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Abstract 
 

Zeolitic imidazolate frameworks (ZIFs) are sub-family of metal organic 

frameworks with structures similar to traditional aluminosilicate zeolities. 

Consequently, ZIFs exhibit zeolite-type topologies with crystal structures, 

ultrahigh surface area, and excellent chemical and thermal stability, which 

makes ZIFs being an attractive candidate in various potential applications. 

Moreover, ZIF materials can act as outstanding templates or precursors to 

produce metal components on porous carbon nanocomposites, leading to a 

wide range of applications in energy storage and electrochemical utilisations. 

On the other hand, porous graphene could effectively avoid the stacking of 

graphene sheets, generating materials with high surface areas. Porous 

graphene can not only offer large aspect ratios which enhances the stability of 

porous frameworks to prevent collapse, but also provide the possibilities of 

multiple interactions with various species, both at the surface and through their 

porous frameworks, benefiting a rapid transportation of ions/molecules or 

charge carriers through the porous channels.  

In this thesis, the synthesis of ZIFs and graphene oxide (GO) derived 

nanocomposites were demonstrated and fully characterised. Moreover, the 

renewable-energy-related applications of these functional nanostructured 

derivatives were also evaluated and analysed. In brief, the main findings are as 

follows: 

1. Developed a facile approach to produce highly efficient graphene-based 

cobalt sulfide and porous carbon composites, converted from one-step in-

situ synthesised GO/ZIF-67 composites via sulfurisation and carbonisation 

at high temperatures. Different characterisation techniques have 

confirmed the CoS nanoparticles were homogeneously dispersed in 

carbon matrix. Moreover, the obtained nanocomposites exhibit much 

improved electrochemistry performance comparing with the reference 

material without graphene, and the electrocatalytic activities of the 

composites can be tuned by adjusting graphene content in the composites. 

2. Apart from single metal sulfide, explorative research work were also 

performed to understand the potential of bi-metallic ZIF-67 derived 

nanocomposites. Homogenously dispersed nickel promoted cobalt 
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sulfide/N, S co-doped carbon/graphene and iron promoted cobalt sulfide/N, 

S co-doped carbon/graphene have been successfully prepared via 

sulfurisation and carbonisation from Ni-substituted GO/ZIF-67 and Fe-

substituted GO/ZIF-67, respectively. Due to the joint effect of graphene, N, 

S co-doped porous carbon and abundant metal-N moieties, the obtained 

nanocomposites exhibit not only remarkable OER catalytic activities with 

lowest onset/over potential, but also excellent HER activities with high 

current density and low onset potential, making them potential bifunctional 

electrocatalyst in water splitting. 

3. Moreover, the derivatives of bi-metallic Fe-substituted GO/ZIF-67 have 

been further investigated. Iron promoted cobalt based nanoparticles 

homogeneously embedded in N-doped porous carbon and graphene via a 

facile one-step carbonisation of the in-situ as-synthesised composite. The 

obtained nanocomposites exhibit excellent electrochemical activities, 

which makes them promising electrode materials for catalysis and energy 

applications, owing to the increased surface area, hierarchical porous 

graphene and carbon structure, and bi-metal anchoring effect. Moreover, 

iron promoted cobalt oxide nanoparticles embedded in N-doped graphene 

and porous carbon by an efficient two-step carbonisation and oxidation of 

Fe-substituted GO/ZIF-67 has also been successfully developed. Due to 

the triple synergistic effect between iron oxide, cobalt oxides and N-doped 

porous graphene and carbon, the as-synthesised nanocomposites exhibit 

remarkable bifunctional activities towards both OER and HER in water 

splitting. 

4. In addition, in all the studied mono- or bi-metallic component system, the 

effect of graphene oxide content as well as the sulfurisation/ carbonisation 

temperature have been well explored and optimised. It was found that the 

resultant nanocomposite sulfurised and carbonised at 800 °C, exhibited 

promising high-efficient catalytic activities. Meanwhile, owing to the 

introduction of a certain amount of graphene providing an increased 

electrical conductivity and more catalytic active sites, the optimum 5 wt% 

graphene contained nanocomposite shows the most remarkable 

electrochemical performance within the studied range of graphene content 

(up to 10 wt%). 
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Chapter 1: Introduction 
 

Metal organic frameworks (MOFs), as a class of typical porous materials that 

are made up of metal ions and organic ligands 1-3, have shown tuneable 

structures, versatile functionalities and other fascinating properties. Specifically, 

zeolitic imidazolate frameworks (ZIFs) are sub-family of MOFs and have 

attracted increased interests in past years. Generally, ZIFs consist of M-Im-M 

bonds where M is Co or Zn and Im is imidazolate or derives, with the bridging 

angle of 145°, which is coincident with Si-O-Si angle in zeolites. Therefore ZIFs 

are similar to traditional aluminosilicate zeolities, in a way where M and Im play 

the role of Si and O respectively 3. Consequently, ZIFs exhibit zeolite-type 

topologies like crystal structures, ultrahigh surface area, and excellent chemical 

and thermal stability, making ZIFs attractive precursors or excellent sacrificial 

templates for the preparation of porous carbon based nanocomposites 1, 3.  

Recently, as one of the most important electrocatalytic material systems, porous 

carbon-based materials have attracted a lot of attention. The materials feature 

advantages like variable structures, large surface area, tunable porosity while 

remaining affordable. Various electrocatalysis processes including oxygen 

reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution 

reaction (HER) and water splitting 4-6 have been developed to utilise these 

materials. Particularly, many MOF-derived porous carbon based materials have 

been developed as active electrocatalysts. Therefore, ZIFs could generate 

multiple extended 3D open frameworks whose topologies are similar to those 

already identified in aluminosilicate zeolites 7. In addition, ZIFs share many 

advantages with zeolites including their exceptional ultrahigh chemical stability 

(a result of their metal–nitrogen bonds), and tuneable pore size and surface 

area (realised by simply modifying Im), which distinguish them from most other 

MOFs. Moreover, metal sulfides/oxides could also be formed from ZIF 

precursors under certain treatment conditions. Consequently, ZIFs and their 

derivatives have emerged as the best candidates for electrochemical 

applications. 

On the other hand, since the discovery of graphene in 2004, significant efforts 

have been made to exploit its application in almost every field of science, 

including physics, chemistry, materials sciences and life science 8-10. Graphene 
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oxide (GO) has been widely considered an excellent precursor for graphene. 

Graphene is a two-dimensional single layered material with free-standing 

graphene sheets showing low chemical activity 11-12. Graphene and GO have 

been the subject of extensive research of electrochemistry related technologies 

with great expectation for future electrochemical applications, due to their high 

electric conductivity, large surface area and high electron transfer rate. 

Furthermore, porous graphene have attracted much attention owing to its 3D 

unique porous structure in addition to the intrinsic properties of graphene. 

Compared to the original free-standing graphene sheet, porous graphene offers 

inherent properties of graphene and also exhibits outstanding properties 

including large surface to volume ratio, high electrical conductivity and low 

cytotoxicity and tremendous flexibility 13-14. 

Traditionally, ZIFs can be synthesised from organic solvents 15-21, which are 

sources of some environmental concerns as most of organic solvents are toxic 

and flammable. On the other hand, homogeneous dispersion of nanoparticles in 

carbon matrix is always a challenge, because nanoparticles constantly tend to 

agglomerate. Thus, synthesis of ZIFs via green, low-cost and efficient methods 

is highly desirable.  

Moreover, after the carbonisation process of ZIFs, the derivatives from ZIFs 

normally show low electrical conductivity and slow electron transfer due to the 

low graphitised carbon. In order to improve the electrical conductivity, GO can 

be introduced into the precursor ZIFs as GO are expected to be converted to 

porous graphene during the carbonisation process. As result, novel synthesis 

method for the preparation of GO containing ZIFs is highly desirable. 

Most importantly, water splitting into oxygen and hydrogen has been considered 

as a potential solution of the global energy crisis for some time 22-25. However, 

the slow rate of water splitting is inefficient and energy-consuming, thus, highly 

efficient electrochemical catalysts are extensively sought to accelerate the 

reactions rates (for both half-reactions). Pt-group and Ir-/Ru-based noble metal 

materials are good candidates as they are highly effective catalysts for HER 

and OER respectively. However, their high price, poor durability and scarce 

reserve prevent their large-scale applications. Consequently, it is highly 

desirable to explore the possibility of utilising transition metals or bi-transition 
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metals based new cost-effective electrocatalysts for those important energy 

storage and conversion electrochemical reactions. 

Therefore, the main objectives of this thesis are:  

1. To explore the generation of homogeneously dispersed transition metal 

compounds in functional porous carbon and graphene from a single 

precursor and to insight into the relationship between their structures and 

properties; 

2. To design facile approaches to produce bi-metallic (nickel or iron 

promoted) GO/ZIF-67 nanocomposites and study the fundamental 

synthesising parameters on each system; 

3. To investigate the electrocatalytic applications of ZIF-67 derivatives in 

relevant electrochemical reactions field. 

This thesis has been presented as seven main Chapters. Chapter 1 introduces 

the inspiration, the motivation and the organisation of this thesis. Chapter 2 

provides the background and literature review for (a) the basic microstructure of 

ZIFs and different synthesis methods for ZIFs and ZIF derivatives, properties 

and potential applications of ZIFs and ZIF derivatives in gas separation, 

catalysis, electrocatalytic activities and supercapacitors; (b) the synthesis 

strategies and properties of porous graphene. Its attractive applications in 

electrocemical devices, fuel cell and lithium ion batteries in recent years are 

fully discussed and reviewed. Chapter 3 briefly describes the synthesis methods 

to produce ZIFs and converted ZIF derivatives. Moreover, the detailed 

experimental processing and property characterisation techniques were also 

described. Chapter 4 describes the use of one-step in-situ synthesised GO/ZIF-

67 nanocomposites to produce their derivative CoS-C-G via the simultaneously 

sulfurisation and carbonisation of GO/ZIF-67. Moreover, the electrocatalytic 

activities including ORR, OER and HER of cobalt sulfide/N doped 

carbon/graphene have all been demonstrated and discussed. Additionally,  

Chapter 4 also explores a simple method for the preparation of cobalt-nickel 

sulfide/N, S co-doped nanoporous carbon/graphene nanocomposite derived 

from Ni-substituted GO/ZIF-67. Their applications in OER and HER have been 

studied and the effect of GO content on the electrochemistry performance has 

also been investigated. Chapter 5 presents a facile way to produce 

homogeneously dispersed cobalt-iron/N doped nanoporous carbon/graphene 
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derived from Fe-substituted GO/ZIF-67. Their electrochemistry applications of 

resulting nanocomposites have been presented and the effect of GO content 

towards water splitting has also been researched. Furthermore, a simple 

preparation process of bimetallic cobalt-iron oxide/N doped nanoporous 

carbon/graphene derived from Fe-substituted GO/ZIF-67 has also been 

demonstrated. The electrocatalytic performance of the produced oxidation 

nanocomposites has been presented in Chapter 5 as well. Chapter 6 further 

provides an efficient method for the preparation of bi-metallic cobalt-iron 

sulfide/N, S co-doped nanoporous carbon/graphene nanocomposite derived 

from Fe-substituted GO/ZIF-67. Their applications towards waters splitting such 

as OER and HER were all showed and the effect of GO content on the 

electrochemistry performance has also been investigated. Finally, the main 

conclusions of this thesis work and some recommendations for future studies 

are summarised in Chapter 7. 
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Chapter 2: Literature Review 
 

2.1 ZIFs and ZIF-derivatives materials 

2.1.1 Introduction 

During the past decades, porous materials have been widely investigated owing 

to their permanent porosity, relatively high thermal and chemical stability26. In 

1995, Yaghi et al. first introduced and synthesised metal–organic frameworks 

(MOFs). Since then MOFs materials were rapidly developed with the aim to find 

new structures and explore new gas sorption and electro-catalytic properties 

and so on.  

In recent years, a lot of efforts have been devoted to develop a new class of 

porous materials based on hybrid metal–organic frameworks. Among them, a 

series of MOFs with zeolitic architectures have attracted much attention and 

were synthesised as hybrid frameworks successfully. Zeolitic imidazolate 

frameworks (ZIFs) are a class of porous crystals with extended three-

dimensional structures constructed from tetrahedral metal ions (e.g., Co, Zn) 

bridged by imidazolate (Im). These ZIFs (M–Im–M) and conventional 

aluminasilicate zeolites (Si–O–Si) have similar structures (shown in Figure 2.1), 

in which Co2+ or Zn2+ ions play the role of silicon and the imidazolate anions 

form bridges that mimic the role of oxygen in zeolites with the angle of 145° 27-28. 

Compared with other MOFs, ZIFs are advantageous in structural topologies and 

coordination factors, and show exceptional thermal and chemical stability. 

Therefore, ZIFs hold great promise as porous materials for a variety of 

applications. 

Recently, as one of the most important electrocatalytic material systems, porous 

carbon-based materials have attracted a lot of attention in electrochemical 

applications due to their advantages of variable structures, large surface area, 

tunable porosity and affordable price. Actually, porous carbon-based materials 

have been developed for various electrocatalysis applications including Oxygen 

Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), Hydrogen 

Evolution Reaction (HER) and water splitting 4-5, 29-30. Particularly, in the past 

years, many MOF-derived porous carbon based materials have been developed 

as active electrocatalysts in different areas such as Li-O2 batteries,  
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Figure 2. 1 Bridging angles in metal IMs and zeolites 
15

 

CO2 reduction, HER, OER, and ORR. ZIFs, as a sub-class of MOFs with unique 

structure, can generate multiple extended 3D open frameworks with topologies 

that are similar to those have been already identified in the aluminosilicate 

zeolites 7. In addition, it has been demonstrated that ZIFs share many virtues of 

zeolites, which distinguish them from many other MOFs, such as the 

exceptional mechanical stability, ultrahigh chemical stability results from the 

metal–nitrogen bonds, tuneable pore size and surface area by simply modifying 

the Im its interaction with electrolytes and reactants. Moreover, metal sulfides/ 

oxides could also be formed from ZIF precursors under certain controlled 

synthesis conditions. All these outstanding characteristics have made ZIFs and 

their derives as promising candidates for electrochemical application and stable 

electrocatalysts. 

 

 

Figure 2. 2 The illustration of typical topologies of ZIFs and ZIF-derived materials as 

electrocatalysts in various areas 
31
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In the first section of this literature review part, we will summarise and analyse 

the structures, synthesis methods, and applications of ZIFs material. Meanwhile, 

their derived porous N-doped carbon-based materials for electrochemistry 

would also be analysed and the relationship between the various derives 

systems and different applications in electrocatalytic reactions, such as ORR, 

OER, HER, molecule oxidation reactions (MOR) and sensor. (Figure 2.2).  

2.1.2 Microstructures and characteristics of ZIFs and ZIF derivatives 

Table 2.1 shows a comprehensive list of the topologies and the structural 

properties of common species of ZIFs. Structure properties of a specific ZIF 

mainly depend on the type of imidazolate and the solvents used during the 

synthesis process, and therefore a variety of ZIFs with different structures could 

be obtained by using functional imidazolates in different solvents. By using 

different imidazolate ligands and solvents, the obtained ZIFs can have multiple 

structures and can be classified into several classes according to their 

topologies (as shown in Figure 2.3), such as Linde Type A sodalite (LTA), 

zeolite rho (RHO), gmelinite (GME), merlinoite (MER), gismondite (GIS), 

analcite (ANA) and ZIF-3 framework structure type (DFT, a tetrahedral form with 

a space group P42mnm), which are traditional topologies of standard zeolites 3. 

Nowadays, hundreds of ZIFs materials have been successfully synthesised. 

The crystal size in ZIF materials can be continuously tuneable in a range via 

using mixed linkers. In contrast, for the single linker ZIFs material, only discrete 

changes could be obtained. For instance, a series of ZIF-8-90 zeolites with 

tunable crystal size ranging from <0.5 μm to about 100 μm were synthesised 

through adjusting the ratio of 2-methylimidazole and carboxyaldehyde-2-

imidazole 32. When ZIFs are used in many different applications such as gas 

separation/ adsorption, molecular sensing, heterogeneous catalysis, etc., their 

porous structures will be inevitably subjected to different kinds and degrees of 

mechanical stresses and strains, which in turn sometimes damage their 

structures and then lower their efficiencies. Therefore, the stiffness and 

hardness properties of the synthesised ZIFs, which are definitely influenced by 

imidazolate-type linkers, are keys to determining their suitability for practical 

applications. 

Recently, many ZIFs with different topologies were developed to achieve huge 

pores 2. In the application of gas sorption, both ZIF-11(d=14.6 Å) and ZIF-8 
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(d=14.6 Å) materials possess large pores, nearly twice larger than their 

corresponding zeolites. It should be shocked that the Langmuir surface area of 

ZIF-8 is 1810 m2 g−1 for the hydrogen uptake based on bar high pressure 2.Park 

et al found. 15 research, they found that the fully exposed faces and edges of 

the organic links in the ZIF materials result in the large surface areas and pores. 

These works illustrated that surface areas and pore volumes of ZIFs are 

superior to those of traditional crystalline porous materials such as zeolites and 

mesoporous silica, and comparable with some of the highly porous MOF 

compounds 15. 

 

Figure 2. 3 Different topologies and crystal structures of ZIFs 
3
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In addition, ZIFs materials possess an exceptional thermal and chemical 

stability owing to their unique structural characteristics: ZIFs consist of strong 

metal-nitrogen bonds, therefore, they show very high resistance to organic and 

alkaline solvent 15, 33; another reason is that the MN4 units are not influenced by 

solvents, thus, the framework and surface structure cannot be broken. For 

instance, both ZIF-11 and ZIF-8 were carried out in water and sodium hydroxide 

solvent at 50°C for seven days. The XDR results show that both ZIFs could 

retain their structure in those two solvents 15. 

Table 2. 1 List of topologies and microstructural properties of common ZIFs 

 

Name 

 

Molecular structure 

 

Topology 

Density of 

metal Atoms 

(T/nm
3
) 

 

Ref. 

 

ZIF-3 Zn2(Im)2 DFT 2.66 
15

 

ZIF-6 Zn (Im)2 GIS 2.31 
15

 

ZIF-8 Zn(mIm)2 SOD 2.45 
34

 

ZIF-11 Zn(bIm)2 RHO 3 
15

 

ZIF-12 Co(bIm)2 RHO 3 
15

 

ZIF-14 Zn(eIm)2 ANA 2.57 
35

 

ZIF-20 Zn(pur)2 LTA 2.04 
36

 

ZIF-21 Co(pur)2 LTA 2.04 
36

 

ZIF-60 Zn2(Im)3(mIm) MER 2.24 
35

 

ZIF-67 Co(mIm)2 SOD 3.4 
35

 

ZIF-68 Zn(bIm)(nIm) GME 2.11 
35

 

ZIF-69 Zn(cIm)(nIm) GME 2.10 
35

 

ZIF-70 Zn(Im)1.13(nIm)0.87 GME 2.11 
35

 

ZIF-71 Zn(dcIm)2 RHO 2.06 
35

 

ZIF-74 Zn(mbIm)(nIm) GIS 2.67 
35

 

ZIF-75 Co(mbIm)(nIm) GIS 2.67 
35

 

ZIF-76 Zn(Im)(cbIm) LTA 1.03 
35

 

ZIF-78 Zn(nbIm)(nIm) GME 2.08 
37

 

ZIF-80 Zn(dcbIm)(nIm) GME 2.07 
37

 

ZIF-82 Zn(cnIm)(nIm) GME 2.09 
37

 

ZIF-90 Zn(Ica)2 SOD 3.5 
38

 

ZIF-95 Zn(cbIm)2 POZ 1.51 
2
 

ZIF-100 Zn20(cbIm)39(OH) MOZ 1.29 
2
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2.1.3 Synthesis of ZIFs and ZIF derivatives 

2.1.3.1 Powder-based ZIFs 

During the past years, solvothermal and hydrothermal synthesis methods in 

organic solvents or water have been used for preparing ZIF-based materials. 

The reaction temperature varies from room temperature to 200°C and reaction 

duration could be from a couple of hours to three days.  

Multiple synthesis methods have been developed to generate ZIF-based 

materials (as shown in Figure 2.4) with different pore size and morphologies. 

Undoubtedly, ZIFs can be synthesised in the form of either a powder or a 

membrane. 

 

 

Figure 2. 4 Summary of different synthesis methods for ZIFs and ZIF-derived materials 
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Solvent-based synthesis 

Commonly, ZIFs materials can be prepared via a solvent-based or solvent free 

synthesis methods where selected organic solvents acted as the reaction 

medium. In 2006, Park et al. 15 successfully synthesised ZIF-1 to ZIF-12 in 

different amide solvent systems such as N, N-dimethylformamide (DEF), N-

methylpyrrolidine (NMP) and N, N-dimethylformamide (DMF), which were 

regarded as agents and could be removed after the reaction. In the same year, 

a mixed system of DEF/NMP/DMF was also acted as solvents to synthesise ZIF 

materials such as ZIF-95 to ZIF-100, ZIF-78 to ZIF-82 and ZIF-60 to ZIF-77 35-37. 

Methanol, being regarded as another important organic solvent, was also widely 

used in the synthesis of ZIFs. Huang’s group 16 successfully synthesised three 

different kinds of crystal structures in methanol medium. Zhang and co-workers 

39 obtained ZIF-8 crystals by using methanol as reaction medium mixed with 

aqueous ammonia. Later on, many researchers used similar approaches and 

solvents to synthesise many new ZIF materials.  

In order to improve the formation of ZIFs, the methanol/ethanol-based system 

was promoted by additives, such as pyridine, trimethylamine, and sodium 

hydroxide, which were added to the organic solvent systems during the 

synthesis process to control the crystal sizes and nanocrystal structures of ZIF 

materials 40-41. For instance, the nanocrystal size of ZIF-8 was controlled via 

employing sodium formate/1-methylimidazole and n-butylamine in methanol 

solution 42. After the use of additives, the crystal size of ZIF-8 could vary from 

10 to 65 nm. Meanwhile, the modulated ligand sodium could accelerate the 

crystal formation at room temperature. In addition, Nune’s group 18 synthesised 

nano-sized ZIF-8 with hexagonally shaped by using agent of poly 

(diallyldimethyl ammonium chloride) as a stabilizer in methanol. Since 2-

methylimidazolate could stop the growth and stabilize the positively charged 

nanocrystals, Peralta et al. 41 synthesised uniform ZIF-8 nanocrystals without 

any auxiliary agents but with excess 2-methylimidazole in the precursor. Thus, 

shapes and sizes could be successfully controlled via adding N-heterocycle, 

alkalamine, poly and sodium formate into the methanol-based medium. 
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Hydrothermal synthesis 

Considering the safety and environment friendly issue, large amount of 

flammable and expensive organic solvent could cause serious pollution to 

environment in the early state of synthesis researches. To avoid the above 

problem, much effort has been devoted to find green and efficient methods to 

synthesise ZIF materials in recent years. In Pan’s research 43, ZIF-8 with 

controllable size and high surface area was successfully synthesised at room 

temperature by adjusting the ratio of 2-methylimidazole and zinc nitrate. ZIF-67 

was obtained from the molar ratio of Co2+: MIm: H2O=1: 58: 1100 in aqueous 

solutions at room temperature 44.  

Using ammonium hydroxide or TEA as the deprotonating agent could reduce 

the use of ligand MIm and initiate the formation of ZIFs. Thanks to the action of 

TEA, it was found that the ratio of metal ion: MIm decreased to 1: 4 for the 

preparing of ZIF-67 and ZIF-8 at room temperature in Gross’s research 45. 

Yao’s group 46 reported the preparation of ZIF-8 in the presence of ammonium 

hydroxide with the molar ratio of Zn2+: MIm: NH4
+: H2O=1: 4: 16: 547. 

Additionally, ZIF materials could be also obtained in the presence of other 

additives in aqueous such as triblock copolymer and polyvinylpyrrodlidone 

(PVP), which can attract metal ions during the reaction. For example, both ZIF-

67 and ZIF-8 were prepared in aqueous ammonia systems in the presence of 

the triblock copolymer surfactant, which could promote the formation of porous 

ZIF-67 and ZIF-8 due to the electrostatic attraction to the metal ions 46. 

Furthermore, in Shieh’s report 47, smaller particles of ZIF-90 were successfully 

obtained via adding a certain amount of alcohol and polyvinylpyrrolidone in 

aqueous solution. 

Other solvent synthesis 

To avoid the competing interactions between the solvent-framework and the 

template-framework that are present in the hydrothermal synthesis process, an 

ionothermal method was developed using green solvents (ionic liquids), where 

ionic liquids are used as both the templates and solvents during the synthesis 38, 

48-49. The first use of ionic liquid for the synthesis of ZIFs was from Morris’s 

group 50, reporting ZIFs nanostructure were obtained by using 1-ethyl-3-

methylimidazolium bis-(trifluoromethyl)sulfonylimide, where ZIF-8 was 
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successfully synthesised. Apart from ionothermal synthesis, the sonochemical 

synthesis method has attracted much attention in recent years. During the 

sonochemical synthesis process, the formation of nucleation was promoted and 

become much more homogeneously. From Seoane’s report 51, ZIFs were 

generated under ultrasound irradiation. The resultant ZIFs crystals were much 

smaller with narrower particle sizes comparing to the conventional oven heating 

synthesised materials.  

Solvent-minimisation and solvent-free method 

Although the synthesis of ZIFs in the aqueous-based system is environmental 

friendly and cost-effective compared with those in the organic solvents-based 

system, some problems such as the use of excessive imidazole sources and 

massive solvent washing still make the aqueous synthesis method inefficient. 

Thus, solvent-minimisation methodology has been developed to eliminate the 

annoying washing procedure in solvent based systems 51. For instance, Shi and 

co-workers 52 found a conventional method of using a steam-assisted/ vapor-

assisted/ heating-assisted to fabricate porous ZIF-67 and ZIF-8. Compared with 

conventional hydrothermal synthesis approaches, solvent-minimisation method 

can not only reduce the amount of solvent significantly, but also increase the 

transformation rate from the solid reagents. 

Moreover, many ZIFs materials could be also successfully generated via 

solvent-free methods according to some very recent researches. For example, 

porous ZIF-8 have been successfully produced from the oxide/hydroxide-based 

solvent-free reaction without any by-product by Lin and co-workers 53. Cliffe et 

al. 54 successfully synthesised ZIFs using a low energy and solvent-free 

“accelerated aging” method. Then, ZIF-4, ZIF-67, ZIF-8 and ZIF-20 were all 

generated following the similar process. It is noteworthy that many different 

kinds of ZIFs could be formed using grinding the organic linker with the specific 

metal oxide 55-56. By using ZnO reaction with liquid-assisted and ion-assisted 

grinding, ZIFs with different kinds of topologies such as RHO, Quartz, and ANA 

can be obtained 57. 

2.1.3.2 Pure ZIFs film and membranes 

The well-defined and tunable porous structures of ZIFs allow them to achieve 

adsorption, gas separation and gas storage with a high selectivity due to the 
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molecular sieving effect 58. The pore size of ZIFs is usually less than 5 Å, which 

is in the suitable range of small gas molecular and liquids. The surface area and 

pore size of ZIFs were determined by using different linkers, which is versatility 

of imidazolate linkers. Therefore, different multiple synthesis approaches have 

been considered to fabricate ZIFs membranes for gas separation and chemical 

sensors, such as gas purification, carbon dioxide capture, and liquid separation 

via pervaporation. Similar to zeolite membranes, ZIF membranes are also 

generated by growing a thin ZIF layer on porous substrates, which could 

provide mechanical support and exhibit minimal permeation resistance. 

Although a wide range of materials could be considered as substrates such as 

stainless steel tubes, polymer sheets and porous ceramics, the quality of the 

fabricated membranes is mainly determined by the nature characteristic such as 

surface roughness, pore size and chemical composition 58. Currently, 

techniques for the synthesis of ZIF-based membranes can be roughly classed 

as direct synthesis and secondary growth 1. 

Direct synthesis 

In the direct synthesis process, a porous membrane substrate without surface 

modification is immersed in a ZIF synthesis solution, where a layer of ZIF grows 

directly on the substrate 59-60. For example, ZIF-8 membrane was prepared on 

titania support by microwave-assisted solvothermal synthesis 61. Firstly, 

immersing a dried and clean titania support into the precursor solution and 

leaving it for about 25 minutes. Then, the solution with the support was 

transferred into a 200 ml Teflon autoclave and heated in a microwave oven at 

100°C for 4 hours to complete the membrane preparation. Moreover, ZIF-8 was 

also synthesised via a one step in situ method, in which sodium formate was 

introduced and played a critical role in the formation of ZIF-8 membrane 62. So 

far, although many ZIF membranes have been successfully formed, the quality 

of resultant ZIF membranes with many intercrystal voids were not good 

because it is difficult to control ZIF crystallisation on an unmodified substrate. 

Secondary growth 

In order to control the growth speed, orientation, and the thickness of the 

synthesised ZIF films efficiently, the secondary growth, which is also named as 

seeded growth, has been developed in recent years. In the secondary synthesis 
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process, ZIF crystals are first directly deposited on the substrate, which could 

provide seeds to promote ZIF crystallisation. Afterwards, crystals are generated 

on the substrate during growth through initial functionalisation of the surface of 

the substrate by organic linkers 63-64, infiltration of precursors into porous 

substrates 65-66, or deposition of the precursor solutions on the substrate 

separately. For instance, porous zinc oxide support was acted as reactive 

seeding to generate ZIF-78 membranes during the hydrothermal synthesis 

process, and the secondary seeded growth was then carried out to crystallise a 

ZIF-78 layer on the support. Compared with the direct synthesis method, the 

secondary growth exhibits remarkable advantages of controlling the crystal 

orientation and thickness of the ZIF membrane 66.  

2.1.3.3 ZIFs-derived carbons 

Thanks to the porous structures with extra high surface and large pore volumes, 

ZIFs have been used as templates or precursors to generate porous carbon 

materials in recent years. For instance, ZIF-8, as a member of ZIFs family, is 

emerging as the best candidate to prepare metal-free nitrogen doped porous 

carbon due to the evaporation of zinc oxides during the pyrolysis. The resultant 

of nitrogen-doped carbons exhibits high ORR activity and stability 67-68. 

Moreover, other members of ZIFs family such as ZIF-68, ZIF-69 and ZIF-7 have 

been also developed as candidates for the generation of porous carbon 

materials. Their synthesis processes are similar to ZIF-67 by using heating 

treatment in inert atmosphere. Porous carbons were obtained after washing the 

high temperature processed resultant materials by acid.   

2.1.3.4 ZIFs derived sulfides/phosphides and porous carbon 

The earth’s abundant resources, cost effective and the synergistic effects 

between the metal and chalcogenide parts make transition-metal chalcogenides 

with heterogeneous structure as promising candidates in electrochemistry area 

69. Among them, ZIF-derived metal sulfides were most attractive owing to their 

large amount of active edge sites. Our group utilised ZIF-67 to synthesise cobalt 

sulfide/porous carbon nanocomposite by direct sulfurisation and carbonisation 

in hydrogen sulfide and argon atmosphere 1. In the first step, ZIF-67 materials 

were heated to the target temperature (600-1000°C) for carbonisation. Then, 

the hydrogen sulfide was introduced with flow rate of 5 ml/min and held for one 
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hour. After cooling down to the room temperature, the black powder was 

obtained. In addition, the cobalt sulfide/ porous carbon were also obtained by 

directly reacting ZIF-67 with thioacetic acid during the refluxing, under the inert 

atmosphere 70. In order to increase the electrochemistry performance of the ZIF 

derived sulfides, nickel/cobalt bimetallic sulfides were prepared. In the synthesis 

process of ZIF-67 powder, Nickel Nitrate Hexahydrate (Ni(NO3)2•6H2O) was 

introduced into solution with Co: Ni mol= 2: 1 and 4: 1. Then, using the same 

process as above, the bimetallic sulfides/ porous carbon were obtained.   

Very recently, many researches focused on the transition metal phosphides, 

which were used as HER catalysts owing to the facts that the negative charge 

of P sites can attract protons and the slightly positively charged metal sites of 

the transition metal phosphides can facilitate the bonding of atomic H. The 

cobalt phosphide/porous carbon were successfully synthesised via one step 

method. Generally, the mixture of a certain amount of ZIF-67 and sodium 

dihydrogen phosphate (weight ratio=1:4) were placed in the tube, followed by 

heating to the target temperature (300, 600 and 800°C) and was held for one 

hour in the argon atmosphere. After cooling down, the resulting powders were 

collected and then washed by ethanol and distilled water three times. Moreover, 

bimetallic phosphides were also obtained by introducing nickel such as Ni2P-

CoP and NiCoP 71-72. 

2.1.3.5 ZIF derived oxide(s) and porous carbon hybrids 

Transition metals or metal oxides are one of the attractive electrocatalysts for 

OER. However, the single transition metal oxide could not exhibit a good 

conductivity. The special configuration of ZIF materials, provides a strategy to 

generate well-dispersed metal oxide in the N-doped porous carbon composite 

to overcome its poor conductivity. For example, a recent report demonstrated 

that  finely dispersed Co3O4/ porous carbon hybrid materials can be synthesised 

by a two-step thermal conversion of ZIF-67 in different atmosphere 73. As shown 

in Figure 2.6, ZIF-67 powder was treated via carbonisation in argon atmosphere, 

converted to Co/ porous carbon. In the annealing process, the powder was held 

for 2 hours and then cooled down to room temperature. In the second step, the 

obtained powder was heated to 350°C in the air for two hours and finally, the 

resultant of Co3O4/ N-doped porous carbon were obtained. In addition, a 

complicated method of producing carbon-cobalt/ cobalt oxide composites was  
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Figure 2. 5 (A) Synthesis procedure and schematic diagram and (B) XRD pattern (C, D) TEM 

images and (E) HRTEM image of Co3O4/NPC 
74

 

also developed. In details, the first step is as same as above thermal pyrolysis 

of ZIF-67, followed by dispersing products in 2M H2SO4 solution for 12 hours to 

remove metallic cobalt with large particle size. The resultant materials were 

annealed at 350°C for one hour in air atmosphere and finally carbon-cobalt 

oxide nanocomposites were obtained 75. Moreover, our group first develop a 

green and facile one-step approach by using water steam at high temperatures 

with the utilisation of ZIF-8 as a precursor to generate atomically homogeneous 

dispersed ZnO/nanoporous N-doped carbon composites 76. 

In summary, many synthesis methods for preparing ZIFs and ZIF derivatives 

have been introduced and reviewed. For ZIFs powder materials, most common 

synthesis methods such as solvothermal and hydrothermal methods have been 

widely used. Moreover, other approaches, including ionothermal and 

sonothermal methods have also been applied for ZIF production. Additionally, 

solvent-minimisation and solvent-free methods have been successfully 

developed and were regarded as novel trend in the future. For the ZIF 

film/membranes materials, two synthesis techniques, direct synthesis and 

secondary growth methods have been developed in the past years. Regarding 

to the ZIF derivatives, ZIF-derived carbon-based materials with different 

properties and structures have attracted much attention. Among all synthesis 

methods, the in situ approach is the most popular to achieve a well dispersion 

of metals or metal compounds particles in porous carbon. Owing to the rapid 

improvement of synthesis strategies, there is no doubt that novel synthesis 
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methods with cost-effective, environment friendly and large scaled ZIFs and ZIF 

derivatives production will be developed in the future. 

2.1.4 Properties and applications of ZIFs and ZIF derivatives 

Due to the properties of high surface area, adjustable compositions and 

controllable structures, ZIF materials have been considered as promising 

adsorbents, catalysts, electrical sensors and drug deliveries. Moreover, given 

the fact that ZIF derivatives of carbon, metal-carbon and metal composite-

carbon could be obtained by heat treatment under different conditions, ZIF 

derivatives are attracting much attention owing to their porous structure and 

electrically conductivity properties. Therefore, many ZIF derivatives could be 

used as electrocatalysts and supercapacitors in typical electrochemical 

reactions.  

2.1.4.1 Gas separation 

Due to the increased global climate problem, both natural gas purification and 

carbon dioxide capture are attracting increased attentions. Developing novel 

materials with green and cost/energy efficient is the most urgent research topic 

in recent years. Similar to zeolite structures, ZIFs exhibit permanent porosities, 

variable structures, highly thermal and chemical stabilities, as a result, ZIFs 

have been considered as good candidates for gas separation applications. In 

Figure 2.5, a summarised gas separations illustrate both ZIFs and ZIF-based 

polymer mixed matrix membranes (MMMs) have been widely developed. Owing 

to the good potential in practical applications of ZIF membranes in these fields, 

ZIF membranes exhibit remarkable performance in both carbon dioxide and 

hydrogen gas separation. Among all ZIF materials, ZIF-8 is the most promoting 

porous membrane, which showed an excellent separation performance of H2 

from other large gases 58, such as separation of H2/CH4 
59 and separation of C2-

C3 hydrocarbon mixtures 77. In addition, ZIF-7/PBI MMMs and ZIF-8/PBI MMMs 

exhibited extra high separation of H2/CO2 and CO2/CH4, respectively. 
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Figure 2. 6 Summary of gas separations for both ZIFs and ZIF-based polymer mixed matrix 

membranes 

2.1.4.2 Catalysts 

Due to its similarity to aluminosilicate zeolites which are typical porous materials 

and also key commercially available catalytic materials 78, ZIFs and ZIF-based 

materials can also be efficient catalysts for a number of reactions, such as 

transesterification 79, the Knoevenagel reaction 80, Friedel-Crafts acylation 81 

and oxidation and epoxidation 82 etc. In a recent research, both ZIF-9 and ZIF-

10 show a promoting performance to form benzylidene malononitrile, acting as 

efficient catalysts in the Knoevenagel reaction 83. In addition, ZIF-8 has been 

explored as an efficient catalyst in Friedel-Crafts acylation reactions between 

benzoyl chloride and anisole 79. Furthermore, ZIF-8 was also shown excellent 

catalytic activity in hydrogen production 84 and ZIF-8/ZIF-9 demonstrated 

abilities as catalysts for oxidation 85 and epoxidation reactions 82. 

2.1.4.3 Drug delivery & electronic devices 

Due to the excellent chemical and thermal stabilities, good porous structure and 

pH sensitive properties, ZIFs have been used as platform for drug deliveries 86. 

For example, ZIF-8 showed a remarkable loading capacity for the anticancer 

drug 5-fluorouracil owing to its porous structure 87. Thanks to the its pH 

sensitive advantage, ZIF-8 was also used as drug delivery vehicle in medical 

treatment 87. In addition, in recent reports, ZIF-8 was also found to be an agent 
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to control the release of caffeine and protect the drug molecules in high 

temperature 88.  

For their excellent tuneable diameters and good functionalisation capabilities, 

ZIF materials can also be applied in electronic devices. For instance, ZIF 

materials including ZIF-7, ZIF-8, ZIF-67, ZIF-68 and ZIF-70 used as a matrix 

respectively for co-immobilising electrocatalysts methylene green and glucose 

dehydrogenase on the electrode surface, and the as-fabricated ZIF-based 

biosensors demonstrated a high selectivity and sensitivity to glucose in the 

cerebral system 89. Moreover, due to the porous structure, ZIF-8 is sensitive to 

Cu2+ and Cd2+ ions, and thus it can be used as luminescent probes to detect 

metal ions 90.  

Properties and applications of ZIF materials have shown a great development in 

the past years. The properties of these materials can be chemically tuned for 

different applications and has unlocked many opportunities for researchers to 

exploit ZIFs for their structure, thermal and chemical stabilities. However, 

scientists should pay attention to the nature of the functional groups pending on 

the imidazolate rings, since their chemical environment may change drastically 

the stabilisation and influences the activity and selectivity. It is believed that 

ZIFs are yet to unleash their whole potential, other challenges and novel 

developments would make ZIF materials highly attractive supports. 

2.1.4.4 Electrocatalysts 

Since the tetrahedral centres of ZIFs are connected by tuneable organic ligands 

and the porous structures of pure ZIFs could shorten the diffusion length of the 

electrolyte and therefore expose more active edge sites, many pure ZIFs have 

been synthesised and used as electrocatalysts 7, 91. Co-ZIF-9 is a theoretically 

promising candidate that can be used as an OER electrocatalyst because it can 

activate water molecules with low activation barriers. In Wang’s research 92, Co-

ZIF-9 can deliver efficient OER performance in the whole pH range, and the 

onset potential is only 0.4 V with the Tafel slope of 193 mV dec−1 in neutral 

solution. Apart from Co-ZIF-9, Co-ZIF-67 is also used as an excellent OER 

electrocatalyst in all pH range. A current density of 4 mA cm−2 was measured in 

a certain potential with a slope of -97 mV dec−1/pH from pH=13 to pH=2 93. 

Since the combination of ZIFs’ structure and cobalt centres located close to 
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vicinity, cobalt contained ZIFs could act as promising OER electrocatalyst with 

high catalytic activity and stability 94. 

Multiple ZIFs can be thermally treated to obtain conductive ZIF derivatives as 

electrocatalysts. Recently, nitrogen-doped carbon exhibits high ORR activities 

since the pyridinic-N will activate the adjacent carbon, enhancing its adsorption 

and activation toward oxygen during catalysis. Therefore, ZIFs materials were 

considered as good precursors to prepare nitrogen-doped carbons. For 

example, ZIF-8 is the best precursor to generate metal-free nitrogen-doped 

carbon among all ZIFs material 95 and therefore can be used as a template in 

the presence of furfuryl and NH4OH, which acted as additional precursors of 

carbon and nitrogen 96. The obtained resultants exhibit onset potential of 0.83 V 

(vs RHE) in O2 saturated 0.1M KOH solution and demonstrate a four-electron 

reduction pathway to produce H2O as the dominant product 96. Due to the active 

sites provided by porous structure, the resulting carbon exhibits an exchange 

current density of 0.063 mA cm−2 in 0.5M H2SO4 in HER and also shows a 

remarkable performance in OER. Beside these, ZIF-8 derived carbon also 

shows a high surface area of 923 m2 g−1 and pore volume of 1.58 cm3 g−1 96. In 

addition, ZIF-67 was also a good candidate precursor to prepare metal 

composite carbon. The four nitrogen atom coordinated and uniformly dispersed 

metal ions (M-N4) in the ZIFs are considered as the active sites for the ORR 97. 

Therefore, Xia’s group obtained nitrogen-doped carbon nanotube frameworks 

(NCNTFs), which retains the original morphology of the initial ZIF-67 particles. 

The resulting NCNTFs exhibit outstanding ORR activity with the half-wave 

potential of 0.87 V (vs RHE) and an excellent OER activity with the 

overpotential of 1.6 V (vs RHE) at the current density of 10 mA cm−2. 

Many ZIF-derived sulfides are also synthesised and exhibited considerable 

electrocatalytic activity toward the OER, ORR, and HER 98-99. In our research, 

ZIF-67 was used as precursor to generate metal sulfide via a heating treatment 

in hydrogen sulfide atmosphere 98. The obtained cobalt sulfide nanoparticles 

embedded in nitrogen-doped porous carbon exhibit outstanding OER and HER 

performance with the overpotential of 1.86 V and 0.3 V (vs RHE) at the current 

density of 10 mA cm−2, respectively. In order to increase the electrochemical 

performance, the combination of two metal sulfides or one metal with double-

shelled nanocages were explored. For example, in my research, 



35 
 

CoS@NiS@carbon nanocomposites were successfully synthesised and exhibit 

potential of 1.6 V and 0.39 V (vs RHE) at the current density of 10 mA cm−2, 

respectively. Besides that, different kinds of hybrids such as Co9S8/NC@MoS2 

72, Co3S4@MoS2 
100 and CoNC@MoS2 CNF 101 were all developed and used as 

electrocatalysts. Not only metal sulfides show good electrochemical 

performance, but also the combination of metal sites and phosphorus sites 

exhibit outstanding conductivity and superior stability in both acid and alkali 

environment. Thus, ZIFs can be used as precursors to generate metal 

phosphides embedded in N-doped porous carbon as electrocatalysts toward the 

OER and HER 102-103. For instance, the bimetallic phosphides Ni2P-CoP matrix 

and NiCoP were successfully prepared. The obtained nanocomposite 

possesses superior OER activity and exhibits excellent HER performance.  

In addition, transition metal oxides embedded in nitrogen-doped porous carbons 

were also well developed in recent years. For example, Co3O4@carbon 

nanocomposites, which were derived from ZIF-67, exhibited good OER 

performance with the overpotential of 1.52 V (vs RHE) at the current density of 

10 mA cm−2. To further increase the performance of the composites, Xu and co-

workers 93 improved the Co3O4 with oxygen vacancies.  

2.1.4.5 Supercapacitors 

So far the most representative ZIF materials which are studied for usage in 

supercapacitor applications are ZIF-8 and ZIF-67 104, thus ZIF-8 and ZIF-67 

derivatives also receive most research interests in this field. 

A promising type of materials for supercapacitor applications is nanoporous 

carbon (NPC), due to their large specific surface areas, good electric and 

thermal conductivities, and excellent porosity. All these are particularly 

optimistic for being used as electrode material in high-performance 

supercapacitor. Thus, it is understandable that ZIF-8 and ZIF-67 were 

considered to be promosing precursors to produce multi-structured carbon 

systems for potential use in supercapacitors.  

As early as in 2011, there was already report about unexpected high surface 

area and electrochemical properties as electrode for NPC material prepared 

from ZIF-8 and furfuryl alcohol 105. This early research clearly indicated the 

potential of ZIF derived materials in supercapacitors, which was soon followed 
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by a number of researches of different processes for ZIF. In 2012, Yamauchi et 

al. 104, 106-107 performed a series of experiments to produce NPC system from 

ZIF-8 and ZIF-67 via one-step direct carbonisation processes at different 

temperatures (T = 600-1000 °C for ZIF-8, 800 °C for ZIF-67). In their results, 

they discovered although the surface areas of the got samples increased with 

increasing carbonisation temperature, it is the Z-900 sample that achieved the 

highest capacitance performance (214 F g-1 at 5 mVs-1) among all ZIF-8 derived 

samples. Furthermore, the NPC derived from ZIF-67 through simple thermal 

decomposition process (which was carried out under an inert atmosphere and 

followed by thorough removal of cobalt nanoparticles with an acid wash) 

displayed even better capacitance performance (238 F g-1 at 20 mVs-1 in 0.5M 

H2SO4) than all ZIF-8 derived systems. 

Researchers have also made high-performance asymmetric supercapacitor 

(ASC, to distinguish from symmetric supercapacitor, which is SSC) with ZIF-8-

derived NPC as negative electrode materials. One interesting research was 

conducted by Wang et al. 108, in which the NPC was prepared with ZIF-8-

derived porous carbon polyhedrons (PCPs), and the produced aqueous-

electrolyte based ASC showed an excellent high capacitance value of 245 F g-1 

at 1 A g-1 as well as outstanding energy storage capacity of 25.4 Wh.kg-1 at 400 

W kg-1, plus excellent capacitance retaining property (93% retained after 10000 

cycles). The researchers pointed out the polyhedral shape of the NPC could be 

the main factor of the enhanced capacitance, higher rate capabilities and 

electrode volumetric energy densities. For another instance, Zhang et al. 109 

tried a MOF-NPC/MnO2 hybrid as anode material while ZIF-8-derived NPC still 

as cathode. As a result, they observed encouragingly high energy storage 

capacities (maximum energy density and maximum power density are 76.02 W 

h kg-1/2.20 kW kg-1 and 49.56 W h kg-1/22.00 kW kg-1 for their 

MNCMn60//MNCMn950 samples respectively). This can be considered as 

further evidence of derived NPC to be one of the best candidates as electrode 

material of ASC. 

On the basis of earlier work, researchers pointed out that in order to further 

improve electrode material properties, NPCs must be prepared with high 

graphic structures and possess high N content at the same time 105, 110-112. 

Unfortunately, the two requirements are conflicting with each other, because 
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normally the graphitisation process will significantly reduce N contents. As a 

result, the NPCs’ porosity was reduced 107, 113-115. As an early effort to overcome 

this problem, Yamauchi et al. 116 performed a pioneer research in which a 

functionalised nanoporous hybrid carbon material (NC@GC) that was derived 

from core-shell ZIF-8@ZIF-67 structures was synthesised. The product showed 

a capacitance of 270 F g-1 at 2 A g-1, which is an encouraging result for an early 

attempt for this type of new process. The fabrication of the material involves 

three basic steps: synthesis of the ZIF-8 seed core, growth of ZIF-67 shell 

surrounding the ZIF-8 seed and the final carbonisation step. The end product is 

a selectively functionalised nanoporous nitrogen-doped carbon@graphitic core-

shell structure with a well-defined rhombic deodecahedral morphology. The 

structure features a NC core with relatively larger surface area and higher N 

content, and a GC shell with higher graphitisation level. The result of this 

research proves a balance between pore size distribution, pore volume, N 

content, surface area and graphitisation level is crucial to obtain high 

performance supercapacitors, which could be achieved with creative structure 

and functionalising process design.    

Supercapacitor applications of ZIF-67 and its derived materials are heavily 

investigated in this work. They are particularly advantageous because ZIF-67, 

as a precursor, can produce not only N-doped NPCs (which is good cathode 

material, as aforementioned) but also nanoporous Co3O4 which can play the 

role of anode and possess high theoretical capacitance (3560 Fg-1) and high 

electrochemical stability. In addition, from the point of view of practical 

application, cobalt oxides are cost-effective and environmentally-friendly.  

Based on these advantages, researchers considered ZIF-67 and derivatives are 

superior supercapacitor material 117-118 and attempted to simplify the fabrication 

process of supercapacitor. One of the prominent work was performed by 

Yamauchi et al. 119 at 2015, in which they tried a so-called “two for one” strategy 

to produce NPCs and nanoporous Co3O4 through different thermal treatment 

process from ZIF-67. More specifically, the NPCs were produced by annealing 

in nitrogen atmosphere while nanoporous Co3O4 were in air. Both materials 

were proven to retain the original polyhedral morphology and were used to 

fabricate both SSCs and ASCs. For the SSCs, both electrodes are made up of 

same material (either NPCs or Co3O4) while the ASCs are with NPC cathode 
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and Co3O4 anode. The results, as expected, showed relatively low specific 

energy densities for the SSCs (carbon//carbon ~7 W h kg-1, Co3O4// Co3O4 ~8 

W h kg-1), and in contrary, high energy densities of 36 W h kg-1 for the ASCs. 

The fact that both electrodes are made up of materials produced from the 

precursor, not only makes the fabrication process simple, but also provides a 

highly accessible surface area for electron transfer due to both electrodes retain 

the precursor’s original polyhedral morphology. 

This pioneering work was followed by Xia et al. 120 who developed a similar 

approach based on the “two for one” concept as well, in which shrinking carbon 

shells and hollow Co3O4 were prepared from ZIF-67 with the assistance of 

graphene aerogels. The as-synthesised N-doped graphene aerogels (NG-A) 

was proven to be an excellent catalyst for the reduction-oxidation reaction 

(Redox), while further derivative (C/NG-A) exhibited both high capacitance (421 

Fg-1 at 1 Ag-1, and be able to retain 305 Fg-1 when current increased to 50 Ag-1) 

and rate capability. The C/NG-A also displayed an impressive power density of 

500 W kg-1 at an energy density of 33.89 W h kg-1 and was able to retain 25000 

W kg-1 at 24.86 W h kg-1 121-126. On the other hand, some researchers attempted 

other novel concept like “Ball-in-Cage” structure 127, in which a ZIF-67 

polyhedron structure was integrated into a three-dimensional carbon network. 

The structure is considered beneficial to electrochemical properties because the 

carbon network was thought to provide nucleation sites for ZIF-67 particles, 

thus supplying more active sites to the electron conducting pathways. 

ZIF materials have also been used to produce hollow nanostructures for 

supercapacitor applications. One prominent example is, Hu et al. 128 used ZIF-

67/Ni-Co layered double hydroxide (ZIF-67/Ni-Co LDH) yolk-shelled structures 

to prepare Co3O4/NiCo2O4 double-shelled nanocages (DSNCs) by first 

dispersing ZIF-67 particles into an ethanol solution containing Ni(NO3)2 then 

annealing in air. The Co3O4/NiCo2O4 DSNCs displayed high specific 

capacitance (972 Fg-1 at 5 Ag-1, and retain 92.5% of its after 12000 cycles) as 

electrode of pseudo-capacitance.  The Co3O4/NiCo2O4 DSNCs, as name 

indicates and proven by energy-dispersive X-ray spectroscopy results, consist 

of an inner shell mainly composed of Co3O4 and an outer shell made up of 

NiCo2O4. Both shells remain stable and intact during repetitive anodic and 

cathodic sweeps, producing several distinct redox peaks, thus demonstrated 
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that the excellent surface pseudo-capacitance performance is originated from 

the surface redox reactions. In a following work 70, the same group produced a 

similar double-shelled nanocage structure from ZIF-67@CoS for efficient redox 

reactions.  

Hu et al. 129 also made an interesting attempt to synthesise double-shelled 

hollow structures derived from ZIF-67 naocubes, which owns high surface area. 

In this work, after a two-step chemical treatment process, the core of the 

original nanocubes were transformed into CoS nanoparticles while shell 

become CoS nanosheets. These structures were found to successfully improve 

charge transport and help facilitate electrochemical reactions. In their prototype 

supercapacitors, these nanoboxes were used as anode material while activated 

carbon as cathode, and the hybrid device displayed an impressively high 

capacitance of 980 F g-1 at 1 A g-1 and 585 F g-1 at as high as 20 A g-1. The 

system also demonstrated good stability of running through a voltage range of 

1.6 V, and retained 88% of its capacitance after 10000 cycles.  

In conclusion, a lot of attentions have been paid to using ZIFs-based materials 

to prepare nitrogen-doped porous carbon. However, the carbon obtained from 

ZIFs tends to be microporous in nature and the lacking of larger pores is 

disadvantageous for the performance of these materials in many targeted 

applications such as electrocatalysts and supercapacitors, as the transport of 

molecules and ions along the narrow microporous passages is expected to be 

sluggish. Many efforts have been devoted to develop new strategy such as 

ultrasonic preparation, simultaneous solvent evaporation or etching in an NH3 

environment. However, these methods result in the formation of carbons with 

pore size in the macropore range. Therefore, novel methods based on 

carbonisation of ZIFs and graphite oxide (GO) is investigated in this work to 

achieve uniform sized mesopores. After the high temperature treatment, the 

porous graphene, converted from GO, provides more pathway for electron 

transportation and further improve the electron transport rate of ZIF-derived 

electrode materials. Therefore, in the following section, the recent research 

developments on synthesis, properties and applications of porous graphene will 

be reviewed and summarised. 
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2.2 Porous graphene 

2.2.1 Introduction   

Since the discovery of graphene in 2004, significant efforts have been made to 

exploit its application in almost every field of science, including physics, 

chemistry, materials sciences and life science 8-10. Graphene is a two 

dimensional single layered material, which behaves like semi-metals. The 

applications of graphene in electronics and electrochemistry are restricted due 

to its zero band gap nature 130. Graphene can be also used in the field of energy 

storage and catalyst, while free-standing graphene sheets shows low chemical 

activity. Therefore, the activation of graphene sheets (e.g. for energy storage 

and catalysis) attracts a lot of attentions recently. For example, porous 

graphene was explored to increase the effective surface area for energy 

storage 131-133. Porous graphene is a 3D structure built by few-layered graphene 

sheets with few carbon vacancies in 3D plane 131 and it can be micropore (pore 

diameter < 2 nm), mesopore (2 nm <pore diameter < 50 nm), and macropore 

(pore diameter > 50 nm), depending on the different fabrication techniques 132-

133. Compared to the original free-standing graphene sheet, porous graphene 

has unique porous structure combined with the inherent properties of graphene 

and exhibits outstanding properties of large surface to volume ratio, good 

biocompatibility, low cytotoxicity and tremendous flexibility 134-135 . Furthermore, 

porous graphene nanocomposites with unified systems are much more 

electrically and mechanically stable comparing with other graphene monolayer 

136. For these reasons, porous graphene has been demonstrated with good 

performances for various applications, including optoelectronics 137-138, sensors 

139-140, devices for energy storage 141-142, lithium ion batteries 143-145, fuel cells 

145-146 and biological applications 144.  

Many techniques/ routes were developed to produce porous graphene such as 

in-situ reduction assembly techniques 147, template growth 148, non-template 

growth 149, and other chemical vapour deposition 150. However, there are still 

some challenges in the production of porous graphene such as how to achieve 

structural conductivity and stability of porous graphene, how to control the pore 

size/shape for different applications and how to produce large scale porous 

graphene with low cost 151. Therefore, this section would focus on the recent 
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research developments on the synthesis and applications of porous graphene, 

and further to discover its performance in energy storage and catalysis  

2.2.2 Synthesis of porous graphene  

Porous graphene materials have attracted much attention in recent years due to 

the unique pore structure. In the following parts, two main synthesis methods 

are introduced and reviewed, namely, self-assembly methods and chemical 

vapour depositions methods (templated and non-templated growth approaches). 

Besides, some other methods producing porous graphene would be discussed 

as well. 

2.2.2.1 Self-assembly methods 

Self-assembly of pristine graphene and graphene sheets is an important 

method to manufacture a variety of graphene nanocomposites for valuable 

industrial and commercial applications such as nano-sheets grown on 

substrates and other analogues of graphene. Xu et al. 151 formed a self-

assembled graphene hydrogel through an expedient hydrothermal technique 

and the product graphene hydrogel could be used as a good electricity 

conductor, which exhibits a durable and thermal stability with a good 

capacitance. Chen et al. 152 established another technique to fabricate 3D 

graphene wrapping nanoparticles into the system. A magnetic graphene/Fe3O4 

aerogel was synthesised by one-step reduction and followed by mixing GO in 

Fe3O4 nanoparticles. The obtained gel was superparamagnetic, permeable and 

having large surface to volume ratio of electrochemistry ability. Chen et al. 147 

successfully fabricated porous graphene architecture via a self-assembly of 

graphene equipped by chemical reduction at 95 °C under the atmospheric 

pressure without stirring. In addition, Cong et al. 153 reported graphene/ Fe3O4 

hydrogels with robust unified porous networks, can be efficiently induced by Fe 

(II) ions at different pH values under several circumstances. Liu et al. 154 

reported a route to prepare large-scale graphene sponges using a speed 

vacuum concentrator. Depending on the temperature and other parameters, 

water soluble graphene oxide sheets were designed to create their sponges by 

using the centrifugal evaporation process. In this way, GO film thickness can be 

controlled at around 200 nm 154. Worsley and co-workers 11 found a 

synthesising method of low density porous graphene sheets which 
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demonstrates high electrical conductivities and larger surface-to-volume ratios. 

Functionalised and surface-enhanced designs of porous graphene were 

extensively examined for the oxides-based nanomaterials and carbon related 

materials. This method is frequently restricted to multiphase materials, organic 

and inorganic hybridised materials. Moreover, Wang’s group 155 reported a 

novel approach to build well-ordered metal oxide graphene nanocomposites. 

This technique can be also used to synthesise free-standing, flexible metal 

oxide graphene nanocomposite films and electrodes. Figure 2.7 presented the 

schematic illustrations of the ternary self-assembly approach to ordered metal 

oxide graphene nanocomposites was reported 155. 

 

Figure 2. 7 Schematic illustrations of the ternary self-assembly approach to ordered metal oxide 

graphene nanocomposites. (A) Graphene or graphene stacks, which are used as the substrate 

instead of graphite. Adsorption of surfactant hemi micelles on the surfaces of the graphene or 

graphene stacks causes its dispersion in surfactant micelles in an aqueous solution. (B) The 

self-assembly of anionic sulfonate surfactant on the graphene surface with oppositely charged 

metal cation species and the transition into the lamella mesophase toward the formation of 

SnO2 graphene nanocomposites, where hydrophobic graphenes are sandwiched in the 

hydrophobic domains of the anionic surfactant. (C) Metal oxide graphene layered 

nanocomposites composed of alternating layers of metal oxide nanocrystals and 

graphene/graphene stacks after crystallisation of metal oxide and removal of the surfactant. (D) 

Self-assembled hexagonal nanostructure of metal oxide precursor with nonionic surfactants on 

graphene stacks. Reprinted from 
155
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2.2.2.2 Chemical vapour depositions (CVDs) 

Template-based CVDs and non-template-based CVDs are two typical and 

significant techniques to fabricate 3D porous graphene. In the following parts, 

both two approaches will be introduced and discussed. 

Template growth method 

Cao et al. 156 developed a porous graphene network, which was fabricated via a 

facile CVD process with ethanol as the carbon source. The obtained resultant 

may serve as a useful platform to construct graphene and several metal oxide 

composites for energy storage applications. Chen’s group 150 reported a 

template-based CVD method for the synthesis of porous graphene foams (GFs) 

using nickel as templates. Graphene sheets in the GFs are faultlessly 

consistent into a porous flexible network. The unique network structure, large 

specific surface area and the electrical and mechanical characteristics of 

GFs/composites make them particularly useful in several applications including 

lithium ion batteries and supercapacitors, catalysts and biomedical supports. 

Therefore, this template-based CVD method is versatile and scalable, and it 

could be used for the fabricating a broad class of porous graphene structures 

with different firm shapes and tremendous properties. In addition, Li et al. 157 

developed fibers based on graphene with porous and monolithic structure 

fabricated from CVD films. The surface and evaporation behaviour of solvent 

plays important role in film growth. The obtained graphene fibers demonstrate 

not only high electrical and thermal properties, but also a uniform pore size 

distribution. In Wang’s research 158, the porous graphene was designed to be 

grown on the surface of a porous graphene scaffold, which  was known as the 

micro-graphene nanotube. Furthermore, Yoon et al. 159 reported a CVD method 

to fabricate porous graphene composites without using substrates. Throughout 

the experimentation, mono- and multi-layered graphene was precipitated on the 

surface of the reduced iron, whose dimension can be efficiently adjusted by 

familiarising the creation of nano-systems 160. Significantly, the subsequent 

porous graphene could be further shifted onto any random substrate for flexible 

devices. 
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Non-template growth method 

Apart from the template growth method, porous graphene can also be 

synthesised from non-templated growth methods. Commonly, KOH is the best 

chemical activation agent in the preparation of porous carbon materials. Ruoff 

et al. 161 synthesised porous graphene with the pore size of micro-pore and 

meso-pore from the exfoliated graphene oxide. The obtained porous graphene 

displays a good electrical conductivity and could be considered as the best 

electrode material for supercapacitor with an ultrahigh energy density. Chen et 

al. 162 synthesised porous graphene by using the precursor (e.g. biomass and 

polyvinyl alcohol), followed by the KOH activation from the graphene based 

material. The prepared porous graphene material exhibits an ultrahigh surface 

area and excellent capacitance with a high energy density. However, the strong 

KOH reagent used in the industry may cause an environment concern, and 

therefore, in recent Peng’s research 163, carbon dioxide was used to reduce 

graphene oxide. Throughout the method, strong KOH activation process can be 

avoided and organic materials were removed from water. On the other hand, a 

few researchers put their efforts into developing the synthesis method by using 

HNO3 oxidation of graphene oxide. Zhao and co-workers 164 reported that the 

porous graphene was prepared using nitric acid oxidation and ultrasonic 

vibration of graphene oxide and followed by thermal reduction. The advantage 

of this method is that the pore size can be controlled by changing the ultrasonic 

time and the acid concentration. The pores size increased from 7 to 600 nm 

with the increase of the acid concentration 164. Additionally, the catalytic 

oxidation is also a good non-template synthesise growth method in which metal 

165 and metal oxide 166 are used to prepare the porous graphene. The pore size 

can be controlled from 5 nm to tens of nanometres by changing the Ag loading 

level 165.  

Currently, non-templated growth methods for the synthesis of porous graphene 

is easier compared with templated growth methods. However, it is difficult to 

control the geometries, pore size distribution and the defects in the porous 

graphene structures. Therefore, chemical agents or reaction methods need to 

be optimised to achieve porous graphene with low defects in the further. 
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2.2.2.3 Other methods 

Local strain in graphene sheet could change its electronic and transport 

properties. In this regard, Li et al. 167 reported an accessible strain-engineering 

technique to yield porous graphene structures. The procedure could be 

surmounted up to roll graphene by changing laser beam size and scanning 

speed. Freeze casting is an additional template-free approach for the 

production of graphene sponge. Xie et al. 168 recommended a suitable and 

comprehensive process to adjust the characteristics of porous graphene. Using 

this tailored casting process, the pore size and wall thickness of the resulting 

graphene could be gradually tuned from 10 to 800 nm and 20 to 80 nm, 

respectively. The corresponding properties of porous graphene were then 

changed from hydrophilic to hydrophobic and the Young’s Modulus varied by 15 

times. To combine the excellent properties of both carbon nanotubes (CNTs) 

and graphene simultaneously, Zhu, et al. 169 formulated a sandwich structure 

using graphene and CNTs through covalent bonds. As shown in Figure 2.8, 

graphene was grown on a copper foil by decomposing CH4 or PMMA at 1000 

˚C. Then the iron catalyst and alumina buffer layer were deposited on the 

graphene in series by electron beam evaporation. During this process, iron 

catalyst and alumina buffer layer were lifted up and the CNT carpet was grown 

directly out of the graphene.  

 

Figure 2. 8 (a) Copper foil substrate. (b) Graphene is formed on the copper foil by chemical 

vapour deposition (CVD) or solid carbon-source growth. (c) Iron and alumina are deposited on 

the graphene-covered copper foil by using e-beam evaporation. (d) A CNT carpet is directly 

grown from graphene surface. The iron catalyst and alumina protective layer are lifted up by the 

CNT carpet as it grows 
169

 

Li et al. 170 reported a one-step ion-exchange/activation method to construct 

porous graphene-based materials using a metal ion exchange resin as a carbon 

precursor at low temperature which resulted in porous graphene-like network 

structures. In addition, Liu et al., 171 fabricated polyaniline (PANI)- graphene 

composites by in situ chemical oxidative polymerisation. Such kind of 
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polymerisation could be initiated by amino groups on graphene. The resultant 

composite showed high capacitance and excellent cycling and thermal stability. 

 2.2.3 Properties of porous graphene

Owing to the unique pore structure, porous graphene and graphene-based 

materials exhibits different properties. For instance, the microstructure 

properties offer large surface-to-volume ratio and porous graphene behaves like 

semiconducting nanocrystal because of the excellent electronic properties. In 

addition, doping of porous graphene can also improve the mechanical 

properties. 

2.2.3.1 Microstructure properties 

Depending on fabrication routes, porous graphene has various structural 

features in terms of porosity and size distribution. Recently, two dimensional 

polyphenylene, a porous graphene with pore size distribution within one atomic 

range, has been magnificently synthesised 172-173. The obtained porous 

graphene can be considered as pure graphene with a crystallinity of hexagonal 

atomic arrangements. Then, similar results of porous graphene have been also 

reported 174. Fischbein et al. 175 presented the generation of nanopores into 

graphene, claiming that thoroughly filled nanopores can be accomplished by 

utilizing an electron beam of a transmission electron microscope (TEM). 

Additionally, other groups also demonstrated that the production of pores into 

graphene sheets is a pronounced idea using TEM 176. Bieri 172 and co-workers 

successfully fabricated porous graphene with systematic dispersed holes/pores, 

which were in two-dimensional polyphenylene and homogeneously distributed 

with an identical width. Due to the structure of the precursor, the cyclohexa-m-

phenylene (CHP) is quite like graphene with phenyl rings periodically missed. 

Graphene unit cell comprises two carbon atoms while two dimensional 

polyphenylene contains a supercell with the unit cell linked with a carbon-

carbon bonding 173. The width of pores is determined by the various fabrication 

routes depending on the functional groups, crystal structures, electron mobility 

and lateral constraints. 

2.2.3.2 Electronic properties 

Electronic properties of porous graphene have been studied using density 

functional theory (DFT) 173, 177 and crystal orbital methods (COM) 178. 
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Computational results showed that porous graphene behaves like 

semiconducting nanocrystal with a bandgap which significantly varies with 

different techniques. The COM gives a wider band gap compared to DFT 

simulations 173. DFT ordinarily gives an understanding on the band gap and 

thus it requires experimental verifications 177. Porous graphene is particularly 

attractive owing to the band gap, which could be made open 178-181. As there are 

nanopores in the crystalline arrangements of porous graphene, the electronic 

characteristics need to be optimised. The main restriction of pristine graphene is 

zero band gap, limiting its applications in optoelectronics 177, 182. Thus, to have a 

band gap is the key feature of semiconductor materials and it plays a vital role 

in electronic configurations and structures 183. For this reason, many researches 

carried out a lot of explorations to create a band gap in pristine graphene by 

several ways, such as surface modifications, doping 184-185, functionalisation 186 

through a lateral dimension reduction and the formation of pores 185. Many 

simulation and modelling works 187-189 indicated that the band opening in 

graphene can be induced by introducing holes/ pores into the graphene. The 

creation of bandgap in graphene could contribute to its variety of applications 187. 

By introducing pores into graphene, porous graphene could have a wide 

bandgap owing to its weird aromatic structure. Different modelling works can 

provide various band gap values. For example, Brunetto et al. 190 demonstrated 

a band gap value of 3.3 eV using DFT,  which is approximately 21% smaller 

than that reported by Pierre. This is maybe due to the different understanding of 

band gap values in generalised gradient approximation (GGA) function. On 

contrary, hydrogen fluoride (HF) were generally verified by experimental values 

191. Du et al. 177 gave a bandgap of 3.2 eV for porous graphene with a hybrid 

functional. Regardless inconsistency of band gap values in these studies, 

porous graphene has a bandgap owing to the presence of pores. Due to these 

indicative results, many studies have been carried out for the potential 

application of porous graphene 177. 

2.2.3.3 Mechanical properties 

Pure graphene, as discussed before, exhibits several fascinating characteristics 

and the presence of bandgap in graphene offers excellent mechanical and 

magnetic properties 187, 192. Its mechanical characteristics were demonstrated 

by Lee et al. 187, indicating that porous graphene can be used as the strongest 
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material that exhibits hardening and strengthening features as well as the 

highest thermal conductivity at room temperature 188-189, 193-194. Fabricated from 

pristine graphene, the porous graphene has benefits of excellent properties as 

well as the pristine graphene performance. As a result, many researches were 

carried out to investigate the properties of graphene with some functionalisation 

and conjugations. In addition, these performances need to be controlled through 

the doping and functionalizing agent. Different characteristics of graphene 

oxides were studied with various functionalizing agents. For the mechanical 

properties, doping/functionalisation can improve the tensile strength by adding 

several functional groups into graphene nanocomposites. A further increase of 

these functional groups can lead to a decline in tensile strength of GO. This can 

be caused by some defects in the nanostructure formed due to the aggregation 

of GO layers. On the other hand, for functionalised GO, the tensile strength is 

significantly increased when there is no aggregation of GO layers 195. Extra 

work is therefore still needed to further explore the mechanism of relative tensile 

and mechanical properties, magnetic properties, edge structures and valence 

states.  

By far, it has shown several extraordinary properties of porous graphene such 

as lower mass density 196, large surface to volume ratio 162, and a larger surface 

capacitance 130. Consequently, porous graphene has been used in several 

applications in a variety of fields, including lithium batteries, energy storage 197 

and supercapacitors 198, and nano-electronics 197. 

2.2.4 Applications 

Porous graphene has a variety of applications in the field of physics, chemistry, 

biosciences, material science and electronics engineering. Owing to its 

excellent mechanical and electrochemical properties, porous graphene has 

been found extremely useful in supercapacitors, Li-ion batteries, hydrogen 

evolution, fuel and solar cells, electrochemical sensors, as well as nano-

electronic devices and DNA sequencing. 

2.2.4.1 Electrocemical devices 

From the last decade, electrochemical devices such as supercapacitors were 

considered as fascinating candidates in the field of energy storage owing to 

their long life cycle, high surface to area ratio, mechanical stability and cost 
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effective features 199-201. Hence, they have been extensively explored in 

numerous fields such as nano-electronics devices 201. Carbon based materials 

such as pure carbon 202, single-walled and multi-walled carbon nanotubes 202-204, 

stimulated carbon 205, metallic oxides and metalloids 206-207, could be used as 

electrode materials of supercapacitors. The capacitance characteristic relies on 

electrolyte, pore size distribution and conductivity. Qu 204 found those carbons 

with superior number of pores were more suitable for the supercapacitor 

applications owing to their high energy storage capacities 204. In recent years, 

many research groups considered graphene related materials as promising 

candidate for capacitors 208-209 due to their large surface-to-volume ratios and 

other mechanical and electronic features 208. Many studies have been focused 

on the practical applications of supercapacitors 210. Additionally, porous 

graphene gives a higher capacitance than stimulated graphene due to its pore 

size, structure and dispersion. These properties make them good 

electrochemical materials as they have fast electron transfer rates on their 

surfaces. Zhang et al. 210 also reported the same result that the reduced porous 

graphene has good efficiency in supercapacitors in terms of fast electron 

transfer rate. They compared reduced porous graphene thin films with porous 

carbon thin films where porous graphene demonstrated a higher specific 

surface area of 2400 m2g−1 210. Graphene related materials are promising 

candidates for portable energy devices and electronics vehicles. Especially 

combined with nanoparticles, it is able to gain ultrahigh specific capacitance 

depending on the Faradaic response on the electrode surface. Li et al. 211 

reported a solid-state supercapacitor fabricated by graphene fibers restrained 

with MnO2 nanoparticles. It presented an excellent capacitance (42.02 mF cm-2), 

which was much higher than that of pure graphene fibers (GF) (2.13 mF cm-2) 

211. The device showed an outstanding electrochemical and mechanical stability 

without sacrificial electron onto the surface for long and short term 

electrochemical and mechanical cycles. GFs displayed potentials for malleable, 

bendable and corrosion resistant electronic devices by textile electrodes which 

were fabricated by joining GF–carbon nanotubes fibers (CNTFs). It has been 

revealed that the superlative supercapacitor properties have been 

accomplished through refining electrodes with hierarchical nanostructures and 

larger porosity owing to the improved accessible surface area of porous 

graphene.  
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2.2.4.2 Fuel cells 

Graphene related materials are very attractive for their applications on hydrogen 

evolution, oxygen reduction cathodic catalysis, water purification and filtration 

due to their fast electron transfer rates which are able to generate high power  

 

Figure 2. 9 Electrochemical Characterisations of carbon cloth anode and graphene/PANI anode 

in MFC 
205

 

electricity. By using electrochemical layer-by-layer (LBL) method, associated 

RGO/ GO/ PG/ GFs/ GNPs and RGO/ PDDA (polydiallyldimethylammonium 

chloride) film has been designed for the oxygen reduction reactions catalysis. 

For example, due to the chemical interaction between the reduced GO and 

Polydiallyldimethylammonium chloride (PDDA), graphene provides an improved 

oxygen reduction reaction ability with a blue-shifted potential and current 

density. In addition, 3D nitrogen-doped graphene/ Fe3O4 aerogel has been 

synthesised by a hydrothermal process and displayed a more positive potential 

of -0.19 V and higher current density of -2.56 mA cm-2 than those of nitrogen 

doped graphene/ Fe3O4 powder (-0.26 V and -1.46 mA cm-2, respectively) 212. 

The prepared 3D catalyst displayed a 100 mV negatively-shifted onset potential 

of -0.6 V and three times higher current density of 183 mA cm-2 compared with 

those of the commercial Pt/C electrode of -0.5 V and 55 mA cm-2 212. Linear 

sweep voltammetry, rotating ring-disk electrode and electrochemical impedance 
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spectroscopy demonstrated that oxidation/ reduction current of graphene 

hydrogel is superior to the commercialised catalyst, indicating its high stability 

for oxidation process. In recent years, microbial fuel cell (MFC) has attracted 

pronounced attentions in the field of renewable energy for converting bacterial 

metabolised power into electricity. Yong et al. 205 reported MFC has distinct 

effects in green energy foundations to yield electricity with numerous carbon-

based substances. Despite of the low microbial stacking volume and little 

cellular electron transference proficiency amongst microorganisms, anode 

frequently bounds its applications. Figure 2.9 shows the electrochemical 

Characterisations of carbon cloth anode and graphene/PANI anode in MFC. 

2.2.4.3 Lithium ion batteries 

Excellent characteristics of porous graphene also make them fascinating for Li-

ion batteries applications where it can be used to accomplish rising loads in the 

field of current electronic devices (e.g. portable communication devices and 

mobile electronic devices). Graphene combined with nanoparticles used as 

electrodes have shown high capacity, long cycling life and high stability in 

electrochemical applications. For instance, graphene honeycomb film was 

demonstrated to be an improved batteries enactments with an adjustable bulk 

(1614 mAhg-1) and a flexible maintenance ability (71%) when compared with 

the traditional graphene film due to its large pore sizes and electrochemical and 

mechanical compatibility 213. The graphene paper fabricated by mechanical 

exfoliating and disintegrating graphene aerogel displays excellent charge 

capacities of 864 mAhg-1 (coulombic efficiency of 79.2%, higher than the other 

reported work and also enhanced to 97.5% in several cycles) 213, which is better 

than those demonstrated by other research groups earlier. Additionally, 

graphene paper showed a good cyclic stability of 99% of the capacitance 

remaining a high current density of 20 Ag-1 after 40000 cycles owing to the 

folding structure 214. Such unique structure provide more access to the Li-ion 

insertion active spots and improve the ability of electrolytes in electrode 

materials. The sandwiched graphene/ Fe3O4 paper indicated a larger definite 

capacity of 940 mAhg-1, compared to pristine Fe3O4 (200 mAhg-1) and the 

traditional graphene/ Fe3O4 electrode (400 mAhg-1), respectively 214. Three-

dimension graphene-based macroscopic assemblies with interconnected 

networks displayed distinctive pluses in exploring novel lithium-ion battery 
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electrode materials with improved capabilities. Owing to the large surface area 

of porous graphene, its assemblies are also favourable for electrochemical 

applications and speedy Li-ion dispersion.  

2.2.4.4 Solar cells 

Porous graphene has also been intensively researched in the field of solar cells 

owing to its cyclic stability, electrochemical performance and other electrical 

parameters. Joseph and co-workers 215 demonstrated the application of doped/ 

functionalised graphene sheets onto the counter electrode having oxygen 

species spots and their activity was excellent, which is comparable to platinum. 

To reveal the elctrocatalytic performance of functionalised graphene sheets 

regarding to the fast reduction of triiodide, they proposed an electrochemical 

impedance spectroscopy corresponding route that matches the experiential 

spectral parameters to understand their real mechanism. In addition, they have 

demonstrated that a functionalised graphene sheets based ink can be used as 

an electrocatalytic and malleable conductive counter electrode. Yen and co-

workers 216 fabricated 3D hybrid materials (graphene and acid-treated multi-

walled carbon nanotubes) by using a solution-based technique. The absorption 

of multi-walled carbon nanotubes on graphene sheets shrinks the p–p interface 

amongst graphene sheets ensuing from steric interruption and limitation. In 

addition, Li et al. 217 reported the synthesis of Schottky joints which is cost 

effective and low maintenance. It is expected that carbon-based photovoltaic 

cells may become more practicable than silicon-based cells with their novel 

fabrication process.  

2.2.4.5 Other applications 

Graphene is an exceptional and attractive material for biochemical sensors due 

to the fact that all atoms are exhibited to the environment for the adsorption of 

molecules and provided an extremely large sensing area 218. The simplest and 

mostly applied configurations of graphene based sensors are either chemi-

resistors or field effect transistors (FETs). In both cases, the electrical 

resistance from the interaction between the analyte and graphene was 

measured using a simple ohmmeter. Additionally, sequencing the human 

genome in DNA can improve our understanding of physiology, disease, 

medicine, genetics, and human development. An ideal technique for DNA 
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sequencing should be simple, fast and cost-effective. Among all techniques, 

nanopore graphene for DNA sequencing is unique because it is potential to 

meet above requirements 219. Hence, membranes used for this are required to 

be robust, durable, and as thin as possible to differentiate the sign of two 

contiguous nucleobases. 

Pure gases are important for manufacture applications and technical research, 

and they are usually gained by old-fashioned separation approaches such as 

distillation and adsorption by using high pressure. In comparison with these 

techniques, membrane separation has several advantages including low 

maintenance costs, small capital investments and mechanical stability 220. 

Actually, membranes play a vital role in selective gas separation and show a 

substantial part in gas and chemical purifications. Size-defined pores of the 

membrane could selectively allow smaller molecules to pass through while 

blocking the larger molecules 221. Graphene is a naturally existing excellent 

starting material for developing membranes with its high mechanical stability 

and chemical inertness. However, pristine graphene is impermeable to standard 

gases including helium because of densely packed honeycomb crystal lattice. 

Therefore, graphene membranes are becoming excellent candidates in gas 

purifications.  

On the other hand, the shortage of water resources is recognised as a present 

and future threat to human activity and, consequently there is an increasing 

demand of developing alternative water resources. Desalination is one of the 

most promising methods to get new drinking water for human use due to the 

abundance of seawater. In contrast to the classical reverse osmosis (RO) 

membranes, nanoporous graphene membranes allow water to flow across well-

defined channels rapidly. Molecular dynamics studies have shown that 

nanoporous graphene is a promising material for water desalination 222. They 

found the relationship between the desalination dynamics with the size and 

chemistry of pores and the applied hydrostatic pressure 223. These calculations 

proposed that functionalisation of porous graphene with hydroxyl groups is an 

efficient strategy as the hydroxyl groups can generate a strong energy barrier 

for Cl- ions. It was also pointed out that a combination of electrostatic and 

hydration influences and defines the presentation of a nanoporous graphene 

membrane for water purification. The theoretical predictions described a 
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beautiful picture of using nanoporous graphene as a membrane for desalination 

in the future. 

In conclusion, graphene has been a fascinating material to study due to its 

excellent thermal and mechanical stability, large surface to volume ratio, large 

surface area, and excellent electrical and mechanical properties. There are a 

variety of analogues of graphene, such as porous graphene, 3D graphene foam, 

graphene oxide, graphene quantum dots and others. Porous graphene is a kind 

of graphene sheet in which some carbon atoms are missing. Therefore, porous 

graphene exhibits different properties from pristine graphene owing to its unique 

pore structure. This is the reason that porous graphene is a suitable material for 

energy storage.   

2.3 Summary 

In summary, we have reviewed the development and the recent progress of ZIF 

materials/ZIF derivative materials and porous graphene materials. Thanks to 

the advantages of high carbon content, rich metal centres, and intrinsic porous 

nature, ZIFs are a class of versatile crystalline porous materials and their 

porous structures and tunable compositions provide a platform to prepare ZIF-

derived nanomaterials with the desired catalytic active sites and can be used as 

various electrocatalysts. Duo to the limitation of intrinsic property, graphene-

based materials with a high surface area, have been introduced and used as 

catalytic support to further improve the electrical conductivity and 

electrochemical stability. Because graphene embedded ZIF-based 

electrocatalysts are carbon-based nanocomposites derived from heating 

treatment of ZIFs/GO, further studies would focus on the developing and 

synthesising of bi-metal or trilateral-metal ZIF derivatives with controllable active 

sites used for electrocatalysis. The new concepts, new methods and new 

applications of ZIFs/ZIF derivatives/graphene are expected to be further 

expanded. 
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Chapter 3：Experimental methodology 

 

3.1 Raw materials and chemicals 

2-Methylimidazole (99%, MIm), Co(NO3)2·6H2O (99%), Ni(NO3)2·6H2O (99%), 

Fe(NO3)2·9H2O (99%), Argon, Hydrogen sulfide, Graphite power, Concentrated 

suffuric acid, KMnO4 and 30% H2O2. All chemicals were obtained from Sigma-

Aldrich.  

3.2 Synthesis of ZIF-67 and ZIF-67 based composites 

3.2.1 Preparation of ZIF-67 

ZIF-67 was synthesised from cobalt nitrate hexahydrate and 2-Methylimidazole 

(MIm) in water through an established approach. Briefly, 55 g of 2-

Methylimidazole was dissolved in 200mL of deionised water; meanwhile, 4.5 g 

of cobalt nitrate hexahydrate (Co(NO3)2·6H2O) was also dissolved in 30 mL of 

deionised water and the two solutions were mixed together under further stirring 

at room temperature for 24 hrs. The molar ratio of the synthesis mixture is Co2+: 

MIm: H2O = 1: 58: 1100. Then the purple product was collected after being 

filtered and washed with deionised water for several times. Finally, the 

composites were air-dried in a fume cupboard at room temperature for 48 hrs 

before being subjected to further characterisations. 

3.2.2 Preparation of Ni-substituted ZIF-67 

Firstly, Ni-substituted ZIF-67 was solvothermal synthetised using requisite 

amount (1, 2, and 4 mmol) of nickel nitrate hexahydrate (Ni(NO3)2·6H2O) 

together with 4 mmol Co(NO3)2·6H2O and 300 mmol 2-Methylimidazole. These 

chemicals were dissolved in 100 mL deionised water, the whole solution was 

then stirred continuously at room temperature for 24 hrs. The parental 

precursors were finally collected after filtration and being washed with 15 mL 

deionised water for three times, followed by drying at room temperature for 48 

hrs. The obtained product was designed as xZIF-67-yNi, where x and y stand 

for the molar ratio of n (Co)/n (Ni) in the Ni-substituted ZIF-67. 
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3.2.3 Preparation of Fe-substituted ZIF-67 

The bimetallic composites were synthetised from the Fe-substituted ZIF-67 

crystals. Typically, Fe-substituted ZIF-67 was solvothermally synthetised using 

requisite amount (1, 2, 4 and 8 mmol) of iron nitrate nonahydrate 

(Fe(NO3)2·9H2O) together with 4 mmol Co(NO3)2·6H2O and 300 mmol 2-

Methylimidazole. They were then dissolved in 100 mL deionised water, and the 

whole solution was stirred continuously at room temperature for 24 hrs. The 

parental composites were collected after being filtered and washed with 15 mL 

deionised water for three times, followed by drying at room temperature for 48 

hours. Finally, the pristine obtained Fe-substituted ZIF-67 parental composite 

was designed as xZIF-67-yFe, where x and y stand for the molar ratio of n (Co)/n 

(Fe) in the Fe-substituted ZIF-67. 

3.2.4 Preparation of GO/ZIF-67 

GO/ZIF-67 composites were synthesised via the same method for pristine ZIF-

67 with slight modification. Briefly, requisite amount of GO was dispersed in 

deionised water and sonicated for 1 h, followed by the addition of requisite 

amount of 2-Methylimidazole under stirring. Then, combine it with 

Co(NO3)2·6H2O solution under further stirring at room temperature for 24 hrs. 

The molar ratio of synthesis mixture is Co2+: MIm: H2O = 1: 58: 1100.  After 

filtering and washing with deionised water several times, the purple product was 

collected. Finally, the composites were air-dried in a fume cupboard at room 

temperature for 48 hrs.  

3.2.5 Preparation of Ni-substituted GO/ZIF-67 

First, Ni-substituded GO/ZIF-67 was solvothermally synthetised using requisite 

amount (1, 2, and 4 mmol) of Ni(NO3)2·6H2O together with 4 mmol 

Co(NO3)2·6H2O, 300 mmol 2-Methylimidazole and different amount of GO 

which were prepared via a slightly modified Hummers Method. These chemicals 

were first dissolved in 100 mL deionised water, the whole solution was then 

stirred continuously at room temperature for 24 hrs. The parental precursors 

were finally collected after filtering and washing with 15 mL deionised water for 

three times, followed by drying at room temperature for 48 hrs. The produced 

composites were named as xZIF-67-yNi-zGO where x, y stands for the molar 

ratio of Co and Ni in parental precursors and z stands for the weight percentage 
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of graphene oxide. Therefore, the precursor composite with a molar ratio n (Ni)/n 

(Co) of 1/4 and a 5% graphene oxide is named as 4ZIF-67-Ni-5GO. 

3.2.6 Preparation of Fe-substituted GO/ZIF-67 

Fe-substituted GO/ZIF-67 composites were synthetised following the same 

procedure with Ni-substituted GO/ZIF-67. The obtained composites were 

named as xZIF-67-yFe-zGO where x, y stands for the molar ratio of Co and Fe 

in parental precursors and z stands for the weight percentage of graphene 

oxide. Thus, the precursor composite with a molar ratio n (Co)/n (Fe) of 1/1 and a 

5% graphene oxide is named as ZIF-67-Fe-5GO. 

3.3 Synthesis of ZIF-67 derivatives 

3.3.1 Cobalt/ nanoporous carbon/graphene composites derived from 

GO/ZIF-67 

The composites were prepared by temperature programmed pyrolysis of the 

ZIF-67 in the Ar atmosphere. 0.3g dried parental composites were loaded into 

the tube furnace on an alumina boat. The furnace was set to a target 

temperature (600, 800 or 1000 °C) with a ramp rate of 10 °C/min in Ar 

atmosphere. After the furnace reaching the target temperature, maintained at 

the target temperature for one hour, then turned it off while remaining Ar gas on. 

The product was taken out of the furnace after the furnace was gradually cooled 

to room temperature. The collected composites were named as Co-zG-T, where 

z stand for the weight percentage of graphene oxide introduced and T is the 

target pyrolysis temperature. Therefore, the sample with a 5% graphene 

obtained at pyrolysis temperature of 800 °C will be named as Co-5G-800. For 

comparison, pristine parental composites were also carbonised following the 

same procedure and named as Co-800. 

3.3.2 Cobalt, Iron/ nanoporous carbon/ graphene composites derived from 

Fe-substituted GO/ZIF-67  

The air-dried bi-metallic Fe-substituted GO/ZIF-67 precursors were high 

temperature heat treated directly in the Ar atmosphere. The Fe substituted 

composites were also carbonised following the same procedure. The produced 

composites were named as xCo-yFe-zG-T, where x, y stands for the molar ratio 

of Co and Fe in bi-metallic precursors, z stands for the weight percentage of 
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graphene oxide introduced and T is the target pyrolysis temperature. Therefore, 

the sample with a molar ratio n (Co)/n (Fe) of 1:1 and a 5% graphene obtained via 

heat treatment at 800 °C is named as Co-Fe-5G-800. For comparison, pristine 

parental composites is marked as Co-Fe-800. 

3.3.3 Cobalt sulfide/ N, S co-doped nanoporous carbon/graphene 

composites derived from GO/ZIF-67  

The air-dried GO/ZIF67 composites and pristine ZIF-67 were sulfurised directly 

in the presence of hydrogen sulfide (H2S) atmosphere. Typically, 0.3g dried 

parental precursors were loaded into the tube furnace on an alumina boat. The 

furnace was set to a target temperature with a ramp rate of 10 °C/min in Ar 

atmosphere. After the furnace reaching the target temperature, H2S gas flow 

with flow rate 20 mL/min was introduced to the tube and remained at the target 

temperature for one hour. The H2S gas supply was then switched off while the 

Ar was kept on. After the furnace was gradually cooled down to room 

temperature, the product was collected from the alumina boat. The obtained 

product with a 5% graphene via heat treatment at 800 °C is labelled as CoS-

5G-800 and the sample without graphene is named as CoS-800. 

3.3.4 Nickel promoted cobalt sulfide/ N, S co-doped nanoporous carbon/ 

graphene composites derived from Ni-substituted GO/ZIF-67 

The air-dried bi-metallic Ni-substituted GO/ZIF-67 precursors were prepared via 

a one-step direct carbonisation and sulfurisation process in the presence of 

hydrogen sulfide. Following the same treatment procedure with cobalt sulfide, 

the bi-metallic product was collected and labelled as xCoS-yNiS-zG-T, where x 

and y stand for the molar ratio n(Co)/n(Ni) in the parental Ni-substituted GO/ZIF-67, 

and z stands for the weight percentage of graphene oxide introduced and T 

stand for the sulfurisation and carbonisation temperature. Therefore, the 5% 

graphene contained sample obtained at 800 °C with molar ratio n(Ni)/n(Co)=1/4 

was labelled as 4CoS-NiS-5G-800. 

3.3.5 Iron promoted cobalt sulfide/ N, S co-doped nanoporous carbon/ 

graphene composites derived from Fe-substituted GO/ZIF-67 

The bi-metallic porous nanocomposites were carbonised and sulfurised directly 

in the presence of hydrogen sulfide atmosphere. The whole procedure is the 

same as the preparation of nickel promoted cobalt sulfide. After the treatment, 
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the obtained product was labelled as xCoS-yFeS-zG-T, where x and y stand for 

the molar ratio n(Co)/n(Fe) in the parental Fe-substituted GO/ZIF-67, and z stands 

for the weight percentage of graphene oxide introduced and T stand for the 

sulfurisation and carbonisation temperature. Thus, the 5% graphene contained 

sample obtained at 800 °C with molar ratio n(Fe)/n(Co)=1/2 was labelled as 2CoS-

FeS-5G-800. 

3.3.6 Iron promoted cobalt oxide/ N doped nanoporous carbon/ graphene 

composites derived from Fe-substituted GO/ZIF-67 

Typically, 0.3 g produced Co-Fe-zG-800 series samples were loaded into an 

alumina boat and sat at the centre of a tube furnace in the presence of air 

flowing through the tube. The temperature of furnace was set to 350 °C with a 

ramp rate of 10 °C/min. After reaching the target temperature, the furnace was 

kept at this temperature for one hour, then turned off. After the oxidation, the 

composites were named as CoO-FeO-zG-350, where z stand for the weight 

percentage of graphene oxides in the initial precursor.   

3.4 General Characterisation techniques 

In order to gain the crystalline phase structures, morphologies, interface 

features and elemental and chemical valence status of ZIFs and ZIF derivatives 

composites, a series of complementary characterisation techniques, including 

X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning 

electron microscopy (SEM), transmission electron microscopy (TEM), energy 

dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR) 

and Raman spectroscopy have been utilised. In addition, the textural properties 

of nanoporous composites were measured by Brunauer-Emmett-Teller method 

(BET) and thermophysical characterisation of the materials was carried out by 

thermogravimetric analysis (TGA) coupled with Mass Spectrometry (MS). 

3.4.1 Powder X-ray Diffraction (XRD) 

XRD technique is a method used to identify the crystallographic structure and 

crystallite size of the materials. X-rays can produce constructive interference 

upon reflection of atomic planes within the crystalline materials. A crystal is a 

regular arrangement of atoms. When the X-rays (Kα produced by electron 

beams on a metal source) fall on a crystal, the beam propagates in many 

distinct directions depending on the crystal structure. The atoms scatter (diffract) 
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part of the beam and form secondary spherical waves. A three-dimensional 

image of the electron density in the crystal can be obtained by measuring 

angles and intensities of the diffracted rays. During this diffraction, a regular 

atomic array can produce a regular array of spherical waves. The relationship 

between the incident and reflected X-rays can be expressed by Bragg’s formula: 

                                  nλ=2dsinθ                          (3.1) 

where n is any positive integer, λ is the wavelength of X-ray, d is the inter-lattice 

spacing, and θ the incident angle of the X-rays. 

Crystalline size can be assessed by measuring the peak breadth in an X-ray 

diffraction pattern, which can be explained by Debye-Scherrer equation: 

                                 t=Kλ/Bcosθ                         (3.2) 

where t is the crystallite size and K is the crystalline shape factor, λ is the 

wavelength of incident X-rays, B is the breath of the peak at half maximum 

intensity of a specific plane (hkl) in radians. 

In this thesis, all the XRD patterns were obtained using a Bruker D8 Advanced 

X-ray diffractometer. XRD patterns were recorded with Cu Kα radiation (40 kV-

40 mA) at step time of 1 s and step size of 0.02°. 

3.4.2 Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray 

Spectroscopy (EDS)  

Scanning Electron Microscopy (SEM) is a powerful tool to characterize the 

surface morphology under high magnification. During SEM analysis, many 

types of electrons are generated when a focused electron beam scans the 

surface of the sample. The backscattered electrons are the electrons reflected 

from the sample after multiple collisions, including elastic and inelastic 

backscattered electrons. Secondary electrons are released from the sample by 

the action of the incident electrons. X-rays may also be emitted due to the 

transitions between the internal energy levels in the atoms of the sample. 

During this transition process, the generated energy can also excite other 

electrons, resulting in the release of secondary electrons, which is called Auger 

electrons. Among these electrons, the secondary electrons and backscattered 

electrons are generally used to produce SEM images. The number of 

secondary electrons depends on the angle of incidence of the electron beam 
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and on the surface structure of the sample. Then, the secondary electrons are 

collected by a detector and synchronised with the electronic beam position 

information to construct an image. Images obtained with backscattered 

electrons show a three-dimensional structure and reflect the surface structure of 

the sample. Secondary electrons are therefore used more frequently in SEM 

imaging. In contrast, the backscattered electrons are less sensitive to surface 

topography, but can be used to image variations in surface chemistry in the 

sample. 

 

Figure 3. 1 Schematic demonstration of SEM 
224

 

In order to verify the exact elemental feature of a phase accurately, Energy-

dispersive X-ray spectroscopy (EDS) were used to analyse the X-rays produced 

from the interactions between the accelerated electrons and the target sample 

surface. X-ray spectra with element-specific emission lines was emitted from 

absorbed incoming electrons of sample atoms. Normally, the X-ray generated 

from the top 2 µm of a sample, may reach the detector. Either single spectra 

from specific spots or EDX maps representing spatial distributions of chemical 

elements can be acquired. 

In our work, SEM images were taken by a Toshiba JSM-6390LV machine in a 

high vacuum mode. In experiments, a small amount of powder were dropped on 

one side of carbon double-sided sticky tape. Then, samples were coated by Au 

to enhance the surface conductivity. Typically, the thin coating layer is 10 nm. 

3.4.3 Transmission Electron Microscopy (TEM) 

TEM (shown in Figure 3.2) works on the same principles as optical microscope, 

but uses electrons instead of light as source of illumination. Electrons are 

scattered when an electron beam passes through a thin sample. A 
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sophisticated system of electromagnetic lenses focuses the scattered electrons 

into an image or a diffraction pattern. The electrons beam emitted from the 

electron gun is focused by condenser lens into a tiny, thin, and coherent one. 

This beam is restricted by the condenser aperture, which excludes high angle 

electrons. Then, the beam strikes the specimen and parts of it are transmitted 

depending upon the thickness and electron transparency of the specimen. This 

transmitted portion is focused by the objective lens into an image on phosphor 

screen or charge coupled device camera. The image then passed down the 

column through the intermediate and projector lenses, is enlarged all the way. 

Selective Area Electron Diffraction (SEAD) has been used to identify crystal 

structural, crystal orientation of the samples.  

In this work, a JEM2100, TEM (LaB6, 200 kV) was used to characterise the 

crystallinity of the composites. Typically, a tiny amount of powder sample were 

dispersed in 20 mL deionised water and carried out sonication for 30 minutes. 

Then, a drop of solution dispersed on the copper-supported carbon film. 

 

 

Figure 3. 2 Schematic diagram of the basic components of TEM 
225
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3.4.4 X-ray Photoelectron Spectroscopy (XPS) 

XPS is a sensitive quantitative technique used for measuring the elemental 

composition of the surface of a material, and it also can be used to determine 

the binding states of the elements. In an XPS, X-rays (typically Al Kα or Mg Kα) 

are incident on a surface in vacuum. An incident photon could come into 

collision with a core electron with its energy simultaneously transferred. The 

electron, now possess higher energy than its orbital, would emit from its original 

state with a kinetic energy (apparently dependent on both the incident photon 

and its binding energy). The emitted photoelectrons are then subjected to 

energy and intensity analysis to identify all the elements present, and their 

corresponding concentration. Typical XPS penetration is less than 10 nm, 

meaning all obtained information only reflect elemental composition within this 

depth. In this thesis, all XPS spectra were analysed with an exciting source of Al 

Ka, at Harwell XPS centre, Cardiff University. All samples were powder and a 

tiny amount of each sample were prepared. For the results analysis, Casa XPS 

software was carried out and a binding energy of C1s at 284.6 eV was used to 

calibrate all the XPS results. 

3.4.5 Fourier Transform Infrared Spectroscopy (FTIR)  

FTIR is a powerful spectroscopy used to obtain infrared spectra of absorption, 

emission, photoconductivity of a solid, liquid or gas. When IR (infra-red) 

radiation are incident through a sample of finite thickness, not all of the radiation 

are transmitted because a certain part of it are absorbed. The absorption/ 

transmittance spectrum is characteristic to the sample, and shows the unique 

molecular finger-print of the sample’s material as well. Normally FTIR 

measurement can spread through the whole infrared frequency range. 

Subsequently, a spectrum analysis can be performed (mostly with the 

assistance of corresponding software nowadays) to deduce the wanted 

information of the sample. 

3.4.6 Thermogravimetric Analysis (TGA) 

In order to investigate thermophysical properties of materials, TGA and 

differential thermal analyses (DTA) are powerful methods designed to measure 

physical and chemical property changes of the material. TGA reflects the 

changes in weight of the sample as a function of increasing temperature. The 
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DTA shows the heat difference in temperature between the actual sample and 

the reference sample. In this thesis, all TGA measurements were carried out on 

a TA SDT Q600 instrument in a continuous air flow of 100 mL/min at a heating 

rate of 10 °C/min. 

3.4.7 Mass Spectrometry (MS) 

Mass spectrometry (MS) is an efficient tool to perform molecular compositional 

analysis to a substance, by taking advantage of the fact that mass-to-charge-

ratio are characteristic for most elements.  To start an MS analysis, a small 

portion of an unknown chemical is ionised (by one of the various ionisation 

techniques, for example, heating). The produced ions are then extracted and 

pulled to go through a mass analyser and finally received by a detector. The 

ions are sorted and measured according to their mass-to-charge-ratios during 

the process, to produce a comprehensive compositional result. In our study, a 

Hiden QGA gas analysis MS (coupled with a TA SDT Q600 instrument) to 

determine the compositions of exhaust emission. 

3.4.8 Raman Spectroscopy 

Raman spectroscopy is a powerful technique used to characterise crystalline 

molecular vibration on the basis of analysing information obtained from Raman 

scattering process. As shown in Figure 3.3, for a molecule or crystal, when 

excited with light, most photons are elastically scattered, which means energy 

are preserved during the scattering event. Consequently, the incident 

wavelength remains unchanged, and such process is called Rayleigh scattering. 

However, for a small fraction of scattering (approximately 1 in 107 photons), the 

scattered electrons possess frequencies different from (and usually lower) than 

the incident frequency. This inelastic scattering process is defined as Raman 

scattering. After a Raman scattering event happens, a molecule would be in 

either a different rotational or vibrational energy. Therefore, certain amounts of 

different “energy-shifted” scattered light can be detected by the spectroscope, 

and further plotted against frequency to generate the Raman spectrum of a 

sample with plural peaks at their characteristic frequency/wave number. These 

peaks represent different Raman scattering processes, which create or 

annihilate phonons of different momentum. The positions, widths and shapes of 

these peaks deliver plenty of information from the crystalline structure, which 
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are extremely useful for sample identification and quantification. In addition, 

Raman spectroscopy is particularly useful to investigate carbonaceous material. 

In general, all carbon crystalline allotropes display two feature peaks in their 

Raman spectrum: the G peak and the D peak. The G peak appears at around 

1590 cm-1 indicates a certain amount of nanocrystalline carbon and a high 

percentage of sp2 bonds due to graphitisation, while D peak at 1340cm-1 is 

related to sp3 hybridisation and represents less disordered carbon.  

The Raman instrument used throughout the work of this thesis is Renishaw 

RM1000 Raman microscope (Wooton-under-egde, UK), equipped with a 1200-

line/mm grating providing a spectral resolution of 1 cm-1, a diode laser providing 

excitation at 532 nm/ 785 nm with up to power 300 mW, and a 40X 

magnification objective lens. Powder samples were spread flatly onto a Si wafer 

surface, then placed under the microscope. The system was normally calibrated 

with the silicon peak of 520 cm-1. The instrument is normally set at 

backscattering arrangement, 532 nm excitation wavelength under 6 mW power. 

Data were recorded with Renishaw v.1.2 WiRe software. 

 

 

Figure 3. 3 Scheme for Raman spectroscopy 
226

 

3.4.9 Brunauer-Emmett-Teller method (BET) 

BET equation is used for determining the physical adsorption of gas molecules 

on a solid surface by calculating the amount of adsorbate gas corresponding to 

a monomolecular layer on the surface, which serves as the basis of an 

important analysis technique for the measurement of the specific surface area 
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of materials, especially for porous materials. Physical adsorption results from 

relatively weak forces (van der Waals forces) between the adsorbate gas 

molecules and the adsorbent surface area of the test powder. The 

determination is usually carried out at the temperature of liquid nitrogen. The 

amount of gas adsorbed can be measured by a volumetric or continuous flow 

procedure. In this study, a Quantachrome Autosorb-iQ instrument was used to 

obtain N2 gas sorption isotherms and textural properties. Since graphene or 

graphene oxide samples always contain absorbed water from ambient 

environment, all samples must be evacuated at 110°C for over 6 hrs to remove 

moisture before analysis. The analysis starts with admitting a small amount of 

sample powder into a cleaned tube and then have the stopper inserted. 

Followed by calculating the weight of the sample and then attaching the sample 

tube to the volumetric apparatus. Raise a Dewar vessel containing liquid 

nitrogen at -196°C up to a predefined point marked on the sample cell. Admit a 

certain volume of adsorbate gas to produce the lowest sufficient relative 

pressure. The surface area is calculated with the BET method, based on 

adsorption data in the partial pressure (P/Po) range of 0.02-0.22. The total pore 

volume can be calculated based on the amount of nitrogen adsorbed at P/Po of 

ca. 0.99. 

 3.5 Elctrocatalytic measurements

A three-electrode electrochemical cell was used to carry out electrocatalytic 

performance analysis of the catalysts including cyclic voltammograms (CV), 

linear sweep voltammograms (LSV) and chronoamperometry. The cell was at 

the same time connected to a computer which controls potentiostat CHI 660D 

coupling with a rotating disk electrode (RDE) system. The diagram of this 

electrochemical set up is shown in Figure 3.4. A platinum wire and a saturated 

calomel electrode (SCE) were used as the counter electrode and the reference 

electrode, respectively (Figure 3.5). On the other hand, the working electrode is 

made up of a 3 mm-diameter bare glassy carbon electrode (GCE) or modified 

GCE with the material to be studied. The GCE must be polished before 

experiment, which is performed by dropping 0.05 µm alumina on chamois 

leather and subsequently polishing the GCE for 15 min until a mirror-like 

surface shows up. The polished GCE should then be washed with ethanol and 

distilled water by sonication for 5 min, followed with natural drying process.  
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Figure 3. 4 Schematic diagram of the electrochemical set up 
227

 

 

Figure 3. 5 Pictures of rotating disk electrode system. ©Copyright by ALS Co., Ltd  

Moreover, if a modified GCE is desired, then a 5 µL aliquot of the catalyst ink 

should be casted onto the freshly polished surface of the newly prepared GCE 

and left to be dried to form a uniform thin film. The catalyst ink was obtained by 

ultrasonically dispersing 1mg of the catalyst into 0.5 mL 0.05 wt% of alcohol 

Nafion solution. The loaded amount of each catalyst can be kept as 141.5 µg 

cm-2 by applying this method. For oxygen reduction reaction (ORR), the 

electron process of ORR is different for different materials. Hence, the reaction 

can be written in: 

Alkaline media: 

                         O2+2H2O+4e- →4OH- (Four-electron process)     (3.3) 

                    O2+H2O+2e- →HO2
-+OH- (Two-electron process)     (3.4) 

                                             H2O+HO2
-+2e- →3OH-                       (3.5) 

Acid media: 

                            O2+4H++4e- → 2H2O (Four-electron process)    (3.6) 
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                              O2+2H++2e- →H2O2 (Two-electron process)     (3.7) 

                                             H2O2+2H++2e- → 2H2O                     (3.8) 

For oxygen evolution reaction (OER), the experiments were carried out at room 

temperature in 1 M KOH and 0.5 M H2SO4 solution, the reaction can be written 

in: 

Alkaline media: 

                                               4OH- → O2+2H2O+4e-                     (3.9) 

Acid media: 

                                                2H2O → O2+ 4H++4e-                     (3.10) 

For hydrogen evolution reaction (HER), The HER performance were evaluated 

using a three-electrode system in 0.5 M H2SO4 electrolyte and a commercial 

Pt/C (20 wt% Pt on carbon black) was examined as a reference. The reaction 

can be shown as: 

                                               2H2O++2e- → H2+2OH-                   (3.11) 

The electrode potential reported in this thesis is relative to the reversible 

hydrogen electrode (RHE) potential, which can be converted by using Nernst 

equation:  

                                          𝐸𝑅𝐻𝐸 = 𝐸𝐴𝑔/𝐴𝑔𝐶𝑙 + 0.059*𝑝𝐻 + 0.197         (3.12) 

The K-L equations are shown as:  

                                                    1/𝐽 = 1/𝐽K+1/𝐵𝜔1/2                           (3.13) 

                                                              𝐵 = 0.62𝑛𝐹𝐶0𝐷0
2/3 𝜐−1/6                 (3.14) 

Where 𝐽 is current density, 𝐽K is the kinetic current density, ω is the angular 

velocity of the rotating electrode, B is the Levich constant, n is the overall 

number of electron transferred in the ORR process, F is the Faraday constant, 

C0 is the bulk concentration of O2 (1.2×10-6 mol cm-3 ), D0 is the diffusion 

coefficient of O2 (1.9×10-5 cm2 s-1) and 𝜐 is the kinematic viscosity of the 

electrolyte. 

The peroxide percentage and electron transfer number can be analysed as 

following: 
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                                               𝐻2𝑂2(%) = 200 × 

  

 

   
  

 

              (3.15) 

                                                                     𝑛 = 4 × 
  

   
  

 

                            (3.16) 

Where Ir is ring current, Id is disk current and N is the current collection 

efficiency of the Pt ring. 

Tafel plot, can be drawn representing the relationship between the overpotential 

and the logarithmic current density.Generally, the potential (η) is logarithmically 

related to the current density (i) and the linear portion of the Tafel plot is fit to 

the Tafel equation:  

                                                       η = 𝑎±𝑏 𝑙𝑜𝑔i                               (3.17) 

Where b is the Tafel slope. 
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Chapter 4: Bi-metallic cobalt and nickel sulfides/ N, S 

co-doped porous carbon/ graphene composites and 

their electrocatalytic applications 

 
4.1 Introduction 

Increasing demand for sustainable energy has stimulated intense research on 

energy conversion and storage systems that are highly efficient, low cost, and 

environmentally friendly 228-229. Currently, ORR is the ubiquitous cathode 

reaction in fuel cells, and Pt are the most active ORR catalysts 230-231. On the 

other hand, OER and HER on an anode lies at the heart of electrochemical 

water splitting and metal-air batteries, and Ir/Ru oxides are the best OER/HER 

catalysts 232-233. However, either Pt or Ir/Ru oxides are among the rarest 

elements on earth, and thus hinder their large-scale application. Therefore, 

development of highly-efficient, non-precious metal catalysts with 

multifunctional catalytic activities in the same electrolyte is highly required for 

energy applications such as full water splitting to generate O2 and H2 
234-236. 

Recently, cobalt active species contained carbon materials with heteroatom (e.g. 

N, S, P) doping/co-doping have demonstrated outstanding multifunctional 

catalytic activities of ORR/OER/HER 235, 237-239. Tremendous synthesis methods 

have been developed to fabricate carbon-based electrocatalysts with cobalt 

active species. Among them, ZIFs as precursor materials is a facile and 

effective method to fabricate high performance carbon-based electrocatalysts. 

Since ZIF contains rich N content and transition metal species on the framework, 

carbonisation of ZIFs can lead to N doped on porous carbon materials with 

exposed homogenous metal species on the surface 238. From our previous work, 

we successfully synthesised atomically homogeneous dispersed cobalt 

sulfide/N, S co-doped porous carbon nanocomposites by a facile one-step 

sulfurisation and carbonisation of ZIF-67 simultaneously 238.   

For ORR/OER/HER, graphene-based materials have been widely used as 

catalytic support. However, the efficient attachment of catalytic active species 

with a uniform distribution remains a big challenge for graphene-based 

materials. In this respect, a composite of ZIF derivatives and graphene could 
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offer excellent charge mobility, high surface area and highly dispersed metal 

species for ORR/OER/HER. Moreover, the carbonisation of ZIFs and GO 

mixtures can lead to porous and N-doped carbon materials as well as N-doped 

graphene with improved electrical conductivity and active sites.  

Additionally, the low electrical conductivities of cobalt sulfide together with its 

complicated preparation procedures usually lead to unsatisfactory catalytic 

durability. In order to accelerate all the reactions simultaneously, recent findings 

revealed that compounds like bi-metallic sulfides showed bi-functionality and 

thus be able to accelerate OER and HER at the same time 240-241. Nickel (Ni), as 

another low-cost and abundant resource in nature, can be readily introduced to 

CoS. Since Ni and Co sulfides can form a unique structure in which Co ions 

occupy octahedral and tetrahedral sites while Ni ions partially distribute and 

replace Co ions at the octaherdral sites 242-243, the resulting binary metallic 

sulfides offer much richer redox chemistry which can result in a higher efficiency. 

In the first part of this chapter, a simple method for the preparation of the cobalt 

sulfide embedded in N, S co-doped porous carbon and graphene from the 

simultaneously sulfurisation and carbonisation of GO/ZIF-67 has been 

presented. Various techniques were used to investigate the influence of the 

chemical and physical properties of CoS-G-800 after the introduction of 

graphene. Compared to the composite without graphene, this work 

demonstrates that the prepared composite showed improved ORR/OER/HER 

activities and superior ORR durability and good methanol tolerance in alkaline 

media. In the second part of this chapter, a simple method for the preparation of 

Co-Ni sulfide nanoparticles embedded in N, S co-doped porous carbon and 

graphene via the simultaneously sulfurisation and carbonisation of Ni-

substituted ZIF-67 and graphene oxide (GO) in hydrogen sulfide atmosphere 

has been developed. Since Ni-substituted ZIF-67 is rich in Ni-N and Co-N 

moieties, it could be used as excellent precursor for the preparation of Co-Ni 

sulfides. Remarkably, the resultant nanocomposite 4CoS-NiS-5G-800 not only 

exhibits the best OER catalytic activities with lowest onset/over potential, but 

also shows good HER activities with high current density and low onset 

potential in water splitting 
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4.2 Characterisations of cobalt sulfides/ N, S co-doped porous 

carbon/ graphene composites  

Generally, all the composites were composed of numerous cobalt sulfides 

nanoparticles in irregular shape with very small size, as shown in Figure 4.1a & 

c. No single CoS particle can be easily found and most CoS particles were well 

embedded in composite and surrounded with carbon. It should be noted that the 

graphene could be served as a bridge between cobalt sulfide contained porous 

carbon materials. Moreover, high resolution TEM images exhibited some pore 

channels that were visible at the edge of composite, maybe due to the presence 

of porous carbon. The lattice for CoS nanocrystals can also be seen in the dark 

area from the Figure 4.1d. The selected area electron diffraction (SAED) 

patterns, shown in inset of Figure 4.1a & c, clearly suggest that the bright 

scattered dots contributed from the crystalline cobalt sulfide nanoparticles while 

the dimmed diffraction rings were from the amorphous porous carbon matrix.  

  

   

Figure 4. 1 TEM images of (a and b) CoS-800, (c and d) CoS-G-800, Inset in (a and c) is SAED 
patterns for corresponding sample 
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Figure 4. 2 SEM images of (a and b) CoS-800, (c and d) CoS-G-800 

   

  

Figure 4. 3 SEM images and element mapping for sample CoS-G-800 

The low/high magnification SEM images of CoS-800 and CoS-G-800 are shown 

in Figure 4.2a-d. Both of their particles were nanocrystal with polyhedral shape, 

with average size of CoS particle of 0.2 µm. In order to investigate the 

distribution of CoS particles in the nanocomposites, CoS-G-800 was measured 

by elemental mapping. As shown in Figure 4.3, all elements C, Co, S and N 
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exhibited similar mapping patterns in the selected area, which implies that 

uniform dispersion in CoS-800 and CoS-G-800 particles were homogeneous. 

Moreover, small amount of N element were detected, further indicating N-doped 

carbon matrix were contained in both samples. 

XRD results of the in-situ synthesised pristine ZIF-67, GO/ZIF-67 and GO 

composites are all showed in Figure 4.4a. Obviously, GO showed a 

characteristic strong peak at 2θ of 10.5°, which is corresponding to the average 

interlayer spacing of 8.4 Å. XRD result of pristine ZIF-67 exhibited some strong 

peaks at 10.2°, 12.5°, 14.5°, 16.4°, 18°, 24.5°, 25.8°, 26.9°, corresponding to 

(002), (112), (022), (013), (222), (223), (224) and (134) planes, respectively, 

which implies the formation of pure sodalite (SOD)-type crystal structures 244. 

However, the in-situ synthesised GO/ZIF-67 composite showed similar XRD 

peaks from pristine ZIF-67, which indicates that the introduction of GO into the 

synthesis gel did not damage the inherent crystalline structure of ZIF-67 and 

there was no GO peaks can be observed, maybe due to the overlapping the 

XRD peaks of GO with ZIF-67. XRD results of CoS-800 and CoS-G-800 are 

presented in Figure 4.4b. As shown, both samples exhibited a wide inter-plane 

(002) diffraction peak at around 25°, can be attributed to carbon or graphene 245-

246. Moreover, the XRD spectrum of both composites indicated that they mainly 

contain Co1-xS (ICDD PDF# 42-0826) with the hexagonal structure in P63/mmc 

space group (no. 194) 238. Also, CoS-G-800 exhibited more intense and sharper 

XRD peaks than CoS-800, which implies a better growth of crystallite and 

crystallinity improvement of cobalt sulphite. 

 

Figure 4. 4 XRD patterns of (a) as-synthesised pristine ZIF-67, GO/ZIF-67 and GO (b) CoS-G-

800 and CoS-800 composites 
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The FTIR spectra of CoS-800 and CoS-G-800 are displayed in Figure 4.5a. 

Both samples exhibited weak peak at 1610 cm-1, assigning to the C=C 

stretching vibration 247. A strong peak around 1100 cm-1 and a few weak peaks 

at 700 cm-1 were related to the C=S stretch and C-S stretch, respectively. 247-248 

Two peaks were found at 1625 and 1080 cm-1, which is an indication of 

adsorbed and sulphated water in the composites. In addition, two small peaks 

at around 610 and 760 cm-1 came from Co-S bond vibration in the cobalt sulfide 

nanoparticles, confirming that both composites indeed contain Co1-xS 

nanocrystals and carbon/graphene species 247. The C=S peak of CoS-G-800 

shifted to higher wavenumber than CoS-800, which may be owing to the 

graphene contained in the composite 247.  

The Raman Spectrum of CoS-800 and CoS-G-800 are shown in Figure 4.5b. 

Both of two samples showed two bands at 1380 cm-1 and 1580 cm-1 

corresponding to the D band of disordered carbon and G band of sp2 hybridised 

graphitic carbon, respectively. A peak located at 2690 cm-1 (2D band) in  

 

Figure 4. 5 (a) FTIR, (b) Raman spectroscopy and (c) Nitrogen sorption isotherms for CoS-G-

800 and CoS-800 composites 
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CoS-G-800, however, could not be found in CoS-800, indicating the existence 

of graphene and the presence of a graphitised nanostructure in CoS-G-800. In 

addition, the intensity ratio (ID/IG) of CoS-G-800 was much lower than that of 

CoS-800 and the ratio values are 0.1 and 1.08, respectively. This value reflect 

the graphitisation degree of the composites, therefore, the Raman spectrum 

confirmed the presence of a highly graphitised nanostructure in CoS-G-800. 

The textural properties of CoS-G-800 and CoS-800 composites can be obtained 

from N2 sorption measurement, as shown in Figure 4.5c. Both samples 

exhibited type IV isotherms with an obvious hysteresis loop between the 

adsorption and desorption branches, indicating some mesopores existed in 

these composites. The surface area of CoS-G-800 and CoS-800 were 105 and 

277 m2 g-1 and pore volumes were 0.34 and 0.71 cm3 g-1, respectively. The 

surface area and pore volume of CoS-G-800 had a significant decrease 

comparing to the CoS-800, probably due to the partially blocking the pore 

channel of formed porous carbons. 

The XPS survey spectrum of CoS-G-800 and CoS-800 displayed the binding 

energy peaks at 162, 284, 400, 530 and 778eV (Figure 4.6a), which can be 

assigned to S 2p, C 1s, N 1s and Co 2p, respectively 107, 249. The strong peak 

with binding energy at 284.6 eV was observed in the high-resolution C 1s XPS 

spectrum (Figure 4.6b), which arose from the formation of sp2 graphitic 

structure 249. The peaks located at 284.9, 285.9 and 288.8 eV were attributed to 

C=C, C-S and C-N, respectively 250-253. The Figure 4.6c displays Co 2p 

spectrum. Two peaks at 782.8 and 798.3 eV indicated the existence of Co2+ 

oxidation state in the composite while another two peaks were found at 778.8, 

793.5 eV, implying the existence of Co3+ oxidation state 188, 254. Therefore, both 

CoS-800 and CoS-G-800 possessed mixed oxidation states of Co2+ and Co3+. 

In addition, some satellite features (802.9 eV) were also found, maybe owing to 

the 2+ and 3+ states. In S 2p spectrum shown in Figure 4.6d, two spine-orbit 

peaks at 161.4 and 162.5 eV were found that implies the spin-orbit in metal 

sulfide 255. The peaks at 168.9 and 169.5 eV indicated trivial amount of cobalt 

sulfide compounds were formed during the sulfurisation process 256. In N 1s 

spectra (shown in Figure 4.6e), two peaks at 397.8 and 401.8 eV can be 

attributed to the doped pyridinic and quaternary nitrogen species, respectively 

249, 257. Two peaks at 399.1 and 400.1 eV were corresponded to Co-N and  
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Figure 4. 6 (a) Element survey by XPS and high resolution XPS spectrum of (b) C 1s (c) Co 2p 

(d) S 2p (e) N 1s for CoS-G-800 and CoS-800 composites 

pyrrolic-N 257-258, respectively, that indicates nitrogen was successfully doped in 

the graphene.  

TGA and corresponding MS signal of CoS-G-800 and CoS-800 are shown in 

Figure 4.7. Firstly, both of two composites exhibited similar weight changes 

events around 100 oC, which is corresponding to the H2O loss event. Then, they 
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displayed a weight gain in the temperature range of 400-460 oC due to the 

transferring of the formed low oxidation state cobalt sulfide to high oxidation 

state, followed by two weight loss events between 460-500 and 730-820 oC, 

which can be contributed to the combustion of the formed amorphous carbons 

composites and the oxidation of cobalt sulfide in air with emission of CO2, SO2 

and NO2 (Figure 4.7b-d). Compared with CoS-800, the weight loss 

temperatures of the CoS-G-800 shifted to high temperature, probably due to the 

relative higher burn off temperature for graphene than amorphous carbons.  

 

 

Figure 4. 7 (a) TGA and their corresponding MS curves of (b) CO2 (c) SO2 and (d) NO2 for CoS-

G-800 and CoS-800 composites 

 4.3 ORR / OER / HER performance

To evaluate the electrocatalytic activity of CoS-G-800 and CoS-800 in the ORR, 

the CV was performed in O2- and N2- saturated 0.1 M KOH solution at 25 ˚C. As 

shown in Figure 4.8a, no obvious redox peaks for both samples were observed 

in N2- saturated KOH solution. When the solution was saturated with O2, they 

exhibited remarkable ORR activity associated with a peak potential of ~0.782 V 
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(vs. reversible hydrogen electrode (RHE)). However, CoS-G-800 revealed a 

significant higher peak current (-2.89 mA cm-2) than that of CoS-800 (-1.7 mA 

cm-2), which indicates the enhanced ORR activity for CoS-G-800 compared to 

CoS-800.  

In order to get further insight into the ORR kinetics of CoS-G-800 and CoS-800 

composites, the rotating disk electrodes were measured. Both samples showed 

an increase of current density with the increase of rotation speed (Figure 4.8b & 

d), which is due to the enhanced diffusion of electrolyte at higher rotation rate. 

The Koutecky–Levich (K-L) curves were plotted using the inverse of rotation 

against the inverse of current density. The current density would get large due 

to the diffusion of oxygen at electrode surface, with the increasing electrode 

rotation speed, showing in Figure 4.8c & e. Comparing with CoS-G-800 and 

CoS-800, the K-L plot of graphene contained composite showed good linearity 

and parallelism properties, indicating that graphene have a benefit with oxygen 

reaction and have a good impact of electron transfer numbers (n) for ORR at 

various potentials. 

Based on the K-L plots, the electron transfer number of CoS-G-800 in the ORR 

process was calculated to be 3.77 to 3.94 in the potential range from 0.23 to 

0.63 V. In contrast, the n value for the CoS-800 composite varied from 3.56 to 

3.73. The n and Jk value results for the CoS-G-800 and CoS-800 were 

displayed in Figure 4.8f. The n value results of two composite indicate that ORR 

processed through a four-electrode pathway and suggest that graphene have a 

good effect achieve high n value, which was measured by the rotating disk 

electrode tests. Furthermore, the Jk value for CoS-G-800 was 15.5-15.7 mA cm-

2, which is much higher than CoS-800 (7.2-9.5 mA cm-2), indicating that 

graphene contained in the composite improved electron transfer kinetics of 

oxygen reduction. As shown in Figure 4.8g & h, the measured HO2- yields were 

below 22% and 5.8% for CoS-800 and CoS-G-800, respectively. Through the 

potential range of 0.23-0.63 V, the corresponding electron transfer numbers are 

calculated to be 3.56-3.64 for CoS-800 and 3.88-3.90 for CoS-G-800, which is 

well in consistent with the results obtained from the K-L plots based on rotating 

disk electrode results. 
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Figure 4. 8 (a) CV curves of CoS-800 and CoS-G-800 composites in N2- or O2-saturated 0.1M 

KOH; (b), (d) ORR polarisation curves of CoS-G-800 and CoS-800 at different rotating speeds, 

respectively;(c), (e) K-L plots of CoS-G-800 and CoS-800 at different potential; (f) Electron 

transfer number (n) and the corresponding kinetic current density (Jk) of CoS-G-800 and CoS-

800 as a function of the electrode potentials; (g), (h) H2O2 yield and corresponding electron 

transfer number (n) for CoS-800 and CoS-G-800  
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The ORR polarisation curves for CoS-G-800, CoS-800 and commercial Pt/C at 

1600 rpm in 0.1M KOH are shown in Figure 4.9a. Sample CoS-G-800 and CoS-

800 hold very similar onset potential (0.87 and 0.86V, respectively) to the Pt/C 

onset potential (0.95 V), suggesting that both of two CoS contained composites 

are promising alternative catalyst for the cathodic ORR. However, the cathodic 

current density of CoS-G-800 (-4.2 mA cm-2) was higher than that of CoS@C (-

3.7 mA cm-2), showing CoS-G-800 superior activity and it also indicates that 

graphene contained in the composite have an improvement to the composites 

conductivity. Moreover, the sample CoS-G-800 exhibited a superior 

electrochemical stability at a constant polarizing potential of -0.15 V in 0.1M 

KOH, with a very small current decay (2%) over 17500 s of continuous running, 

as shown in Figure 4.9b. In contrast, CoS-800 and Pt/C catalyst exhibited a 13% 

and 26% decay, respectively. Methanol tolerance was also investigated for 

CoS-G-800 and CoS-800 under the same conditions as Pt/C, which is shown in 

Figure 4.9c. The results showed that the introduction of methanol caused a 

sharp decrease in the current density for the Pt/C. In contrast, methanol had 

negligible effect on the performance of CoS-G-800 and CoS-800 at the cathode. 

The remarkable catalytically activity, high durability and good methanol 

tolerance suggest that CoS-G-800 is a promising electrocatalyst for the cathodic 

ORR.  

Besides ORR activities, CoS-G-800 also exhibited good performance in OER 

test. As shown in Figure 4.10a, in order to reach current density 10 mA cm-2, a 

high overpotential was required for Pt/C, suggesting it was not a good OER 

catalyst. However, the current density of 10 mA cm-2 can be achieved for the 

CoS-G-800 at a small overpotential of 1.68 V, which is much lower than 1.86 V 

of CoS-800 and only 0.1 V higher than that of IrO2 (1.58 V). The improved OER 

performance of CoS-G-800 can be contributed to the contained graphene in the 

composite providing more access pathway and promoting the electron transfer 

between the catalyst surface and reaction intermediates. Furthermore, the 

chronoamperometric test was also carried out and shown in Figure 4.10b. The 

CoS-G-800 exhibited excellent durability with insignificant performance loss 

(15%) after 15000s continuous running.  
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Figure 4. 9 (a) ORR polarisation curves of CoS-G-800, CoS-800 and Pt/C at 1600 rpm; (b) 

Chronoamperometric responses of CoS-G-800, CoS-800 and Pt/C in O2- saturated 0.1M KOH 

electrolyte (1600 rpm); (c) Chronoamperometric responses of CoS-G-800, CoS-800 and  Pt/C at 

-0.15 V in O2- saturated 0.1M KOH electrolyte (1600 rpm) with the addition of 1M methanol 

 

Figure 4. 10 (a) Linear sweep voltammetry polarisation curves of CoS-G-800, CoS-800 and Pt/C; 

(b) Current-time chronoamperometric responses of CoS-G-800. Measured in 0.1M KOH 

electrolyte 

Apart from the ORR and OER activities, both samples have also been 

measured for their HER activities. The HER performance of CoS-800 and CoS-

G-800 were evaluated using a three-electrode system in 0.5M H2SO4 electrolyte 
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(pH=0). For comparison purpose, the commercial Pt/C was examined as 

reference. As shown in Figure 4.11a, the polarisation curve recorded with CoS-

G-800 exhibited an onset potential of 0.28 V, which is lower than 0.3 V of CoS-

800. To reach a current density of 10 mA cm-2, the overpotential of 0.45 V was 

needed for CoS-800, whereas, only 0.42 V required for CoS-G-800. The 

remarkable HER activities were also presented in the comparison in Tafel plot 

(shown in Figure 4.11b). The CoS-G-800 displayed a slope value of 80 mV/dec, 

which is much lower than 93 mV/dec for sample CoS-800, that is an indication 

of the graphene contained composite exhibited a remarkable HER performance 

in alkaline media due to the excellent conductivity of graphene 

 

Figure 4. 11 (a) Polarisation curves for HER on CoS-G-800 and CoS-800 and Pt/C (b) 
corresponding Tafel plots. Measured in 0.5 M H2SO4 electrolyte 

From above electrochemical results, obviously, the CoS-G-800 exhibited 

superior electrochemical activities, including ORR, OER and HER. The good 

electrocatalytic performance may be attributed to the N, S co-doped carbon, 

which was obtained from one step in-situ method using ZIF-67 and GO as 

precursor, can offer an improvement to the electron transport and promote 

structural stability. Moreover, the graphene achieved from GO under the high 

temperature treatment in H2S atmosphere, will provide more access pathways 

and improve electron transfers between the catalyst surface and reaction 

intermediates. 
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4.4 Characterisations of the bi-metallic cobalt and nickel 

sulfides/ N, S co-doped porous carbon/ graphene composites 

The crystal structures of the as-synthesised ZIF-67 and Ni-containing hybrid 

material with different amount of GO were investigated by XRD. As shown in 

Figure 4.12a, the pristine ZIF-67 exhibited some strong peaks at 10.2°, 12.5°, 

14.5°, 16.4°, 18°, 24.5°, 25.8°, 26.9°, corresponding to (002), (112), (022), (013), 

(222), (223), (224) and (134) planes, respectively, which implied the formation 

of well-defined ZIF-67 crystal structures 244. For all the Ni-containing composites, 

they all displayed similar diffraction patterns with pristine ZIF67, which indicates 

that the introduction of nickel ions and GO into the synthesis gel did not damage 

the inherent crystalline structure of ZIF-67. It is interesting to note that GO 

peaks could not be found in XRD patterns, maybe due to the low amount of GO 

adding to the composites or the peak of GO was overlapped with ZIF-67 at 2θ 

of 10.2°. After the heat treatment at 800oC in H2S atmosphere, the XRD 

patterns of the 4CoS-NiS-G-800 series composites are presented in Figure 

4.12b. All the composites showed a wide diffraction peak at around 25°, which 

is attributed to the inter-plane (002) of carbon or graphene 244. Moreover, the 

XRD patterns of all the composites indicated mainly Co1-xS (ICDD PDF# 42-

0826) with the hexagonal structure in P63/mmc space group (no. 194) in 

samples 259. In addition, two small diffraction peaks located at 2θ of 36.5° and 

48.5°, which may correspond to nickel sulfide or nickel carbide. The XRD 

patterns of 4CoS-NiS-5G-T series composites which were obtained via heat 

treatment of the precursor 4Co-Ni-5GO in H2S at different temperatures were 

presented in Figure 4.12c. All the resulting samples exhibited similar diffraction 

patterns owing to the existence of CoS and NiS, and their main diffraction peaks 

became sharper with increasing heat treatment temperature, implying the good 

crystallinity of CoS and NiS particles were obtained under higher heat treatment 

temperature. In addition, the diffraction peaks at 2θ of 26° for 4CoS-NiS-5G-800 

and 4CoS-NiS-5G-1000 were more intense than the one in 4CoS-NiS-5G-600, 

indicating the formation of graphitised carbon at high temperature, which is 

beneficial to the electrochemical activities.  

The thermal stability of as-synthesised 4CoS-NiS-zG-800 series composites 

heated in air atmosphere were measured by TGA-MS (Figure 4.13). Both 

4CoS-NiS-5G-800 and 4CoS-NiS-10G-800 have a slight weight loss at around 
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50 °C due to the loss of adsorbed water in the composites. There were weight 

increases at around 400 °C and the weight increase peaks centred at 470 °C 

that may be due to the oxidation of both cobalt sulfide and nickel sulfide in air in 

all composites, followed by weight losses at around 450-550 °C, due to the 

burning of carbon and graphene in the air. These observations were confirmed 

by the detection of the emission of CO2 in MS signals (shown in Figure 

4.13b).The weight loss event above 700 oC for all the composites may be due 

to the transformation of metastable metal oxides to stable high oxidation state 

oxides. The TGA-MS results of 4CoS-NiS-5G-T series composites obtained 

under different heat treatment temperatures were also shown in Figure 4.14. 

The composite 4CoS-NiS-5G-600 displayed similar weight loss and CO2 

emission at similar temperature with 4CoS-NiS-5G-800. However, 4CoS-NiS-

5G-1000 showed a different weight loss event between 400-700°C, maybe due 

to the formation of alloy or metallic carbide that can be evidenced by emission 

of CO2 at rather higher temperature, as shown in Figure 4.14b. 

 

 

Figure 4. 12 XRD patterns of (a) as-synthesised 4ZIF-67-Ni-zGO series composites; (b) 4CoS-

NiS-zG-800 and (c) 4CoS-NiS-5G-T series composites 
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Figure 4. 13 (a) TGA and their corresponding MS curves of (b) CO2 for the 4CoS-NiS-zG-800 

series composites 

 

Figure 4.14 (a) TGA and their corresponding MS curves of (b) CO2 for the 4CoS-NiS-5G-T 

composites 

X-ray photoelectron spectroscopy (XPS) was applied to investigate the 

elements and their chemical state of the as-synthesised representative 4CoS-

NiS-5G composite. As shown in Figure 4.15a, element survey indicates the 

presence of C, Co, Ni, S and N in the representative 4CoS-NiS-5G sample. The 

XPS spectra for each element are presented in Figure 4.15b-f. A strong peak 

with binding energy at 284.7eV was observed in the high-resolution C 1s XPS 

spectrum (Figure 4.15b), indicating the formation of sp2 graphitic structure 260, 

which can improve the electron transfer and be beneficial to the electrochemical 

activities. In addition, three peaks located at 285.6, 286.8 and 289.9 eV may 

attribute to C=C, C-S and C-N, respectively 250-253. The Co 2p spectrum shown 

in Figure 4.15c exhibited the presence of two doublets at 781.1 and 796.3 eV, 

which implied the dominance of Co2+ oxidation state in the sample. Moreover,  
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Figure 4. 15 (a) Element survey by XPS and XPS spectrum of (b) C 1s, (c) Co 2p, (d) Ni 2p, (e) 

S 2p and (f) N 1s for 4CoS-NiS-5G-800 

another two peaks appeared at 778.4 and 793.6 eV, indicating that not only 

Co2+ oxidation state, but also Co3+ oxidation state exist in 4CoS-NiS-5G-800 254, 

261. Interestingly, the same phenomenon was also happened in Ni 2p spectrum 

shown in the Figure 4.15d. Two peaks were found at 854.9 and 873.8 eV, which 

corresponds to Ni 2p 3/2 and Ni 2p 1/2 of Ni2+ state 262-263. Apart from that, another 

two peaks located at 856.5 and 871 eV were also observed and they 
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correspond to Ni 2p 3/2 and Ni 2p 1/2 of Ni3+ state respectively. These 

observations indicate the existence of both Ni2+ and Ni3+ in sample 4CoS-NiS-

5G-800 264-265. In S 2p spectrum (shown in Figure 4.15e), 4CoS-NiS-5G-800 

displayed two deconvoluted peaks at 162.4 and 163.6 eV that are 

corresponding to the S 2p 3/2 and S 2p 1/2 doublets with a binding energy 

separation of 1.1 eV, corresponding to the S2- species of metal sulfides.256, 266. 

And the peak located at 162.8 eV may be due to the formation of S-C bonding 

252, 267. In addition, binding energy at 168.3 and 169.4 eV are assigned to the S 

2p 3/2 and S 2p 1/2 peaks of  oxidised S species, such as sulfate groups 268 which 

could be due to the partially oxidation of sulfur in air 269. The N 1s spectrum can 

be deconvoluted into four peaks located at 397.5, 399.4, 400.3 and 401.6 eV, 

corresponding to the pyridinic-N, Co-N, pyrrolic-N and graphitic-N, respectively 

257-258. Owing to the volatility of N and S species at high temperature treatment, 

the content of N and S in the composite remains low. From XPS results, it is 

clear that 4CoS-NiS-5G composite composes of Co2+, Co3+, Ni2+, Ni3+ and S2- 

states. These XPS analysis results indicate that Co-Ni sulfide with graphene 

and carbon composites have been successfully prepared via one-step 

carbonisation and sulfurisation process and CoS/NiS nanoparticles were 

supported on S, N co-doped carbon and/or graphene matrices. 

The textural properties of the as-synthesised 4CoS-NiS-zG-800 series 

composites were analysed by N2 sorption at -196 °C. As shown in Figure 4.16a, 

all the samples exhibit small hysteresis loops between their adsorption and 

desorption branches, indicating the existence of mesopores due to the voids 

between particles. The relevant surface area and pore volume are summarised 

in Table 4.1. The composite 4CoS-NiS-800, 4CoS-NiS-2.5G-800, 4CoS-NiS-

5G-800 and 4CoS-NiS-10G-800 possess specific surface area of 175.9, 178.4, 

103.3 and 192.6 m2 g-1, and pore volume of 0.33, 0.24, 0.21and 0.24 cm3 g-1, 

respectively. Interestingly, with increasing the amount of graphene in 

composites, the surface areas decrease at first and then increase, maybe due 

to the formed porous graphene in the composites with higher graphene content. 

By comparing nitrogen sorption isotherms of the 4CoS-NiS-5G-T obtained 

under three different treatment temperatures (shown in Figure 4.16b), it is 

obvious that the hysteresis loops between the adsorption and desorption 

branches for 600 and 800 oC samples were very clear, indicating the existence 

of mesopores in these composites. However, for the 1000 oC sample, the 
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hysteresis loop almost disappeared. Moreover, with increase of the heat 

treatment temperature, the pore volume and surface area of the resulting 

samples decrease, maybe due to the much higher heat treatment temperature 

leading to the increased crystallinity of the materials. 

 

Figure 4. 16 N2 sorption isotherms of (a) 4CoS-NiS-zG-800 and (b) 4CoS-NiS-5G-T series 

composites 

 

Figure 4. 17 Raman spectra (a) D and G bands (b) 2D band of 4CoS-NiS-zG-800 series 

composites 

The 4CoS-NiS-zG-800 series composites were investigated by Raman 

spectroscopy (Figure 4.17). The D band at 1350 cm-1 is corresponding to 

disordered amorphous carbon and the G band at 1595 cm-1 is an indication of 

nanocrystalline graphitic carbon (Figure 4.17a). Both D band and G band 

appeared in all the composites, implying amorphous nature of the  carbon with 

abundant defects 270. Meanwhile, the appearance of 2D band at around 2690 

cm-1 (shown in Figure 4.17b) for sample 4CoS-NiS-2.5G, 4CoS-NiS-5G and 

4CoS-NiS-10G, suggests that the graphene oxide introduced in the precursor 

was well converted to graphene after the heating treatment, which clearly 
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evidences the existence of  graphene in the composites that derived from the 

GO-containing precursors.  

Table 4. 1 Textual properties of the 4CoS-NiS-zG and 4CoS-NiS-5G-T series composites 

 
Composite 

 
Surface area 

(m
2 
g

-1
) 

 
Pore volume 

(cm
3 
g

-1
) 

 
4CoS-NiS-800 

 
175.9 

 
0.33 

 
4CoS-NiS-2.5G-800 

 
178.4 

 
0.24 

 
4CoS-NiS-5G-800 

 
103.3 

 
0.21 

 
4CoS-NiS-10G-800 

 
192.6 

 
0.25 

 
4CoS-NiS-5G-600 

 
126.2 

 
0.19 

 
4CoS-NiS-5G-1000 

 
86.8 

 
0.15 

 

The morphologies of 4CoS-NiS-zG-800 series composites were investigated by 

scanning electron microscopy (SEM). As shown in Figure 4.18a-h, the particles 

are nanocrystal with polyhedral shape. The average particle size of 4CoS-NiS-

800 is around 0.15 µm and particle sizes for graphene-contained composites 

ranged from 0.2 µm to 0.45 µm. Actually, the particle sizes of graphene-

containing samples increased with increase of graphene content in the 

composites. From TGA and Raman spectra results, both of them have shown 

the graphene exist in the composites. Meanwhile, GO or graphene layers were 

not observable in the composites, may indicating GO was mostly converted to 

graphene and graphene was well embedded in the composites. 

To further investigate the morphologies and structures of the samples, 

transmission electron microscopy (TEM) was utilised to characterise 4CoS-NiS-

zG-800 series composites. As shown in Figure 4.19, all the composites had a 

sphere-like shape with an average single particle size of 10-20 nm. Interestingly, 

the metal sulfide particles in graphene contained composites were better 

embedded, which may due to the GO introduced in the precursor that can assist 

the dispersion of the metal sulfide particles. No single CoS or NiS particles can 

be easily observable and most of the CoS and NiS particles are well embedded 

in composites and surrounded with carbon layers. Actually, all the elements 
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Figure 4. 18 SEM images of the (a, b) 4CoS-NiS-800; (c, d) 4CoS-NiS-2.5G-800; (e, f) 4CoS-

NiS-5G-800 and (g, h) 4CoS-NiS-10G-800 
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including C, Co, Ni, S and N in the sample were homogeneous distributed in the 

composite, as demonstrated by element mapping results shown in Figure 4.20. 

It is interesting to note that the interlayer spacing for pure CoS is 0.194 nm, 

however, it changed to 0.182 nm in Ni-contained composites, which implies that 

nickel has been successfully partially substituting cobalt in the composite due to 

the ionic size of Ni ions are smaller than that of Co ions. Meanwhile, both 

carbon shells and carbon onions were found in all composites because of the 

catalytic effect of cobalt and nickel metal particles which formed from the 

reduction of the metal ions by the in-situ formed carbon particles, and the 

variety of formed carbons combined with the formed graphene coming from the 

GO, offer more electron transfer pathways and active sites to improve 

electrochemical activities. The selected area electron diffraction (SAED) 

patterns, shown in inset of Figure 4.19a, c, e and g, clearly suggest that the 

bright scattered dots contributed from the crystalline cobalt sulfide/nickel sulfide 

nanoparticles while the dimmed diffraction rings were from the amorphous 

porous carbon matrix. 
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Figure 4. 19 TEM images of (a & b) 4CoS-NiS-800, (c & d) 4CoS-NiS-2.5G-800, (e & f) 4CoS-

NiS-5G-800 and (g & h) 4CoS-NiS-10G-800. Inset in (a, c, e, and g) are SAED patterns for 

corresponding composites 

    

   

Figure 4. 20 TEM images and element mappings (C, Co, Ni, S and N) for sample 4CoS-NiS-5G-

800 
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4.5 Electrocatalytic performance 

The electrocatalytic activities of the as-synthesised xCoS-yNiS-zG-T 

composites for oxygen evolution reaction (OER) were evaluated in O2- 

saturated 1 M KOH (pH=14) electrolyte by using three electrodes system with a 

scan rate of 5 mV s-1. Owing to the effect of ohmic resistance (iR), the as-

measured current was not the intrinsic behaviour of the tested samples. 

Therefore, before OER measurement, all the samples were subjected to initial 

current for iR correction. The OER performance of catalytic materials derived 

from Co: Ni ratio at 1: 1, 2: 1 and 4:1 with a fixed graphene content of 10 wt% 

and carbonisation/sulfurisation at 800 °C were first measured, and results are 

shown in Figure 4.21a. CoS-NiS-10G-800, 2CoS-NiS-10G-800 and 4CoS-NiS-

10G-800 exhibited the onset potential of 1.62, 1.6 and 1.45 V for OER, 

respectively. To reach the current density of 10 mA cm-2 which is typically used 

to compare the performance for different materials, the potential of 1.71, 1.65 

and 1.52 V were required for sample CoS-NiS-10G-800, 2CoS-NiS-10G-800 

and 4CoS-NiS-10G-800 respectively. Comparing the onset potential and the 

overpotential to achieve current density of 10 mA cm-2 of these three catalysts 

with reference IrO2/C, one can easily found that the ratio of Co: Ni =4: 1 with 

fixed graphene show a much better OER activities than the reference and other 

catalysts. Based on these results, the OER performances of 4CoS-NiS-zG-T 

series catalysts were further evaluated. The polarisation curve of 4CoS-NiS-5G-

T and IrO2/C are shown in Figure 4.21b. It can be found that 4CoS-NiS-5G-800 

exhibit much enhanced OER activities with an onset potential of 1.41 V, which 

is far lower than 1.5 V of IrO2/C, followed by 1.61 V and 1.65 V of 4CoS-NiS-

5G-1000 and 4CoS-NiS-5G-600, respectively. The potential to achieve 10 mA 

cm-2 for 4CoS-NiS-5G-800 is 1.46 V, which is much lower than the value for 

IrO2/C (1.61 V), 4CoS-NiS-5G-1000 (1.69 V) and 4CoS-NiS-4G-600 (>1.8V). 

Comparing  with other catalysts (600 °C and 1000 °C samples), 4CoS-NiS-5G-

800 sample exhibited remarkable current density in the whole potential range, 

which indicates this bi-metallic Co-Ni sulfides composite obtained via 

sulfurisation at 800 °C is a promising OER electrocatalyst with superior OER 

activities. 
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Figure 4. 21 Polarisation curves for OER on (a) xCoS-NiS-10G-800 series composites and 

IrO2/C. (b) 4CoS-NiS-5G-T series composites and IrO2/C. (c) 4CoS-NiS-zG-800 series 

composites and IrO2/C. (d) Tafel plot of 4CoS-NiS-zG-800 series composites. (e) durability test 

Besides the sulfurisation temperature, the amount of graphene in the samples is 

another important factor that can influence the OER activities. The as-

synthesised 4CoS-NiS-800 and 4CoS-NiS-zG-800 (z= 2.5, 5 and 10) catalysts 

that contains different graphene content were all evaluated in 1 M KOH 

electrolyte solution and the results were presented in Figure 4.21c. It can be 
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found that the onset potential of 4CoS-NiS-5G is 1.41V, which is lower than that 

of 4CoS-NiS-10G (1.45 V), 4CoS-NiS-2.5G (1.49 V), 4CoS-NiS (1.6 V) and 

IrO2/C (1.5 V), respectively. Both 4CoS-NiS and 4CoS-NiS-zG catalysts 

exhibited a sharp rise of anodic current, and the current density of 10 mA cm-2 

could be achieved for 4CoS-NiS-5G at a potential of 1.46 V, which is lower than 

that for 4CoS-NiS-10G (1.51 V), followed by 1.54 V, 1.61 V and 1.67 V for  

4CoS-NiS-2.5G, IrO2/C and 4CoS-NiS, respectively. In addition, the kinetics of 

these catalysts were examined by Tafel plot (Figure 4.21d), which are derived 

from the polarisation curves for OER. A low Tafel slope of 54 mV dec-1 is 

observed for 4CoS-NiS-5G, which is smaller than 55, 56, 60 and 82 mV dec-1 

for 4CoS-NiS-10G, 4CoS-NiS-2.5G, 4CoS-NiS and IrO2/C, respectively. This 

further confirms that sample 4CoS-NiS-5G-800 is the most active 

electrocatalyst in OER among all the studied materials. Moreover, the catalyst 

durability is evaluated and displayed in Figure 4.21e. The 4CoS-NiS-5G-800 

sample showed a similar I-V curve after 500 times scan with a scan rate of 5 

mVs-1, while the 500th curve displayed the same overpotential at the current 

density of 10 mA cm-2 and even a litter lower than onset potential than the initial 

cycle. The superior durability of 4CoS-NiS-5G-800 may be due to that only tiny 

parts of CoS/NiS were oxidised to CoO/NiO during the initial electrochemical 

process and the rest of particles were protected by the graphene and carbon 

matrix.  

The introduction of graphene promoted the electron transfer between the 

surfaces of 4CoS-NiS-5G catalyst and the reaction media, it is therefore an 

efficient OER process which can achieve high current density readily. The OER 

process produces H2O and O2 in the electrolyte media, following the reaction of 

4OH- → 2H2O+O2+4e-. The OER performances of all the evaluated catalysts 

are listed in Table 4.3. The improved OER performance of 4CoS-NiS-xG was 

contributed to the existence of graphene in the samples, which provides more 

access pathways and promotes the electron transfer between the catalyst 

surface and the electrolyte. However, it is worth noting that the addition of too 

much graphene into composites plays an adverse effect since too much 

graphene can block the pore of the materials. Consequently, the weight content 

of graphene in the composites should be optimised. 
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Table 4. 2 OER performances of different composites 

 
Catalyst 

 
OER onset overpotential (mV 

vs. RHE) 

 
OER overpotential (mV vs. 

RHE) @ 10 mA cm
-2

 

 
CoS-NiS-10G-800 

 
162 

 
171 

 
2CoS-NiS-10G-800 

 
160 

 
165 

 
4CoS-NiS-10G-800 

 
145 

 
152 

 
4CoS-NiS-5G-600 

 
165 

 
183 

 
4CoS-NiS-5G-1000 

 
161 

 
169 

 
4CoS-NiS-800 

 
160 

 
167 

 
4CoS-NiS-2.5G-800 

 
149 

 
154 

 
4CoS-NiS-5G-800 

 
141 

 
146 

 
4CoS-NiS-10G-800 

 
143 

 
151 

 
IrO2/C 

 
150 

 
161 

 

According to previous results on activities, since catalysts with the ratio of Co: 

Ni =4: 1 sulfurised in 800 °C exhibited superior electrochemical performance in 

OER, 4CoS-NiS-zG series catalysts were further measured as electrocatalysts 

for hydrogen evolution reaction. From the polarisation curves shown in Figure 

4.22a, the Pt/C displayed a negligible onset potential, while 4CoS-NiS-5G 

exhibited an onset potential of 0.26 V, which is higher than the onset potential of 

0.245 V, 0.25 V and 0.24 V (lowest) for 4CoS-NiS-800, 4CoS-NiS-2.5G-800 and 

4CoS-NiS-10G-800, respectively. In order to reach a current density of 10 mA 

cm-2, 4CoS-NiS-10G needed an overpotential of 0.37 V, which is nearly the 

same voltage as 4CoS-NiS-800 and slightly lower than that of 4CoS-NiS-2.5G-

800, whereas a high overpotential of 0.425 V was required for 4CoS-NiS-5G-

800. In additional, an overpotential of 0.515V was needed to drive current 

density of 100 mA cm-2 for 4CoS-NiS-2.5G-800, slightly lower than that of 

4CoS-NiS-800. These observations may suggest that 4CoS-NiS-2.5G-800 

performs slightly better than other samples for HER in acid electrolyte. But in 

general, graphene-containing samples did not show obvious advantages over 

graphene-free sample and all the samples actually exhibited more or less 

comparable HER performances in acidic electrolyte media. The iR-corrected 
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Tafel plots are displayed in Figure 4.22b. The slope value of 4CoS-NiS-2.5G-

800 is 91 mV/dec, which is lower than that of 95 mV/dec, 102 mV/dec and 103 

mV/dec for 4CoS-NiS-800, 4CoS-NiS-10G-800 and 4CoS-NiS-5G-800, 

respectively.  

However, when the HER catalytic activities of 4CoS-NiS-zG-800 were also 

evaluated in 1M KOH electrolyte and the iR corrected linear sweep voltammetry 

curves are shown in Figure 4.23a, the same composites demonstrate different 

HER performances in alkaline media. One can easily find that the HER activities 

of all the 4CoS-NiS-zG-800 samples were better than that of 4CoS-NiS-800, 

indicating that the introduction of graphene can remarkably improve the HER 

performance of the composites in alkaline media. The onset potential for 4CoS-

NiS-2.5G-800 was 0.24 V, which is 20 mV lower than that for 4CoS-NiS-800 

sample. In order to reach a current density of 10 mA cm-2, the sample 4CoS-

NiS-2.5G showed the best performance with an overpotential of 0.335V, which 

is lower than 0.358V, 0.355V and 0.388V for 4CoS-NiS-5G-800, 4CoS-NiS-

10G-800 and 4CoS-NiS-800, respectively. Moreover, LSV curves of 4CoS-NiS-

10G-800 and 4CoS-NiS-5G-800 displayed a dramatic drop in overall activities 

comparing with the others, with an overpotential much lower than that of 4CoS-

NiS-800 at a current density of 100 mA cm-2. The different HER performances 

of those samples in alkaline media can be also found in their iR- corrected Tafel 

plots (shown in Figure 4.23b) with slope values ranging from 90 to 121 mV/dec 

for 4CoS-NiS-10G-800, 4CoS-NiS-2.5G-800, 4CoS-NiS-5G-800 and 4CoS-NiS-

800, which is an indication of that the graphene contained nanocomposite 

catalysts exhibited a remarkable HER performance in alkaline media, owing to 

the excellent conductivity of graphene that could improve the electron transfer 

between the catalyst surface and reaction intermediates. All the HER 

performances both in acidic and alkaline media for 4CoS-NiS-zG and IrO2/C 

samples are summarised in Table 4.4. 
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Figure 4. 22 (a) Polarisation curves for HER on 4CoS-NiS-zG-800 series composites and Pt-C 

and (b) corresponding Tafel plots. Measured in 0.5 M H2SO4 electrolyte 

 

Figure 4. 23 (a) Polarisation curves for HER on the 4CoS-NiS-zG-800 series composites and 

Pt-C and (b) corresponding Tafel plots. Measured in 1 M KOH electrolyte 

Table 4. 3 HER performances of different composites 

 
 
 

Catalyst 

 
Onset potential (mV 

vs. RHE) 

 
Over potential (mV 
vs. RHE)@ 10 mA 

cm
-2 

 

 
Tafel slope  
(mV dec

-1
) 

 

0.5 M 
H2SO4 

1 M  
KOH 

0.5 M 
H2SO4 

1 M  
KOH 

0.5 M 
H2SO4 

1 M  
KOH 

 
4CoS-NiS-800 

 
245 

 
260 

 
370 

 
388 

 
95 

 
121 

 
4CoS-NiS-2.5G-800 

 
251 

 
241 

 
380 

 
335 

 
91 

 
92 

 
4CoS-NiS-5G-800 

 
260 

 
251 

 
425 

 
358 

 
103 

 
95 

 
4CoS-NiS-10G-800 

 
240 

 
249 

 
371 

 
355 

 
102 

 
90 

 
Pt-C 

 
61 

 
10 

 
62 

 
30 

 
30 

 
46 
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From the above OER and HER results, one can find that the as-prepared 4CoS-

NiS-5G-800 can be used as a good electrocatalyst for overall water splitting. 

The potential reasons may be :(1) the outstanding OER performance can be 

attributed to the uniform dispersion of the bi-metal sulfides in porous carbon 

structure which can provide more exposure of edge sites which is beneficial to 

achieve excellent OER activities; (2) the good HER performance is originated 

from the introduction of nickel promoted cobalt sulfides which improves the 

adsorption abilities of H+ on carbon by optimizing the electronic structure, thus 

enhancing HER activities both in acidic and alkaline electrolyte media; (3) the 

nanocomposites with incorporated porous carbon produced from in-situ 

sulfurisation/ pyrolysis method can greatly improve the electron transport, thus 

promoting the structural stability; (4) the porous carbon and graphene are 

doped with heteroatoms such as N and S during the carbonisation and 

sulfurisation process, which could not only offer more active sites for catalytic 

reaction, but also provide anchoring sites for the deposition of catalytic 

nanoparticle. Meanwhile, the introduced graphene itself can also provide more 

access pathway and promote the electron transfer between the catalyst surface 

and reaction intermediates. 

 

 

 

 

 

  

 

 

 

 



101 
 

Chapter 5: Electrocatalytic performance of bi-metallic 

  derivatives derived from Fe substituted GO/ZIF-67

 

5.1 Introduction 

As one of the most ideal, environmental friendly and zero carbon emission gas, 

hydrogen (H2) energy resource has attracted great interest in fuel cells, 

renewable system and metal-air batteries 22, 271-272. Overall water splitting into 

oxygen and hydrogen has been considered as a promising solution to the global 

energy crisis and hydrogen generation 22-23, 25, 273. However, the slow rate of 

water splitting is efficiency limited, therefore, a high performance 

electrochemical catalyst is required to accelerate the two half reactions rates in 

order to overcome this bottleneck. Currently, a lot of efforts have been devoted 

to investigate bifunctional electrocatalysts that have efficient performance both 

in OER and HER. In Tian’s research 274, self-supported NiMo nanorods were 

used as bifunctional catalyst and those materials could achieve current density 

of 10 mA cm-2 for water splitting with a very low voltage of 1.64 V. Liu et al. 275 

discovered that amorphous CoSe films (with CoSe electrodeposited in Ti mesh) 

were also excellent bifunctional electrocatalyst for water splitting  and only 1.65 

V was needed to realise the current density of 10 mA cm-2. Furthermore, two 

widely used metals Ni-Fe alloys and their nitrides exhibited great performance 

on water splitting 276-278.  However, for Co and Fe, which are known to have 

dramatic performance on the OER and HER activities, very limited researches 

have been exploring their bifunctional performances for overall water splitting.  

In this chapter, we use a facile strategy for the preparation of Co-Fe based 

nanoparticles homogeneously embedded in N-doped porous carbon via a one-

step carbonisation of the in-situ synthesised composite Fe-substituted ZIF-

67/graphene oxide (GO) simultaneously. The obvious advantages of using this 

particular composite as the precursor are as follows: (1) the nanostructured 

products after high temperature heat treatment can increase the active surface 

area of the materials; (2) doping with heterogeneous elements can alter the 

electronic structure of the pristine active species, therefore can optimise its 

catalytic activity; (3) the bimetallic nanoparticles with graphene and porous 

carbon, which was achieved by heating treatment in argon atmosphere, could 
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effectively improve the conductivity of the electrocatalyst. In addition, this type 

of composites can not only offer large surface area to support active sites for 

catalytically reactions, but also prevent the accumulation of active species 

because of the anchoring effect. In this work, the resulting composite Co-Fe-

5G-800 exhibited good electrochemical activities with onset potential of 1.41 V 

in alkaline electrolyte for OER. Particularly, Co-Fe-5G-800 showed remarkable 

HER activities over a wide pH range, which is better than most of noble metal 

free catalysts and comparable to that of Co-Fe-800. The increased electrical 

conductivity, active sites and the improved connectivity between cobalt and iron 

particles containing porous carbon and N-doped graphene enable the Co-Fe-

5G-800 is a promising electrode material for catalysis and energy applications. 

However, there are rare researches were done on bi-metallic oxide 

nanoparticles embedded with graphene and porous carbon, especially based 

on cobalt and iron element. Although a few studies reported single CoxOy 
279 

and FexOy 
280

 as electrocatalyst for OER with relative low activities, to the best 

of our knowledge, there is no such research that investigating on the synergistic 

effects between cobalt and iron oxide. Moreover, the combination of Co-Fe 

oxides with N-doped graphene and porous carbon could also offer triple 

synergistic effect. The existence of these synergistic effects in the 

nanocomposites may increase the electrocatalytic activities of the composites 

compared to the single transition metallic oxide. Additionally, graphene in the 

nanocomposites can improve the conductivities and enhance water splitting 

ability. Consequently, in this chapter, a facile strategy was also used to prepare 

Co-Fe based oxide nanoparticles embedded in N-doped graphene and porous 

carbon by a two-step carbonisation and oxidation of Fe-substituted ZIF-67 with 

GO. Due to the triple synergistic effect in the nanocomposites, the resulting 

samples exhibited remarkable OER and HER activities in alkaline media.   
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5.2 Characterisation of cobalt-iron/ N-doped porous carbon 

composites 

The morphologies of the as-synthesised composites were investigated by 

scanning electron microscopy (SEM). As shown in Figure 5.1a-h, the crystal 

size of composites can be controlled by adjusting the ratio of Co: Fe and 

treatment temperature. The average crystal size decreased with the increase of 

the iron content and it is difficult to find any single cobalt particle with octahedral 

crystal shapes in samples. The crystal size of resulting Co-Fe-800 is only about 

1/3 scale of Co-800, indicating particle sizes of the as-synthesised composites 

were affected by iron content in the samples due to the synergistic effect 

between cobalt and iron. The SEM images of Co-Fe-600 and Co-Fe-1000 are 

shown in Figure 5.1e-f and Figure 5.1g-h, separately. Comparing with sample 

Co-Fe-800, sample Co-Fe-600 displayed the similar crystal size with much 

more aggregate particles, implying the poor crystallisation of metal particles in 

the sample. While Co-Fe-1000 exhibited a larger crystal size, suggesting both 

cobalt and iron convert to metal particles during the high temperature treatment 

in Argon.  
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Figure 5. 1  SEM images of the (a, b) Co-800; (c, d) Co-Fe-800; (e, f) Co-Fe-600 and (g, h) Co-

Fe-1000 

To further investigate the morphologies and the local structure of the prepared 

materials, transmission electron microscopy (TEM) was used to characterise 

the representative samples Co-800 and Co-Fe-800. In Figure 5.2, both 

composites exhibited spherical-like particles after the carbonisation at 800 °C. 

From the low magnification TEM images, the average particle size is 20-40 nm 
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Figure 5. 2 TEM images of (a, b) Co-800 and (c, d) Co-Fe-800. Inset in (a, c) is SAED patterns 

for corresponding composites 

for Co-800; however, the particle size is 15-20 nm for Co-Fe-800, maybe due to 

the effect of iron existence in the composite. Interestingly, it is easy to see there 

was around 15 nm long nanotube in the high resolution image of Co-Fe-800, 

which is in-situ formed from carbon due to the catalytic effect of cobalt and iron 

particles, and these nanotubes can offer more electron transfer pathways and 

active sites to improve electrochemical activities. Moreover, as shown in Figure 

5.2b & d, some carbon onions can be also found with the diameter around 8-15 

nm, which were in agreement with the Raman spectrum results and further 

confirmed that both composites contain graphitised nanostructure. The selected 

area electron diffraction (SAED) patterns, shown in the inset of Figure 5.2a & c, 

clearly showed the bright scattered dots contributed from the crystalline metal 

nanoparticles while the dimmed diffraction rings are from the amorphous porous 

carbon matrix. In order to ascertain the distribution of cobalt and cobalt/ iron 

particles in Co-800 and Co-Fe-800, the elemental mapping of those two 

samples were measured. In Figure 5.3, the element mapping for cobalt 

exhibited similar pattern with dark area in TEM images, implying the well 

dispersion of cobalt particles in the composite. Also, the element mapping for  
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Figure 5. 3 TEM images and element mappings (C, Co and N/ C, Co, Fe and N) for Co-800 

    

 

Figure 5. 4 TEM images and element mappings (C, Co and N/ C, Co, Fe and N) for Co-Fe-800 

both cobalt and iron exhibited the similar patterns with the dark area in the 

selected TEM image (Figure 5.4), indicating both cobalt and iron were uniformly 

distributed in the composite of Co-Fe-800. In addition, the cobalt and cobalt/ 

iron core-shell structure was formed in Co-800 and Co-Fe-800, respectively. 

X-ray photoelectron spectroscopy (XPS) was used to investigate the chemical 

environment and compositions of the as-synthesised representative composites 

of Co-Fe in three different heat treatment temperatures. The element surveys 

shown in Figure 5.5a clearly state the presence of element C, Co, Fe, and N in 

all the representative samples. In the high-resolution spectrum of C 1s (Figure 

5.5b), a main peak centred at 284.5 eV in all the three samples, indicating a sp2 

hybridised graphitic structure was formed which can efficiently improve its 

electroconductivity 260. The spectrum can be also deconvoluted into two peaks 

located at 285.3 and 286.4 eV, which may correspond to C=N and C-O/ C-N, 

respectively 252, 281-282. A very weak peak appeared at 290.1 eV both in Co-Fe-

800 and Co-Fe-1000, attributed to metal carbide. The high-resolution Co 2p and 

Fe 2p spectra of the Co/Fe carbide indicated the presence of different bonding  
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Figure 5. 5 (a) Element survey by XPS and XPS spectrum of (b) C 1s, (c) Co 2p, (d) Fe 2p, (e) 

N 1s for Co-Fe-T series composites 

states of Co and Fe atoms (Figure 5.5c&d). The Co 2p spectra of Co-Fe-600 

was deconvoluted into doublets at 779.7, 781. 2 and 796.2 eV, which were 

consistent with Co 2p 3/2, while two peaks located at 786 and 803.2 eV were 

consistent with Co 2p 1/2 satellite components 283. The Fe 2p spectrum (Figure 

5.5d) can be deconvoluted into three different peaks located at 711.8, 713.6 
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and 725.3 eV, which were consistent with Fe 2p 3/2 
283. For both Co-Fe-800 and 

Co-Fe-1000, three doublets at 707.5, 709.8 and 723.4 eV could be found, 

corresponded to Fe 2p 1/2 and satellite components 283. In particular, the 

presence of Co-C at 781.9 eV and Fe-C at 707.5 and 723.4 eV, respectively, 

was attributed to the formation of stoichiometric cobalt iron carbides during 

high-temperature annealing process 284-286. Moreover, N 1s spectrum (shown in 

Figure 5.5e) for all samples deconvoluted into four different peaks at 392.8, 

399.1, 400.1 and 401.8 eV, which are corresponding to pyridinic-N, Co-N, 

pyrrolic-N and graphitic-N, respectively 258, 287. It has been found that the N-

doped carbon materials can enhance electrochemical properties and the onset 

potential in OER and HER. 

To identify the synergistic effect in the composite, another series of composites 

Co-800, Co-Fe-800 and Co-Fe-5G-800 have been analysed by XPS (Figure 

5.6). The spectrum of C 1s (shown in Figure 5.6b) for all the three composites 

obtained at the same carbonisation condition of 800 °C displayed four 

deconvoluted peaks at 284.5, 285.3, 286.4 and 290.1 eV, which corresponds to 

sp2 hybridised graphitic 260, C=N, C-O/ C-N and C-N/metal carbide 252, 281-282, 

respectively. Similar to previous analysis, carbon with sp2 hybridised graphitic 

doped by N, will benefit electrons transfer and the enhancement of the OER 

and HER activities. The spectrum of Co 2p (Figure 5.6c) exhibited four peaks at 

779.7, 781.2, 786 and 796 eV, which were corresponding to Co 2p3/2 in all 

samples 283. In addition, a peak located at 803.2 eV attributed to Co 2p 1/2 

satellite components is a symbol of bivalent oxidation state 283. The Fe 2p 

spectrum only appeared in Co-Fe-800 and Co-Fe-5G-800 (shown in Figure 5.6d) 

can be deconvoluted into the same peaks located at 709.8 and 723.4 eV that is 

consistent of Fe 2p1/2 and satellite components 283, while other doublets were 

found at 711.8, 713.6, 720 and 725.3 eV, which were corresponding to Fe 2p 3/2 

283 in these two samples. Comparing Co-Fe-800 and Co-Fe-5G-800 with Co-

800, two peaks were found at 781.9 and 707.5 eV, which represents Co-C and 

Fe-C, respectively, was attributed to the formation of stoichiometric cobalt iron 

carbides during high-temperature annealing process 284-286. This phenomenon 

may be due to the synergistic effect between cobalt and iron atoms in the 

samples. Additionally, the N 1s spectrum (shown in Figure 5.6e) exhibited 

similar peak positions as discussed above. All samples containing graphitic-N 
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(401.8 eV) and pyrrolic-N (400.1 eV) may have enhanced electrochemical 

abilities 258, 287. 

 

 

 

Figure 5. 6 (a) Element survey by XPS and XPS spectrum of (b) C 1s, (c) Co 2p, (d) Fe 2p, (e) 

N 1s for Co-800, Co-Fe-800 and Co-Fe-5G-800 
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Figure 5. 7 XRD patterns of (a) Fe-substituted ZIF-67 composites (b) xCo-yFe-800 series 

composites and (c) Co-Fe-T series composites 

The crystal structures of the as-synthesised Fe-substituted ZIF-67 with different 

ratio of cobalt to iron, were investigated by XRD (shown in Figure 5.7a). All 

precursor composites exhibited same peaks located at 10.2°, 12.5°, 14.5°,16.4°, 

18°, 24.5°, 25.8°, 26.9°, corresponding to (002), (112), (022), (013), (222), (223), 

(224) and (134) planes 244, respectively. The XRD spectra of xCo-yFe-800 

series samples are shown in Figure 5.7b. Three peaks appeared at 44°, 52° 

and 76.5°, corresponding to the diffraction planes of cobalt (111), (200) and 

(220) (JCPDS 15-0806) 288, respectively, which could be found in Co-800 

sample. The diffraction intensity of these three peaks become weaker and 

blunter with the increase ratio of Fe: Co, while gradually the diffraction peaks 

are dominated with the metallic Fe phase, suggesting the existence of a 

synergistic effect between iron and cobalt in the hybrid composites. Eventually, 

only two peaks located at 44.5° and 65.5°, corresponding to the diffraction 

planes (110) and (200) of metallic iron (JCPDS 03-065-4899) 289, were found in 
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Co-Fe-800. Interestingly, no diffraction peaks from metallic cobalt appeared in 

Co-Fe-800 sample, which may be due to the diffraction intensity of iron are 

much stronger than cobalt and the diffraction peaks for cobalt emerged with that 

of iron. In addition, the structures of Co-Fe-T were also measured by XRD 

(Figure 5.7c). All of them exhibited the same two peaks at 44.5° and 65.5°, 

indicating the existence of metallic iron in all the composites. Moreover, these 

two peaks become sharper and more intense with increasing the carbonisation 

temperature from 600 to 1000 °C, implying an increase of iron crystallinity and 

iron particle size. 

The Raman spectrum of xCo-yFe-800 series composites are shown in Figure 

5.8a. All the  samples revealed the characteristic D and G bands of carbon at 

1350 and 1595 cm-1, which correspond to disordered amorphous carbon and 

sp2 hybridised graphitic carbon 290, respectively. However, two peaks located at 

2690 cm-1 and 2900 cm-1 that correspond to the 2D band and G+D band in xCo-

yFe-800 series samples, could not be observed in sample Co-800, indicating 

the existence of a synergistic effect between iron and cobalt that can prompt the 

formation of a graphitised nanostructure with carbon onions. Moreover, the Co-

Fe-T series composites were also measured by Raman spectrum and shown in 

Figure 5.8b. Sample Co-Fe-600 only showed a weak peak at around 1340 cm-1, 

implying a very small amount of disordered amorphous carbon existed in it (as 

further confirmed by TGA-MS). However, the two sample Co-Fe-800 and Co-

Fe-1000 displayed sharp peaks at 1350 and 1595 cm-1, indicating that both 

graphitic carbon and disordered amorphous carbon are presented in these two 

samples. Moreover, two peaks located at 2690 and 2900 cm-1 in sample Co-Fe-

800 and Co-Fe-1000, indicating the formation of graphitised structure in both 

samples. The peaks for Co-Fe-1000 are more intense and sharper, implying a 

higher graphitisation level and the graphitised nanostructure increases with the 

increasing of carbonisation temperature. 

The thermal stabilities of the as-synthesised xCo-yFe-800 series samples were 

evaluated via heating in air atmosphere and monitored by TGA-MS. As shown 

in Figure 5.9a, all the samples displayed a weak weight loss below 100 °C, 

owing to the removal of the adsorbed H2O in the composites. Then, a major 

weight loss event happened at 300 °C for all the composites and the 

percentage of weight loss increases with the increase of the Co: Fe ratio,  
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Figure 5. 8 Raman spectra of (a) xCo-yFe-800 series composites and (b) Co-Fe-T series 

composites 

 

 

Figure 5. 9 (a, c) TGA and their corresponding MS curves of (b, d) MS signals of CO2 for xCo-

yFe-800 and Co-Fe-T series composites, respectively 

implying the burning off the formed carbon species. Then, there was a weight 

increase event at 390 °C that may be due to the oxidation of metal species to 

high valence state of iron ion, followed by another major weight loss event at 

490 °C, which corresponds to the chemical transformation from metal (iron) 
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carbide to oxide. These weigh loss events could be further confirmed by the MS 

signals of CO2 emission in these samples, as shown in Figure 5.9b. The 

intensity of CO2 increased at the first event and then decreased at the second 

one with the increasing ratio of Co: Fe, further indicating the burning off formed 

carbons and the chemical oxidation of iron carbide at 300 and 490 °C, 

respectively. In addition, three as-synthesised composites of Co-Fe-600, Co-Fe-

800 and Co-Fe-1000 were also measured by TGA-MS and shown in Figure 

5.9c. Interestingly, Co-Fe-600 exhibited two major weight loss evens at 200 and 

300 °C, suggesting the decomposition of un-converted organic linkers and the 

burning of the formed carbon, respectively. In contrast, Co-Fe-1000 exhibited a 

big weigh increase event in the temperature range of 250-560 °C, due to the 

oxidation of both metals to oxides, and followed by a major weight loss event at 

560 °C, suggesting the chemical transformation of metal carbide to metal oxides 

and the burn off carbon species in air. In the MS result shown in Figure 5.9d, 

there is only one CO2 emission peak at 300 °C for Co-Fe-600, indicating that 

only small amount of carbon existed in this sample, which is consistent to the 

Raman spectrum (shown in Figure 5.8). In comparison, the CO2 emission peak 

appeared at around 570 °C for Co-Fe-1000, implying that the CO2 is from the 

burn off carbon and the chemical conversion of metal carbide to oxides in the 

composite. For sample Co-Fe-800, both iron carbide and porous carbon are 

presented in this composite. 

5.3 Electrocatalytic performance of cobalt-iron/ N-doped porous 

carbon composites 

5.3.1 Oxygen evolution reaction 

The electrocatalytic activities of the as-synthesised xCo-yFe-T series 

composites for oxygen evolution reaction (OER) were evaluated in O2- 

saturated 1M KOH (pH=14) electrolyte using a three electrodes system with 

scan rate of 5 mVs-1. Owing to the effect of ohmic resistance (iR), the as-

measured current did not reflect the intrinsic behaviour of the tested samples. 

Therefore, before OER measurement, all the samples were subjected to initial 

current for iR correction. The OER performance of the catalytic materials 

derived from Co: Fe ratio of 1: 0, 1: 1, 2: 1, 4: 1 and 8: 1 carbonised in Argon 

atmosphere at 800 °C were first measured by steady-state linear sweep 

voltammetry on a rotating disk electrode and the results are shown in 
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Table 5. 1 OER performances of xCo-yFe-T series composites 

 

 

Catalyst 

 

Onset potential 

(V vs. RHE) 

 

Potential 

(V vs. RHE) @ current density 

of 10 mA cm
-2

 

 

Tafel slope 

(mV/dec) 

Co-800 1.56 1.61 59.2 

8Co-Fe-800 1.52 1.58 58.8 

4Co-Fe-800 1.49 1.56 52.5 

2Co-Fe-800 1.46 1.53 47.7 

Co-Fe-800 1.44 1.48 45.2 

Co-Fe-600 1.46 1.50 63.6 

Co-Fe-1000 1.43 1.50 38.4 

 

Figure 5.10a. Samples Co-Fe-800, 2Co-Fe-800 and 4Co-Fe-800 exhibited 

excellent onset potential of 1.44, 1.46 and 1.49 V, respectively, which are all 

much higher than that of reference material IrO2/C (1.5 V), while 8Co-Fe-800 

and Co-800 showed lower onset potential of 1.52 and 1.56 V, respectively. 

Moreover, all the samples achieved current density of 10 mA cm−2 at small 

overpotential of 1.48, 1.53, 1.56, 1.58 and 1.61 V for Co-Fe-800, 2Co-Fe-800, 

4Co-Fe-800, 8Co-Fe-800 and Co-800, respectively, which are all lower than the 

value of 1.63 V for IrO2 and other reported bimetal electrocatalysts including 

NiFe, CoNi and CoSe. It is believed that the introduction of iron can trigger 

synergistic effects between cobalt and iron particles and result in bi-functional 

performances of the materials, which will efficiently enhance the OER activities. 

Meanwhile, the Tafel slope results, which derived from the polarisation curves 

are shown in Figure 5.10b. Compared with the Tafel slope values of 2Co-Fe-

800 (47.7 mV/dec), 4Co-Fe-800 (52.5 mV/dec), 8Co-Fe-800 (58.8 mV/dec), Co-

800 (59.2 mV/dec) and IrO2 (82 mV/dec), the sample Co-Fe-800 displayed the 

smallest value of 45.2 mV/dec, indicating its remarkable OER reaction rate. 

Based on the above results, the OER performance of samples with Co: Fe =1: 1 

exhibited excellent electrochemical activities, hence Co-Fe-T series composites 

obtained under different carbonisation temperatures were further evaluated. 

The polarisation curve of Co-Fe-T and IrO2/C were shown in Figure 5.10c. 

Obviously, Co-Fe-1000 exhibited the lowest onset potential of 1.43 V, which 

was 10 mV and  30 mV lower than that of Co-Fe-800 and Co-Fe-600,  
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Figure 5. 10 Polarisation curves for OER on (a) xCo-yFe-800 series composites and IrO2/C and 

(b) their Tafel plot (c) Co-Fe-T series composites and IrO2/C and (d) their Tafel plot (e) durability 

test for Co-Fe-800 

respectively. However, potential of 1.48 V was acquired to reach the current 

density of 10 mA cm-2 for Co-Fe-800, which was 20 mV lower than both Co-Fe-

1000 and Co-Fe-600. Moreover, only a potential of 1.52 V is required for 

sample Co-Fe-800 to reach the current density of 50 mA cm-2, while the values 

of 1.56 V and >1.6 V are needed for sample Co-Fe-1000 and Co-Fe-600 to 
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realise the same current density, respectively. In addition, the Tafel slope 

(shown in Figure 5.10d and Table 5.1) values were 38.4, 45.2 and 63.6 mV/dec 

for Co-Fe-1000, Co-Fe-800 and Co-Fe-600, respectively. It is likely that part of 

bimetal particles contained in Co-Fe-1000 were easily oxidised during the OER 

process to form divalent state metal oxides which may accelerate the OER 

reaction rate; however, these metal particles are lacking of high density active 

sites, and consequently the samples cannot reach high current density at a 

fixed potential compared with sample Co-Fe-800. Additionally, the 

chronoamperometric test of Co-Fe-800 was also carried out and shown in 

Figure 5.10e. Excitingly, after 500th times scanning at the scan rate of 5 mVs-1, 

sample Co-Fe-800 exhibited even lower onset potential than the initial one, 

which may be due to the increase of oxidised cobalt ions during the LSV 

scanning of the composites that formed more active oxides species on the 

surface of the samples. 

5.3.2 Hydrogen evolution reaction 

The HER performance of xCo-yFe-T series composites were all evaluated in 

1M KOH electrolyte and the iR-corrected linear sweep voltammetry curves are 

shown in Figure 5.11a. The samples 2Co-Fe-800, 4Co-Fe-800 and 8Co-Fe-800 

exhibited very similar onset potentials at around 0.23 V, which is higher than 

that of Co-Fe-800 (0.21 V) and much lower than the value of Co-800 (0.28 V). 

Meanwhile, both 4Co-Fe-800 and 8Co-Fe-800 realised a current density of 10 

mA cm−2 at a same overpotential of 275 mV, which is 5 mV and 20 mV higher 

than the value of 2Co-Fe-800 and Co-Fe-800, respectively, while 65 mV lower 

than that of Co-800. Moreover, to achieve the current density of 50 mA cm−2 

and 100 mA cm−2, overpotential of 325 and 350 mV were required for sample 

Co-Fe-800, which exhibited the best HER performance than others. Based on 

the LSV curves of the HER performance of the samples, their Tafel slope were 

calculated and summarised. In Figure 5.11b and Table 5.2, the Tafel slope 

value of 94 mV/dec was obtained for sample Co-Fe-800 and other samples like 

2Co-Fe-800, Co-800, 4Co-Fe-800 and Co-800 exhibited the Tafel slopes in the 

range of 96-101 mV/dec. Obviously, the introduction of iron can produce a 

synergistic effect with cobalt and this could optimise their electronic structure. 

Meanwhile, the samples with Co: Fe ratio of 1: 1 exhibited remarkable HER 

performance compared with other Co: Fe ratio in alkaline media. Based on this 
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result, the HER performance of Co-Fe-T series composites were further 

measured. From Figure 5.11c, we can find that both Co-Fe-600 and Co-Fe-800 

exhibited the same onset potential of 0.21 V, which is much lower than that of 

0.33 V for Co-Fe-1000.  

 

 

 

Figure 5. 11 Polarisation curves for HER on (a) xCo-yFe-800 series composites and Pt/C and (b) 

their Tafel plot (c) Co-Fe-T series composites and Pt/C and (d) their Tafel plot (e) durability test 

for Co-Fe-800; Measured in 1 M KOH electrolyte 
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Interestingly, both of them can also achieve a current density of 10 mA cm−2 at 

a same overpotential of 255 mV, whereas 350 mV is required for Co-Fe-1000. 

However, the overpotential of 325 and 350 mV are needed for sample Co-Fe-

800 to achieve a current density of 50 and 100 mA cm−2; in contrast, 345 and 

380 mV were required for sample Co-Fe-600. Tafel slope results for those 

samples are shown in Figure 5.11d. The slope value of both samples Co-Fe-

600 and Co-Fe-800 was 89 mV/dec, which is much lower than that of sample 

Co-Fe-1000 (114 mV/dec). From the above HER results, it indicated that much 

high level of active sites may exist in both Co-Fe-600 and Co-Fe-800, and the 

metal ions in the samples were readily reduced by the in-situ formed carbon, 

therefore, exhibiting the similar onset potentials and slope values. However, due 

to the relative low amount of carbon contained in the sample Co-Fe-600, it 

cannot reach a high current density in comparison with Co-Fe-800. Owing to the 

existence of metal carbide particles in the sample, Co-Fe-1000 exhibited weak 

HER activities during the test. In addition, the chronoamperometric test was 

measured and shown in Figure 5.11e. After 500th scanning cycles, Co-Fe-800 

exhibited a similar I-V curve to its initial one and only drop 30 mV at the current 

density of 10 mA cm−2. 

Table 5. 2 HER performances of xCo-yFe-T series composites. Measured in 1M KOH and 0.5M 

H2SO4 electrolyte 

 
 
 
 

Catalyst 

 
HER 

Measured in 1M KOH electrolyte 

 
HER 

Measured in 0.5M H2SO4 electrolyte 

 
Onset 

potential  
(V vs. 
RHE) 

 
Overpotential 
(V vs. RHE) 
@ current 
density of 
10mA cm

-2
 

 
Tafel 
slopte 

(mV/dec) 

 
Onset 

potential 
(V vs. 
RHE) 

 
Overpotential 
(V vs. RHE) 
@ current 
density of 
10mA cm

-2
 

 
Tafel 
slopte 

(mV/dec) 

 
Co-800 

 
0.28 

 
0.335 

 
113 

 
0.28 

 
0.37 

 
97 

 
8Co-Fe-

800 

 
0.23 

 
0.27 

 
107 

 
0.34 

 
0.4 

 
101 

 
4Co-Fe-

800 

 
0.23 

 
0.27 

 
95 

 
0.34 

 
0.41 

 
99 

 
2Co-Fe-

800 

 
0.23 

 
0.265 

 
94 

 
0.28 

 
0.36 

 
96 

 
Co-Fe-

800 

 
0.21 

 
0.25 

 
89 

 
0.26 

 
0.34 

 
94 
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Figure 5. 12 Polarisation curves for HER on (a) xCo-yFe-800 series composites and Pt-C and (b) 

their Tafel plot; Measured in 0.5 M H2SO4 electrolyte 

The HER performance of xCo-yFe-800 series composites were also assessed 

in acid electrolyte (0.5M H2SO4 solution). As shown in Figure 5.12a, we can find 

the polarisation curve recorded for sample Co-Fe-800 showed the lowest onset 

potential of 0.26 V. In contrast, other samples exhibited higher onset potentials 

(shown in Table 5.2) ranging from 0.28 to 0.34 V. It should be noted that an 

overpotential of 0.34 V was required for Co-Fe-800 to achieve the current 

density of 10 mA cm−2, which is slightly lower than others ranging from 0.36 to 

0.41 V. Meanwhile, the Tafel slopes of the samples (shown in Figure 5.12b) 

also reflected their HER activity. The Co-Fe-800 displayed the lowest slope 

value of 94 mV/dec, while the others’ slope values were ranging from 96 to 101 

mV/dec. Based on these experimental results, it is clear that the iron contained 

samples not only exhibited superior OER/HER activities in alkaline media, but 

also showed good HER performance in acid electrolyte. More importantly, both 

the ratio of Co: Fe and carbonisation temperature can be optimised and the 

sample Co-Fe-800 exhibited the best overall water splitting activities among all 

catalysts. 
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5.4 Characterisations of cobalt-iron/ N-doped porous carbon/ 

graphene composites 

From the previous work, the bimetal cobalt and iron and N doped porous carbon 

nanocomposites, especially the Co-Fe-800 sample express a good 

electrocatalytic performance. Based on this result, graphene was introduced 

into above system to improve the electrochemical performance for the reason of 

its excellent electrical conductivity, high surface area, and good chemical and 

environmental stability. In addition, N doped graphene will create some 

heteroatomic defects, which also enhance the conductivity at the electrolyte 

interface. In the following part, the graphene based bimetal cobalt and iron 

series sample results will be presented. 

The chemical environment and structure of as-synthesised composites of Co-

Fe-5G-T were investigated by XPS (Figure 5.13a). From the spectrum of C 1s 

(Figure 5.13b), all samples showed three doublets at 284.5, 285.3 and 286.4 eV, 

which are corresponding to the sp2 hybridised graphitic, C=N and C-O/ C-N 260 

component, respectively, indicating the formation of graphitic structure in all of 

them. In the spectrum of Co 2p (Figure 5.13c), four doublets at 779.7, 781.2 

and 796.2 eV could be found, which were consistent to the presence of Co 2p 

3/2 in composites. Another two more peaks appeared at 786 and 803.2 eV, 

corresponding to coordination Co 2p 1/2 and satellite components, due to the 

presence of cobalt ions 283. Interestingly, two peaks at 781.3 eV (Co-C)  could 

be found in sample Co-Fe-5G-800 and Co-Fe-5G-1000, but did not display in 

Co-Fe-5G-600, may be attributed to  the formation  of  stoichiometric cobalt iron 

carbides during high-temperature annealing process 284-286. From the spectrum 

of Fe 2p (Figure 5.13d), all samples exhibited doublets at 707.5, 709.8 and 

723.4 eV, which were corresponding to Fe 2p 1/2. Apart from that, three different 

peaks located at 711.8, 713.6 and 725.3 eV, were consistent to the presence of 

Fe 2p 3/2 and satellite components in all samples 283. Furthermore, the N 1s 

spectrum (Figure 5.13e) for all samples deconvoluted into four different peaks 

at 392.8, 399.1, 400.1 and 401.8 eV, corresponding to pyridinic-N, Co-N, 

pyrrolic-N and graphitic-N, respectively. It has been found that the N-doped 

carbon materials can enhance electrochemical properties and improve the 

onset potential in OER and HER. Based on the results from XPS, the Co-Fe-

5G-800 are consisting of C, Co, Fe and N.   
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Figure 5. 13 (a) Element survey by XPS and fine XPS spectrum of (b) C 1s, (c) Co 2p, (d) Fe 2p, 

(e) N 1s for Co-Fe-5G-600, Co-Fe-5G-800 and Co-Fe-5G-1000 

The XRD patterns of Fe-substituted GO/ZIF67 precursors are shown in Figure 

5.14a. All precursor composites exhibited the same peaks located at 10.2°, 

12.5°, 18°, 26.9°, corresponding to (002), (112), (222), and (134) planes of ZIF-

67 288, respectively, indicating the structure of ZIF-67 was not dramatically 

damaged by the addition of GO and iron species into the synthesis gel. After 
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Figure 5. 14 XRD patterns of (a) Fe-substituted GO/ZIF-67 composites (b) Co-Fe-zG-800 series 

composites and (c) Co-Fe-5G-T series composites and Co-5G-800 

the carbonisation process, the XRD patterns of Co-Fe-zG-800 series 

composites are shown in Figure 5.14b. As what was discussed about the xCo-

yFe-800 XRD results before, we could not find any peak of metal cobalt in Co-

Fe-800 due to the strong diffraction intensity of iron. Therefore, only two peaks 

located at 44.5 and 65.5° corresponding to iron (110) and (200) (JCPDS 03-

065-4899) 289 diffraction planes could be found in Co-Fe-zG-800. Obviously, the 

different amount of introduced graphene in the composites have no effect on 

the crystallinity of the composites. Moreover, a very weak peak located at 26° 

appeared in all samples maybe because of the graphene contained in the 

composites. In addition, the XRD patterns of Co-Fe-5G-T and Co-5G-800 are 

shown in Figure 5.14c. Similar to above observance, all the iron-containing 

samples exhibited two strong diffraction peaks at 44.5 and 65.5° corresponding 

to iron (110) and (200) planes, two other peaks of sample Co-5G-800 appeared 

at 44 and 52°, corresponding to cobalt (111) and (200) (JCPDS 15-0806) 291 

diffraction planes. With the increase of carbonisation temperature, the two 
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diffraction peaks of metal iron became sharper and more intense, which 

indicates an increase of iron crystalline and its particle sizes. 

The Raman spectra of Co-Fe-zG-800 series composites are shown in Figure 

5.15a. All of them revealed the characteristic D and G bands of carbon at 1350 

and 1595 cm-1, which correspond to disordered amorphous carbon and sp2 

hybridised graphitic carbon, respectively. Furthermore, two peaks could be 

found at around 2690 cm-1 and 2900 cm-1, indicating the formation of 

graphitised structure in all the composites. The Raman spectrum of Co-Fe-5G-T 

series composites and Co-5G-800 are shown in Figure 5.15b. Both D and G 

bands could be found in sample Co-5G-800, Co-Fe-5G-800 and Co-Fe-5G-

1000. In contrast, two weak peaks appeared at D and G bands in sample Co-

Fe-5G-600, indicated that only a small amount of graphene and rare carbon 

achieved after the heating process, which was also confirmed by XPS and 

TGA-MS results.  

  

Figure 5. 15 Raman spectra of (a) Co-Fe-zG-800 series composites and (b) Co-Fe-5G-T series 

composites and Co-5G-800 

The thermal stabilities of the as-synthesised Co-Fe-zG-800 series composites 

were measured by TGA-MS. As shown in Figure 5.16a, all samples showed 

weak weight loss below 100 °C due to the removal of the adsorbed H2O or 

moisture in the composites, followed by a weight increase event between 200 

and 300 °C, owing to the oxidation of metal in composites. Then, another weight 

increase event at 390 °C, may be due to the oxidation of metal ions to high 

valence state, followed by a major weight loss at around 490 °C, which is 

corresponding to chemical conversion of metal carbide to metal oxide and CO2. 

Their emission signals of CO2 are shown in Figure 5.16b. Obviously, the CO2  



124 
 

 

 

Figure 5. 16 (a, c) TGA and their corresponding MS curves of (b, d) CO2 for the Co-Fe-zG-800 

series composites and Co-Fe-5G-T series composites/ Co-5G-800, respectively 

emission could be detected in the range of 300 to 700 °C, indicating metal 

carbide, porous carbon and graphene were all formed during the carbonisation 

treatment in all three samples. Interestingly, Co-Fe-2.5G-800 showed high 

intensity of CO2 peak at around 350 °C, and Co-Fe-5G-800 displayed the 

equally CO2 intensity at 350 and 620 °C, while Co-Fe-10G-800 exhibited high 

intensity of CO2 peak at around 620 °C. It suggests that graphene oxide in the 

as-synthesised samples could influence the component of composites due to 

the existence of functional groups in it. Thus, the component could be optimised 

by controlling the content of graphene oxide adding into the precursors during 

the synthesis of the Fe-substituted GO/ZIF-67 precursors. In addition, the 

thermal stability of the as-synthesised Co-Fe-5G-T series composites and Co-

5G-800 were also measured by TGA-MS (shown in Figure 5.16c). In previous 

result of Co-Fe-600 (shown in Figure 5.9b), two major weight loss evens 

happened at 200 and 300 °C, owing to the decomposition of un-converted 

organic linkers and the burning of the formed carbon, respectively. However, 
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only one major weight loss event around 300 °C could be found, corresponding 

to the burning off the formed carbon. The Co-Fe-5G-1000 exhibited similar 

weight loss evens with Co-Fe-1000, indicating the graphene oxide solution did 

not influence the formation of metal carbide. Taking both TGA and MS results of 

sample Co-5G-800 in consideration, it can be found that a major weight loss 

event happened at 300 °C and its CO2 emission peak appear around 300 °C, 

implying only carbon was formed during the carbonisation process. 

The morphologies of the as-synthesised composites were characterised by 

scanning electron microscopy (SEM). SEM images of Co-Fe-zG-800 and Co-

5G-800 are shown in Figure 5.17a-f. Obviously, the particles were nanocrystals 

with polyhedral shape and well dispersed in composites (shown in Figure 5.17a, 

c and e). Actually, the average particle size decreased from around 130 nm to 

80 nm with the increase of graphene content in the composites. GO or 

graphene layers are not observable in the composites, indicating GO were 

completely converted to graphene and well embedded in the composites. As 

discussed in TGA-MS results, some functional groups of graphene oxide 

contained in precursor Fe-substituted GO/ZIF-67 may inhibit the growth of 

crystals. Meanwhile, the coordination of iron ions and GO sheet can also 

prevent the aggregation of crystals. In addition, the SEM images of Co-Fe-600, 

Co-Fe-1000 and Co-5G-800 are also presented in Figure 5.17g-l, respectively. 

Co-Fe-5G-600 showed the similar crystal size with more aggregated particles 

than sample Co-Fe-5G-800, which indicates the formation of weak 

crystallisation in relative low carbonisation temperature. However, Co-Fe-5G-

1000 displayed large crystal size with circular structure, suggesting the relative 

high carbonisation temperature results in the change of the morphologies of the 

resulting materials. Comparing with Co-Fe-5G-800, some large particles with 

octahedral crystal structure could be found in sample Co-5G-800, further 

implying that the carbonisation temperature do influence the morphology of the 

samples and the synergistic effect between cobalt and iron in composites may 

exist.  
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Figure 5. 17 SEM images of the (a, b) Co-Fe-2.5G-800 (c, d) Co-Fe-5G-800 (e, f) Co-Fe-10G-

800 (g, h) Co-Fe-5G-600 (i, j) Co-Fe-5G-1000 (k, l) Co-5G-800 

The morphologies and microstructure of the as-synthesised Co-Fe-zG-800 are 

further investigated by TEM (shown in Figure 5.18). All three composites 

showed spherical-like particles after the carbonisation at 800 °C. There was no 

single metal/ metal carbide particles could be easily found and most of them 

were well embedded into composites and surrounded with carbon and  
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Figure 5. 18 TEM images of (a, b) Co-Fe-2.5G-800 (c, d) Co-Fe-5G-800 and (e, f) Co-Fe-10G-

800. Inset in (a, c and e) is SAED patterns for corresponding composites 

graphene. It should be noticed that the graphene could be serving as bridges 

between metal / carbide contained porous carbon materials. From the low 

magnification images (shown in Figure 5.18a, c and e), the average particle size 

decreased from 28 to 18 nm with the increase of graphene content. In the high 

resolution TEM image of Co-Fe-2.5G-800 (shown in Figure 5.18b), carbon 

nanotubes with the length around 40 nm and carbon onion surrounded with 

metal particles could be easily found, implying carbon nanotubes and carbon 

onions were in-situ formed by the catalytic role of cobalt and iron in the 

graphene contained composites. Moreover, as shown in Figure 5.18d & f,  
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Figure 5. 19 TEM images and element mappings (C, Co, Fe and N) for Co-Fe-5G-800 

particles were surrounded with porous carbon and covered/ attached with 

several sheets of graphene. The selected area electron diffraction (SAED) 

patterns, shown in the inset of Figure 5.18a & c, clearly showed the bright 

scattered dots contributed from the crystalline metal nanoparticles while the 

dimmed diffraction rings were from the amorphous porous carbon matrix. Based 

on these results, it is believed that Co-Fe-zG-800 composites were partially 

graphitised nanostructure; meanwhile, graphene is transferred from GO and 

well embedded in composites after the heat process. In addition, the element 

mapping (Figure 5.19) of Co-Fe-5G-800 exhibited similar C, Co, Fe and N 

patterns with the selected TEM area, indicating all elements were uniformly 

distributed in all the composites. 
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5.5 Electrocatalytic performance of cobalt-iron/ N-doped porous 

carbon/ graphene composites 

5.5.1 Oxygen evolution reaction 

The electrocatalytic activities of the as-synthesised Co-Fe-zG-800 series 

catalysts were evaluated in O2- saturated 1M KOH (pH=14) electrolyte using 

three electrodes system with a scan rate of 5 mVs-1. Obviously, all Co-Fe-zG-

800 catalysts exhibited excellent OER activities with much higher onset 

potential than the value of reference material IrO2/C (1.5 V). As shown in Figure 

5.20a and Table 5.3, both Co-Fe-5G-800 and Co-Fe-2.5G-800 displayed the 

lowest onset potential of 1.41 V, which is 20 and 30 mV lower than the values of 

Co-Fe-10G-800 and Co-Fe-800, respectively. Impressively, only a potential of 

1.45 V is required for Co-Fe-5G-800 to achieve a current density of 10 mA cm−2, 

which is 10, 20 and 30 mV lower than that of Co-Fe-2.5G-800, Co-Fe-10G-800 

and Co-Fe-800, respectively. Meanwhile, the Tafel slope results of these for 

OER were shown in Figure 5.20b. Sample Co-Fe-5G-800 exhibited the lowest 

slope value of 40.3 mV/dec and others displayed the values ranging from 43.7 

to 45.2 mV/dec, which are all much lower than the value of 82 mV/dec of 

reference sample IrO2/C. Moreover, the polarisation curves of Co-Fe-5G-T and 

Co-5G-800 were measured and shown in Figure 5.20c. As one can see that the 

onset potential of Co-Fe-5G-800 was 1.41 V, which is similar to those values of 

Co-Fe-5G-600 and Co-Fe-5G-1000, but much lower than that of Co-5G-800 

(1.46 V). Significantly, the sample Co-Fe-5G-800 can realise a current density 

of 10 mA cm−2 at a potential of 1.45 V, which is comparable to 1.47, 1.475 and 

1.48 V of other samples. The calculated Tafel slope value based on their LSV 

scanning (shown in Figure 5.20d) were 40.3, 45, 64 and 78 mV/dec for sample 

Co-Fe-5G-800, Co-Fe-5G-1000, Co-Fe-5G-600 and Co-5G-800, respectively. 

Additionally, the chronoamperometric test of the representative sample Co-Fe-

5G-800 was measured and shown in Figure 5.20e. After 500th times scanning 

with a scan rate of 5 mVs-1, Co-Fe-5G-800 only showed 40 mV shift of onset 

and overpotential increase, indicating the high durability performance of Co-Fe-

5G-800 in OER. Based on these results, it is believed that the introduction of 

graphene can efficiently enhance OER activities of resulting samples. The 

graphene with excellent conductivity could serve as bridges between metal 

/carbide contained porous carbon materials to improve the conductivity and the  



131 
 

 

 

 

Figure 5. 20 Polarisation curves for OER on (a) Co-Fe-zG-800 series composites and IrO2/C 

and (b) their Tafel plot; (c) Co-Fe-5G-T series composites, Co-5G-800 and IrO2/C (d) their Tafel 

plot; (e) durability test for Co-Fe-5G-800 

graphene is doped by N species during the carbonisation process, which could 

not only offers more active sites for catalytic reaction, but also provides 

anchoring sites for catalytic nanoparticle deposition. Due to the existence of 

multi-metal valence states in the samples and the optimised graphene 

contained, sample Co-Fe-5G-800 exhibited the best OER activities among all 
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studied samples. Furthermore, the graphene together with the formed porous 

carbons in the composites can provide carbon shells to protect the oxidation of 

metal/ carbide, thus, a superior OER stabilities were achieved by Co-Fe-5G-800. 

Table 5. 3 OER performances of Co-Fe-zG-T series composites 

 
Catalyst 

 
Onset potential 

(V vs. RHE) 

Potential 
(V vs. RHE) @ current 
density of 10 mA cm

-2
 

 
Tafel slope 
(mV/dec) 

Co-5G-800 1.46 1.51 78 

Co-Fe-800 1.44 1.48 45.2 

Co-Fe-2.5G- 800 1.41 1.56 44.9 

Co-Fe-5G- 800 1.41 1.45 40.3 

Co-Fe-10G- 800 1.43 1.47 43.7 

Co-Fe-5G- 600 1.42 1.475 64 

Co-Fe-5G- 1000 1.42 1.47 45 

 

5.5.2 Hydrogen evolution reaction 

The Co-Fe-zG-800 series composites exhibited not only good performance in 

OER, but also in HER. All the samples were evaluated in 1M KOH electrolyte 

and the iR-corrected linear sweep voltammetry curves were shown in Figure 

5.21a. Due to the effect of iron, all the LSV curves for the samples had a slight 

decrease between 0 to -0.1 V. The polarisation curves recorded with Co-Fe-5G-

800 and Co-Fe-2.5G-800 displayed the same onset potential of 0.17 V, which is 

lower than the value of 0.21 and 0.24 V for Co-Fe-10G-800 and Co-Fe-800, 

respectively. Interestingly, both Co-Fe-5G-800 and Co-Fe-2.5G-800 can 

achieve a current density of 10 mA cm−2 at the same overpotential of 190 mV, 

which was 30 and 70 mV lower than Co-Fe-10G-800 and Co-Fe-800, 

respectively. However, to reach the current density of 50 and 100 mA cm−2, 

overpotential of 255 and 280 mV were required for the Co-Fe-5G-800, which 

suggested much better HER activities for sample Co-Fe-5G-800 than other 

samples. Their Tafel plots were shown in Figure 5.21b and the best slope value 

was 83 mV/dec for Co-Fe-5G-800 and the values for Co-Fe-2.5G-800, Co-5G-

800 and Co-Fe-10G-800 were in the range of 88-90 mV/dec. To get some 

insight of the effect of heating temperature on the electrochemical performances, 

the HER activities of Co-Fe-5G-T series samples and Co-5G-800 were also 

measured and shown in Figure 5.21c. Obviously, the sample Co-Fe-5G-800  
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Figure 5. 21 Polarisation curves for HER on (a) Co-Fe-zG-800 series composites and Pt/C and 

(b) their Tafel plot (c) Co-Fe-5G-T series composites, Co-5G-800 and Pt/C and (d) their Tafel 

plot (e) durability test for Co-Fe-5G-800; Measured in 1M KOH electrolyte 

showed the best onset potential of 0.17 V and overpotential of 0.19 V at the 

current density of 10 mA cm−2. In comparison, the sample Co-Fe-5G-600 and 

Co-5G-800 exhibited the same onset potential of 0.2 V and the same 

overpotential of 0.23 V at the current density of 10 mA cm−2, which are both 

much higher than Co-Fe-5G-1000 (shown in Table 5.4). The Tafel plots are 
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recorded in Figure 5.21d. The Tafel slope value was 83 mV/dec for Co-Fe-5G-

800, which is smaller than those values of other samples: Co-5G-800 (94 

mV/dec), Co-Fe-5G-600 (121 mV/dec) and Co-Fe-5G-1000 (95 mV/dec), further 

confirming that among the tested samples, Co-Fe-5G-800 was the most active 

materials for HER in KOH solution The catalytic stability towards HER was also 

tested and presented in Figure 5.21e. The sample Co-Fe-5G-800 exhibited 

similar I-V curve to its initial one with only 2 mV negative shift to reach 10 mA 

cm−2 after 500 continuous potential cycles, suggesting a remarkable stability of 

this catalyst for HER. 

The HER performances of the as-synthesised Co-Fe-zG-800 series composites 

were also measured in acidic media (shown in Figure 5.22 and Table 5.4). 

Obviously, all graphene contained samples showed better HER performance 

than those without graphene, implying the important promoting role of graphene 

in the composites due to their excellent conductivity of the introduced graphene. 

Sample Co-Fe-2.5G-800 exhibited the lowest onset potential of 0.15 V, which is 

50, 100 and 110 mV lower than Co-Fe-5G-800, Co-Fe-10G-800 and Co-Fe-800, 

respectively. To reach the current density of 10 mA cm−2, only an overpotential 

of 0.24 V was required for Co-Fe-2.5G-800, which is obviously lower than those 

values of Co-Fe-5G-800 (0.27 V), Co-Fe-10G-800 (0.31 V) and Co-Fe-800 

(0.34 V) to achieve the same current density. Moreover, the Tafel slope (Figure 

5.22b) value of Co-Fe-2.5G-800 went down to 90 mV/dec, which is slightly 

lower than 94 mV/dec for both Co-Fe-5G-800 and Co-Fe-800, and 107 mV/dec 

for Co-Fe-10G-800, suggesting that the high level of superfluous graphene 

introduced may have blocked the access pathways between of cations or 

anions between the electrodes and the electrolytic solution. Based on the 

observed HER activities of studied samples both in alkaline and acidic 

electrolyte solution, it is believed that the improved HER performance can be 

contributed to the introduction of graphene into the samples which provides 

more access pathways and promotes electron transfer between the catalysts 

surface and reaction intermediates. Meanwhile, high level of multi-valence 

states metal active sites were formed in the samples during carbonisation at 

high temperature, therefore, the sample Co-Fe-5G-800 exhibited superior 

OER/HER performance for overall water splitting among all the studied 

composites. 
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Figure 5. 22 Polarisation curves for HER on (a) Co-Fe-zG-800 series composites and Pt/C and 

(b) their Tafel plot; Measured in 0.5 M H2SO4 electrolyte 

Table 5. 4 HER performances of Co-Fe-zG-T series composites. Measured in 1M KOH and 

0.5M H2SO4 electrolyte 

  
HER 

Measured in 1M KOH electrolyte 

 
HER 

Measured in 0.5M H2SO4 
electrolyte 

 
 

Catalyst 

 
Onset 

potential  
(V vs. 
RHE) 

 
Overpotential (V 

vs. RHE) @ 
current density 
of 10mA cm

-2
 

 
Tafel 
slopte 

(mV/dec) 

 
Onset 

potential 
(V vs. 
RHE) 

 
Overpotential 

(V vs. RHE) @ 
current density 
of 10mA cm

-2
 

 
Tafel 
slopte 

(mV/dec) 

 
Co-Fe-800 

 
0.24 

 
0.26 

 
89 

 
0.26 

 
0.34 

 
94 

 
Co-Fe-2.5G-

800 

 
0.17 

 
0.19 

 
88 

 
0.15 

 
0.24 

 
90 

 
Co-Fe-5G-

800 

 
0.17 

 
0.19 

 
83 

 
0.2 

 
0.27 

 
94 

 
Co-Fe-10G-

800 

 
0.21 

 
0.22 

 
90 

 
0.25 

 
0.31 

 
107 

 
Co-5G-800 

 
0.2 

 
0.23 

 
94 

 

 

 
Co-Fe-5G-

600 

 
0.2 

 
0.23 

 
121 

 
Co-Fe-5G-

1000 

 
0.28 

 
0.33 

 
95 
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5.6 Electrocatalytic performance of cobalt-iron oxides/ porous 

carbon/ graphene composites 

In previous study, the composites derived from the carbonisation of Fe-

substituted ZIF-67 and Fe-substituted GO/ZIF-67 in Argon environment were 

well analysed and their electrochemical activities were evaluated. On the other 

hand, cobalt oxide and iron oxide were both reported as good catalysts in OER/ 

HER. However, to the best of our knowledge, there is no research have been 

performed to investigate the electrochemical activities of tri-functional cobalt-

iron oxide with porous carbon and graphene. Therefore, in this part, the overall 

water splitting abilities of cobalt-iron oxide/carbon/graphene series catalysts will 

be investigated.  

5.6.1 Oxygen evolution reaction 

To obtain xCoO-yFeO-zG-350 series composites, the previous obtained xCo-

yFe-zG series samples (0.3 g) were loaded into tube furnace on an alumina 

boat in the air. The furnace was set to a target temperature (350 °C) with a 

ramp rate of 10 °C/min in air for 1 hour. The obtained composites were named 

as xCoO-yFeO-zG-350. 

The OER electrocatalytic activities of the as-synthesised xCoO-yFeO-zG-350 

composites were evaluated in O2- saturated 1 M KOH (pH=14) electrolyte by 

using three electrodes system with a scan rate of 5 mVs-1. As shown in Figure 

5.23a and Table 5.5, CoO-FeO-350 displayed an onset potential of 1.57 V, 

which is similar to that value of CoO-350. In contrast, all graphene contained 

samples exhibited obviously lower onset potential of 1.52, 1.53 and 1.54 V, 

corresponding to CoO-FeO-5G-350, CoO-FeO-2.5G-350 and CoO-FeO-10G-

350, respectively. Clearly, CoO-FeO-5G-350 displayed the best OER 

performance in this series samples. Moreover, graphene contained samples 

achieved a lower OER overpotential than those without graphene over the 

whole potential range (shown in Table 5.5), implying that graphene offered 

more active sites for catalytically reaction and enhance the OER performance of 

the resulting composites. In addition, in comparison of the Tafel plots (Figure 

5.23b and Table 5.5), the lowest slope value of 50.5 mV/dec for CoO-FeO-5G-

350 and 52-55.2 mV/dec for other samples, further indicating that CoO-FeO-
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5G-350 is the most active electrocatalyst for OER in the studied oxide series 

samples. 

 

Figure 5. 23 Polarisation curves for OER on (a) xCoO-yFeO-zG-350 series composites and 

IrO2/C and (b) their Tafel plot 

5.6.2 Hydrogen evolution reaction 

The electrocatalytic HER performance of xCoO-yFeO-zG-350 series 

composites were measured by iR corrected linear sweep voltammetry (LSV) on 

a rotating disk electrode (RDE) in N2- saturated 1M KOH. In Figure 5.24a and 

Table 5.5, the lowest onset potential of 0.17 V was achieved by sample CoO-

FeO-5G-350, which is much lower than those values of CoO-FeO-350 (0.25 V) 

and CoO-350 (0.42 V). Notably, overpotentials of 0.22, 0.29 and 0.31 V are 

required to realise a current density of 10, 50 and 100 mA cm-2 for CoO-FeO-

5G-350. In Figure 5.24b, the slope values were in the range of 74.8 to 79.3 

mV/dec for graphene containing samples, which are much lower than the slope 

values of graphene-free samples with 100.7 and 102.4 mV/dec for CoO-FeO-

350 and CoO-350, respectively. Obviously, all graphene contained samples 

exhibited remarkable OER/ HER activities for overall water splitting. It is 

believed that the introduction of iron and graphene play a significant promoting 

role to enhance the electrocatalaytic performances of cobalt oxide. 
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Figure 5. 24 Polarisation curves for HER on (a) xCoO-yFeO-zG-350 series composites and Pt/C 

and (b) their Tafel plot. Measured in 1 M KOH electrolyte 

Table 5. 5 OER and HER performances of the xCo-yFe-zG-350 series composites. Measured in 

1M KOH electrolyte 

  
OER 

Measured in 1M KOH electrolyte 

 
HER 

Measured in 1M KOH electrolyte 

 
 

Catalyst 

 
Onset 

potential  
(V vs. 
RHE) 

 
Overpotential 
(V vs. RHE) 
@ current 
density of 
10mA cm

-2
 

 
Tafel 
slopte 

(mV/dec) 

 
Onset 

potential 
(V vs. 
RHE) 

 
Overpotential 
(V vs. RHE) 
@ current 
density of 
10mA cm

-2
 

 
Tafel 
slopte 

(mV/dec) 

 
CoO-350 

 
1.58 

 
1.61 

 
55.2 

 
0.42 

 
0.46 

 
102.4 

 
CoO-FeO-

350 

 
1.57 

 
1.6 

 
52.4 

 
0.25 

 
0.29 

 
100.7 

 
CoO-FeO-
2.5G-350 

 
1.53 

 
1.57 

 
52.4 

 
0.23 

 
0.24 

 
74.8 

 
CoO-FeO-

5G-350 

 
1.52 

 
1.56 

 
50.5 

 
0.17 

 
0.27 

 
79.3 

 
CoO-FeO-
10G-350 

 
1.54 

 
1.59 

 
52 

 
0.22 

 
0.27 

 
76.9 

 

5.7 Summary 

In summary, both bi-metallic cobalt-iron/ N-doped porous carbon and bi-metallic 

cobalt-iron/ N-doped porous carbon/ graphene series samples were 

successfully synthesised from Fe-substituted ZIF-67 and Fe-substituted 

GO/ZIF-67 via a facile one-step carbonisation process. Due to the synergistic 
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effect between cobalt and iron, the crystalline structure of metal particles, the 

high porosity of the materials and the homogeneous dispersion of N in the 

resulting composites, xCo-yFe-800 series samples exhibit remarkable 

electrochemical activities and superior durability for OER and HER. Moreover, 

graphene reinforced xCo-yFe-zG-800 series samples show a significantly 

enhanced OER and HER activities for overall water splitting due to the high 

conductivity, more active sites and more electron transfer of graphene. Finally, 

their oxidised derivative CoO-FeO-zG-350 series sample also exhibit 

exceptional electrochemical activity for water splitting. 
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Chapter 6：Bi-metallic cobalt and iron sulfides/ N, S co-

doped porous carbon/ graphene composites and their 

electrocatalytic applications 

 

6.1 Introduction 

With the increasing energy demands and environmental pollution resulting from 

the burn off fossil fuels, there is a great interest to develop clean and 

sustainable energy conversion and storage technologies 292-293. Therefore, the 

overall water splitting into oxygen and hydrogen has been considered as a 

promising alternative to currently fossil fuels owing to its clean and efficient 

approach to generate high purity of H2 fuel 292. Great efforts, therefore, have 

been devoted to developing low-cost alternatives, such as transition metal 

sulfide based materials, including CoS 294-295, MoS2 
296, WS2 

297-298, NiSx 
299-300 

and FeS2 
280, 301, which have gained noticeable attention as alternative 

electrocatalysts  for HER and OER, that are measured in acid and alkaline 

media, respectively, due to their low-cost and high catalytic activity. However, 

the current prevailing strategies often utilise the incompatible integration of the 

two catalysts which inevitably results in mediocre performance for complete 

water splitting 302-303. It is therefore highly imperative to develop electrocatalysts 

that can be used for both HER and OER in the same electrolyte to achieve 

efficient overall water splitting.  

Recently, many studies revealed that a new method to enhance the activity for 

overall water splitting is making additional metal doping into the intrinsic metal 

catalyst. For example, ZnCo 304, NiCo 305, CuCo 306 sulfides have been widely 

studied and exhibited efficient electrochemical activity for water splitting in a 

wide pH range. However, to the best of our knowledge, there are rare studies 

are focused on bimetal Co-Fe sulfide composites for water splitting, especially 

using metal organic framworks (MOFs) as precursors to prepare bimetallic 

sulfide nanocomposites. Due to the special crystal structure of MOFs, metal, 

metal sulfide or metal oxide would be formed after the thermal treatment in 

argon, hydrogen sulfide or air atmosphere. Therefore, MOFs are widely 

regarded as excellent precursors to prepare porous carbon based metal sulfide 
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nanocomposites, which will give an enhancement to electrochemical activities. 

In addition, graphene has been widely reported as good catalytic supporting 

material due to its excellent electrical conductivity, high surface area, and good 

chemical and environmental stability 9, 307. With these advantages, the superior 

electrical conductivity of graphene can significantly improve the electrochemical 

performance of catalysts.  

In this chapter, a facile method for the preparation of the cobalt-iron sulfide 

embedded in N, S co-doped porous carbon and graphene from the 

simultaneously sulfurisation and carbonisation of Fe-substituted GO/ZIF-67 will 

be presented. Owing to the rich content of Co-N and Fe-N, Fe-substituted ZIF-

67 was chosen as the precursor. The resultant 2CoS-FeS-800 composites 

exhibited the best OER/HER activities among bimetal Co-Fe sulfides samples 

with different Co: Fe ratios. On the basis of those results, graphene contained 

sample 2CoS-FeS-5G-800 showed an improved electrocatalytic activity in water 

splitting.  

6.2 Characterisations of the bi-metallic sulfides derived from Fe 

substituted ZIF-67  

The crystal structures of the as-synthesised Fe-substituted ZIF-67 with different 

ratio of cobalt to iron, were investigated by XRD (Figure 6.1a). All precursor 

composites exhibited the same peaks located at 10.2°, 12.5°, 14.5°, 16.4°, 18°, 

24.5°, 25.8°, 26.9°, corresponding to (002), (112), (022), (013), (222), (223), 

(224) and (134) planes of ZIF-67 samples 244, respectively. The XRD spectrum 

of sulfurised and carbonised xCoS-yFeS-800 series composites were shown in 

Figure 6.1b. It is completely different from the sodalite structure of the Fe-

substituded-ZIF-67 precursor, the as-synthesised xCoS-yFeS-800 composites 

displayed four main peaks at 31°, 35.5°, 47° and 55°, corresponding to (100), 

(101), (102) and (110) (JCPDS 75-0605) diffraction planes of cobalt sulfide 308, 

respectively. These four peaks became more intense and sharper with the 

increase of the ratio of Fe: Co and the peaks of Co3S4 could not be detected, 

suggesting the existence of a synergistic effect between iron and cobalt in the 

hybrid composites and indicating the well crystallinity of cobalt sulfide. Only 

some very weak diffraction peaks from iron species located at 28°, 41°, 58° and 

65°, corresponding to (111), (211), (222) and (321) (JCPDS 42-1340) diffraction 

planes of pyrite 309, respectively, were detected in the CoS-FeS-800, maybe  
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Figure 6. 1 XRD patterns of (a) as-synthesised Fe-substituted ZIF-67 composites (b) xCoS-

yFeS-800 series composites 

 

 

Figure 6. 2 (a) TGA and their corresponding MS curves of (b) CO2 and (c) SO2 for xCoS-yFeS-

800 series composites 

due to the diffraction intensity of cobalt sulfide were much higher than that of 

iron sulfide. Both cobalt sulfide and iron sulfide are electrocatalysts and 

beneficial to the electrochemical activities, thus it is interesting to understand 
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the electrochemical performances of bimetal sulfides in such a complicated 

system. 

The thermal stabilities of the as-synthesised xCoS-yFeS-800 series composites 

were evaluated by TGA-MS while being heated in air atmosphere (Figure 6.2a). 

Due to the adsorbed H2O in the composites, all composites exhibited a weak 

weight loss event before 100 °C. Then, a small weight increase event happened 

in the range of 300-450 °C for all composites, owing to the oxidation of cobalt 

and iron sulfide to high valence state, followed by two major weight loss events 

at 460-550 °C and 780 °C for all composites, corresponding to the burn off the 

porous carbon in air and decomposition of cobalt/ iron sulfides. Both of the two 

weight loss events could be further confirmed by the emission of CO2 and SO2 

in the MS signals (Figure 6.2b & c). In Figure 6.2c, peaks at 350-500 °C were 

due to the burn off S dope carbon, which is accompanied with the formation of 

SO2 and the signs of peaks at 750-850 °C were due to the conversion of metal 

sulfide to metal oxides. 

To investigate carbonaceous materials, Raman spectroscopy is the most 

common and powerful technique. The Raman spectra of xCoS-yFeS-800 series 

composites are shown in Figure 6.3. All the composites revealed the 

characteristic D and G bands of carbon at 1350 and 1595 cm-1, respectively. 

The D band is an indication of less disordered carbon and the G band is a 

symbol of monocrystalline and sp2 hybridised carbon 270. In addition, two very 

weak peaks located at 2700 cm-1 (2D band) and 2950 cm-1 (G+D band) in iron-

containing composites, however, they could not be found in CoS-800, indicating 

that the existence of graphitised nanostructure with carbon onions and carbon 

nanotube in the iron-containing samples. The appearance of D, G, 2D and G+D 

band in xCoS-yFeS-800 series composites, suggests the formation of 

amorphous carbon and graphitised nanostructure during the carbonisation and 

sulfurisation process. 
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Figure 6. 3 Raman spectra of xCoS-yFeS-800 series composites 

The X-ray photoelectron spectroscopy (XPS) analysis was utilised to investigate 

the chemical state of the representative as-synthesised 2CoS-FeS-800 

composite. As shown in Figure 6.4a, element survey clearly illustrated the 

presence of C, Co, Fe, S and N in the representative 2CoS-FeS-800 sample. 

The XPS spectra for each element are presented in Figure 6.4b-f. A strong 

peak with binding energy at 284.5 eV was observed in the high resolution C 1s 

XPS spectrum (Figure 6.4b), indicating the formation of sp2 graphitic structure 

260, which could improve the electron transfer and be beneficial to the OER/HER 

activities. Additionally, the spectrum could be deconvoluted into three peaks 

located at 285.3, 286.4 and 288.6 eV, which may correspond to C=N, C-N and 

C-S 250-253, respectively. The spectrum of Co 2p (Figure 6.4c) for the as-

synthesised composite exhibited the presence of two peaks at 779.7 and 781.2 

eV, which are consistent with the presence of Co 2p 3/2, implying the existence 

of Co2+ oxidation state 261, 310. Two peaks located at 786 and 800.3 eV indicated 

the octahedrolly coordination Co2+ in cobalt and Co 2p 1/2 satellite components. 

Furthermore, except the Co2+ oxidation state, another two weak doublets 

appeared at 779.1 and 781.9 eV, which imply the existence of Co3+ oxidation 

state in the composite. In Fe 2p spectrum (Figure 6.4d), the sample 2CoS-FeS-

800 exhibited three peaks at 709.8, 715.5 and 723.4 eV, corresponding to Fe (II) 

2p 2/3 and Fe2+ 311-312. Apart from Fe2+ oxidation state, it also showed three 

doublets located at 711.8, 713.6 and 725.3 eV, which are characteristic of Fe 2p 

2/3 (Fe3+ oxide states), implying the co-existence of Fe3+ and Fe2+ oxidation state 

in the composite 311-312. The S 2p spectrum shown in Figure 6.4e exhibited the  
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Figure 6. 4 (a) Element survey by XPS and XPS spectrum of (b) C 1s, (c) Co 2p, (d) Fe 2p, (e) 

S 2p and (f) N 1s for 2CoS-FeS-800 

presence of two peaks at 162.5 and 163.6 eV, that are corresponding to the S 

2p 3/2 and S 2p 1/2 doublets with a binding energy separation of 1.1 eV, 

corresponding to the S2- species of metal sulfides 255, 313. Two peaks could be 

found at around 162.8 and 163.9 eV, suggesting the existence of C-S-C 

bonding and S (0) 252, 267, respectively. Additionally, two peaks at 168.5 and 
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169.5 eV suggested that they are assigned to the S 2p 3/2 and S 2p 1/2 peaks of 

oxidised S species, such as sulfate groups 314, which could be due to the 

partially oxidation of sulfur in air 300. It is believed that it can be dissolved in the 

solution, thus, the effect of sulfide compound on the OER/HER activities could 

be negligible. In N 1s spectrum (Figure 6.4f), four peaks located at 397.8, 399.1, 

400.1 and 401.8 eV could be detected, corresponding to the pyridinic-N, Co-N, 

pyrrolic-N and graphitic-N 257-258, respectively. Owing to the volatility of N and S 

species in high temperature heat treatment, therefore, low content of N and S 

remain in the composite. In XPS analysis, it is clear that 2CoS-FeS-800 

composite composes of Co2+, Co3+, Fe2+, Fe3+ and S2- states. Additionally, the 

X-ray diffraction is also consistent with the XPS analysis, indicating Co-Fe 

bimetallic sulfides have been successfully prepared from one-step carbonisation 

and sulfurisation process, which lead to the formation of CoS / FeS supported 

on N, S co-doped carbon composites. 

The morphologies of the as-synthesised composites were characterised by 

scanning electron microscopy (SEM). As shown in Figure 6.5a-j, the particle 

size of xCo-yFe-800 composites can be controlled by adjusting the ratio of Co: 

Fe. The CoS-800 exhibited a distorted rhombic dodecahedron shapes after high 

temperature sulfurisation. With the introduction of small content of iron, some 

large dodecahedron and octahedron particles with average size of 2 µm 

appeared in 8CoS-FeS-800 and 4CoS-FeS-800, suggesting the potential 

existence of pyrite and pyrrhotite. However, with further increasing of the iron 

content in the composite, not a single large particle could be found and both 

2CoS-FeS-800 and CoS-FeS-800 samples exhibited typically metal sulfide 

crystals morphology with average size growing up to 100 nm. This interesting 

phenomenon could indicate there is a synergistic effect between cobalt and iron 

and synthesised composites morphology are controlled by the ratio of Co: Fe. 
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Figure 6. 5 SEM images of the (a, b) CoS-800 (c, d) 8CoS-FeS-800 (e, f) 4CoS-FeS-800 (g, h) 

2CoS-FeS-800 (i, j) CoS-FeS-800 

To further investigate the morphologies, transmission electron microscopy (TEM) 

was carried out to characterise the representative 2CoS-FeS-800 composite. As 

presented in Figure 6.6a&b, the resulting nanocomposite exhibited spherical-

like particles owing to the shrinkage during the carbonisation and sulfurisation at 

800 °C. From the low magnification images, we can find the original rhombic 

dodecahedron particle shape of precursor was completely damaged with the 

average particle size around 20 nm, suggesting the addition of iron may affect 

and modulate the structure of nanocomposite. As shown in Figure 6.6b, some 

amorphous carbon could be found around particles. Interestingly, a dark 

nanotube with the length around 15 nm appeared in the high resolution image, 

indicating the existence of a synergistic effect between cobalt and iron sulphide, 

which is again in agreement with the Raman spectrum results of graphitised 

nanostructure. Moreover, the corresponding selected area electron diffraction 

(SAED) patterns (shown in inset of Figure 6.6a) clearly revealed that the bright 
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scattered dots are contributed from the crystalline nanoparticles while the 

dimmed diffraction rings are from the amorphous porous carbon matrix. In order 

   

Figure 6. 6 TEM images of 2CoS-FeS-800. Inset in (a) is SAED patterns for corresponding 

composite 

     

     

Figure 6. 7 TEM images and element mappings (C, Co, Fe, S and N) for 2CoS-FeS-800 

to ascertain the distribution of cobalt sulfide and iron sulfide particles in 2CoS-

FeS-800 composite, the elemental mapping of a representative sample were 

measured via EDX and the results were shown in Figure 6.7. The element Co, 

Fe, S exhibited similar elemental mapping patterns with dark area in the TEM 

images, implying a uniform dispersion of cobalt/iron sulfide particles in the 

carbon matrix. In addition, element C and N were also detected in the result, 

where C content is much more than that of N, maybe duo to the volatility of N 

species during high temperature treatment.  
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6.3 Electrocatalytic applications of the bi-metallic sulfides 

derived from Fe substituted ZIF-67 

6.3.1 Hydrogen evolution reaction 

The HER catalytic activities of xCoS-yFeS-800 sulfurised and carbonised in 

800 °C composites were all evaluated in 1M KOH electrolyte and the iR 

corrected linear sweep voltammetry curves are shown in Figure 6.8a. Owing to 

the effect of ohmic resistance, the as-measured current was not the intrinsic 

behaviour. Therefore, an iR correction was applied to all initial current for 

analysis. Both CoS-FeS-800 and 4CoS-FeS-800 exhibited the same onset 

potential of 0.18 V, which is 0.01 V higher than 2CoS-FeS-800 and 0.04 V lower 

than 8CoS-FeS-800 and CoS-800. In order to afford a current density of 10 mA 

cm−2, the lowest overpotential of 220 mV was required for 2CoS-FeS-800, while 

230, 250, 270 and 272 mV were needed for 4CoS-FeS-800, CoS-FeS-800, 

8CoS-FeS-800 and CoS-800, respectively. The excellent HER activities were 

also appeared in their Tafel slope results. As shown in Figure 6.8b and Table 

6.1, sample 2CoS-FeS-800 showed the lowest slope value of 95.7 mV/dec, 

while other values were in range of 97.2-130.7 mV/dec for 4CoS-FeS-800, CoS-

FeS-800, 8CoS-FeS-800 and CoS-800, respectively. Obviously, the introduction 

of iron can produce a synergistic effect with cobalt sulfide during the 

sulfurisation and carbonisation process, which could optimise their electronic 

structure of carbon in order to enhance the electron transformation. Among all 

composites, the 2CoS-FeS-800 exhibited the best HER activities compared with 

other Co: Fe ratio samples in alkaline media. In addition, chronoamperometric 

test was performed and results were shown in Figure 6.8c. Sample 2CoS-FeS-

800 showed a similar I-V curve after 500 scan cycles with a scan rate of 5 mVs-

1, while the 500th curve displayed the same overpotential at the current density 

of 10 mA cm-2 and it was even better than the initial one, which displayed 

decreased potential of 25 and 40 mV at the current density of 50 and 100 mA 

cm−2, maybe due to the partially metal ions were reduced to low valence state 

during the scanning and displaying remarkable HER activities. 

Additionally, the HER performance of xCoS-yFeS-800 series composites were 

also assessed in acidic electrolyte (0.5M H2SO4). As shown in Figure 6.9a, the 

polarisation curve recorded with sample 2CoS-FeS-800, 4CoS-FeS-800 and 
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Figure 6. 8 Polarisation curves for HER on (a) xCoS-yFeS-800 series composites and Pt-C and 

(b) their Tafel plot and (c) durability test for 2CoS-FeS-800. Measured in 1 M KOH electrolyte 

  

Figure 6. 9 Polarisation curves for HER on (a) xCoS-yFeS-800 series composites and Pt-C and 

(b) their Tafel plot. Measured in 0.5 M H2SO4 electrolyte 

8CoS-FeS-800 showed the same onset potential of 0.18 V and exhibited 

overpotentials of 225, 230 and 235 mV, respectively, to reach the current 

density of 10 mA cm−2. In contrast, both CoS-FeS-800 and CoS-800 exhibited 

lower HER activity (same onset potential of 0.2 V). Furthermore, their Tafel 

slope results were shown in Figure 6.9b. The 2CoS-FeS-800 displayed the  
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Table 6. 1 HER performances of the xCoS-yFeS-800 series composites. Measured in 1M KOH 

and 0.5M H2SO4 electrolyte 

 
 
 

Catalyst 

 
Onset potential (mV 

vs. RHE) 

 
Over potential (mV 
vs. RHE)@ 10 mA 

cm
-2 

 

 
Tafel slope  
(mV dec

-1
) 

 

0.5 M 
H2SO4 

1 M  
KOH 

0.5 M 
H2SO4 

1 M  
KOH 

0.5 M 
H2SO4 

1 M  
KOH 

 
CoS-800 

 
200 

 
220 

 
265 

 
272 

 
72.3 

 
130.7 

 
CoS-FeS-800 

 
200 

 
180 

 
270 

 
250 

 
74.2 

 
107.5 

 
2CoS-FeS-800 

 
180 

 
170 

 
225 

 
220 

 
68.6 

 
95.7 

 
4CoS-FeS-800 

 
180 

 
180 

 
230 

 
230 

 
62.5 

 
97.2 

 
8CoS-FeS-800 

 
180 

 
220 

 
235 

 
270 

 
67.1 

 
120.8 

 
Pt-C 

 
61 

 
10 

 
62 

 
30 

 
30 

 
46 

 

lowest slope value of 62.5 mV/dec, while the slope values for others ranged 

from 67.1 to 74.2 mV/dec. Obviously, the iron-contained composites not only 

exhibited superior water splitting activities in alkaline media, but also showed an 

excellent HER activity in acidic solution. More importantly, the sample 2CoS-

FeS-800 exhibited the best overall water splitting activities among all the 

studied composites. The HER performances both in acidic and alkaline media 

for xCoS-yFeS-800 and Pt-C samples are all summarised in Table 6.1. 

6.3.2 Oxygen evolution reaction 

The electrocatalytic activities of the as-synthesised xCo-yFe series composites 

were also evaluated in O2- saturated 1 M KOH (pH=14) solution by using three 

electrodes system with a scan rate of 5 mVs-1. As shown in Figure 6.10a, the 

composites with different Co: Fe ratios were all treated in H2S atmosphere at 

800 °C and measured by steady-state linear sweep voltammetry (LSV) on a 

rotating disk electrode (RDE). In details, the sample CoS-800 showed an onset 

potential of 1.5 V, which is the same value as the reference IrO2/C. However, a 

potential of 1.56 V was required to reach the current density of 10 mA cm−2 for 

sample CoS-800, while 1.63 V was required for IrO2/C. In comparison, all the 

iron-containing composites exhibited much better OER activities than CoS-800.  
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Figure 6. 10 Polarisation curves for OER on (a) xCoS-yFeS-800 series composites and IrO2/C 

and (b) their Tafel plot and (c) durability test for 2CoS-FeS-800 

Table 6. 2 OER performances of the xCoS-yFeS-800 series composites 

 
Catalyst 

 
Onset potential  

(V vs. RHE) 

 
Potential (V vs. RHE) @ 

current density of 10 mA cm
-2

 

 
Tafel slopte 
(mV/dec) 

 
CoS-800 

 
1.50 

 
1.56 

 
77.6 

 
CoS-FeS-800 

 
1.42 

 
1.45 

 
52.1 

 
2CoS-FeS-800 

 
1.42 

 
1.445 

 
50.8 

 
4CoS-FeS-800 

 
1.42 

 
1.45 

 
63.3 

 
8CoS-FeS-800 

 
1.43 

 
1.49 

 
76.7 

 
IrO2/C 

 

 
1.5 

 
1.61 

 
82 
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The 2CoS-FeS-800 sample demonstrated an onset potential of 1.42 V, which is 

very similar to that of CoS-FeS-800 and 4CoS-FeS-800, but 10 mV lower than 

that of 8CoS-FeS-800. It is believed that the introduction of iron will form the bi-

functional catalyst and the promoting effect between cobalt and iron will 

efficiently enhance the OER activities. Moreover, all iron containing composites 

can achieve a current density of 10 mA cm−2 at small potentials of 1.445, 1.45, 

1.45 and 1.49 V for 2CoS-FeS-800, CoS-FeS-800, 4CoS-FeS-800 and 8CoS-

FeS-800, respectively, which are much lower than 1.63 V for IrO2/C and other 

reported bimetal sulfide electrocatalysts including NiS-FeS and CoS-NiS. In 

addition, the Tafel slope results were shown in Figure 6.10b and Table 6.2. The 

2CoS-FeS-800 displayed the smallest value of 50.8 mV/dec, which is higher 

than those of CoS-FeS-800 (51.2 mV/dec), 4CoS-FeS-800 (63.3 mV/dec), 8Co-

Fe-800 (76.7 mV/dec), CoS-800 (77.6 mV/dec) and IrO2 (82 mV/dec), further 

indicating its remarkable OER performance. Comparing the onset potential and 

the overpotential to achieve current density of 10 mA cm-2 of these catalysts 

with reference IrO2/C, one can easily find that the ratio of Co: Fe =2:1 

composites exhibited the best OER activities among all Co-Fe ratios. Based on 

these results, the chronoamperometric test of 2CoS-FeS-800 was carried out 

and shown in Figure 6.10c. After 500 times scanning at the scan rate of 5 mVs-1, 

it exhibited a similar LSV curve with 0.05 V onset potential shift higher than 

initial one, which may be due to partially oxidation of carbon matrix and sulfide 

nanoparticles at high voltage. 

6.4 Characterisations of the bi-metallic sulfides derived from Fe 

  substituted GO/ZIF-67

From previous work, the bimetal cobalt and iron sulfide and N, S co-doped 

porous carbon composites exhibited good electrocatalytic performance. In the 

following part, graphene will be introduced into above system to improve the 

electrocatalytic performance owing to its high surface area and good electrical 

conductivity. Furthermore, N, S co-doped graphene will create some 

heteroatomic defects, which also enhance the conductivity at the interface. 

The XRD patterns of the as-synthesised Fe-substituted GO/ZIF-67 composites 

are shown in Figure 6.11a. All samples exhibited strong diffraction peaks at 

10.2°, 12.5°, 14.5°, 16.4°, 18°, 24.5°, 25.8°, 26.9°, corresponding to (002), (112), 

(022), (013), (222), (223), (224) and (134) planes 244, respectively, which  
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Figure 6. 11 XRD patterns of (a) 2Co-Fe-zGO and (b) 2CoS-FeS-zG-800 series composites 

indicates that the introduction of iron ions and GO into the synthesis gel did not 

break the inherent crystalline structure of ZIF-67. It is interesting to note that the 

XRD peaks for GO could not be found in the XRD patterns, suggesting that the 

amount of GO added to the composites was relatively low and the XRD peaks 

for GO may be overlapped with ZIF-67 at 2θ=10.2°. After the sulfurisation and 

carbonisation process, bimetallic sulfide with graphene nanocomposites were 

achieved. XRD patterns of 2CoS-FeS-yG-800 series composites are presented 

in Figure 6.11b for further investigation of their crystal structure. All samples 

exhibited a wide diffraction peak at around 20-30°, which was considered to be 

attributed to carbon or graphene (further confirmed by Raman spectrum). 

Obviously, four peaks located at 31°, 35.5°, 47° and 55°, corresponding to (100), 

(101), (102) and (110) (JCPDS 75-0605) diffraction planes of cobalt sulfide 308, 

respectively, could be found in all samples, which indicates the existence of 

cobalt sulfide with hexagonal structure in the composites. There were no 

obvious diffraction peaks from iron species in the XRD, maybe due to the small 

amount of iron substituted into cobalt sulfide. In addition, a peak was found at 

2θ=26° in all samples, suggesting the formation of graphitic carbon, which is 

beneficial to the electrochemical activities. 

Thermal stabilities of the as-synthesised 2CoS-FeS-zG-800 series composites 

were measured by TGA-MS (shown in Figure 6.12). All composites showed a 

minor weight loss before 100 °C due to the removal of adsorbed H2O in the 

composites, followed by a weight increase event between 200 and 450 °C, 

which may be caused by the oxidation of metal sulfides in the composites. For 

all iron-contained composites, they not only exhibited two major weight loss   
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Figure 6. 12 (a) TGA and their corresponding MS curves of (b) CO2 and (c) SO2 for 2CoS-FeS-

zG-800 series composites 

 

Figure 6. 13 Raman spectra of the 2CoS-FeS-zG-800 series composites 

evens around 450-500 °C and 730-770 °C, corresponding to the burn off of the 

S doped carbon matrix and transfer of bimetallic sulfides to bimetallic oxides 

(confirmed by emission of CO2 and SO2 in MS signals), but also showed a slight 
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weight loss event between 630 and 680 °C. In contrast, only two major weight 

loss events could be observed for CoS-5G-800. In addition, the CO2 emission 

intensity increased between 570 to 700 °C with the increase of graphene 

content, which could indicate the formation of graphitised structure carbon and 

further confirm the existence of graphene in the composite. 

The Raman spectrum of Co-Fe-zG-800 series samples are shown in Figure 

6.13. All samples displayed the characteristic D and G bands of carbon at 1350 

and 1595 cm-1, which correspond to disordered carbon and sp2 hybridised 

graphitic carbon, respectively. Interestingly, all graphene-contained samples 

exhibited a peak around 2700 cm-1, which indicates graphitised structure in the 

composites and the graphene were achieved from GO during the heat process. 

The X-ray photoelectron spectroscopy (XPS) analysis was applied to 

investigate the chemical state of the as-synthesised 2CoS-FeS-5G composites. 

As shown in Figure 6.14a, element survey indicates the presence of C, Co, Fe, 

S and N in the representative 2CoS-FeS-5G sample. From Figure 6.14b, three 

peaks could be found at 285.3, 286.4 and 288.6 eV, corresponding to the C=N, 

C-N and C-S bond 250-253, respectively. the peak with binding energy located at 

284.5 eV suggested the formation of sp2 graphitic structure 260. In the spectrum 

of Co 2p (Figure 6.14c), the sample exhibited two doublets at 786 and 800.3 eV, 

which indicate the octahedrolly coordination Co2+ in cobalt and Co 2p1/2 satellite 

components. Apart from that, two peaks could also be found at 779.7 and 781.2 

eV, which are consistent with the presence of Co 2p3/2, implying the existence 

of Co2+ oxidation state 261, 310.  In addition, two weak doublets appeared at 779.1 

and 781.9 eV, which implies the existence of Co3+ oxidation state in the 

composite. The spectrum of Fe 2p (Figure 6.14d) exhibited three peaks located 

at 709.8, 715.5 and 723.4 eV may be attributed to Fe (II) 2p 2/3 satellite and Fe2+ 

311-312. Two doublets located at 711.8 and 713.6 eV, were consistent with Fe 2p 

3/2 (Fe3+ oxide states) and satellite components in the sample 311-312.  In S 2p 

spectrum shown in Figure 6.14e, the sample 2CoS-FeS-5G-800 displayed two 

peaks with binding energy at 162.5 and 163.6 eV owing to the S 2p 3/2 and S 2p 

1/2 doublets with a binding energy separation of 1.1 eV, corresponding to the S2- 

species of metal sulfides 255, 313. Moreover, two peaks could be found at around 

162.8 and 163.9 eV, may be due to the formation of S-C bonding 252.  In 

addition, binding energy at 168.5 and 169.4 eV were assigned to the S 2p 3/2  



158 
 

  

  

  

Figure 6. 14 (a) Element survey by XPS and XPS spectrum of (b) C 1s, (c) Co 2p, (d) Fe 2p, (e) 

S 2p and (f) N 1s for 2CoS-FeS-800 

and S 2p 1/2 peaks of oxidised S species, such as sulfate groups 314, which 

could be due to the partially oxidation of sulfur in air 300. Furthermore, the main 

peaks located at 397.8, 399.1, 400.1 and 401.8 eV corresponding to the 

pyridinic-N, Co-N, pyrrolic-N and graphitic-N 257-258, respectively, could be 

detected for N 1s spectrum in Figure 6.14f. The pyridinic-N and graphitic-N are 
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beneficial to OER/HER processes, which could enhance the onset potential and 

limit current. Owing to the volatility of N and S species in high temperature heat 

treatment, therefore, low content of N and S remains in the composite. From 

XPS analysis, we could conclude that sample 2CoS-FeS-5G-800 is composed 

of Co2+, Co3+, Fe2+, Fe3+ and S2- states. Combining XPS analysis, Raman 

spectrum and TEM results together, it can be concluded that Co-Fe sulfide have 

been successfully prepared via one-step carbonisation and sulfurisation 

process and CoS/FeS nanoparticles were supported on N, S co-doped carbon 

and/or graphene matrices. 

The morphologies of the as-synthesised composites were characterised by 

scanning electron microscopy (SEM). Images of 2CoS-FeS-zG-800 series 

samples are shown in Figure 6.15a-f. Obviously, particles are all well dispersed 

in the composites. With the increase of graphene weight content from 2.5% to 

10%, and the particles in the composites exhibited polyhedral shapes (shown in 

Figure 6.15a, c and e) with average crystal sizes decreasing from 150 to 90 nm. 

It is believed that the crystal sizes of bimetallic sulfide could be adjusted by 

controlling over the content of graphene in the composites, because the 

functional groups contained in Fe-substituted GO/ZIF-67 precursor will inhibit 

the growth of crystals. 

The structures and morphologies of 2CoS-FeS-zG-800 series samples are 

further investigated by transmission electron microscopy (TEM). As shown in 

Figure 6.16a-f, the resulting composites did not hold the original shapes and 

morphology of precursors which was completely damaged after sulfurisation 

and carbonisation process at 800 °C. Since the GO solution could be beneficial 

to the dispersion, graphene contained composites exhibited better embedded 

particles than those without graphene. No single CoS or FeS particle could be 

found and most CoS and FeS particles were well embedded into composites 

and surrounded with carbon or graphene with particle size around 15 nm. From 

Figure 6.16b, it can be easily found that several graphene sheets are attached 

at the edge of the nanoparticles. It is believed that graphene were successfully 

formed and well dispersed into the composite, which not only could serve as 

bridges between bimetal sulfides and the contained porous carbon materials, 

but also offer more conductive approaches to enhance the electrochemical 

activities. Interestingly, an obvious carbon nanotube around 50 nm could be 
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Figure 6. 15 SEM images of the (a, b) 2CoS-FeS-2.5G-800 (c, d) 2CoS-FeS-5G-800 (e, f) 

2CoS-FeS-10G-800 

observed in Figure 6.16d, which indicates the existence of synergistic effect 

between cobalt and iron. Moreover, the metal sulfide particles  surrounded by 

carbon onions and carbon shells could be found in all composite particles, 

which can offer more active sites and electron transfer pathways to improve 

OER/HER activities for water splitting. The selected area electron diffraction 
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(SAED) patterns, shown in inset of Figure 6.16a, c and e, clearly displayed 

bright scattered dots are contributed from the crystalline nanoparticles while the 

dimmed diffraction rings are from the amorphous porous carbon matrix. In 

addition, the elemental mapping (2CoS-FeS-5G-800) of C, Co, Fe, S and N 

exhibited similar patterns with the selected TEM area, shown in Figure 6.17, 

indicating all elements were uniformed distributed in all composites.  

   

   

   

Figure 6. 16 TEM images of (a, b) 2CoS-FeS-2.5G-800 (c, d) 2CoS-FeS-5G-800 and (e, f) 

2CoS-FeS-10G-800. Inset in (a, c and e) are SAED patterns for corresponding composites 
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Figure 6. 17 TEM images and element mappings (C, Co, Fe, S and N) for 2CoS-FeS-5G-800 

6.5 Electrocatalytic applications of bi-metallic sulfides derived 

  from Fe substituted GO/ZIF-67

6.5.1 Hydrogen evolution reaction 

In previous study, the sample 2CoS-FeS-800 exhibited the best OER and HER 

activities among all composites with different Co: Fe ratio. Therefore, the 

electrocatalytic activities of 2CoS-FeS-zG-800 series samples will be analysed. 

The HER performance of 2CoS-FeS-zG-800 series composites in 1M KOH 

electrolyte was evaluated and iR-corrected linear sweep voltammetry curves of 

the samples are presented in Figure 6.18a. All the samples exhibited a rapid 

catalytic current increase when voltage scanning beyond 0.15 V with the lowest 

onset potential of 0.125 V for 2CoS-FeS-5G-800. In contrast, 2CoS-FeS-10G-

800, 2CoS-FeS-2.5G-800 and 2CoS-FeS-800 displayed a similar onset 

potential of 0.14 V, which is much lower than the value for the sample without 

iron sulfide. To afford a current density of 10 mA cm−2, an overpotential of 190 

mV (lowest) was required for 2CoS-FeS-5G-800, while similar overpotential of 

200, 220 and 230 mV were needed for sample 2CoS-FeS-10G-800, 2CoS-FeS-

2.5G-800 and 2CoS-FeS-800, respectively. However, CoS-5G-800 showed a 

very pool result with overpotential of 270 mV, implying the significant enhancing 

effect of iron sulfide in HER activities. This big difference also happened in their  
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Figure 6. 18 Polarisation curves for HER on (a) 2CoS-FeS-zG-800 series composites and Pt-C 

and (b) their Tafel plot. Measured in 1 M KOH electrolyte 

  

 

Figure 6. 19 Polarisation curves for HER on (a) 2CoS-FeS-5G-T series composites and Pt-C 

and (b) their Tafel plot and (c) durability test for 2CoS-FeS-5G-800. Measured in 1 M KOH 

electrolyte 

Tafel slope results. From Figure 6.18b and Table 6.3, sample 2CoS-FeS-5G-

800 showed the lowest slope value of 84.6 mV/dec, which is slightly lower than 

the value of 88.7 and 89.3 mV/dec for 2CoS-FeS-10G-800 and 2CoS-FeS- 
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Table 6. 3 HER performances of the 2CoS-FeS-zG-800 series composites. Measured in 1M 

KOH and 0.5M H2SO4 electrolyte 

 
 
 

Catalyst 

 
Onset potential (mV 

vs. RHE) 

 
Over potential (mV 
vs. RHE)@ 10 mA 

cm
-2 

 

 
Tafel slope  
(mV dec

-1
) 

 

0.5 M 
H2SO4 

1 M  
KOH 

0.5 M 
H2SO4 

1 M  
KOH 

0.5 M 
H2SO4 

1 M  
KOH 

 
CoS-5G-800 

 
350 

 
200 

 
420 

 
270 

 
90.3 

 
96.8 

 
2CoS-FeS-800 

 
150 

 
180 

 
275 

 
230 

 
67.1 

 
95.7 

 
2CoS-FeS-2.5G-800 

 
150 

 
140 

 
232 

 
220 

 
60.2 

 
89.3 

 
2CoS-FeS-5G-800 

 
150 

 
125 

 
230 

 
190 

 
59.7 

 
84.6 

 
2CoS-FeS-10G-800 

 
150 

 
140 

 
250 

 
200 

 
63.6 

 
88.7 

 
Pt-C 

 
61 

 
10 

 
62 

 
30 

 
30 

 
46 

 

2.5G-800, respectively. In contrast, graphene-free sample 2CoS-FeS-800 

exhibited value of 95.7 mV/dec, which is much higher than those of graphene-

contained samples, further indicating that graphene played an important role in 

enhancing HER performance. Additionally, the HER activities of 2CoS-FeS-5G-

T series composites obtained from different carbonisation/ sulfurisation 

temperature were also measured and shown in Figure 6.19a. Obviously, 2CoS-

FeS-5G-800 exhibited the lowest onset and overpotential of 125 mV and 190 

mV, whereas 2CoS-FeS-5G-600 and 2CoS-FeS-5G-1000 exhibited much 

higher onset potential of 200mV and 210mV respectively, and overpotential of 

260 mV and 280 mV respectively, at the current density of 10 mA cm−2. Their 

Tafel slopes were calculated and shown in Figure 6.19b, where slope values 

were 103.6 mV/dec and 124 mV/dec for 2CoS-FeS-5G-600 and 2CoS-FeS-5G-

1000 respectively, much higher than that of 2CoS-FeS-5G-800 (84.6 mV/dec). 

Furthermore, the chronoamperometric test of 2CoS-FeS-5G-800 was measured 

and shown in Figure 6.19c. The 2CoS-FeS-5G-800 exhibited outstanding 

durability with same onset potential and only 10 mV negative shift of the 

overpotential to reach 10 mA cm−2 after 500 continuous potential cycle tests. It 

is obviously that graphene, converted from GO in the composite precursors, can 

provide more access pathways and improve electron transfer between the 
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catalyst surface and reaction intermediates. In addition, a synergistic effect 

between cobalt sulfide and iron sulfide, and many high density and multi 

valence states metal active sites in the composites were obtained during the 

sulfurisation and carbonisation process at 800 °C. As a result, the combining 

effects of graphene and iron sulfide enhance the HER performance and the 

composite materials exhibited outstanding activities for the overall water 

splitting. 

Besides, the HER performance of 2CoS-FeS-zG-800 series composites were 

also assessed in acidic electrolyte (0.5M H2SO4) media. As shown in Figure 

6.20a, the polarisation curves for 2CoS-FeS-5G-800, 2CoS-FeS-2.5G-800, 

2CoS-FeS-10G-800 and 2CoS-FeS-800 showed a similar onset potential of 

~0.15 V and exhibited the overpotential of 230, 232, 250 and 275 mV 

respectively, to reach the current density of 10 mA cm−2. In contrast, CoS-5G-

800 displayed a much higher onset potential of 0.35 V and the overpotential of 

0.42 V. Furthermore, all the graphene contained samples exhibited similar Tafel 

plots with the lowest slope value of 59.7 mV/dec for sample 2CoS-FeS-5G-800, 

while the slope values for other samples ranged from 60.2 to 90.3 mV/dec, 

respectively. It is interesting to note that sample 2CoS-FeS-5G-800 not only 

showed the lowest onset/overpotential in alkaline media, but also exhibited the 

best HER activities in acidic solution. Therefore, the composite with Co: Fe ratio 

of 2: 1 and containing 5% graphene exhibited the best overall water splitting 

activities among all the composites. 

  

Figure 6. 20 Polarisation curves for HER on (a) 2CoS-FeS-zG-800 series composites and Pt-C 

and (b) their Tafel plot and 2CoS-FeS-5G-800. Measured in 0.5 M H2SO4 electrolyte 
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6.5.2 Oxygen evolution reaction 

As shown in Figure 6.21, 2CoS-FeS-zG-800 composites showed excellent OER 

activities and exhibited much lower onset potential (1.38-1.40 V) than sample 

CoS-5G-800 (1.48 V) and reference material IrO2/C (1.5 V), indicating the 

introduction of iron could improve the OER activities of the studied materials. 

The 2CoS-FeS-5G-800 exhibited the lowest onset potential of 1.38 V, which is 

the same value as 2CoS-FeS-2.5G-800 and 20 mV lower than that of 2CoS-

FeS-10G-800 and 2CoS-FeS-800. In comparison, all graphene-contained 

samples expressed lower onset potentials than 2CoS-FeS-800 without 

graphene, indicating that graphene in the composites could enhance the OER 

activities of the materials. The operating potential to achieve a current density of 

10 mA cm−2 was also compared with the studied samples. The sample 2CoS-

FeS-5G-800 needed an overpotential of 1.44 V to realise the current density of 

10 mA cm−2, which is comparable to the value of 1.46 V for 2CoS-FeS-2.5G-

800, 2CoS-FeS-10G-800 and 2CoS-FeS-800 (shown in Table 6.4). Meanwhile, 

as the Tafel slope result shown in Figure 6.21b, the 2CoS-FeS-5G-800 

exhibited the lowest slope value of 40.3 mV/dec and other samples displayed 

slope values ranging from 43.7 to 45.2 mV/dec, which were all much lower than 

that of 82 mV/dec for IrO2/C. Furthermore, the durability of the catalyst is 

evaluated and displayed in Figure 6.21c. The 2CoS-FeS-5G-800 showed a 

similar I-V curve after 500 times scanning with a scan rate of 5 mVs-1, while the 

500th curve displayed a 80 mV lower overpotential at the current density of 10 

mA cm-2 and 50 mV lower onset potential than the initial one. 

Table 6. 4 OER performances of the 2CoS-FeS-yG-800 series composites 

 
Catalyst 

 
Onset 

potential  
(V vs. RHE) 

 
Overpotential (V vs. RHE) @ 
current density of 10mA cm

-2
 

 
Tafel slope 
(mV/dec) 

 
CoS-5G-800 

 
1.48 

 
1.54 

 
59.5 

 
2CoS-FeS-800 

 
1.40 

 
1.46 

 
50.8 

 
2CoS-FeS-2.5G-800 

 
1.38 

 
1.46 

 
50.5 

 
2CoS-FeS-5G-800 

 
1.38 

 
1.44 

 
50.3 

 
2CoS-FeS-10G-800 

 
1.40 

 
1.46 

 
55.5 
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Figure 6. 21 Polarisation curves for OER on (a) 2CoS-FeS-yG-800 series composites and 

IrO2/C and (b) their Tafel plot and (c) durability test for 2CoS-FeS-5G-800 

6.6 Summary  

In summary, Fe-substituted ZIF-67 and Fe-substituted GO/ZIF-67 were 

successfully synthesised and their derivatives obtained via 

carbonised/sulfurised in Argon/H2S atmosphere were also well prepared. The 

physiochemical properties of the two series composites xCoS-yFeS-800 and 

2CoS-FeS-zG-800 were discussed and fully analysed by various 

Characterisation techniques. XPS, XRD, TGA and TEM results have all 

confirmed cobalt/iron sulfide nanoparticles were homogenously dispersed in in-

situ formed porous carbon and graphene matrix and synergistic interaction 

between cobalt sulfide and iron sulfide particles existed in the obtained 

composites. Furthermore, graphene contained composites exhibited excellent 

electrochemical activities both in OER and HER, and the composite 2CoS-FeS-

5G-800 is one of the promising electrode materials for water splitting.  
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Chapter 7: Conclusions and future work 

In conclusion, simple and cost-efficient synthesis of GO/ZIFs based composites 

and their graphene reinforced derivatives have been successfully developed 

and these derivatives showed excellent performances in electrocatalytic fields. 

This thesis presents the synthesis of a series of ZIFs and ZIF derivatives, such 

as ZIF-67, GO/ZIF-67, cobalt sulfide/N, S co-doped porous carbon derived from 

ZIF-67, cobalt sulfide/N, S co-doped porous carbon/graphene derived from 

GO/ZIF-67, cobalt-nickel sulfide/N, S co-dopoed porous carbon/graphene 

derived from Ni-substituted GO/ZIF-67, cobalt-iron/N dopoed porous 

carbon/graphene derived from Fe-substituted GO/ZIF-67, cobalt-iron oxides/N-

doped porous carbon/graphene derived from Fe-substituted GO/ZIF-67 and 

cobalt-iron sulfide/N, S co-dopoed porous carbon/graphene derived from Fe-

substituted GO/ZIF-67. The crystal structures, morphologies, thermal stabilities 

and textural properties of these as-synthesised nanocomposites were 

characterised. Furthermore, the excellent applications, including gas adsorption, 

electrocatalytic oxygen reduction reaction, oxygen evolution reaction, hydrogen 

evolution reaction and water splitting have also been reported. Therefore, the 

PhD objectives have been achieved.  

In Chapter 4, a process featured the sulfurisation of GO/ZIF-67 precursors was 

demonstrated to be a facile one-step method to prepare graphene containing 

cobalt sulfide/N, S co-doped porous carbon. A variety of characterisation 

techniques were conducted to study the physico-chemical properties of the 

resulting CoS-C-G composites. It was found that cobalt sulfide nanoparticles 

were homogenously dispersed in carbon matrix and N, S elements were 

successfully doped into porous carbon and graphene. Compared with the CoS-

C composite, the graphene containing CoS-C-G composites exhibit outstanding 

electrocatalytic performance not only in ORR with higher onset potential and a 

four-electron pathway, but also in OER with a smaller overpotential and 

remarkable durability, showing that the introduction of graphene in the 

composites holds the key to obtain the increased electrical conductivity and ion 

transfer rate. All these findings indicate that CoS-C-G is highly promising 

electrode material in many energy-related applications. Additionally, bi-metallic 

nickel promoted cobalt sulfide/N, S co-dopoed porous carbon and graphene 

catalyst was also successfully prepared through a simple one-step 
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carbonisation and sulfurisation process by using Ni-substituted GO/ZIF-67 as 

precursors. The produced homogeneously cobalt/nickel sulfide nanoparticles 

were uniformly dispersed within the functionalised nanoporous carbon matrix 

and N, S elements were well doped into porous carbon and graphene. 

Possessing the Ni substitution, N, S co-doping and the presence of graphene, 

the resulting sample 4CoS-NiS-5G-800 exhibited remarkable OER 

electrochemical activities with low oneset/overpotential in alkaline electrolyte 

media as well as a good HER activities over a wide pH range. 

In Chapter 5, both homogeneous dispersed bi-metallic cobalt-iron/N-doped 

porous carbon and bi-metallic cobalt-iron/N-doped porous carbon/graphene 

series nanocomposites as high-performance bifunctional electrocatalysts 

towards OER and HER were successfully synthesised from Fe-substituted ZIF-

67 and Fe-substituted GO/ZIF-67, respectively, by using a facile and efficient 

synthesis approach. As a result, xCo-yFe-800 series nanocomposites displayed 

remarkable electrocatalytic activities and superior durability, owing to the 

synergistic effect between cobalt and iron, the crystalline structure of metal 

particles, the high porosity of corresponding materials as well as the 

homogeneous dispersion of N in the resulting composites. In comparison, 

graphene-reinforced xCo-yFe-zG-800 series samples demonstrated a 

significantly enhanced electrocatalytic activities for overall water splitting as a 

result of the combining effect of increased electrical conductivity, more active 

sites and higher electron transfer rate of graphene. In addition, Chapter 5 also 

demonstrates a series of bi-metallic cobalt-iron/N-doped porous 

carbon/graphene composites synthesised by oxidation in air at 350 °C of Co-

Fe/N-doped carbon/graphene. The formed Co-Fe oxides/N-doped 

carbon/graphene composite shows not only exceptionally electrochemical 

activity for water splitting, but also ability to provide anchoring sites for 

catalytically active metal oxide nanoparticles to deposit. 

In Chapter 6, the efficient synthesis method of simultaneous sulfurisation and 

carbonisation has been presented for the preparation of both cobalt-iron 

sulfide/S, N co-doped porous carbon and cobalt-iron sulfide/N, S co-doped 

porous carbon/graphene from precursors of Fe-substituted ZIF-67 and Fe-

substituted GO/ZIF-67, respectively. The effect of different Co: Fe ratios on the 

electrocatalytic activities was discussed. Among the as-synthesised 
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nanocomposites, sample 2CoS-FeS-800 showed excellent OER and HER 

activities for overall water splitting. Therefore, it comes to the conclusion that 

the introduction of graphene is the reason behind the improved electrocatalytic 

activity of 2CoS-FeS-5G-800 in water splitting.  

Based on the results above we have achieved in this thesis, some suggestions 

and recommendations for further work is offered as follows: 

 GO/ZIF-67 series nanocomposites have been successfully prepared via a 

one-step in-situ synthesis method, which are excellent precursors to 

produce graphene reinforced transition metal component nanocomposites. 

Porous carbon can provide high surface area with micropores, while, 

porous graphene can give an enhancement to electrical conductivity and 

electron transfer rate. Thus, it would be interesting to synthesise the 

different GO-containing ZIFs nanomaterials via the similar method. 

 Bi-metallic derivatives have been obtained from Ni or Fe substituted 

GO/ZIF-67, and subsequently exhibited remarkable electrochemical 

performance, duo to the synergistic effect of bi-metals. It will be very 

interesting to develop other bi-metal or even tri-metal GO/ZIFs based 

systems with the addition of metals like Mo and W. The products would be 

potentially excellent electrode materials which are useful in applications like 

supercapacitors and lithium ion batteries.  

 Thanks to the doping effect of nitrogen and sulfur, ZIF-67 derivatives 

demonstrate excellent electrocatalytic performance in this thesis work. 

Therefore, doping effect in similar systems is an interesting topic worth 

exploration and potentially generate highly exciting results. 

 Even bi-metallic derivatives exhibit improved electrocatalytic performance, 

according to findings made in this work, there are still challenges remain. It 

is very necessary to find out the mechanisms of synergistic effect in bi-

metals and elements doping effect in composites. Morover, although porous 

graphene and porous-graphene-based materials exhibit good properties 

and potential to be employed in many applications, the theoretical studies 

such as inherent properties of porous graphene, the control of pore size 

distribution, and the realisation of large-scale production are still extensive 

required in the future. 
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