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Summary 

 

Background 

Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease accounting for 1% of UK deaths. In the familial form of pulmonary 

fibrosis, causal genes have been identified in ~30% of cases, and a majority relate to telomere maintenance. Prematurely 

shortened leukocyte telomere length associates with IPF, and also chronic obstructive pulmonary disease (COPD), a disease 

with similar demographics and shared risk factors. Using Mendelian randomisation (MR), we investigated evidence supporting 

a causal role for short telomeres in IPF and COPD. 

 

Methods 

MR inference of telomere length causality was performed for IPF (up to 1,369 cases) and COPD (13,538 cases) against 435,866 

controls of European ancestry in UK Biobank. Polygenic risk scores, followed by two-sample MR analyses were carried out using 

seven genetic variants previously associated with telomere length, with replication analysis in an IPF cohort (2,668 cases vs 

8,591 controls) and COPD cohort (15,256 cases vs 47,936 controls). 

 

Findings 

In the UK Biobank, a genetically instrumented one standard deviation shorter telomere length was associated with higher odds 

of IPF (OR=4.19;  95% CI 2.33-7.55, P=0.0031) but not COPD (OR = 1.07; 95% CI 0.88-1.30, P = 0.51). Similarly, an association 

was found in the IPF replication cohort (OR = 12.3; 95% CI: 5.05-30.1, P = 0.015) and not in the COPD replication cohort (OR = 

1.04; 95% CI 0.71-1.53, P = 0.83). Meta-analysis of the two-sample MR results provided evidence inferring that shorter 

telomeres cause IPF (5.81 higher odds of IPF; 95% CI 3.56-9.50; P=2.19x10-12). There was no evidence to infer that telomere 

length caused COPD (OR=1.07; 95% CI 0.90-1.27, P=0.46). 

 

Interpretation 

Cellular senescence is hypothesised as a major driving force in IPF and COPD; telomere shortening may be a contributory factor 

in IPF, suggesting divergent mechanisms in COPD. This enables greater focus in telomere-related diagnostics, treatments and 

the search for a cure in IPF. Therapies manifesting improvements in telomere length warrant investigation. 

 

Funding 

GW4 MRC DTP.  
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Introduction 

Idiopathic pulmonary fibrosis (IPF) is a complex and incurable fibrotic lung disease. Based on data from 2012 1, the average 

lifespan following diagnosis is widely quoted as being around 3yrs and IPF accounts for around 5300 UK deaths each year, over 

1% of all UK deaths. 

 

 

The association of PF and COPD with telomere length 

In approximately 20% of cases, pulmonary fibrosis (PF) clusters in family groups 2. Inherited genetic causes have been 

established for around 30% of familial cases and the majority relate to telomere maintenance. The most common of these is 

the gene encoding telomerase reverse transcriptase (TERT), a catalytic subunit of the enzyme telomerase which works in 

conjunction with the telomerase RNA component, TERC 3. Variants in these two genes account for 19% of familial cases via 

autosomal dominant inheritance with reduced penetrance.  

Idiopathic pulmonary fibrosis (IPF) risk also has a strong genetic component 4. Prematurely shortened leukocyte telomere length 

(LTL) has been associated with IPF and also chronic obstructive pulmonary disease (COPD), a condition with a similar 

Research in context 

Evidence before this study 

We searched in PubMed for publications up to 25th June 2020 on this subject using the search terms “telomere length”, 

”Mendelian random*” and “pulmonary fibrosis” or ”interstitial lung disease”.  We found a 2017 study which reports 

reduced risk of interstitial lung diseases associated with long telomeres (and no association for COPD) as part of a wider 

Mendelian Randomisation study on the association between telomere length and risk of cancer and non-neoplastic 

diseases. We found no further evidence for the use of MR to investigate causality in IPF. We searched in PubMed up to 

10th June 2019 for GWAS results of SNPs associated with telomere length in order to create the instrument used in our 

MR analysis. We summarise the available evidence of association between telomere length and pulmonary fibrosis in 

animal models and in humans from publications up to this date. 

Added value of this study 

This study builds significantly on previous reports of a likely causal link between telomere length and IPF but not COPD by 

providing comprehensive evidence suggesting causality in IPF using large datasets from UK Biobank plus clinically well-

defined replication cohorts; the study includes direct comparisons of underlying demographic features and draws on data 

from larger cohorts than have been used previously (1,133 IPFs in UKB; 2,668 IPFs in replication cohort; 11,413 COPDs in 

UKB; 15,256 COPDs in replication cohort).  

Considerable experimental effort has been invested into finding a cause of PF in mouse models but there is no 

experimental evidence of causality in humans. This research therefore advances understanding in the fields of IPF and 

COPD research. 

Implications of all the available evidence 

Evidence inferring a cause for IPF allows research into more effective treatments to be pursued with renewed direction. 

It also allows clinicians to propose and patients to undertake known telomere maintenance therapies, which are also 

beneficial to general health. 
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demographic. Studies have shown age adjusted LTL values of 0.85 ± 0.60 vs 1.15 ± 0.6, p=0.0001 relative to reference DNA for 

IPF versus controls 5 and 0.68 ± 0.25 vs. 0.88 ± 0.52, p = 0.003 for COPD versus smoking controls 6. There is also evidence for an 

association between shorter LTL and worsened survival in IPF 7, with the suggestion that LTL could be used as a predictive 

biomarker.  A recent study which included 32 IPF patients undergoing diagnostic lung biopsy demonstrated shortened lung 

telomeres (particularly in type II alveolar epithelial cells within fibrotic lesions), but no correlation with age; half of these showed 

excessive lung telomere shortening, to the same extent seen in PF patients with a TERT mutation – suggestive of a disease 

driven by telomere attrition 8. 

The most widely used model for experimental exploration and pre-clinical assessment for IPF is the murine model of bleomycin-

induced lung injury9. Although this mouse model has been an important precursor to clinical trials and has helped enable the 

development and licensing of the two main IPF treatments, Nintedanib and Pirfenidone, the majority of studies utilise young 

mice where the fibrotic lesions lack features which are characteristic of IPF (such as honeycombing and fibrotic foci), and where 

the fibrosis may resolve depending on the severity of initial injury 10. Mice have particularly long telomeres; studies which have 

utilised aged mice (>18mo old) have demonstrated a more profound fibrotic response which does not resolve 11, and which 

better reflects the human disease. Notably, a recent study of low-dose bleomycin in TERT-/- mice (which have significantly 

shortened telomeres) demonstrated that targeted telomerase activation in type II alveolar epithelial cells (AEC2s) cells using 

gene therapy with adeno-associated vectors (AAV) showed therapeutic effects in mice with established fibrosis 12 through 

telomere elongation and increased proliferation of AEC2 cells combined with lower DNA damage, apoptosis and senescence 

burden. 

Thus, while there is evidence of an association with shorter telomeres in both diseases, experimentally, there is currently only 

evidence from murine models of PF that telomere extension is therapeutic.   

 

Mendelian Randomisation 

A genetic technique known as Mendelian randomisation (MR) 13 can be used to test for inference of a causal relationship 

between a phenotype that can be genetically influenced (such as telomere length) and a disease outcome, such as IPF or COPD. 

Causality in one direction is inferred because genetic make-up is allocated at conception and unlikely to be influenced by disease 

in later life. Potential confounding influences such as smoking, pollution and other environmental/lifestyle risk factors are 

removed from the analysis, creating in effect a natural blind randomised control trial (Figure 1). Recent genome-wide 

association studies (GWAS) 14,15 have identified several genetic variants or single nucleotide polymorphisms (SNPs) that are 

independently associated with telomere length and provide potential tools for MR. A previous study investigating associations 

between genetically increased telomere length and risk of cancer and other non-neoplastic diseases, reported increased risk of 

site-specific cancers and reduced risk of coronary artery disease, celiac disease and interstitial lung diseases 16. We therefore 

hypothesised that telomere length is causally linked to IPF but not COPD, given that inherited genetic defects in telomerase 

production lead to familial pulmonary fibrosis. To test this, we used MR and the latest data release from up to 451,025 

participants in the UK Biobank together with a genetic instrument associated with shorter telomere length. We further tested 

the effect in males and females separately since there is a well-established gender bias in IPF. 
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Methods 

 

Collection and selection of UK Biobank Data 

The UK Biobank is a study of 500,000 volunteers aged between 37-73 years, recruited across the UK during 2006-2010 17, with 

participant data including physical measurements, biological samples (blood, urine and saliva) for biomarker and genetic 

analysis, and long-term follow-up via hospital record linkage. Information on patient and public involvement is available online 

18. No further ethical or IRB approval was required. The cut-off date for data in this study was 31/3/2017. Genetic variant or 

single nucleotide polymorphism (SNP) data was generated from the Affymetrix Axiom UK Biobank array (for ~450,000 

individuals) and the UK BiLEVE array (~50,000 individuals) following extensive quality control, as described previously 19. 

Individuals were defined as European descent using principal component analysis (PCA). Briefly, principal components were 

generated using loadings from high-confidence SNPs in the 1000 Genomes Cohort. The loadings were then used to project all 

of the UK Biobank samples into the same principal component space, and individuals were then clustered using the first four 

principal components. We identified two UK Biobank study populations: 1) The full set of available participants (451,025 

individuals of European ancestry), including related individuals, to maximise statistical power in the 2-sample Mendelian 

randomisation where relatedness is handled within the model; 2) A smaller subset of 379,708 unrelated individuals (defined 

using a KING Kinship, generating an optimal list of unrelated individuals with maximum inclusion), important for the initial 

regression modelling. Ancestral principal components were then generated within these identified individuals for use in 

subsequent analyses, as described previously 20. 

 

IPF cases within UK Biobank were defined as those having a primary or secondary ICD10 code HES (Hospital Episodes Statistics) 

diagnosis of J84.1. With this ‘narrow’ criterion, we identified 1369 cases (1133 unrelated, whereby no two participants are third 

degree related or closer). We repeated our analysis with a ‘broad’ IPF definition that included J84.0 (Alveolar and parieto-

alveolar conditions), J84.8 (Other specified interstitial pulmonary diseases) or J84.9 (Interstitial pulmonary disease, unspecified) 

and using these criteria, we identified 1,621 (1,353 unrelated) cases. COPD cases were defined as those having a primary or 

secondary ICD10 code of J41 (Simple and mucopurulent chronic bronchitis), J42 (Unspecified chronic bronchitis), J43 

(Emphysema) or J44 (Other chronic obstructive pulmonary disease) plus those self-reported to have COPD: a total of 14,103 

(11,895 unrelated) cases. Using the broad definition of IPF, we subtracted 565 (482 unrelated) cases with both IPF and COPD to 

leave 13,538 (11,413 unrelated) cases.  

For the control group, we removed both COPD cases and broad definition IPF cases to give 435,866 (366,942 unrelated) clean 

controls. 

 

Replication cohorts 

An IPF replication cohort was derived from the discovery stage of a recent GWAS study which comprised three independent 

case-control studies from the UK, Chicago and Colorado a total of 2,668 IPF cases and 8,591 controls 21. The UK study included 

matched controls selected from UK Biobank.  
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The COPD replication cohort was derived from a recent COPD GWAS study with 15,256 cases and 47,936 controls, with 

13,710/15,256 (90%) of cases and 38,062/47,936 (79%) of controls being of European ancestry 22.   

 

IPF and COPD diagnoses were made in accordance with accepted international criteria. Both replication studies had appropriate 

international review board or ethics approval. 

 

Observational Associations 

We used logistic regression models in Stata 13.0 to compare the key demographics of the IPF and COPD groups with controls, 

adjusting for age and sex as appropriate. These analyses were performed in the unrelated subset of individuals to prevent 

familial bias. 

 

Identification of genetic instrument variants 

Genetic variants for telomere length were chosen from published GWAS studies, using GWAS that did not include data from 

the UK Biobank. We used an instrument composed of 7 variants robustly associated with LTL derived from a genome-wide 

meta-analysis of 37,684 individuals of European descent, with replication of selected variants in a further 10,739 individuals by 

Codd et al 14 (see Supplement p1). Other telomere length GWAS results were available (see 16) but with smaller sample sizes 

and several of the variants available were in linkage disequilibrium (Supplement p1) so did not meet our MR criteria.  

 

 

The extracted genetic variants, recoded to 0, 1 or 2 according to the number of telomere length associated alleles, were used 

to create a genetic risk score (GRS) for telomere length for each individual. The variants were weighted by their effect size (ß-

coefficient) obtained from the primary GWAS, where each beta value reflects the standard deviation change (1-SD) in LTL per 

copy of the effect allele:  

 

  Weighted score = ß1 x SNP1 + ß2 x SNP2 + …….. ßn x SNPn                    

 

Mendelian Randomisation 

Mendelian randomisation (MR) was used to investigate causality between telomere length and incidence of IPF and COPD. MR 

relies on several general assumptions 23 which are applied in this case as follows: 

a) the telomere length genetic variants are robustly associated with absolute LTL 

b) the telomere length genetic variants are not associated, independently of their effects on telomere length, with 

confounding variables for IPF or COPD 

c) the telomere length genetic variants are only associated with IPF or COPD via their effect on telomere length 

 

In this study, we employed several MR approaches. First, we investigated the association between IPF or COPD and the telomere 

length genetic risk scores in the unrelated data set of 379,708 individuals using logistic regression models. Ancestral principal 

components (as previously described 24) were included as covariates in the analysis to control for residual population structure 

and we also adjusted for baseline age, sex and UK Biobank assessment centre. 
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We next performed two-sample MR using the BOLT-LMM (v2.3.4) algorithm for mixed model association testing. The seven 

genetic variants associated with telomere length were extracted. A standard Inverse Variance Weighted (IVW) instrumental 

variable analysis was performed in R (v3.5.2), along with two methods that are more resistant to pleiotropy: MR-Egger 25 and 

Median MR 26. The IVW method regresses the effect sizes of variant outcome associations (here telomere length associated 

variants vs incidence of IPF or COPD) against effect sizes of the variant risk factor associations (here telomere length associated 

variants vs telomere length). Variant risk factor associations were taken from the primary GWAS of telomere length 14. If no 

heterogeneity is detected amongst the causal estimates, the IVW analysis is carried out under a fixed effect model with the 

assumption of no horizontal pleiotropy. Alternatively, if heterogeneity is found amongst the causal estimates, a random effects 

model is implemented and the approach assumes that: 

a) Either the strength of the association of the genetic instruments with the risk factor is not correlated with the 

magnitude of the pleiotropic effects  

b) Or the pleiotropic effects have an average value of zero 

In contrast, the MR-Egger method uses a weighted regression with an unconstrained intercept to remove the assumption that 

all genetic variants are valid instrumental variables and is therefore less susceptible to confounding from potentially pleiotropic 

variants that have a stronger effect on the incidence of IPF compared to their effect on telomere length. The Median-MR 

method is also more resistant to pleiotropy; it takes the median instrumental variable from all variants included and is therefore 

robust when <50% of the genetic variants are invalid. Given these different assumptions, if all methods are broadly consistent 

this strengthens the causal inference. Details of the R code for the 2-sample IVW, MR-Egger and Median-MR analyses are 

available in Bowden et al 26,27. 

 

Two sample MR in our IPF and COPD replication cohorts used summary GWAS statistics, the majority of which excluded UK 

Biobank data (7,893/11,259=70% for IPF and 100% FOR COPD).  

 

Additional sensitivity analyses were performed to check the robustness of our results. First, the MR was repeated, excluding 

rs2736100 which has a reported link with IPF 28. Second, we repeated the regression analyses in the unrelated subset of 

individuals using sex specific genetic risk scores (see Supplement p2). Third, we checked sensitivity of regression analyses for 

COPD to case description, since the definition of COPD cases in our replication cohort was based on lung function data (FVC% 

predicted <80%, FEV1/FVC <0.7) rather than reported diagnosis and recent evidence has shown that a spirometric definition 

identifies more cases 29. Percent predicted spirometry values were generated in UK Biobank data using the Global Lung Initiative 

reference equations, for which the methodology used to derive the lower limit of normal (LLN) for all equations takes into 

account that the spread of values around the predicted values is not normal and depends on age and outcome 30. 

 

Role of the funding source 

The funding source had no involvement in: study design; collection, analysis, and interpretation of data; writing of the report; 

the decision to submit the paper for publication. AD, RNB, ARW, JT and CJS had access to the raw data. The corresponding 

author had full access to all of the data and the final responsibility to submit for publication. 
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Results 

Demographics 

The demographics of the unrelated 1,133 IPF ‘narrow’ cases and 11,413 COPD cases are summarised in Table 1 and 2. In general 

the odds ratios quoted for each exposure predict prevalence of IPF or COPD, but the mortality figures are the risk ratio for death 

with each disease. Strong associations were noted between IPF and a range of demographic and environmental variables. 

Briefly, older age, male sex, lower socioeconomic position, ever smoking, reduced lung function and reduced exercise were 

associated with a higher odds ratio for IPF and also for COPD. Similar associations were noted for the 1,353 IPF ‘broad’ cases 

and also in the larger cohort of related individuals (Supplement p3).  

 

Telomere length polygenic genetic risk score 

Using the 7-variant telomere length genetic risk score in our UK Biobank unrelated cohort, we demonstrated that the telomere 

length GRS was associated with higher odds of IPF in our ‘narrow’ definition group of 1,133 IPF cases; odds ratio ( OR) = 1.11 

[95%CI: 1.07-1.15], P = 2.1x10-8 (Figure 2). Repeating this for the broader definition IPF, containing 1,353 cases, did not greatly 

alter this finding, OR = 1.09 [95%CI: 1.05-1.13], P = 4.7x10-7 (Table 3).  

In contrast, no association was seen for our COPD group of 11,413 cases (OR 1.000 [95%CI: 0.99-1.01], P=0.98; Figure 2). 

With the 6 variant GRS (excluding rs2736100), the results were slightly attenuated but the GRS remained associated with IPF; 

for the ‘narrow’ group OR = 1.08 [95%CI: 1.04-1.13], P = 2.5x10-4 and for the broader definition IPF group OR = 1.06 [95%CI: 

1.02-1.10], P = 0.0027.  

Due to the strong association between IPF incidence and male sex (OR = 1.94 [95%CI: 1.71-2.19], P <1x10-15; Table 1), we used 

separate genetic risk scores for each sex, created from the 7 SNP sex specific beta values for telomere length. Repeating the 

MR generated similar results for males and females (Table 3).  

In our sensitivity studies, we repeated the analysis for COPD using a lung function definition and the results were very similar 

(Table 3). 

 

Two-sample MR analysis 

Two sample MR provided evidence that genetic predictors of telomere length are ssociated with the risk of IPF. From this, under 

untestable assumptions, we infer that shorter telomere length is a cause of IPF. In the UK Biobank, a genetically instrumented 

one standard deviation shorter telomere length was associated with higher odds of IPF; using the IVW method, in the narrow 

IPF group, OR = 4.19 [95% CI 2.33-7.55], P = 0.0031 and in the broad IPF group OR = 3.28 [95% CI 1.77-6.08], P = 0.0093. There 

was no evidence of a causal relationship in COPD (OR = 1.07 [95% CI 0.88-1.30], P = 0.51; Figures 3 & 4 and Supplement p5).  

For the IPF groups, all methods were directionally consistent and the Egger method provided no evidence of pleiotropy (Egger 

intercept P-value: 0.45 in IPF ‘narrow’ and 0.47 in IPF ‘broad’). There was no evidence of SNP heterogeneity for either cohort 

(Supplement p5) 

 

MR results from replication cohorts 

To provide further evidence for or against the causal role of telomere length in IPF, we used the summary statistics from the 

replication cohort data from 2,668 IPF patients and 8,591 controls. Again, two-sample MR provided evidence inferring a causal 
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role for shortened telomeres in IPF. A 1-SD decrease in telomere length was associated with OR = 12.3 [95% CI: 5.05-30.1], P = 

0.0015 (Figures 3 & 4 & Supplement p5). Similar associations were noted using the MR methods that are more robust to 

pleiotropy, and the Egger intercept provided no evidence of pleiotropy (P-value: 0.75).  

Results from the COPD replication cohort provided no evidence of a causal relationship in COPD (OR = 1.04 [95% CI 0.71-1.53], 

P = 0.83; Figures 3 & 4 and Supplement p5). 

There was some evidence of heterogeneity of the SNP effects (Supplement p5), with rs7675998 driving this heterogeneity in 

the IPF cohort. When the analysis was repeated without this SNP, the finding that short telomeres predict IPF remained. 

 

Meta-analysis of UK Biobank and replication cohort data 

Meta-analysis of the IVW model estimates for IPF from the UK Biobank and the replication cohort also inferred a causal 

relationship with a 1-SD shorter telomere length leading to OR= 5.81 [95% CI: 3.56-9.50], P= 2.19x10-12 for IPF. Using this model 

there is some evidence of heterogeneity between cohorts (heterogeneity P= 0.05). In comparison, meta-analysis of IVW 

estimates for COPD from the UK Biobank and the COPD replication cohort provided no evidence of any causal relationship for 

telomere length, with OR= 1.07 [95%CI:0.90-1.27, P=0.46, heterogeneity P=0.91]. Independent cohort and combined meta-

analysis results are shown in Figure 4.  

Similarly, meta-analysis results for MR-Egger estimates for IPF inferred a causal relationship for telomeres in IPF with a 1-SD 

shorter telomere length leading to OR= 15.8 [95% CI: 1.48-169], P= 0.022, with heterogeneity P= 0.80. Again, meta-analysis 

results using MR-Egger estimates for COPD provided no evidence of any causal relationship for telomere length, with OR= 1.07 

[95%CI:0.45-2.56, P=0.88, heterogeneity P=0.87]. Independent cohort and combined meta-analysis results are shown in 

Supplement p8. 

 

 

Discussion 

Using a Mendelian randomisation approach, we have shown that decreased telomere length is associated with increased risk 

of IPF but not COPD. The majority of our findings persisted when they were derived using models that made allowance for 

violations of MR assumptions, such as confounding by pleiotropy, with outcomes which were broadly consistent. An earlier 

study indicated that some genetic variants regulating telomere length are associated with risk of IPF and not COPD 16 and we 

further build on that assertion with data from larger cohorts than have been used previously, with a comprehensive and focused 

study, where we see a dose-dependent relationship in IPF across seven genetic predictors of telomere length. We also see little 

evidence of heterogeneity between variants in our cohorts. In the one instance where heterogeneity in the IPF replication 

cohort was apparent, this was driven by the single outlier SNP (rs7675998), which appears to have a different association with 

disease in UK and US cohorts. Taken together, these data therefore provide robust evidence inferring a causal link from short 

telomeres for idiopathic pulmonary fibrosis, while suggesting divergent underlying disease mechanisms in COPD. While COPD 

is not a reported association in families with telomere biology disorders 31, there are indications that short telomeres lower the 

threshold of chronic cigarette smoke-induced damage 32. Thus, although short telomeres do not appear to have a causal role in 

COPD, they may contribute to the age-related onset of emphysema. 
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Both IPF and COPD are exemplars of age-related disease, with increasing focus on the impact of accelerated ageing and 

particularly the pathogenic role of cellular senescence (see 33 for a comprehensive review). This is a complex cellular programme 

and can be broadly subdivided into replicative and cellular senescence 34; the former results from intrinsic cellular events, 

including telomere shortening, while the latter can be driven by various stimuli including oxidative stress and DNA damage 35. 

IPF and COPD both have significantly shorter LTL 5,6; shortened telomeres have also been identified directly within lung tissue 

from IPF patients 8,36 but not in COPD 37. While there have been mixed reports on the direct correlation between leukocyte and 

tissue telomere length generally 37-39, the study by van Batenburg et al reported a significant positive correlation between LTL 

and lung biopsy telomere length in IPF (n=32, r=0.53, p=0.002) 8. In light of our findings, we speculate that telomere shortening 

could act as an intrinsic and systemic driving force of cellular senescence in IPF, akin to the relationship between telomere-

associated driver mutations in familial PF. In both diseases, short LTL could also result from immunosenescence, or possibly 

hypoxemia, given the reported association between telomere length and PaO2 40. Notably, LTL in COPD does not appear to be 

influenced by smoking status (current vs ex-smokers 41), although smoking per se can cause telomere attrition 42. Of interest, a 

recent study by Kachuri et al 43 used MR to investigate a causal role for longer telomeres in lung cancer, demonstrating an 

increased odds ratio for lung adenocarcinoma but not squamous cell carcinoma (SCC) or head and neck cancer. IPF is linked 

with an increased risk of lung cancer 44, but notably SCC rather than adenocarcinoma 45. 

 

Evidence inferring a causal role for premature telomere attrition in IPF does present several significant opportunities. 

Approaches aimed at addressing inadequate telomere maintenance either universally or in the cells contributing most to the 

disease pathogenesis, may offer a therapeutic option. Restoration of telomere length is not as straightforward as simply 

upregulating telomerase since this would promote the risk of cancers, although clinical trials are underway using this approach 

in other conditions (see NCT04110964 at clinicaltrials.gov). In light of this, safe telomerase activation therapy is being explored 

in other medical fields such as cardiology, using transient delivery which avoids creating an environment in which increased 

telomerase persists 46. Targeted delivery in vivo presents a very significant challenge to utilising such an approach in PF, but 

future developments may render this feasible. Diminution of the senescent cell burden in IPF is also currently being explored 

using senolytic drugs such as the combination of dasatinib plus quercetin, for which an open label Phase I Study has recently 

been reported 47. Alternative approaches could include exploration of androgen therapy: testosterone has been used effectively 

to treat the telomere linked disease, aplastic anaemia, for many years and Danazol has shown some promise in the treatment 

of PF, with an apparent arrest in lung function decline over 36 months 48. Androgens can also restore telomerase to normal 

levels in cells from telomere disease patients who are heterozygous for TERT gene mutations 49. 

 

There are also approaches which improve general wellbeing while also having a positive effect on promoting telomere length. 

We speculate these could be further promoted as an important part of clinical management of IPF patients, and include exercise 

50, reduction of life stress 51 and mindfulness 52,53. Our data show that participants with IPF tended to have reduced physical 

activity (Table 1), probably exaggerated by poor physical health; carefully increased exercise could offer multiple benefits in 

terms of promoting chromosomal telomere length and also boosting fitness and mental health. Similarly, stress arising from 

difficult life circumstances such as social deprivation (which our data show is associated with IPF, Table 1) can be relieved with 
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practices such as mindfulness 52,53. Relatively simply practices which improve patient wellbeing may also have a fundamentally 

positive impact on reducing telomere attrition. 

 

The most established genetic association with IPF to date has been a polymorphism (rs35705950) in the promoter of the MUC5B 

gene, and an inverse relationship between the presence of the risk allele and the presence of telomerase pathway rare variants 

has been reported 4. Although we had insufficient patient numbers to investigate this in the current study, stratification by 

MUC5B SNP status would be worthy of exploration in future work. 

 

Our study does have several limitations. While numbers of cases and controls in UK Biobank are large, those cases lack extensive 

clinical characterisation. This is mitigated to some extent by the thorough adjudicated diagnoses for cases in both our replication 

cohorts. Second, we have not assessed LTL directly since those data were not available for these cohorts. Instead, we have 

assumed that any systemic modifiers of telomere length will affect cells in which telomere length is actively maintained 

throughout life. This will include haematopoietic stem cells in the bone marrow from which leukocytes derive, but also type II 

alveolar epithelial cells, which are a focus of damage in the IPF lung. Our study does not therefore attempt to address the 

absolute extent to which telomere length in IPF is genetically or environmentally determined. Mendelian randomisation also 

has inherent limitations, in light of the three key assumptions described in the Methods. We have tested these assumptions 

using the different models described herein and, while the results were found to be broadly consistent, some residual 

uncertainty inevitably remains. This can be reduced further in future analyses with larger sample size, as and when these 

become available. 

 

To conclude, we have found evidence, in both our UK Biobank and replication cohorts, to infer a causal link between telomere 

length and sporadic IPF. We found no evidence of any link to COPD, a similar age-related disease, in either the UK Biobank or 

our COPD replication cohort. The inference of a cause behind human IPF leads us to new insights towards beneficial therapies 

for patients and routes to potential new treatments - which may lead us closer to preventing the disease in those with 

prematurely shortened telomeres, and ultimately providing a direction in our search for a cure. 

  



12 

 

Author Contributions 

AD conceived the project, carried out the analyses, interpreted the results and drafted the manuscript; MAG provided disease 

cohort definitions and clinical guidance throughout; HA provided comment and feedback from the patient perspective; RNB 

and ARW defined and carried out supporting analyses; KL and MAL provided supervisory support to AD; RJA and LVW 

provided the replication cohort summary data; JT and CJS were the principal investigators for the study, with oversight of 

study design, analysis and interpretation, plus administration of access to UK Biobank. All authors contributed to drafting and 

revision of the manuscript. All authors read and approved of the final manuscript. 

 
Acknowledgements 

AD is funded by the GW4 BioMed MRC Doctoral Training Partnership. JT is supported by an Academy of Medical Sciences (AMS) 

Springboard award, which is supported by the AMS, the Wellcome Trust, GCRF, the Government Department of Business, 

Energy and Industrial strategy, the British Heart Foundation and Diabetes UK [SBF004\1079]. RJA is an Action for Pulmonary 

Fibrosis Research Fellow. LVW holds a GSK/British Lung Foundation Chair in Respiratory Research. This research has been 

conducted using the UK Biobank Resource (applications 9072 and 44046). The authors would like to acknowledge the use of 

the University of Exeter High-Performance Computing (HPC) facility in carrying out this work. The Research was partially 

supported by the National Institute for Health Research (NIHR) Leicester Biomedical Research Centre; the views expressed are 

those of the author(s) and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health. 

 

Declaration of interests 

MAG has received support to attend conferences and professional fees from Roche and Boehringer-Ingelheim, outside of the 

submitted work. LVW has received grants from GSK, outside the submitted work. AD, RJA, HA, RNB, ARW, KL, MAL, JT and CJS 

have no declaration of interest. 

 

  



13 

 

References 

1. British Lung Foundation. The battle for breath: the impact of lung disease in the UK, 2016. 

2. García-Sancho C, Buendía-Roldán I, Fernández-Plata MR, et al. Familial pulmonary fibrosis is the strongest 

risk factor for idiopathic pulmonary fibrosis. Respiratory Medicine 2011; 105(12): 1902-7. 

3. Tsakiri KD, Cronkhite JT, Kuan PJ, et al. Adult-onset pulmonary fibrosis caused by mutations in telomerase. 

Proceedings of the National Academy of Sciences of the United States of America 2007; 104(18): 7552-7. 

4. Dressen A, Abbas AR, Cabanski C, et al. Analysis of protein-altering variants in telomerase genes and their 

association with MUC5B common variant status in patients with idiopathic pulmonary fibrosis: a candidate 

gene sequencing study. The Lancet Respiratory Medicine 2018; 6(8): 603-14. 

5. Dai J, Cai H, Li H, et al. Association between telomere length and survival in patients with idiopathic 

pulmonary fibrosis. Respirology 2015; 20(6): 947-52. 

6. Córdoba-Lanús E, Cazorla-Rivero S, Espinoza-Jiménez A, et al. Telomere shortening and accelerated aging in 

COPD: findings from the BODE cohort. Respiratory research 2017; 18(1): 59. 

7. Stuart BD, Lee JS, Kozlitina J, et al. Effect of telomere length on survival in idiopathic pulmonary fibrosis: an 

observational study with independent validation. The Lancet Respiratory medicine 2014; 2(7): 557-65. 

8. van Batenburg AA, Kazemier KM, van Oosterhout MFM, et al. From organ to cell: Multi-level telomere length 

assessment in patients with idiopathic pulmonary fibrosis. PLOS ONE 2020; 15(1): e0226785. 

9. Tashiro J, Rubio GA, Limper AH, et al. Exploring Animal Models That Resemble Idiopathic Pulmonary Fibrosis. 

Frontiers in Medicine 2017; 4(118). 

10. Scotton CJ, Hayes B, Alexander R, et al. Ex vivo micro-computed tomography analysis of bleomycin-induced 

lung fibrosis for preclinical drug evaluation. European Respiratory Journal 2013; 42(6): 1633-45. 

11. Hecker L, Logsdon NJ, Kurundkar D, et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 

redox imbalance. Sci Transl Med 2014; 6(231): 231ra47-ra47. 

12. Povedano JM, Martinez P, Serrano R, et al. Therapeutic effects of telomerase in mice with pulmonary fibrosis 

induced by damage to the lungs and short telomeres. eLife 2018; 7: e31299. 

13. Smith GD. Mendelian Randomization for Strengthening Causal Inference in Observational 

Studies:Application to Gene × Environment Interactions. Perspectives on Psychological Science 2010; 5(5): 

527-45. 

14. Codd V, Nelson CP, Albrecht E, et al. Identification of seven loci affecting mean telomere length and their 

association with disease. Nature genetics 2013; 45(4): 422-7e4272. 

15. Mangino M, Hwang S-J, Spector TD, et al. Genome-wide meta-analysis points to CTC1 and ZNF676 as genes 

regulating telomere homeostasis in humans. Hum Mol Genet 2012; 21(24): 5385-94. 



14 

 

16. The Telomeres Mendelian Randomization Collaboration. Association Between Telomere Length and Risk of 

Cancer and Non-Neoplastic Diseases: A Mendelian Randomization Study. JAMA oncology 2017; 3(5): 636-

51. 

17. Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a 

wide range of complex diseases of middle and old age. PLoS medicine 2015; 12(3): e1001779. 

18. UK Biobank Ethics and Governance Framework. Available from: https://www.ukbiobank.ac.uk/the-ethics-

and-governance-council/ (accessed 02/07/2020) 

19. UK Biobank. https://www.ukbiobank.ac.uk/scientists-3/genetic-data/ (accessed 02/07/2020) 

20. Tyrrell J, Mulugeta A, Wood AR et al. Using genetics to understand the causal influence of higher BMI on 

depression. Int J Epidemiol 2019; 48(3):834-848. 

21. Allen RJ, Guillen-Guio B, Oldham JM, et al. Genome-Wide Association Study of Susceptibility to Idiopathic 

Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine 2020; 201(5):564-574. 

22. Hobbs BD, de Jong K, Lamontagne M, et al. Genetic loci associated with chronic obstructive pulmonary 

disease overlap with loci for lung function and pulmonary fibrosis. Nature Genetics 2017; 49: 426. 

23. Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Davey Smith G. Mendelian randomization: Using genes as 

instruments for making causal inferences in epidemiology. Statistics in Medicine 2008; 27(8): 1133-63. 

24. UK Biobank Genetic Data: MRC-IEU Quality Control, version 3. 2018. 

https://data.bris.ac.uk/data/dataset/1ovaau5sxunp2cv8rcy88688v (accessed 02/07/2020) 

25. Bowden J, Del Greco M F, Minelli C, Davey Smith G, Sheehan NA, Thompson JR. Assessing the suitability of 

summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of 

the I2 statistic. International journal of epidemiology 2016; 45(6): 1961-74. 

26. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian Randomization with 

Some Invalid Instruments Using a Weighted Median Estimator. Genetic epidemiology 2016; 40(4): 304-14. 

27. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation 

and bias detection through Egger regression. International journal of epidemiology 2015; 44(2): 512-25. 

28. Mushiroda T, Wattanapokayakit S, Takahashi A, et al. A genome-wide association study identifies an 

association of a common variant in TERT with susceptibility to idiopathic pulmonary fibrosis. Journal of 

Medical Genetics 2008; 45(10): 654-6. 

29. Sakornsakolpat P, Prokopenko D, Lamontagne M, et al. Genetic landscape of chronic obstructive pulmonary 

disease identifies heterogeneous cell-type and phenotype associations. Nature genetics 2019; 51(3): 494-

505. 

30. Cooper BG, Stocks J, Hall GL, et al. The Global Lung Function Initiative (GLI) Network: bringing the world's 

respiratory reference values together. Breathe (Sheff) 2017; 13(3): e56-e64. 

https://www.ukbiobank.ac.uk/the-ethics-and-governance-council/
https://www.ukbiobank.ac.uk/the-ethics-and-governance-council/
https://www.ukbiobank.ac.uk/scientists-3/genetic-data/
https://data.bris.ac.uk/data/dataset/1ovaau5sxunp2cv8rcy88688v


15 

 

31. Savage SA, Bertuch AA. The genetics and clinical manifestations of telomere biology disorders. Genet Med 

2010; 12(12): 753-64. 

32. Alder JK, Guo N, Kembou F, et al. Telomere length is a determinant of emphysema susceptibility. American 

journal of respiratory and critical care medicine 2011; 184(8): 904-12. 

33. Cho SJ, Stout-Delgado HW. Aging and Lung Disease. Annual Review of Physiology 2020; 82(1): null. 

34. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990; 

345(6274): 458-60. 

35. Robles SJ, Adami GR. Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the 

premature senescence of normal fibroblasts. Oncogene 1998; 16(9): 1113-23. 

36. Snetselaar R, van Batenburg AA, van Oosterhout MFM, et al. Short telomere length in IPF lung associates 

with fibrotic lesions and predicts survival. PloS one 2017; 12(12): e0189467. 

37. Everaerts S, Lammertyn EJ, Martens DS, et al. The aging lung: tissue telomere shortening in health and 

disease. Respiratory Research 2018; 19(1): 95. 

38. Dlouha D, Maluskova J, Kralova Lesna I, Lanska V, Hubacek JA. Comparison of the relative telomere length 

measured in leukocytes and eleven different human tissues. Physiological research 2014; 63 Suppl 3: S343-

50. 

39. Friedrich U, Griese E-U, Schwab M, Fritz P, Thon K-P, Klotz U. Telomere length in different tissues of elderly 

patients. Mechanisms of Ageing and Development 2000; 119(3): 89-99. 

40. Savale L, Chaouat A, Bastuji-Garin S, et al. Shortened Telomeres in Circulating Leukocytes of Patients with 

Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine 2009; 

179(7): 566-71. 

41. Lee J, Sandford AJ, Connett JE, et al. The Relationship between Telomere Length and Mortality in Chronic 

Obstructive Pulmonary Disease (COPD). PLOS ONE 2012; 7(4): e35567. 

42. Morlá M, Busquets X, Pons J, Sauleda J, MacNee W, Agustí AGN. Telomere shortening in smokers with and 

without COPD. European Respiratory Journal 2006; 27(3): 525-8. 

43. Kachuri L, Saarela O, Bojesen SE, et al. Mendelian Randomization and mediation analysis of leukocyte 

telomere length and risk of lung and head and neck cancers. International Journal of Epidemiology 2018; 

48(3): 751-66. 

44. HUBBARD R, VENN A, LEWIS S, BRITTON J. Lung Cancer and Cryptogenic Fibrosing Alveolitis. American 

Journal of Respiratory and Critical Care Medicine 2000; 161(1): 5-8. 

45. Park J, Kim DS, Shim TS, et al. Lung cancer in patients with idiopathic pulmonary fibrosis. European 

Respiratory Journal 2001; 17(6): 1216-9. 

46. Ramunas J, Yakubov E, Brady JJ, et al. Transient delivery of modified mRNA encoding TERT rapidly extends 

telomeres in human cells. The FASEB Journal 2015; 29(5): 1930-9. 



16 

 

47. Justice JN, Nambiar AM, Tchkonia T, et al. Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-

human, open-label, pilot study. EBioMedicine 2019; 40: 554-63. 

48. Townsley DM, Dumitriu B, Liu D, et al. Danazol Treatment for Telomere Diseases. The New England journal 

of medicine 2016; 374(20): 1922-31. 

49. Calado RT, Yewdell WT, Wilkerson KL, et al. Sex hormones, acting on the TERT gene, increase telomerase 

activity in human primary hematopoietic cells. Blood 2009; 114(11): 2236-43. 

50. Cherkas LF, Hunkin JL, Kato BS, et al. The association between physical activity in leisure time and leukocyte 

telomere length. Archives of Internal Medicine 2008; 168(2): 154-8. 

51. Epel ES, Blackburn EH, Lin J, et al. Accelerated telomere shortening in response to life stress. Proceedings of 

the National Academy of Sciences of the United States of America 2004; 101(49): 17312-5. 

52. Jacobs TL, Epel ES, Lin J, et al. Intensive meditation training, immune cell telomerase activity, and 

psychological mediators. Psychoneuroendocrinology 2011; 36(5): 664-81. 

53. Schutte NS, Malouff JM. A meta-analytic review of the effects of mindfulness meditation on telomerase 

activity. Psychoneuroendocrinology 2014; 42: 45-8. 

 

  



17 

 

Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Demographics for idiopathic pulmonary fibrosis cases using narrow J84.1 ICD10 code definition, from 
unrelated individuals of European ancestry in UK Biobank derived using logistic regression analyses. Odds ratios 
show the extent to which the exposures predicted prevalence of IPF, except for ‘participants deceased’, which 
shows the risk ratio for death with IPF. (Odds ratios and p values are adjusted for age and sex, other than percent 
predicted spirometry which already includes adjustment). Income bands indicate average household income: 
(1)<£18000, (2)£18000-£30999, (3)£31000-51999, (4) £52000-£100000 and (5)>£100000.  
 

 

 

 

  

Demographic IPF J84.1 
only 

Controls OR 95% CI P 

N = 368,075 1,133 366,942     

Mean age at baseline (SD) 
Mean age at diagnosis (SD) 

63.1 (5.8) 
67.2 (7.5) 

57.1 (8.0) 1.13 1.12 1.14 <1X10-15 

Male sex, N (%) 718 (63.4%) 167,910 (45.8%) 1.94 1.71 2.19 <1X10-15 

Townsend Deprivation Index (SD) -0.80 (3.33) -1.53 (2.95) 1.10 1.08 1.12 <1X10-15 

Pollution, NO2  μg/m3 (SD) 27.2 (8.0) 26.2 (7.4) 1.02 1.02 1.03 6.0x10-10 

Smoking status       

     Never smoker 341 (30.1%) 201,987 (55.1%)     

     Former smoker 602 (53.1%) 128,242 (35.0%) 2.14 1.87 2.45 <1X10-15 

     Current smoker 167 (14.7%) 32,022 (8.73%) 3.42 2.83 4.13 <1X10-15 

     Missing 23 (2.0%) 5,104 (1.3%)     

Median income band (IQR) 2 (1-3) 3 (2-4) 0.69 0.65 0.74 <1X10-15 

Mean FEV1 L (SD) 2.36 (0.69) 2.77 (0.77) 0.35 0.32 0.40 <1X10-15 

FEV1 percent predicted (SD) 85.0 (23.5) 91.1 (22.6) 0.99 0.98 0.99 <1X10-15 

Mean FVC L (SD) 3.18 (0.88) 3.66 (1.00) 0.42 0.38 0.46 <1X10-15 

FVC percent predicted (SD) 114.8 (29.6) 120.2 (29.6) 0.99 0.99 1.00 <1X10-15 

Physical activity score (SD) 7.07 (1.31) 7.41 (1.13) 0.76 0.73 0.81 <1X10-15 

Participants deceased, N (%) 439 (38.8%) 10,977 (3.0%) 11.8 10.4 13.4 <1X10-15 
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Table 2: Demographics for chronic obstructive pulmonary disease cases, from unrelated individuals of 
European ancestry in UK Biobank derived using logistic regression analyses Odds ratios show the extent to 
which the exposures predicted prevalence of COPD, except for ‘participants deceased’, which shows the risk 
ratio for death with COPD. (Odds ratios and p values are adjusted for age and sex, as above). Income bands 
indicate average household income: (1)<£18000, (2)£18000-£30999, (3)£31000-51999, (4) £52000-£100000 and 
(5)>£100000. 
 

 

 

 

 

 

 

  

Demographic COPD Controls OR 95% CI P 

N = 378,355 11,413 366,942     

Mean age at baseline (SD) 
Mean age at diagnosis (SD) 

61.9 (6.2) 
65.3 (7.4) 

57.1 (8.0) 1.10 1.09 1.10 <1X10-15 

Male sex, N (%) 6,245 (54.7%) 167,910 (45.8%) 1.38 1.32 1.43 <1X10-15 

Townsend Deprivation Index (SD) 0.21 (3.6) -1.53 (2.95) 1.19 1.19 1.20 <1X10-15 

Pollution  NO2  μg/m3 (SD) 28.0 (7.7) 26.2 (7.4) 1.04 1.03 1.04 <1X10-15 

Smoking status       

     Never smoker 1,806 (15.8%) 201,987 (55.1%)     

     Former smoker 5,480 (48.0%) 128,242 (35.0%) 3.96 3.75 4.18 <1X10-15 

     Current smoker 3,719 (32.6%) 32,022 (8.73%) 15.0 14.1 15.9 <1X10-15 

     Missing 408 (3.6%) 5,104 (1.3%)     

Median income band (IQR) 1 (1-2) 3 (2-4) 0.53 0.52 0.54 <1X10-15 

Mean FEV L (SD) 2.01 (0.72) 2.77 (0.77) 0.15 0.14 0.15 <1X10-15 

FEV1 percent predicted (SD) 71.2 (23.7) 91.1 (22.6) 0.96 0.96 0.96 <1X10-15 

Mean FVC L (SD) 3.04 (0.93) 3.66 (1.00) 0.34 0.33 0.35 <1X10-15 

FVC percent predicted (SD) 107.6 (30.4) 120.2 (29.6) 0.98 0.98 0.98 <1X10-15 

Physical activity score (SD) 7.12 (1.31) 7.41 (1.13) 0.80 0.79 0.81 <1X10-15 

Participants deceased, N (%) 1,877 (16.5%) 10,977 (3.0%) 4.59 4.35 4.85 <1X10-15 



19 

 

. 

Case Group Genetic instrument N cases (controls)  

Odds ratios (95%CI) for IPF 
vs control per SD change 
in LTL P 

IPF ‘narrow’ All 7 SNP 1,133 (366,942) 1.11 (1.07,1.15) 2.1x10-8 

IPF ‘narrow’ All 6 SNP - no rs2736100 1,133 (366,942) 1.08 (1.04, 1.13) 2.5x10-4 

IPF 'broad' All 7 SNP 1,353 (366,942) 1.09 (1.05, 1.13) 4.9x10-7 

IPF 'broad' All 6 SNP - no rs2736100 1,353 (366,942) 1.06 (1.02, 1.10)  2.7x10-3 

IPF ‘narrow’ Men only 7 SNP male grs 718 (174,254) 1.10 (1.05, 1.15) 2.4x10-5 

IPF ‘narrow’ Women only 7 SNP female grs 415 (204,321) 1.12 (1.05, 1.19) 2.2x10-4 

COPD (our definition) 7 SNP 11,413 (366,942) 1.000 (0.988, 1.012) 0.98 

COPD (our definition) 6 SNP 11,413 (366,942) 1.002 (0.989, 1.016) 0.71 

COPD (lung function definition) 7 SNP 30,359 (347,996) 1.003 (0.995, 1.010) 0.48 

 

Table 3: Evidence from UK Biobank data suggesting a causal role for telomere length in IPF but not in COPD. Associations 
between shorter telomere length genetic risk scores and disease incidence in IPF (‘narrow’), IPF (‘broad’), IPF males & IPF 
females (using the sex adjusted genetic risk scores) and COPD for genetic instruments derived from 7 and 6 variants. Results 
were adjusted for registration age, principal ancestral components and assessment centre and also for sex in mixed sex groups. 
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Figures 

 

 

 Figure 1. Principle of Mendelian Randomisation; if telomere length plays a causal role in IPF or COPD, genetic variants 

associated with telomere length will also be associated with the disease. A) If the observed trait X causes the particular 

outcome Y, the instrument Z (genetic variants associated with the trait) will also be associated with the outcome. B) If telomere 

length causes idiopathic pulmonary fibrosis (IPF) or chronic obstructive pulmonary disease (COPD), the chosen genetic variants 

associated with telomere length will also be associated with IPF or COPD. As genotype is assigned at conception, it should not 

be associated with risk factors that might confound the association between telomere length and disease outcome (e.g. smoking 

or pollution). Weighted estimates of the genetic telomere length association (w) and the genetic disease association (x) are 

used to infer the causal effect of telomere length on IPF or COPD (y-x/w), which is expected to be free from confounding. 
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Figure 2. Logistic regression results showing significant disease risk odds ratio for IPF (‘narrow’) but not for COPD cases for a 

unit change in telomere length genetic risk score compared with controls in UK Biobank. An odds ratio of 1 shows that disease 

odds are not influenced by telomere length. An odds ratio significantly different to 1 indicates that odds of disease are 

influenced by telomere length. 
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Figure 3. Two-sample MR results for IPF and COPD showing evidence of telomere length causality in IPF but not in COPD.  

Graphs show the strength of the relationship between disease incidence and telomere length SNPs on the y axis against the 

telomere length association from previous GWAS for each SNP on the x axis. A non-zero gradient to the lines, with significant p 

values shown in the top left-hand box for the different MR models used, is evidence of causality of telomere length for disease. 

Results shown are for all seven telomere variants for (A) IPF (‘narrow’) in UK Biobank, (B) IPF Replication Cohort, (C) COPD in 

UK Biobank, (D) COPD Replication Cohort 
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Figure 4. Meta-analysis results for IPF and COPD in UK Biobank and replication cohorts showing significant evidence of 

telomere length causality in IPF but not COPD across cohorts. Odds ratios and 95% confidence intervals are shown for a 

genetically-instrumented one standard deviation shorter telomere length in IPF (‘narrow’) in UKB, IPF Replication Cohort, IPF 

meta-analysis, COPD in UK Biobank, COPD Replication Cohort and COPD meta-analysis using IVW Method.  

 


