage of anoikis. Since low HER2 expressing 

cells would -at first thought- be considered closer to normal cells than high HER2 expressing 
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cells, it could be that the low HER2 expressing cells are blocking cell death by the upregulation 

of IRF6 and eventually growing more colonies. However, this remains to be studied. 

Furthermore, we have not yet elucidated the reason why the DOX +ve cells have an increased 

anchorage-independent growth compared to low HER2 expressing cells, despite having 

restricted stem-like phenotype. It may be that when there is a heterogeneous cell population 

(i.e. low, medium, high HER2 expressing cells), they conform to a more aggressive behaviour as 

compared to a more homogeneous cell population (low HER2 expressing cells only). The EMT 

transition between low, med, high HER2 expressing cells will also need to be compared to DOX 

+ve cells, since it could be that the DOX +ve cells undergo EMT to a higher extent than low 

HER2 expressing cells, making them more transformative. Indeed, other characteristics of 

heterogeneity would also need to be studied to understand the true nature of aggressiveness 

between low HER2 cells and the bulk (DOX +ve) cells. It could be that the DOX +ve despite 

forming more colonies would be easily eliminated because it has lower percentage of stem 

cells, whereas the low HER2 expressing cells have fewer colonies, but because of higher 

number of stem cells, would be resistant to therapies. 
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Chapter 7 
 

Discussion 
 

7.1 MCF10A cells – controversial model for breast cancer progression 
 

The MCF10A human breast epithelial cell line provides an opportunity to investigate the 

initiation, development, and progression of breast cancer systematically. This cell line is 

arguably the most commonly used non-malignant breast cell model, as it exhibits 

characteristics of normal breast epithelium, such as dependency on growth factors for survival, 

lack of anchorage-independent growth and formation of acini in 3D cell culture (294, 295). 

These features render MCF10A cells a good model to study the effects of oncogene-induced 

transformation. However, despite not being transformed, the molecular features of MCF10A 

cells include the inactivation of p16 and p14ARF genes, which has allowed spontaneous 

immortalisation of these cells (294). The main objective of our system was to characterise the 

early events in transformation; however, several lines of evidence have shown that 

immortalisation is a prerequisite for transformation (296-298). Immortalisation of cells, which 

disrupts the physiological mechanisms regulating normal proliferation and cell growth, is a 

hallmark of cancer. To achieve the state of immortality, cells must gain additional genetic 

and/or epigenetic alterations, and since MCF10A cells are established to proliferate without 

limit in vitro (298) (by the inactivation of p16 and p14ARF), the initial phase of transformation 

has indeed already taken place before HER2 expression could be induced in our system.  

As a consequence, our model is limited in that it is not possible to characterise the events at 

the very onset of transformation. To overcome this challenge, an alternative model may be 

proposed. Transformation of primary human breast cells can be generated by using an 

inducible oncogene in 3D cell culture to be more physiologically relevant to the human 
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context, which will allow the most appropriate characterisation in vitro of the early events 

upon an oncogenic insult. Indeed, primary breast epithelial cells have been previously 

oncogenically transformed (299-301). However, the accompanying molecular changes using an 

inducible oncogene that has been implemented in breast cancer to transform primary breast 

cells are not yet elucidated.  

Nevertheless, it is recognised that HER2 over expression is not the only aberrant lesion in HER2 

positive breast cancer and other changes such as p53 mutations are observed alongside HER2 

over expression (91). However, p16 inactivation, as is the case in MCF10A cell line, is not an 

early event in HER2 positive breast cancer. This is because HER2 is over expressed in most 

cases of DCIS, but only about 20-30% of invasive ductal carcinomas (IDCs) exhibit over 

expression. These observations establish that HER2 over expression acts as an early event, or 

even as a first hit, which may be followed by a secondary hit – an invasion promoting hit – 

which impacts only a fraction of DCIS cases, and ultimately gives rise to IDCs. In the context of 

MCF10A cells, impaired HER2 expression cannot be the first hit as it is already established that 

MCF10A cell line’s first hit is the inactivation of p16 and p14 ARF locus. Thus, this cell line does 

not follow the canonical progression of breast cancer as is seen in HER2 positive breast cancer 

patients and, therefore, many of the associated molecular events occurring in our model 

system cannot fully recapitulate those observed in patients. 

7.2 Conditional oncogene expression – taking advantage of inducibility 
 

By applying a tightly controlled doxycycline-inducible gene expression model to MCF10A cell 

line, we have further contributed to the improvement of this system, which is commonly used 

to characterise the early carcinogenic alterations and to understand the luminal epithelial cell 

biology. The main advantage of this model lies in the feature that it is inducible, allowing for 

high resolution analysis at the earliest time-points upon HER2 over expression. In our model, 

we introduced the pINDUCER21 (inducible) vector into MCF10A cells, which allow examination 
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of early transformational changes at a high temporal resolution. However, a key caveat when 

transducing cells with an inducible vector is the heterogeneous expression levels of transgene 

within the cell population, due to differences in the position of viral integration (116). Yet, in 

our model system the differences in gene expression levels were not an issue as the 

heterogeneity recapitulates the HER2 positive breast cancer patients better, since HER2 

biomarker heterogeneity has been observed in clinical samples. Furthermore, this allows us to 

compare cells expressing high or low levels of HER2 protein with those cells that do not 

express the HER2 transgene at all, within the same genetic background.  

The pINDUCER21 vector tightly controls HER2 expression under the control of TRE promoter, 

but the GFP is driven by a weak EF1α promoter, which we used to flow-sort cells to obtain only 

those cells that have the vector successfully transduced. However, since the GFP driven 

promoter is weak, we FACS-selected only the 2.3% cells based on GFP expression at high purity 

(approximately 90%), despite the fact that many cells would have had successful transduction. 

MCF10A cells are known to be heterogeneous, expressing various markers for breast stem 

cells, myoepithelial cells, and luminal cells (55), and the decision to select based on such a low 

percentage of cells poses the risk that the native heterogeneity may not be captured. This 

might have a profound effect on the subsequent experiments, making it difficult to make 

meaningful conclusions or comparisons with other systems employing MCF10A cells, especially 

comparisons to clinical samples as the heterogeneity observed in patients may not be 

replicated. 

Although inducible systems allow for stringent control for characterising gene function, cells 

can lose over time the fraction of cells that have been successfully transduced. We found that 

when we cultured cells for an additional 8 passages, the GFP expression was reduced by up to 

30 percent as measured by flow cytometry (Figure 3.2C). This would mean that the expression 

of HER2 is also reduced. Although we have not directly measured the inducibility of HER2 
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transgene over time, we can indirectly see from our experiments that not all cells express 

HER2 (Figure 3.3). It is documented that tetracycline inducible system gradually lose 

inducibility over time (246). Two possible explanations may be considered: firstly, it could be 

that the 10% non-transduced cells clonally outgrow and outcompete the transduced cells over 

time, and the cells with the successful transduction are progressively lost. Secondly, epigenetic 

silencing may act to inactivate the inducible promoter (tetracycline response element), 

resulting in decreased number of cells with the vector (246). 

Finally, inducible systems require mediators such as tetracycline or its derivative doxycycline to 

induce the expression of the gene of interest. However, the use of these antibiotics can have 

confounding off targets effects at concentrations commonly used in inducible systems, from 

100ng/ml to 5µg/ml. It has been identified that the use of dox in cell lines, including the 

MCF10A cell line, can decrease the proliferation of cells and induce metabolic gene expression 

alterations (302). This could have notable effects on the various phenotypic changes we have 

observed to characterise transformation. For instance, upon HER2 over expression, we have 

seen morphological changes in 3D cell culture, higher migration and invasion potential, and the 

formation of colonies in agarose, which all rely on proliferation to a partial extent. We would 

assume that the addition of dox may have significantly reduced the extent of the phenotypes 

observed. This is because these phenotypes – without dox addition and with sole HER2 over 

expression – would be more pronounced and with the introduction of dox have been 

decreased to a certain level. Therefore, the true extent of HER2 transformational drive may 

not be appropriately characterised. 

7.3 HER2 induced phenotypic alterations  
 

Using wild-type HER2 over expression as a model oncogene, we have further confirmed that 

aberrant ectopic expression of HER2 in MCF10A cells can alter the morphology, 

migration/invasion potential, and their ability to carry out metastatic properties by growing in 
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the semi-solid media (3, 239). These features can only be exhibited by cells that have 

undergone transformation. MCF10A cells cultured in matrigel/collagen develop important 

characteristics of normal mammary tissue, which can be manipulated by HER2 over 

expression. We provide evidence of the dramatic disruption of the normal architecture of 

MCF10A cells to produce morphological protrusions similar to the ones observed in early pre-

malignant mammary lesions by means of HER2 over expression alone. However, 3D cell 

cultures are simplified microenvironments with reduced complexity compared to in vivo 

models, but they are still useful for mechanistic studies in transformation. Our observations 

are in full agreement with previous reports showing the elongated, larger and less cohesive 

features of MCF10A acini upon oncogene expression, whereas normal cells retain organised, 

spherical conformation (55, 295, 303-306). An essential feature of early breast cancer is the 

repopulation of the lumen with cancer cells (57). It would have been useful to allow the DOX -

ve cells to form the lumen as it occurs in normal MCF10A cells after day 10. This could have 

been followed by the induction of HER2 to study if the lumen formation occurs as a result of 

HER2 expression. This phenotype would be useful to have been seen by a live imaging system 

such as an incuCYTE microscope to pinpoint the time it takes for HER2 to induce this 

phenotype.  

Another neoplastic characteristic of transformed cells is the induction of migration and 

invasion of cells into the surrounding tissues. Likewise, the migratory and invasive features are 

in line with previous studies that show that constitutive expression of HER2 results in higher 

migration and invasion potential (48, 307, 308). We have shown that MCF10A cells with HER2 

over expression (DOX +ve cells) are able to grow colonies in semi-solid media, which to an 

extent represents metastasis in vivo as cells are moved from their normal microenvironment 

to reside in an unsuitable one. However, the variation in performing the technical aspects of 

the assay and the individual quantification methods employed make it challenging to draw 

comparisons between our results and of the previous studies. For instance, in our experiments 
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we used 0.3% ultra-pure agarose to measure anchorage-independent growth of cells, whereas 

the type of matrix and its percentage can vary between different experiments, such as the use 

of noble agar (ultra-pure gelling agent) in this study (53). Another variation involves methods 

introduced to count the number of colonies. This could be overcome by the incorporation of 

fluorescent dye to enable high throughput counting. Furthermore, specialised soft agar or 

agarose solution could be used to facilitate the isolation of viable cells for easy counting after 

the assay end point to allow for protein, DNA and RNA samples to be prepared if required. 

Although the assays we have performed show the transformative behaviour of cells as a result 

of HER2 over expression, there are other aspects of transformed cells that could also be 

investigated such as foci formation capability of cells and the ability of cells to survive and 

proliferate in reduced growth factor media (6). 

One of the most fundamental and useful piece of information missing from transformational 

models in general is the question; how long does it take for cells to become fully transformed 

upon induction of an oncogene? The inability to answer this question may largely be attributed 

to the use of non-inducible systems and of normal versus cancer cells, because the timing of 

gene induction is not known. However, it appears that even inducible gene expression systems 

cannot answer this difficulty properly. For instance, we have seen in our model that the 

morphological alterations occur within three days of HER2 over expression, that the cells can 

migrate/invade after five days of HER2 induction, and that the anchorage-independency is 

acquired within the 21 days. However, this does not inform when cells attain full 

transformation in vitro, even though we know that by day 21 the cells have transformed 

relative to the normal cells according to the soft agar assay. It could be that cells gain 

migratory and invasive phenotype earlier than 5 days, it is just that we measured 

migration/invasion of cells at 5 day time point, and that the cells gain anchorage independency 

earlier than 21 days. However, we do not yet know if this phenotype is attained earlier in 
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transformation. The advantage of knowing when full transformation is achieved in cells could 

give us clues to perform the molecular analysis at the right and most relevant time points. For 

example, if complete transformation was reached by day 5, then the molecular analysis time 

points could be spread out to encompass full transformation without uncertainty, preventing 

the characterisation of molecular analysis from time points that are not in our objectives. 

Nevertheless, cellular transformation could sometimes be an ambiguous term and its proper 

definition is important in understanding what can be classified as transformed or not. For 

example, overexpression of cyclooxygenase 1 in spontaneously immortalized human umbilical 

vein endothelial cells were not anchorage-independent but grow tumours in vivo aggressively 

(309). These cells would be classified as transformed despite not growing colonies in soft agar 

because they are able to induce a more significant event, which is to grow tumours in mice. In 

another case, human primary foreskin fibroblasts attained anchorage-independent and grew 

tumours in vivo but were able to indefinitely proliferate in cell culture (310). Moreover, the 

human papilloma virus 16 E6 oncogene was sufficient to induce anchorage-independent 

growth but did not generate tumours when injected into mice (311). Therefore, 

transformation of cells is dependent on a number of factors and experimental settings, such as 

in vivo or in vitro work, the types of analysis performed, relative controls, and the types of 

analysis performed.  

7.4 The signalling dynamics – taking a global approach 
 

Our global phosphoproteomic study extends the knowledge of signalling induced by HER2 over 

expression by identifying previously uncharacterised downstream signalling proteins. In this 

experimental setting, we carried out a mass spectrometry screen under standard growth 

conditions as opposed to in response to acute external stimuli to faithfully mimic the 

physiological impact of HER2 expression at short time points after induction. We have also 

identified previously unknown phospho-peptides which include LAP3 (R440), HIPK1 (Y352), and 
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GPX1 (S153). Whilst it is extremely valuable to understand the early signalling changes upon 

HER2 protein over expression and cellular transformation, the screen is restricted to the short 

term effects of HER2 expression and may overlook the secondary effects which could rely on 

the transcription and translation of regulatory proteins.  

A limitation of our investigation is the identification of a relatively modest number of 

phosphopeptides from our analysis. Our dataset shows approximately 4000 proteins with one 

or more phosphosite, which is lower than published reports of 7500 and 7214 phosphosites 

respectively (312-315). Furthermore, another limitation of this study is the reliance on the 

phosphoproteome of cells, without focusing on changes in protein abundance. In the absence 

of in-depth proteomic analysis, we cannot distinguish if the alterations in the 

phosphoproteome of our cells are a result of the protein phosphorylation stoichiometry or due 

to differential levels of total protein expression. However, it could be that it is primarily the 

activation of proteins (via phosphorylation) rather than total protein expression that may be 

vital for the regulation of molecular mechanisms involved in transformation (316). 

Our phosphoproteomic analysis finds that, upon HER2 over expression in all the time points we 

have studied, approximately 20% of the phosphoproteome is significantly changed. Although 

not directly relevant, this is in contrast to the gastric cell line which displayed that 5% of the 

phosphoproteome was significantly altered compared to the parental cell line (317). In 

another case, GIST cell line showed approximately 75% of the phosphoproteome altered 

versus the parental cell line (318). One reason for these differences could be the underlying 

genomic drivers introduced between different cell lines. Another contributing factor may be 

that the depth of the phosphoproteome coverage is less comprehensive in our study and that 

we are only examining the phosphopeptides with the highest abundance in our cells. Finally, it 

could be that receptor tyrosine kinases (such as HER2), reprogramme signalling networks to 

achieve transformation using distinct set of mechanisms.  
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As expected, one the largest increases of phosphorylation was seen in the HER2 (at T701 and 

T1060) itself, because as we add dox, the levels of HER2 proteins increase and hence a higher 

fold change was observed. The fold change was some 6-fold more in the 7 hour time point 

compared to the 0.5h one. This is because the longer the cells were cultured in dox-containing 

media, the higher the time-dependent expression of HER2. This may mean that with higher 

protein abundance, HER2 can increasingly homodimerise and transmit potent signals 

downstream, as they do not rely on a ligand to induce active signalling due to their open 

extracellular conformation. Furthermore, as HER2 expression increased, counterintuitively 

there was a higher number of differentially regulated phosphopeptides observed. For instance, 

phosphopeptides that had differential levels of phosphorylation at the 0.5h time point were 

310, at 4h time point they were 390, which increased to 455 at the 7h time point. This shows 

that higher HER2 expression is likely to change phosphorylation status of an increasing number 

of proteins. A rather simple observation maybe put forward: it is well known that the higher 

grade tumours (3+) of HER2 positive breast cancers are more aggressive due to the higher 

expression of HER2 protein expression as assessed by IHC. It is therefore conceivable to think 

that one of the reasons why they behave aggressively is the result of widespread activity in the 

signalling networks amongst other changes. 

Amongst the earliest changes detected at the 0.5h time point upon HER2 protein over 

expression are the downregulation of phosphopeptides involved in cell-cell junction and 

adherens junctions, these phosphopeptides include: LMO7 (S988), which is downregulated at 

all time points, but also include CTND1 (T869), AKT2 (T451), and TLN1 (S488), amongst other 

changes. This is consistent with the observed phenotypic alterations, such as the 

morphological changes in 3D cell culture and anchorage-independent growth of cells. 

To capture the dynamics and complexity of the signalling networks upon HER2 over 

expression, a cocktail of ligands should be used which could include heregulin (HRG), neregulin 
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(NRG), TGFα, EGF, and epiregulin. These would induce dimerisation of all possible 

combinations between the various family members of HER receptors. This is unlike the 

addition of EGF ligand alone, as in our case, which induces homodimerisation between HER1-

HER1 and heterodimerisation between HER1-HER2. Notably, it is already known that 

stimulation by HRG activates a specific subset of the migration signalling network that is not 

induced by EGF (319). Nevertheless, the advantage of introducing a single ligand, such as EGF 

allows us to attribute the signalling changes to one factor without ambiguity from other 

ligands.   

While the phosphoproteomic layer of protein regulation provides valuable and descriptive 

insight to the process of transformation, the challenge is that the results are not readily 

interpretable or actionable. For instance, we identified that a handful of signalling cascades are 

affected upon HER2 protein over expression, which may suggest that administration of specific 

kinase inhibitors could be used as a therapy, it does not reveal the complete mechanism of 

transformation. Nevertheless, there have been successful instances such as in Zeevi et al (320), 

where they employed an ‘-omics’ dataset, patient data, and machine learning to implement a 

change in nutrition to regulate glucose levels, without deep insight of the mechanism. 

However, in the majority of cases, the absence of mechanistic information of disease 

progression makes it challenging to find targets for therapeutics with reliability. In order to 

move away from the ‘big picture’ provided by the phosphoproteomic data to investigate a 

testable hypothesis, it is documented that signal transduction pathways can modulate 

chromatin structure. To study the relationship between important signal transduction 

pathways and the chromatin architectural landscape in transformation, we have performed 

ATAC-seq analysis at similar time points to our phosphoproteomic study to analyse the link 

between cell signalling and chromatin structure. Interestingly, we have seen that in our system 

the MAPK signalling pathway, which is known to regulate gene expression at multiple levels, is 

the dominant cascade by which signalling is transduced. Among the downstream targets of the 
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MAPK signalling pathway, the MAPK5 and MAPK1 are of interest as they are able to directly 

target several transcription factors such as NFkB and ELK-1, which can in turn induce 

phosphorylation of Histone 3 and HMG-like proteins known to have an effect on chromatin 

accessibility (321, 322). We have observed from our dataset that various transcription factors 

and chromatin regulators become phosphorylated, and these include NFkB at (T811) and 

phosphorylation changes in various HMG phosphosites (such as HMG4BX [S497] and HMGA1 

[T53 and S36]) amongst many others, which could potentially have an effect on the chromatin 

architecture. 

7.5 Multiple layers of heterogeneity in breast cancer 
 

We have shown that a sub-population of potentially cancer stem cells can emerge during the 

processes of cellular transformation by inducing the expression of HER2 protein. This subset of 

cells is uniquely marked by the absence of markers known to be either low or absent in breast 

stem cells, which include MUC1, EpCAM and CD24. Interestingly, we also identified that 

different HER2 expression levels coincide with distinct expression of stem markers, with the 

low HER2 expressing cells, unexpectedly, being the most enriched for stem cell markers 

compared to medium or high HER2 expressing cells. 

We used a combination of well-known cell surface markers of MUC1/EpCAM/CD24 

low/negative that is associated with stem cells (154, 323, 324). These markers individually 

have been implicated in stem and cancer stem cells, but their co-expression to identify stem-

like phenotype to date has not yet been investigated. Nevertheless, there are other (cancer) 

stem markers known to be associated with stem-like phenotype, such as the high expression 

of ALDH1 (325, 326), high expression of CD44 and low expression of CD24, which together 

have been used as cancer stem cell markers in mammary cells (327-329). 

Our findings are in line with previous investigations that have shown that EpCAM and CD24 

negative or low-expressing cells are associated with mammary stem cells (330, 331). However, 
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it is the over expression of MUC1, rather than its decrease in protein abundance, that has been 

associated with worse prognosis in breast cancer (332). The upregulation of MUC1-C subunit is 

known to increase phospho-AKT and results in resistance to tamoxifen in breast cancer (333). 

Elevated expression of MUC1 has also been shown to be preserved in cancer stem cell 

population in luminal breast cancer cell lines (334). It seems that MUC1 has a multifaceted role 

in transformation, being associated with higher transformational potential when over 

expressed, but also, in our case, found to be associated with enhanced in vitro 

transformational properties when lowly expressed, jointly with EpCAM and CD24. 

Interestingly, reduced EpCAM expression is not only found in stem cells, but also in cells that 

display EMT phenotype (335). 

In our experimental setting thus far, our approach to identifying stem-like phenotypic features 

was confined to considering the expression of markers enriched in stem cells. However, other 

potential mechanisms could be applied to identify, or at least confirm, the cells acquiring 

stemness. For instance, it is known that the rate of cell cycle of stem cells versus differentiated 

cells is different (336). It is identified that stem cells have a faster G1 phase of the cell cycle 

compared to differentiated cells (336). Furthermore, it would be useful to identify epigenetic 

signatures of stem cells compared to differentiated cells. It has already been found that the 

expression of EZH2, a core subunit of the PRC2 complex, can activate NOTCH1 signalling by 

binding to the NOTCH1 promoter and activating its signalling, which enhances the stem cell 

phenotype of cells (337). This is unprecedented, since EZH2 is normally known to have a 

suppressive role rather than activating one. 

The identification of an expanded stem-like phenotype based on the MUC1/EpCAM/CD24 -ve 

expression and its association with low HER2 expressing cells in our system is a novel finding. 

This is because in HER2 positive cancers, high HER2 expression is associated with higher 

tumour grade and aggressive disease, and in turn worse prognosis and survival (338, 339). 
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Since it is known that the upregulation of stemness in cancer cells is associated with higher 

transformational potential (340), we would have expected that stem-like phenotype would be 

more highly enriched in the high HER2 expressing cells compared to the low or medium HER2 

expressing cells. However, an observation may be made here; it is known that patients with 

high HER2 expressing cells (tumour grade 3+) tend to respond better to anti-HER2 therapy 

(341) compared to patients expressing borderline HER2 expression (tumour grade 2+) (342). 

This is partly attributed to HER2 regional biomarker heterogeneity. However, since cancers 

with upregulated stem-like phenotype are at the forefront of resistance to therapies, it is 

conceivable to think that part of the reason why the borderline HER2 positive breast cancer 

patients do not respond well to treatment is their expanded stemness, just as we have 

observed in our system compared to high expressing cells. To test this hypothesis, low, 

medium and high HER2 expressing cells could be separated and treated with trastuzumab or 

lapatinib to study what levels of HER2 confer higher levels of resistance to inhibition. 

Furthermore, if the low HER2 expressing cells have more stemness – and considering that 

normal MCF10A cells have even lower levels of HER2 expression than the low HER2 expressing 

cells in the DOX +ve cells – it is logical to assume that MCF10A cells would have an even higher 

stem-like phenotype. However, the normal MCF10A cells (or the DOX -ve cells) did not have a 

MUC1/EpCAM/CD24 -ve phenotype. This shows that the low HER2 expressing cells have co-

occurring aberrant alterations that make the cells acquire the stem-like phenotype. 

7.6 HER2 over expression – what does it mean in the context of patients? 
 

In the context of HER2 positive breast cancer patients, protein and gene expression levels 

provide critical information, as they act as predictive markers to diagnose patients based on 

biomarker expression. It is not clear, for example, whether the borderline (2+ grade) tumours 

have undergone complete neoplastic transformation or whether only the patients with 3+ 

grade tumours have full malignant transformation. Although not directly comparable to the 
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context and complexity observed in patients, a minimal and consistent increase in HER2 

expression, as shown in our study, seems sufficient to induce transformation as measured by 

our in vitro assays. This raises the possibility of 3+ grade tumours undergoing additional 

changes (such as further HER2 amplification) that make them more aggressive. Nevertheless, 

the prognostic significance of the low-expressing HER2 positive cancers, such as 1+ grade 

tumours, which are generally regarded as HER2 negative alongside 0 grade tumours as 

assessed by IHC, have not yet been properly evaluated. One of the main reasons for not 

appropriately evaluating the prognostic value of low level HER2 expression is because the 

investigators generally group the 0+ and 1+ tumours categories together, assuming in advance 

that low level HER2 expression may not be clinically significant, despite systems such as ours 

showing that it may be sufficient to progress cancer. Additionally, many of these studies were 

published before the 0-3+ scoring system was clinically established by IHC. The HER2 positivity 

was defined by protein expression or by gene amplification above a given threshold by 

western blotting, or by immunostaining (343-349). Furthermore, it has been assumed that 

patients with low levels of HER2 expression many not benefit from targeted treatments such 

as trastuzumab, but existing data with regards to the low levels HER2 expression and their 

response to trastuzumab are contradictory and limited in number. For instance, in an 

evaluation by the National Surgical Breast and Bowel Project (NSABP) B-31, which looked at 

161 patients found to be negative for HER2 expression by IHC and FISH. In this group of 

patients, the rate of relapse in patients treated with chemotherapy and trastuzumab versus 

chemotherapy alone was 8% and 21% respectively (350). In another similar study, in patients 

that were classified as HER2 negative both by IHC and FISH, the relapse rate of patients treated 

with chemotherapy and trastuzumab compared to chemotherapy alone was 15% and 30% 

respectively (348). However, the HER2 negative patients in the CALGB 9840 trial had a better 

response rate to chemotherapy and trastuzumab versus chemotherapy alone (35% versus 

29%), but that was not significant (103). This points to the potential for low HER2 expressing 
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patients – generally thought as being negative – also benefitting from anti-HER2 therapy. 

Therefore, low levels of HER2 expression, in an in vitro system as we describe here, are critical 

in understanding how we define HER2 positivity and could provide us with a useful 

understanding of how low HER2 expressing breast cancer behaves. However, it should be 

emphasised that our investigation is at the hypothesis-generating stage, and should be 

extended further in order to aid our understanding of HER2 positive breast cancer. 

Our model presented here is yet to be tested alongside primary HER2 positive breast cancer 

patient samples. Since the HER2 over expression in our system is low, it would valuable to test 

the HER2 gene and protein expression are similar to clinical samples from HER2 breast cancer 

patients with 0, 1+, 2+, and 3+ graded tumours. I would hypothesise that the HER2 expression 

levels would be similar to those observed in 1+ graded tumours. Based on the current HER2 

assessments performed by IHC, the HER2 protein expression would be classified as normal in 

our system. However, as we have shown that such low levels of HER2 expression is sufficient 

to induce transformation and global changes in the signalling network as well as genome-wide 

changes in the epigenome. Another layer of complexity arises when such patients are not 

considered to be treated with HER2 targeted therapy, as the 1+ graded patients are seen as 

the “bystanders”. If some of the work presented here could be replicated in a more 

physiologically relevant setting, such as in vivo work or the same levels of HER2 expression in 

primary breast cells, we could present a case for questioning the current practice of not 

treating 1+ graded tumours with anti-HER2 therapies. Especially when drug related toxicities of 

treating low HER2 expressing patients with anti-HER2 therapies are mild (351). This would be 

particularly useful for patients that present heterogeneous population of HER2 positivity. If 

potentially clear significant and compelling evidence is found that low HER2 expressing cells do 

not indeed benefit from anti-HER2 therapies, then at least an alternative method of 

therapeutics may be suggested for the 1+ scored tumours.  
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