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Abstract 

Numerical ages for glacial landforms are required to position palaeo ice extent at a given point in space and 

time. Radiometric methods, when appropriately calibrated and measured, allow intra- and inter-regional 

correlation and the production of large empirical datasets across varied and fragmented Quaternary 

deposits. This chapter focuses on radiocarbon ages for terrestrial and marine environments, cosmogenic 

nuclide dating (including exposure ages of bedrock and glacially transported boulders, and burial dating for 

glacial sediments), optically stimulated luminescence dating of glaciofluvial outwash, and Argon/Argon or 

Potassium/Argon dating of moraines interbedded with volcanic sequences. For each method, the key 

principles and concepts are outlined, sampling methodologies are discussed, calibration techniques and 

protocols are provided, and quality assurance protocols are suggested. All dating stratigraphies should take 

place within a geomorphological and sedimentological framework, and dating techniques must be used with 

knowledge of their key assumptions, best-practice guidelines and limitations. Combining glacial 

geomorphology with carefully constructed numerical age chronologies allows the timing of significant 

stabilisations of outlet glaciers at moraines to be characterised, whilst vertical transects down mountain 

ranges provide information on past rates and magnitudes of ice-mass thinning. These typically more 

expensive methods may be used with great effect in conjunction with archival, relative and incremental 

dating techniques, and with age-equivalent stratigraphic markers. This greatly increases the spatial coverage 

of the numerical dating methods and allows regional stratigraphies to be constructed. These data are critical 

if we are to understand ice mass response to the internal and external, climatic drivers of change. 
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Glossary 

Aliquot A sub-sample of the material being measured.  

Allochthonous Rocks that have been transported & deposited (inc. erratics, alluvial fans, 

gelifluction, etc. 

Attenuation length (Λ) Thickness of a material (rock, snow, ice) required to attenuate intensity of 

cosmic-ray flux due to scattering & energy absorption 

Autochthonous Rocks that have remained at or near site of formation 

ΔR The local variation in the marine reservoir effect from the global average of 

400 years. 

Dipolar The Earth’s magnetic field is dipolar, with a north and south pole.  

Dose The amount of energy stored within a crystal as a result of exposure to 

radiation. 

Dose rate The total radiation dose per unit time that the sample was exposed to during 

the burial period. Expressed as radiation dose per thousand years (Gy/ky). 

Equivalent dose The laboratory estimate of the radiation dose accumulated throughout the 

burial period in OSL dating of sediments. 

Galactic cosmic radiation Energetic particles, mostly of protons, originating from outer space. 

Gy Gray, SI unit of radiation dose, used in Optically Stimulated Luminescence 

dating. I Gy = I J kg-1 

IRSL Infra-red stimulated luminescence 

Inheritance Retention of remnant cosmogenic nuclides from a previous exposure 

Isotopes Families of nuclides with the same atomic number 
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Marine Reservoir Effect 

(MRE) 

The concentration of radiocarbon differs between the ocean and the 

atmosphere, with a ‘reservoir’ in the global oceans. This results in an offset in 

the radiocarbon age of a sample. The global average MRE is 400 years.  

Muon (µ) -ve muons: short-lived energetic lepton particles that decay quickly. Can 

penetrate rocks to depth. 

Nuclide Atomic species characterised by a unique number of atomic number and 

neutron number (e.g., 10Be, which has 4 protons and 6 neutrons) 

OSL Optically stimulated luminescence 

Partial bleaching Luminescence signals of only a portion of the grains in a sample were fully 

zeroed prior to burial (typical of glaciofluvial environments) 

Production rate Rate at which a specific nuclide is produced from a specified element or in a 

mineral such as quartz. Vary spatially and temporally. 

SAR Single aliquot regenerative-dose (for OSL dating) 

Spallation reaction Nuclear reaction resulting from collision of a highly energetic secondary 

cosmic ray neutron of energy with a target nucleus. 

Terrestrial cosmogenic 

nuclide 

A nuclide produced by the interaction of secondary cosmic radiation with 

exposed target atoms in earth-surface materials.  
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1 Introduction 

In this chapter, the focus is on the application of radiometric methods to glacial landforms. These 

techniques, when appropriately calibrated, provide a measured numerical age for a material, together with 

measured laboratory uncertainties. Radiometric methods include radiocarbon dating of organic material 

associated with glacial landforms, cosmogenic nuclide surface exposure ages of glacially transported 

boulders or ice-scoured bedrock, cosmogenic nuclide burial ages, optically stimulated luminescence (OSL) 

dating on glaciofluvial outwash and Argon/Argon (Ar/Ar) ages on moraines interbedded with volcanic 

sequences. There are other methodologies available (e.g. U/Th dating), but they are infrequently applied to 

glacial landforms and so are not discussed here.  

Radiometric methodologies such as radiocarbon dating rely on the radioactive properties of particular 

unstable isotopes (Lowe and Walker, 2014). These radioactive isotopes undergo a spontaneous change in 

organisation at an atomic level to achieve a more stable form. This process of radioactive decay is time-

dependent; if the rate of decay is known, then the age of the host sediments can be determined. Other 

techniques, such as cosmogenic nuclide analysis, rely on the in situ generation of new isotopes, such as 10Be. 

For radiometric methodologies, most measurements are undertaken by costly Accelerator Mass 

Spectrometry (AMS), and the selection of appropriate material is critical.  A detailed understanding of 

morphostratigraphy and relative and incremental dating techniques such as Schmidt Hammer testing or  

lichenometry, alongside geomorphological mapping, can inform a dating strategy and ensure the optimum 

samples are taken for radiometric dating.  

These radiometric dating tools have enabled the development of large datasets of numerical ages for glacial 

landforms, and have facilitated intra- and inter-regional correlation (Kirkbride and Winkler, 2012). The varied 

and fragmentary nature of Quaternary deposits, which impedes correlation on the basis of fossil content, 

lithology or structure, numerical ages have formed the basis for most regional correlations (e.g., Davies et 

al., 2020; Kirkbride and Winkler, 2012). These numerical ages have allowed glacial landforms to increasingly 

be used as a proxy for global and regional climatic patterns over timescales of 100 to >100,000 years (e.g., 

Kaplan et al., 2020; Kelley et al., 2014; Reynhout et al., 2019) and have formed the basis of new regional 

empirical datasets that compile data to generate new understandings of past ice sheet dynamics (Batchelor 

et al., 2019; Bentley et al., 2014; Dalton et al., 2020; Davies et al., 2020; Hughes et al., 2016; Larter et al., 

2014; Ó Cofaigh et al., 2014).   

 

2 Radiocarbon ages 

2.1 Introduction to radiocarbon 

Radiocarbon dating was developed in the 1940s (Libby, 1961, 1955), and transformed our understanding of 

the timing of events and rates of change as one of the most widely applied techniques for dating Quaternary 

environments. Over Quaternary timescales, radiocarbon dating is widely applied and relies on the principal 

of radioactive decay, and has been widely reviewed (Alves et al., 2018; Briner, 2011; Burr, 2013; Hatté and 

Jull, 2013; Jull, 2018; Lowe and Walker, 2014). It has been widely applied to understand deglacial 

chronologies in North America (Dalton et al., 2020; Dyke et al., 2003), Patagonia (Denton et al., 1999; 

Moreno et al., 2015; Strelin et al., 2011), Europe (Bateman et al., 2018; Dortch et al., 2016; Hughes et al., 
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2011; Livingstone et al., 2015), and Antarctica (Larter et al., 2014; McKay et al., 2008; Ó Cofaigh et al., 2014; 

Simms et al., 2011). 

Meteoric radiocarbon (14C) is formed in our atmosphere by geomagnetic and solar modulation of cosmic 

rays, and variations in the carbon cycle. Natural radiocarbon forms in the Earth’s stratosphere through the 

interaction of 14N and neutrons produced by cosmic rays (Guilderson et al., 2005). The newly formed 14C is 

oxidized to 14CO2 where it enters the biosphere. Radiocarbon dating relies on the assumption that organic or 

inorganic materials were in equilibrium with the production of 14C in the atmosphere (Jull, 2018), and that 

the 14C in the organism will decay, converting 14C back to 14N through beta decay, following the death of the 

organism. Through this process, radiocarbon has a half-life of 5,568 years (Alves et al., 2018). Because of this 

relatively short half-life, radiocarbon dating has a useable range of ~300 to ~50,000 years (Briner, 2011; 

Guilderson et al., 2005). 14C ages do not equate directly with calendar years, because 14C concentration in 

the atmosphere varies through time due to changes in the production rate (Burr, 2013), and so require 

calibration with incremental datasets such as tree rings or corals (Reimer et al., 2013). Typical analytical 

uncertainties are ~2 to 5%, although calibration adds further uncertainty.  

Convention dictates that uncalibrated ages are referred to as 14C ka BP (radiocarbon age in thousands of 

years before 1950 AD) and calibrated ages as cal. ka BP (calibrated age in thousands of years before 1950 

AD) (Alves et al., 2018; Reimer et al., 2013). Common tools for calibration include OxCal (Bronk Ramsey, 

2009) or Calib (Stuiver et al., 2009). Calibrated ages are commonly presented as median ages, with an 

uncertainty to 1 or 2 sigma (σ). Ages should be presented in publications with all raw data needed for 

calibration to be updated by later researchers when new calibration curves are published.  

 

2.2 Dating terrestrial glacial landforms using radiocarbon 

Dating terrestrial glacial landforms using radiocarbon presupposes that organic material is available. In 

temperate terrestrial environments, this could include basal organic sediments in bogs, lakes and mires 

either in kettle holes associated directly with moraines, or samples from sites inside and outside ice limits, 

bracketing those moraine sequences (Figure 1). It could include marine or other organic sediments beneath 

the moraine that have been overridden (Hjort et al., 1997; McCabe et al., 2007) or material reworked into 

the moraine (Denton et al., 1999; Luckman et al., 2017; Strelin et al., 2011). In many cases, radiocarbon 

dating can be used in conjunction with other techniques, such as varve chronology, dendrochronology, 

lichenometry and cosmogenic nuclide dating, depending on the situation. Relating the time of organism 

death to the timing of landform generation requires careful stratigraphic work, and a clear understanding of 

whether the organic matter provides a minimum or maximum age for the glacier variability.  

Radiocarbon ages are typically derived from bulk samples, microfossils samples requiring microscopy to 

extract, or macrofossil samples that can be visually identified and sampled (Small et al., 2017). Sedimentary 

sequences should have multiple radiocarbon ages taken in stratigraphic order, so that problematic materials 

yielding age reversals or consistent offsets can be identified and removed. In a sediment core, multiple up-

core radiocarbon ages are required to confirm that sediments are in stratigraphic order and have not 

undergone significant disturbance. When multiple radiocarbon ages are available for the same site, the 

oldest date is typically most useful for dating past glaciation, if the dates are a stratigraphic sequence (Dalton 

et al., 2020) (Figure 1). 
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This approach to radiocarbon dating is widely used in palaeoenvironmental studies, but its application to 

dating terrestrial glacial landforms can be more challenging. In this realm, radiocarbon dating is most 

frequently applied to moraines, by dating sediments that comprise the moraine, sediments below and within 

(providing a minimum age) and above (providing a maximum age) the moraine (Figure 1). Careful 

stratigraphic work is required to ascertain whether the organic matter in question provides a minimum or 

maximum age for landform formation, and usually requires large datasets to produce robust chronologies 

(e.g., Denton et al., 1999; Moreno et al., 2015).  
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Figure 1. Cartoon illustrating techniques for dating terrestrial moraines with radiocarbon. 

 

There are three key sources of geological uncertainty in radiocarbon ages: calibration to calendar years (see 

below), laboratory contamination, and site-specific geological problems (Lowe and Walker, 2000; Small et 
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al., 2017). Site-specific geological issues include processes, other than radioactive decay, that influence the 
14C/12C ratio within an organism (before or after death), or processes that result in the age of the sample not 

properly reflecting the age of the sedimentary archive. The 14C/12C ratio can be affected by chemical 

processes such as isotopic fractionation, recrystallization, contamination, or reservoir effects (Small et al., 

2017).  

The geological context (transport and deposition) of the sediment can affect its geological context, and thus 

the relative age of the organism and the sedimentary archive. This can result in aging or rejuvenation (Hatté 

and Jull, 2013), caused by anomalously low (aging) or high (rejuvenation) 14C content in the original carbon.  

Radiocarbon dating of woody material may be challenging because the radiocarbon age may be hundreds of 

years older than expected, especially for long-lived trees (Hatté and Jull, 2013). The tree adds wood to the 

outside of the trunk every year, so for older trees, the outside may have a radiocarbon age hundreds of 

years younger than the heartwood. Bulk woody material reworked into moraines may lack the associated 

data required to inform the dating strategy. It would be best to use small twigs if possible, as they can 

integrate at most five years and so should give more precise ages. 

For bogs, mires, lake sediments etc., some studies use an age-depth model through multiple ages in a 

sediment core to establish an estimate for basal age (a minimum age for the onset of deglaciation at that 

location). This can increase confidence in the basal age, if radiocarbon ages are present in stratigraphic 

order.  Oldest ages give an indication of the timing of the onset of organic sedimentation, but we add the 

significant caveat that such ages may over- or under-estimate the true onset of deglaciation given factors 

such as detrital contamination or undated core sections. From these environments, terrestrial plant 

macrofossils should be targeted for dating. 

 

2.3 Radiocarbon dating of freshwater environments 

The 14C of lakes and bog waters is often depleted, resulting in an artificial aging of the waters with wide 

spatial variation. Hard water can affect the dating of macrofossils from freshwater environments. The 

radiocarbon age of fresh water (or organisms living in the water) in contact with calcium carbonate rich rocks 

(such as limestone) can be increased by dissolved carbonate in the water (Hatté and Jull, 2013). The 

limestone contains no 14C, so it acts to dilute the concentration of 14C in the incoming CO2 in the water. This 

can affect freshwater aquatic taxa, meaning that they have anomalous ages. Algal macrofossils should, 

therefore, be avoided.  

Freshwater taxa (ostracods, algaes, aquatic mosses) are generally not suitable for radiocarbon dating (Dalton 

et al., 2020; Hatté and Jull, 2013), since algae and aquatic mosses build carbon from dissolved inorganic 

carbon in lakes and bog waters. This, therefore, reflects the 14C:12C ratios of the water from which they grew. 

These aquatic taxa are therefore vulnerable to the hard water effect. They are also vulnerable to dissolved 

carbonate from surrounding rocks, the residence time of the bog or lake, and other factors (Hatté and Jull, 

2013).  

 

2.4 Calibration of terrestrial radiocarbon ages 

Radiocarbon dating of terrestrial samples assumes that organic or inorganic materials were in equilibrium 

with the production of 14C in the atmosphere (Jull, 2018). After death, the plant or animal is removed from 
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this equilibrium, and so the level of 14C should decay, allowing the time of death to be calculated.  Terrestrial 

radiocarbon ages then require subsequent calibration before they can be related to calendar years because 

the value of 14C in the atmosphere can vary with time (Jull, 2018). Calibration using incrementally and 

independently dated tree rings now extends back to 13.9 cal. Ka BP (Reimer et al., 2013; Small et al., 2017); 

corals, speleothems, floating tree ring chronologies and lacustrine and marine sediments have extended it 

back further to 55,000 cal. Years BP (Fairbanks et al., 2005; Reimer et al., 2020). 

There is an offset between the Northern and Southern hemispheres, with Southern Hemisphere samples 

being ~40 years older, due to a higher sea-air 14CO2 flux from the larger Southern Hemisphere oceans (Hogg 

et al., 2013). In these studies, the value of 14C through time is calibrated against tree-rings of a known age 

from the appropriate hemisphere (Hogg et al., 2013; McCormac et al., 2004), with a standard offset applied 

beyond the range of dendrochronological methods. Radiocarbon ages, therefore, require calibration using 

the latest datasets (Bronk Ramsey, 2009; Hogg et al., 2013; Reimer et al., 2020, 2009).   

Calibration uncertainties are, therefore, controlled by the accuracy of the calibration curve (Small et al., 

2017). The use of standardized calibration curves ensures that uncertainties are consistent within a dataset. 

Commonly used calibration curves include SHCAL13 for terrestrial samples from the Southern Hemisphere 

(Hogg et al., 2013), and IntCal20 and Marine20 curves for terrestrial and marine samples from the Northern 

Hemisphere respectively (Heaton et al., 2020; Reimer et al., 2020, 2013). Commonly used software for 

calibration includes OxCal (Bronk Ramsey, 2013) and CALIB (Stuiver et al., 2009).  

The calibration curves have several ‘age plateaus’ caused by variations in atmospheric 14C content. In these 

plateaus, the 14C/12C ratio falls to a rate equal to that of radiocarbon decay (Guilderson et al., 2005). The 

utility of radiocarbon dating during these plateaus is very limited. There are two plateaus associated with the 

Younger Dryas (11,900 to 13,000 cal. years BP), which have made it challenging to determine synchronicity 

of this event globally (Guilderson et al., 2005; Muscheler et al., 2008). The Hallstatt Plateau is another 

flattening of the calibration curve, that homogenises calibration outputs across a 300 year interval from 

2400 to 2700 cal. years BP (Burley et al., 2018). These wiggles and plateaus can cause radiocarbon ages to 

have several plausible calibrated ages (Small et al., 2017). A careful sampling strategy with multiple ages is 

required to improve the calibration here. Additionally, using independent dating tools such as 

tephrochronology can be beneficial.  
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Figure 2. Radiocarbon calibration curve, with some key periods highlighted. Modified and adapted from 

multiple sources (Burley et al., 2018; Fairbanks et al., 2005; Guilderson et al., 2005; Reimer et al., 2013; Small 

et al., 2017). 

 

2.5 Dating submarine landforms using radiocarbon 

Radiocarbon dating of submarine glacial sediments has been widely applied on continental shelves in order 

to establish the timing and rates of ice-sheet retreat (Bentley et al., 2011; Bradwell et al., 2019; Davies et al., 

2012; Heroy and Anderson, 2007; Pudsey et al., 2006; Smith et al., 2014). This is particularly widely applied 
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in Antarctica, where limited ice-free areas on land, combined with good access from large research ships and 

a well-surveyed continental shelf, make this technique particularly practical. Here, the chronology is largely 

derived from radiocarbon dating of bulk organic carbon or marine micro- and macro-fossils in marine 

sediment cores from the continental shelf and slope (Davies et al., 2012). It can be combined with 

multibeam swath bathymetry and seismic surveys that provide detailed images of the surface 

geomorphology as well as a seismic stratigraphy.  

In marine settings, especially in quiescent locations on the continental shelf, a drape of organic 

sedimentation overlying glacial sediments and landforms (such as grounding zone wedges or morainal 

banks) offers the opportunity to provide a maximum age for the timing of ice recession (Kilfeather et al., 

2011; Ó Cofaigh et al., 2014). Marine carbonates (single or broken bivalves) and benthic foraminifera are 

typically targeted for dating (Graham et al., 2017; Graham and Smith, 2012; Ó Cofaigh et al., 2019). 

Alternatively, ages may be obtained from bulk organic carbon in acid insoluble organic (AIO) residues (e.g., 

McKay et al., 2008). Here, the target sediments for dating are the “Transitional Glaciomarine Sediments” 

(Figure 3). These transitional glaciomarine sediments immediately over subglacial till reflect the recession of 

the grounding line from this point. In the ideal case, the core bottoms out in deglacial sediment, and the first 

samples at the boundary to glaciomarine sediments provide a minimum age for deglaciation (Ó Cofaigh et 

al., 2019). 
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Figure 3. Cartoon illustrating the different facies on glaciated continental shelves such as around Antarctica, 

and the sampling patterns for radiocarbon dating. This method can be used in conjunction with 

tephrochronology if visible tephra or cryptotephra layers are present in the sediment core. In this scenario, a 

retreating ice sheet has deposited morainal banks or grounding zone wedges at locations where the ice 

margin stabilised. Subglacial diamicton (till) is deposited across the ocean floor, overlain by proximal 

glaciomarine sediments (transitional glaciomarine sediments) and then distal glaciomarine sediments. 

Reworked shells within the till can provide minimum bracketing ages for the ice advance, and in situ shells 

and microfossils from the transitional glaciomarine sediments provide a maximum bracketing age for the till 

and a minimum age for the timing of deglaciation. 
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Radiocarbon dating of marine materials requires correction for a global marine reservoir effect (MRE), which 

varies spatially and temporally in response to changes in oceanic and atmospheric circulation and ventilation 

between the ocean and the atmosphere (Alves et al., 2018; Bondevik et al., 2006; Heaton et al., 2020; 

Ortlieb et al., 2011). Surface-ocean environments are typically depleted of 14C compared with the 

atmosphere (Heaton et al., 2020). Because oceanic carbon is not in isotopic equilibrium with the 

atmospheric carbon reservoir, radiocarbon ages from marine materials provide older apparent ages than 

terrestrial counterparts. Deep ocean masses with low radiocarbon concentrations may yield ages older by 

several hundred years. Global marine reservoir values have been estimated for the last 22,000 years at a 

decadal resolution, with a current MRE value of 400 years (Hughen et al., 2004; Ortlieb et al., 2011). This 

globally averaged MRE is included in the Marine20 radiocarbon calibration curve (Heaton et al., 2020; 

Reimer et al., 2013).  

However, marine correction varies regionally, especially in high-latitude coastal zones (see Dalton et al., 

2020; Hall et al., 2010; Ó Cofaigh et al., 2014). This requires the worldwide quantification of the local 

parameter ΔR, which is the local variation from the global average MRE (Alves et al., 2018). Whilst the MRE 

changes over time, for any specific location, ΔR is assumed to be constant over time (Heaton et al., 2020). 

Pre-bomb estimates for ΔR across a wide range of locations is reported by (Reimer and Reimer, 2001) and a 

database is maintained online at http://calib.org/marine.  

In Antarctica, present-day marine species have radiocarbon ‘ages’ of ~1200 ± 200 cal. years (Ingólfsson, 

2004; Sterken et al., 2012; Verleyen et al., 2011) (i.e. a ΔR of 800 ± 200 years taking into account the global 

MRE of 400 years). In coastal tropical regions, such as the western coast of Chile and Peru, the upwelling of 

deep 14C-depleted waters to the surface results in high regional reservoir effects. In Chile, the modern ΔR 

value has been calculated as 190 ± 40 years (Stuiver and Braziunas, 1993), but was updated by Ortlieb et al. 

(2011) to 253 ± 207 years during the Twentieth Century. However, this ΔR value fluctuated over the 

Holocene (Table 1).  In many places, radiocarbon sampling of the surficial sediments provides a ‘core-top’ 

age that is used to correct stratigraphically down-core ages for the marine reservoir (Figure 3) (Andrews et 

al., 1999; McKay et al., 2008).  

 

Table 1. Example of ΔR values along the Chile-Peru coastline, from Ortlieb et al., 2011. 

Time range ΔR value 

Prior to 10,400 cal. BP 511 ± 278 years 

10,400 to 6840 cal. BP 511 ± 278 years 

5180 to 1160 cal. BP 226 ± 98 years 

1000 cal. BP to present 355 ± 105 years 

Early Twentieth Century 253 ± 207 years 

 

 

http://calib.org/marine
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2.6 Radiocarbon quality assurance protocols 

High-quality radiocarbon ages dating glacial landforms should be taken from known and uncontaminated 

sample material. For bulk ages, the organic content should be more than 5% when measured on loss-on-

ignition (LOI). Bulk samples (including gyttja, organic silt, carbonate clasts) are considered lower quality than 

individual samples from plant macrofossils.  Uncalibrated ages should be presented with full errors to enable 

recalibration with modern calibration curves. In cores, high-quality ages would have multiple and 

stratigraphically consistent ages. The δ13C content should be published. High-quality ages would have 

appropriate δ13C values (-25‰ to -32‰ for terrestrial plants; -15‰ for marine plants; -0‰ for marine 

carbonates) (Lowe and Walker, 2014). High-quality ages would be within the ranges of calibration datasets 

(Hogg et al., 2013; Reimer et al., 2013). For marine radiocarbon ages, the ΔR should be well understood, 

justified and provided. Radiocarbon ages should not be derived from freshwater taxa (ostracods, freshwater 

algaes, aquatic mosses).  

 

3 Cosmogenic nuclide dating 

3.1 Introduction to cosmogenic nuclides 

Cosmogenic nuclide dating has been widely applied worldwide over the last 20 years (Balco, 2011). It relies 

on the accumulation of cosmogenic nuclides in materials on the Earth’s surface. As cosmic rays have a short 

attenuation length, and cannot pass through substantial thicknesses of rock, water, ice and sediment, 

glacially transported rocks and ice-scoured bedrock are shielded from cosmic rays until they are exposed by 

recession of ice to the atmosphere at the Earth’s surface. Upon deposition and recession of the ice, 

cosmogenic isotopes begin to accumulate in the upper faces of minerals in rocks. These can be measured, 

and if the production rate is known, the ‘exposure age’ can be calculated. If the rock is then buried, the 

divergence between two isotopes with different half-lives (commonly 10Be and 26Al) allows a ‘burial age’ to 

be determined.   

There are six key isotopes that are useful for cosmogenic nuclide dating in the Earth’s surface (10Be, 26Al, 3He, 
21Ne, 36Cl, 14C). 10Be is applied most commonly for exposure-age and burial dating of glacial landforms. These 

isotopes allow exposure or burial age dating over a range of timescales, from hundreds to several million 

years. In practice, the key limiting factor on using exposure age dating on glacial landforms is the tendency 

for landforms such as moraines to degrade and rocks to weather away over time, producing scatted ages 

(Heyman et al., 2011; Ivy-Ochs and Briner, 2014). This means that over longer timescales dating back past 

the Mid-Pleistocene in exposed locations, exposure-age dating is less applicable than cosmogenic burial 

dating.   

The principals, methods and numerical theories and equations for cosmogenic nuclide dating have been 

thoroughly reviewed elsewhere (Balco, 2011; Cockburn and Summerfield, 2004; Darvill, 2013; Dunai and 

Lifton, 2014; Gosse and Phillips, 2001; Granger et al., 2013; Heyman et al., 2016; Ivy-Ochs and Briner, 2014; 

Ivy-Ochs and Kober, 2007; Jones et al., 2019). The key principles and applications are summarized briefly 

here, and then sampling methodologies and data analysis protocols are discussed.  
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3.2 Application in glacial environments 

3.2.1 Exposure-age dating 

Exposure-age dating is particularly useful for reconstructing deglacial chronologies because temperate, 

erosive glaciers create fresh rock surfaces, theoretically removing rock with previous exposure to the cosmic 

ray flux (Balco, 2011). It can be used in the absence of organic matter, and so is applicable even in dry, 

windy, cold environments like Antarctica, as well as temperate tropical mountain glaciers. It does not suffer 

from the limitations of methods like lichenometry or dendrochronology, which can have poorly known ecesis 

times and be susceptible to variations in microclimate. Unlike radiocarbon dating, where there is a lag for 

the onset of organic matter formation and sedimentation following deglaciation, exposure-age dating 

provides a direct age for the date of moraine formation or glacial retreat, rather than bracketing ages (Balco, 

2011). Well-constructed and empirically validated production rates and scaling schemes mean precision is 

increasing and the technique widely applicable. It works over a large timescale and is relatively 

straightforward to apply in the field. A number of inventive methods have been applied to reconstruct 

deglacial chronologies (Figure 4). 

Exposure-age dating is frequently applied to date the timing of the deposition of glacially transported 

boulders (Applegate et al., 2012; Davies et al., 2019; Hein et al., 2010; Heyman et al., 2011; Mendelová et al., 

2020; Putnam et al., 2013). 10Be exposure-age dating of felsic, phaneritic or sandstone glacially transported 

boulders on glacial moraines is perhaps the most widely applied form of exposure age dating (e.g., Davies et 

al., 2018; Joy et al., 2014; Kaplan et al., 2020, 2016; Kelly et al., 2008; Reusche et al., 2014; Reynhout et al., 

2019; Sagredo et al., 2018). In this scenario, boulders in a stable position on a moraine ridge crest are 

sampled, and the age is presumed to be equal to the age of moraine formation (Figure 4). This application of 

the method is particularly useful because moraines represent a decisive period of time when the glacier was 

in equilibrium with climate, and maintained its position long enough to build the moraine. The timing of 

moraine formation can be compared to proxy records of palaeoclimate, shedding insights into glacier-

climate interactions. Therefore, reconstructing the timing of moraine formation is of particular interest to 

glacial geologists (Kaplan et al., 2020; Mackintosh et al., 2017; Sagredo et al., 2018).  

Other studies have focused on using exposure ages to reconstruct vertical thinning histories, rather than 

horizontal recession from a moraine (e.g., Boex et al., 2013; Hormes et al., 2013; Johnson et al., 2014, 2012; 

Lindow et al., 2014; Mackintosh et al., 2007; Stone et al., 2003). Here, samples from either ice-scoured 

bedrock or glacially transported boulders or cobbles are taken in a vertical transect from a mountain summit 

downwards. Linear rates of deglaciation can be estimated by calculating the distance and age offset between 

dated positions (Jones et al., 2019). These data can be used to calculate rates of ice surface lowering (Small 

et al., 2019).  

Exposure age dating can be used to constrain the timing of ice recession from ice-scoured bedrock, and can 

be paired with dating glacially transported boulders (Corbett et al., 2013, 2011). This can avoid the 

limitations associated with moraine degradation (Ivy-Ochs and Briner, 2014). However, glacial erosion of less 

than ~3 m can lead to incomplete removal of nuclides that accumulated during previous exposures. This 

method is likely to be therefore more appropriate in temperate, deeply eroded alpine valleys (e.g., Guido et 

al., 2007), with inheritance more likely in high elevation, high latitude regions dominated by cold-based ice 

(Fabel et al., 2002; Stroeven et al., 2002; Sugden et al., 2005).  

In places devoid of sediment, soil, vegetation and organic matter that can obscure the cosmogenic nuclide 

signal, and where large boulders are few in number, such as nunataks above ice sheets, 10Be exposure ages 
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can be obtained from smaller glacially abraded quartz-bearing cobbles and pebbles on bedrock (Balco et al., 

2013; Bentley et al., 2010; Dong et al., 2016; Hein et al., 2017). Dating erratic cobbles or boulders directly on 

bedrock can be especially useful if inheritance (nuclides from a previous exposure) is anticipated within the 

bedrock due to low erosion rates under cold-based ice (Balco, 2011; Bentley et al., 2010; Fabel et al., 2012). 

Sampling cobbles or boulders resting on bedrock limits clast cycling through the active layer (Hein et al., 

2016). If signs of glacial abrasion and transport (erratic lithology, striations, edge-rounded) are clear on the 

cobbles, this may be taken to indicate negligible erosion. Self-shielding and post-depositional movement is 

limited in clasts resting on flat bedrock and thinner than ~5 cm (Hein et al., 2016). Care should be taken to 

ensure that samples could not have reached these positions by colluvial processes after deglaciation (Balco 

et al., 2013). 

For older glaciations where moraine degradation and boulder erosion can make cosmogenic nuclide 

exposure age dating challenging, cobbles on outwash gravels can also be targeted (Hein et al., 2009). In 

Patagonia, the arid, windy conditions help ensure continuous surface exposure of surface cobbles. Here, 

these data revealed a glacial advance during MIS 8, with outwash cobbles yielding exposure ages ~100 ka 

older than moraine boulders. 

Exposure ages can also be used to date the timing of ice-dammed glacial lake drainage (Davies et al., 2018; 

Fabel et al., 2010; Hein et al., 2010; Thorndycraft et al., 2019) and for dating cobbles within glaciofluvial 

outwash (Hein et al., 2017, 2011). This is applicable because the cosmic ray flux is strongly attenuated by 2 m 

of water (Gosse and Phillips, 2001), so boulders deposited below shorelines or perched deltas will constrain 

the timing of lake-level fall. Figure 4 illustrates some of the ways in which exposure-age dating can be used 

to understand deglacial chronologies. 
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Figure 4. Cartoon illustrating some of the different ways in which exposure-age dating can be used to 

understand deglacial histories.  

 

3.2.2 Burial dating 

Depth profiles use a number of samples (ideally >5) through a sedimentary unit to provide a single surface 

exposure age based on cosmogenic nuclide concentration at different depths (Darvill, 2013). Sediment burial 

can be dated by the radioactive decay of cosmogenic nuclide minerals (10Be and 26Al), provided that the 

sediments were exposed prior to burial (Granger and Muzikar, 2001). This method can be applied over 

million-year timescales, and can be essential for dating older glacial deposits where moraines are severely 

degraded (Darvill et al., 2015), or older outwash fans where boulders have weathered away (Ivy-Ochs et al., 
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2013). It is straightforward if sediment burial is deep enough to prevent the ongoing formation of 

cosmogenic nuclides, but more complex if the sediment is insufficiently shielded.  

Simple burial dating has been used to date outwash fans and give surface exposure ages in Patagonia. A 

modelled nuclide attenuation profile through several depth samples will yield a most probable age for 

surface exposure as well as average inheritance (nuclide concentrations deeper than the penetration of 

cosmic ray reactions) and surface erosion (projecting measured nuclide concentrations to the modelled 

surface according to the expected attenuation curve) in the unit (Hein et al., 2009; Hidy et al., 2010; Marrero 

et al., 2016a). Exposure ages from depth profiles can be strengthened using single exposure ages from 

cobbles on the unit surface, to provide a check on the modelled exposure age and surface inflation/deflation 

(Cogez et al., 2018; Darvill et al., 2015; Hein et al., 2017, 2011, 2009). It is also possible to reconstruct more 

complicated depositional histories using multiple cosmogenic nuclides (Balco and Rovey, 2008; Granger and 

Muzikar, 2001; Häuselmann et al., 2007; Hein et al., 2009). The depth-profile method may be particularly 

useful for degraded moraines, fans, or other landforms deposited prior to the last glacial cycle (Cogez et al., 

2018; Darvill et al., 2015; Hein et al., 2017, 2010; Ivy-Ochs et al., 2013). 

 

3.3 Principles of cosmogenic nuclide dating 

3.3.1 Production of cosmogenic nuclides 

The Earth is continuously bombarded from all directions by cosmic radiation (Balco, 2011; Dunai and Lifton, 

2014; Gosse and Phillips, 2001). These cosmic rays largely originate from Supernova explosions from the 

galaxy and beyond our Solar System, and, at the top of our atmosphere, comprise high-energy protons 

(87%), alpha particles (12%) and heavy nuclei (1%). When these high-energy particles enter our atmosphere, 

these primary cosmic rays interact with atoms to produce secondary cosmic rays. The high-energy primary 

cosmic rays are in excess of the binding energies of atomic nuclei. Spallation is a reaction that occurs when 

nucleons are sputtered off target nuclei following the collision of a primary cosmic ray with a target atom 

(Dunai and Lifton, 2014). This leaves behind a lighter residual nucleus, such as those shown in Table 2. These 

spallation-induced nuclei continue in the same direction as the primary cosmic ray, and retain sufficient 

energy to continue to induce spallation reactions in other target minerals. This results in a nuclear cascade 

through the Earth’s atmosphere, forming meteoric 14C, 10Be, and other cosmogenic nuclides. Energy lost with 

each interaction means that the mean energy of the secondary neutron flux at sea level is substantially 

lower than that of the primary flux (Dunai and Lifton, 2014).  

The collisions in the upper atmosphere also produce negatively charged muons. They have a greater 

penetration depth than nucleons, and interact only weakly with matter (Dunai and Lifton, 2014). They are 

the most abundant cosmic ray particles at sea level.  However, spallation reactions with the nucleonic 

component dominate atmospheric and terrestrial cosmogenic nuclide production (Table 2).  

Eventually, the neutrons in the nuclear cascade slow down to energies corresponding to the temperature of 

their surroundings (Dunai and Lifton, 2014). These “thermal neutrons” can then be captured by nuclei. In 

some cases (3He, 36Cl), this is an important production source for cosmogenic nuclides.  

Terrestrial cosmogenic nuclides are therefore produced in rocks by these interactions between secondary 

cosmic radiation and minerals at the Earth’s surface. The six most commonly used cosmogenic isotopes, 

which have well-established production rates at the Earth’s surface that are large enough to be measured, 

and long-enough half-lives to be useful, are listed in Table 2. 
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Table 2. Major cosmogenic nuclides used in geomorphological research, their target elements and minerals, 

reaction pathways and production rates. Multiple sources (Borchers et al., 2016; Darvill, 2013; Dunai, 2010; 

Granger et al., 2013; Ivy-Ochs and Kober, 2007; Nishiizumi et al., 2007). Global production rates are given in 

atoms per gram per year, after Borchers et al. (2016). 

Cosmogenic 

nuclide 

Main 

target 

elements 

Applicable rocks and 

minerals 

Reactions Half-life Applicable time 

range 

Production 

rate (LSD Sa 

scaling 

scheme) 

3He Many, 

including 

Li 

Olivine, pyroxene Spallation (100%) 

Thermal neutron 

capture (on Li via 3H) 

Stable To millions of 

years 

Quartz: 

114.55 

21Ne Mg, Al, Si Quartz, olivine, 

pyroxene 

Spallation (>96.4%) Stable Tens of 

thousands to 

millions of years 

 

10Be O, Si Quartz (sandstones, 

granites, gneisses, etc.) 

Spallation (96.4%) 

Muons (3.6%) 

1.36 Ma Ages from 

hundreds to 

several million 

years 

Quartz: 3.92 

26Al Si Quartz (sandstones, 

granites, gneisses, etc.) 

Spallation (95.4%) 

Muons (4.6%) 

0.7 Ma Ages to several 

million years 

Quartz: 

28.54 

36Cl K, Ca, Cl 

(Fe, Ti) 

All rock types. Basalts; 

volcanic rocks; 

limestones and 

carbonate rocks 

Thermal neutron 

capture (from Cl and K) 

Muons (4.6% from K; 

13.4% from Ca) 

0.3 Ma To one million 

years 

Ca: 56.27 

K: 156.09 

14C O, Si Quartz (sandstones, 

granites, gneisses, etc.) 

Spallation (82%) 

Muons (18%) 

5.73 ka To 20,000 years Quartz: 

12.76 

 

Of these isotopes, 10Be is used most widely to date glacial landforms such as moraines (Granger et al., 2013). 

This is because its production rate has been well studied and calibrated (Balco et al., 2009; Borchers et al., 

2016; Kaplan et al., 2011; Putnam et al., 2010; Small and Fabel, 2015), and because it forms easily from Si 

and O in quartz, a widespread and common mineral at the Earth’s surface. Quartz is resistant to weathering, 

ubiquitous, and has a simple stoichiometric chemistry (Gosse and Phillips, 2001). For this reason, glacially 

transported felsic phaneritic rocks (granites) are often targeted for exposure age dating. Granites are 

resistant to weathering and durable, and can be transported long distances. 10Be also has a long half-life, 

making it useful for long exposures. 10Be has routinely good precision in AMS measurements, a standardized 

chemistry procedure (Nishiizumi et al., 2007), and the isotope 9Be is rare in quartz, making it simpler to 

measure (Granger et al., 2013). It has been used to date glacial landforms from the mid-Pleistocene (e.g., 
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Hein et al., 2017, 2009; Mendelová et al., 2020). It has also been applied to date young moraines that date 

from the last few hundred years in temperate environments (e.g., Kaplan et al., 2016; Schaefer et al., 2009; 

Schimmelpfennig et al., 2014). Challenges for 10Be dating include that atmospheric 10Be is a significant source 

of contamination, so quartz grains must be etched and cleaned in the measurement process (Gosse and 

Phillips, 2001).  

10Be can be paired with 26Al, which can highlight inheritance issues (Bentley et al., 2006; Fabel et al., 2002). 

Both isotopes form in quartz, but have different half-lives. The divergence of the two isotopes can be an 

indicator for prior exposure. The production rate of 26Al is higher than that of 10Be (Table 2). It can be difficult 

to measure low 26Al/27Al  in quartz with high Al contents (Gosse and Phillips, 2001).  

14C can be applied to shorter chronologies (> 30 kyr), especially to Holocene glacial histories (Goehring et al., 

2011). The short half-life makes it applicable where erosion rates are low and inheritance may be an issue 

(Gosse and Phillips, 2001; Miller et al., 2006; White et al., 2011), or exposure histories may be complex 

(Goehring et al., 2013). It is suitable for quartz-bearing rocks, and can be paired with 26Al and 10Be (Hippe et 

al., 2014; White et al., 2011), but potential contamination can make sample preparation difficult and 

expensive (Lifton et al., 2001). 

36Cl can be used on a range of lithologies, and is often used on volcanic rocks and basalts that are low in 

quartz, prohibiting 10Be dating (Briner et al., 2001; Çiner et al., 2015; Sarıkaya et al., 2017; Schimmelpfennig 

et al., 2009). However, production rates are less well constrained than those for 10Be, because the multiple 

pathways for production on multiple elements are difficult to decipher (Gosse and Phillips, 2001; Marrero et 

al., 2016b).  

3He has a high production rate and low detection limit in a conventional AMS, so can be used to date 

younger exposure ages. As it is stable, it can also be used to date longer exposure ages (Goehring et al., 

2010). The production rate is better quantified than for 21Ne (Gosse and Phillips, 2001). However, it diffuses 

rapidly in quartz and fine-grained groundmass in aphanitic rocks, and a correction for radiogenic, 

nucleogenic and magmatic 3He is necessary. There is also a greater risk of inheritance as it is a stable nuclide. 
3He can be used to date lavas without quartz (e.g., Espanon et al., 2014; Johnson et al., 2009). The 

availability of well-preserved lava flows with independent age control means that production rates are well 

distributed spatially (Goehring et al., 2010). 21Ne is suitable for dating extremely long exposures, because it is 

stable (Gosse and Phillips, 2001). This does mean that inheritance may be more of an issue for this isotope. A 

correction of radiogenic or nucleogenic 21Ne is required.  

 

3.3.2 Production rate 

The production rate calculates the rate that a particular cosmogenic nuclide is produced at the sampling site. 

It is expressed in units of atoms produced per year per gram of target material (Borchers et al., 2016). The in 

situ production rate varies according to latitude, altitude, and the thickness and density of a sample (Darvill, 

2013; Dunai, 2000; Lal, 1991; Stone, 2000). Production rates are nuclide-specific and can be established 

regionally using independently dated features such as radiocarbon-dated moraines (Balco et al., 2009; 

Kaplan et al., 2011; Putnam et al., 2010), varved records with tephra (Small and Fabel, 2015),  argon-dated 

volcanic lavas (Foeken et al., 2012), or tree-ring chronologies (Kubik et al., 1998). Published production rates 

are normalized to sea-level and high-latitude (SLHL), and then must be scaled using a scaling scheme 

according to altitude and latitude (Borchers et al., 2016). Global production rates are provided by Borchers 

et al. (2016) (Table 2). Generally, production rates should be applied locally and compared with global 
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production rates. Production rates for 10Be are best quantified. Some examples of local production rates are 

shown in Table 3. 

ICE-D (Informal Cosmogenic-nuclide Exposure-age Database; http://ice-d.org) is a production rate database 

that includes published empirical calibration rate studies (Balco, 2020; Martin et al., 2017). This allows the 

user to select a global, regionally averaged or local production rate for age calculation. It is compatible with 

several cosmogenic nuclide calculators, including CRONUS-calc.  

 

Table 3. Examples of regional production rates for 10Be, scaled to SLHL. For a complete database, the reader 

is referred to ICE-D.  

Location Reference 10Be production 

rate (atoms/g/yr) 

Comments and scaling scheme Calibration method 

Global Borchers et al. 

(2016) 

3.92 LSDn (Sa) scaling scheme Analysis of global 

datasets 

Patagonia Kaplan et al. 

(2011)  

 

3.71 ± 0.11 When using a time-dependent scaling 

method that incorporates a high 

resolution geomagnetic model. 

Independently dated 

moraines (14C) 

Southern Alps, 

New Zealand 

Putnam et al. 

(2010) 

3.74 ± 0.08 Using ‘Lm’ scaling scheme. Relative to 

‘07KNSTD’ 

Independently dated 

moraines (14C) 

Scotland Small and Fabel 

(2015) 

4.26 ± 0.21 Using ‘Lm’ scaling scheme Glacial lake shorelines 

independently dated 

with varves and tephra 

North America Balco et al. 

(2009) 

4.26 ± 0.21 Using ‘Lm’ scaling scheme Independently dated 

Late Glacial landforms 

Scandinavia Stroeven et al. 

(2015) 

4.13 ± 0.11 Using ‘Lm’ scaling scheme Varved lake sediments 

Scandinavia Stroeven et al. 

(2015) 

3.95 ± 0.10 Using ‘LSDn’ scaling scheme Varved lake sediments 

 

3.3.3 Scaling scheme 

The primary cosmic rays approaching Earth are affected by the Earth’s magnetic field and solar activity 

(Darvill, 2013), with most rays penetrating the atmosphere at the poles and least at the equator. The ability 

of a ray to penetrate the atmosphere is determined by the angle of incidence and their location relative to 

geomagnetic field lines. Variations in the Earth’s magnetic field cause variations in the long-term primary ray 

production, and affect the flux of cosmic radiation at the Earth’s surface. The regional or global production 

rate must therefore be scaled for latitude and altitude to create an estimate of the site-specific production 

rate. These scaling schemes take into account altitude and latitude (Dunai, 2001; Stone, 2000), variations in 

http://ice-d.org/
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geomagnetic field strength, changes in solar activity (Lifton et al., 2008), and temporal changes in the energy 

spectrum (Lifton et al., 2014). 

 There are six primary scaling schemes commonly used (Table 4). At latitudes greater than 30° and elevations 

below 3000 m, there is little difference between the scaling schemes (Dunai and Lifton, 2014).  However, 

differences of up to 30% may arise between models at lower latitudes and higher elevations. Users should 

ensure consistency when comparing ages between different studies that may have used different production 

rates and scaling factors (Balco, 2011; Darvill, 2013).  

Neutron-monitor based models (De, Du) are prone to overestimate the altitude dependence of cosmogenic-

nuclide production (Martin et al., 2017). The LSDn scaling scheme (Lifton-Sato-Dunai) is a newer, more 

complex scaling scheme based on particle transport models (Lifton et al., 2014), and is recommended by 

Borchers et al. (2016). It provides information available neither from the traditional Lal (St) scaling scheme, 

or the neutron-monitor based scaling schemes (Du, Li, De) (Marrero et al., 2016a). LSDn also provides a 

separate scaling factor for each nuclide, rather than a single scaling factor for all nuclides (ibid). LSDn has a 

good agreement with the older Lal-Stone model (Martin et al., 2017).  

The production rate therefore changes, or is scaled, through time, according to the scaling scheme used and 

the sample’s latitude, longitude and elevation (Balco et al., 2008). Time-independent scaling schemes (St) 

result in a constant production rate.  

 

Table 4. Scaling schemes for cosmogenic nuclide production. Numerous sources (Balco et al., 2008; Dunai and 

Lifton, 2014; Marrero et al., 2016a). 

Scaling 

scheme 

abbreviation 

References Time dependency (constant or 

variable production rate) 

Description 

St (Lal/Stone) Lal (1991); Stone 

(2000) 

Time-independent (constant 

production rate) 

Altitude, latitude taken into account. 

Does not take into account magnetic 

field variations. 

Lm (‘Lal 

modified’) 

Lal (1991); Nishiizumi 

et al., (1989); Stone 

(2000) 

Time-dependent (variable 

production rate) 

Time-dependent version of St, based 

on time-variation in the dipole 

magnetic field intensity. Production 

rates vary with time according to 

magnetic field changes. 

De (Desilets) Desilets et al. (2006) Time-dependent Based on neutron monitor 

measurements and incorporating 

dipole and non-dipole magnetic field 

measurements. Production rates vary 

with time according to magnetic field 

changes. 

Du (Dunai) Dunai (2001) Time-dependent Based on neutron monitor 

measurements and incorporating 

dipole and non-dipole magnetic field 

measurements. Production rates vary 
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with time according to magnetic field 

changes. 

Li (Lifton) Lifton et al. (2005) Time-dependent Based on neutron monitor 

assessments and incorporates dipole 

and non-dipole magnetic field 

fluctuations and solar modulation. 

Production rates vary with time 

according to magnetic field changes 

and changes in solar output. 

LSDn (Sf, Sa) 

(Lifton-Sato-

Dunai) 

Lifton et al. (2014) Time-dependent Based on equations from nuclear 

physics model. Incorporates dipole and 

non-dipole magnetic field fluctuations 

and solar modulation. 

 

3.3.4 Attenuation length 

The high-energy  component of cosmic radiation follows an exponential decrease as a function of the 

cumulative mass penetrated perpendicular to the surface of the rock (Gosse and Phillips, 2001). The 

attenuation length (Λ) is the thickness of a slab of material (rock, air, water, sediment, snow) required to 

attenuate the intensity of the cosmic-ray flux by a factor of e-1, due to scattering and absorption processes. 

The attenuation length varies with altitude and latitude, because the geomagnetic field and atmosphere 

change the energy spectrum (Gosse and Phillips, 2001). The attenuation coefficient is expressed in terms of 

units of mass length (g cm-2) because the length depends on the total mass traversed and is therefore a 

function of the material’s density. The attenuation length of solid rock, with a typical bulk density of 2.7 g 

cm-3, is 121 – 170 g cm-2, and the thickness of rock required to attenuate the cosmic ray flux by a factor of e-1, 

is 45 to >65 cm. In practice, the attenuation length (Λ) is usually taken to be a constant, at 160 g cm-2 (Balco, 

2011; Balco et al., 2008; Gosse and Phillips, 2001). Length in units of cm can be determined if densities are 

known and constant (Table 5), by dividing the attenuation length of 160 g cm-2 by the material density.   

 

Table 5. Lengths in cm for various materials required to attenuate the cosmic ray flux. 

Material (bulk density (ρ)) Thickness of material required to attenuate intensity 

flux by a factor of e-1,  where Λ = 160 g cm-2 (assumes a 

constant density) 

Granite (2.7 g cm-3) 59.3 cm 

Granite (2.6 g cm-3) 61.5 cm 

Basalt (2.5 g cm-3) 64.0 cm 

Soil or tuff (2 g cm-3) 80 cm 

Water (1 g cm-3) 160 cm 
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Ice (0.9167 g cm-3) 174.5 cm 

Snow (0.25 g cm-3) 640 cm 

 

When calculating an exposure age, the sample thickness is therefore a crucial parameter because production 

by spallation within the rock is assumed to have an exponential depth-dependence with a single attenuation 

length (160 g cm-2) (Balco et al., 2008). In granite, the spallogenic production rate falls by a factor of two with 

every ~40 cm of depth, and becomes negligible 2 to 3 m below the surface (Balco, 2011).  

 

3.3.5 Topographic shielding 

Exposure-age samples will be shielded by any nearby topography (Balco, 2014; Balco et al., 2008; Codilean, 

2006; Darvill, 2013; Gosse and Phillips, 2001; Nishiizumi et al., 1989). Exposure age samples must therefore 

be corrected with a non-dimensional shielding factor (0 to 1). Samples with a shielding factor of 1.0 have no 

topographic shielding. The shielding factor used in cosmogenic calculators such as CRONUS-Calc is derived 

from measurements of the elevation to the skyline and the dip and dip direction of the rock surface 

sampled. This is discussed in more detail under “Sampling Methodologies”. The horizon will impede the 

cosmogenic ray flux, if the obstructions are more than several effective attenuation lengths for spallogenic 

production (i.e., several metres thick) (Balco et al., 2008). The effect of common topographic shielding is 

relatively minor; a flat surface at the bottom of a pit with 45° sloping walls would still receive 80% of 

incoming radiation (Gosse and Phillips, 2001). Horizon shielding of less than 5° is of negligible importance. 

Shielding will be accentuated if the sampled surface is sloped towards a major topographic obstruction, such 

as a valley side. This is because, as most incoming radiation is close to vertical, a significant slope on the 

surface will reduce the radiation flux (ibid). The rock surface above the sample will also act to obstruct 

radiation. Attenuation lengths will be shortened on dipping surfaces, because particles will entre at oblique 

angles.  

Winter snow, water, sand, peat or soil can also act to shield rock surfaces (Gosse and Phillips, 2001). The 

attenuation lengths for these common materials are given in Table 5. In general, if thicknesses of these 

relatively low-density materials is small, then shielding is limited. Snow survey data can be used to estimate 

average snow depth and snow water content, and these data can be used to correct for shielding (Gosse and 

Phillips, 2001).  However, snow cover can be an important and is often a neglected uncertainty in exposure-

age calculations (Delunel et al., 2014; Schildgen et al., 2005). Jones et al. (2019) account for snow cover and 

cover by other materials in the IceTEA calculator. 

 

3.3.6 AMS Standards 

10Be and 26Al measurements are made by comparison with a reference standard with a defined isotope ratio 

(Balco et al., 2008). 10Be concentrations are derived by adding a known quantity of 9Be to a measured weight 

of quartz, dissolving the quartz, extracting Be, and measuring the 10Be/9Be ratio in an AMS. The AMS 

therefore compares the isotope ratio to a Be reference material where the isotope ratio has been measured 

independently (Balco, 2011). The accuracy of the 10Be concentration measurement depends on the accuracy 

of the absolute isotope ratio assumed in the Standard Reference Material (SRM) (Balco et al., 2008), and 

knowledge of the 10Be half-life (Balco, 2011). Intercalibration of AMS standards allows the results from 
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different laboratories to be compared (Fink and Smith, 2007; Kubik and Christl, 2010). Standards are largely 

resolved for 10Be, 26Al and 14C, but are less well defined for other nuclides (Granger et al., 2013). Prior to 

Nishiizumi et al. (2007), the assumed half-life of 10Be was 1.5 Ma (e.g. Fink and Smith, 2007). The revision of 

the half-life by Nishiizumi et al. (2007) to 1.36 ± 0.07 x106 years also revised the value of the NIST 10Be 

standard (SRM4325) to 2.79 ± 0.03 x10-11 10Be/9Be. This resulted in the 07KNSTD standard, against which all 

other measurements are currently normalized to. 

In cosmogenic nuclide calculators, the standards must be inputted, and nuclide measurements normalized to 

a reference standard that is compatible with the reference standard used in calibration measurements 

(Nishiizumi, 2004; Nishiizumi et al., 2007). Common 10Be AMS standardisations are listed in the 

documentation for the online calculators formerly known as the CRONUS-Earth Online Calculators 

(https://hess.ess.washington.edu/) and are summarized in Table 6. Authors should always clearly present 

their standards when giving 10Be results (Balco, 2011; Dunai and Stuart, 2009; Frankel et al., 2010). 

Table 6. 10Be standardisations. Sources include Balco et al. (2008), Nishiizumi et al. (2007), Kubik and Chistl 

(2010) and documentation from CRONUS-Earth 

(https://hess.ess.washington.edu/math/docs/al_be_v22/standard_names.html and 

https://hess.ess.washington.edu/math/docs/al_be_v22/AlBe_standardization_table.pdf; both accessed 

01.04.2020). Conversion Factor is the factor by which a standardisation is multiplied to make it consistent 

with the 07KNSTD standardisation.  The normalisation is carried out by the CRONUS-Calc 10Be calculator. 

AMS standards should always be presented when giving 10Be AMS results. 

Code Description Conversion factor 

07KNSTD After Nishiizumi et al. (2007). Measurements made at PRIME Lab 

after Nov. 14 2007 were referenced to this standardization. This 

is the standardization to which internal constants and production 

rates are based on for the CRONUS-Earth calculator, and all other 

standardisations will be internally converted to be consistent 

with 07KNSTD. NIST 10Be standard (SRM4325) is 2.79 ± 0.03 x10-

11 10Be/9Be. 

1.000 

KNSTD Same standard material as 07KNSTD but with a different nominal 

isotope ratio that was assumed before the 2007 version. Used by 

PRIME Lab between 2005 and 2007.  

0.9042 

NIST_Certified Produced by National Institute of Standards and Technology 

(NIST), referred to as SRM4325. Measurements made at PRIME 

before 2005 used this. Nominal isotope ratio of 2.68 x 10-11 

1.0425 

NIST_30000 The NIST SRM4325 standard material with assumed isotope ratio 

of 3.0 x 10-11 

0.9313 

NIST_30200 The NIST SRM4325 standard material with an assumed isotope 

ratio of 3.02 x 10-11 

0.9251 

https://hess.ess.washington.edu/
https://hess.ess.washington.edu/math/docs/al_be_v22/standard_names.html
https://hess.ess.washington.edu/math/docs/al_be_v22/AlBe_standardization_table.pdf
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NIST_30300 The NIST SRM4325 standard material with an assumed isotope 

ratio of 3.03 x 10-11 

0.9251 

NIST_30600 The NIST SRM4325 standard material with an assumed isotope 

ratio of 3.06 x 10-11 

0.9130 

NIST_27900 The NIST SRM4325 standard material with an assumed isotope 

ratio of 2.79 x 10-11 (equivalent to 07KNSTD) 

1.000 

BEST433 ETH-Zurich standard material “BEST433” used prior to April 1, 

2010. Assumed isotope ratio of 93.1 x 10-12. After Kubik and 

Christl (2010) 

0.9124 

S555 ETH-Zurich standard material “S555” used prior to April 1, 2010. 

Assumed isotope ratio of 95.5 x 10-12. After Kubik and Christl 

(2010) 

0.9124 

S2007 ETH-Zurich standard material “S2007” used prior to April 1, 2010. 

Assumed isotope ratio of 30.8 x 10-12. After Kubik and Christl 

(2010) 

0.9124 

BEST433N ETH-Zurich standard material “BEST433” with revised assumed 

isotope ratio of 83.3 x 10-12. After Kubik and Christl (2010). 

Equivalent to 07KNSTD. Used at ETH in April 2010.  

1.000 

S555N ETH-Zurich standard material “S555” with revised assumed 

isotope ratio of 87.1 x 10-12. After Kubik and Christl (2010). 

Equivalent to 07KNSTD. Used at ETH in April 2010. 

1.000 

S2007N ETH-Zurich standard material “S2007” with revised assumed 

isotope ratio of 28.1 x 10-12. After Kubik and Christl (2010). 

Equivalent to 07KNSTD. Used at ETH in April 2010. 

1.000 

STD11 ASTER standard with assumed isotope ratio of 1.191 x 10-11. 

Equivalent to 07KNSTD and NIST_27900.  

1.000 

 

3.3.7 Erosion Rates 

Exposed surfaces will denude over time due to weathering and in situ breakdown of rock. The concentration 

of surface cosmogenic nuclides is sensitive to surface erosion (Gosse and Phillips, 2001). Assuming that rock 

erosion rates are constant over time, cosmogenic nuclide data can be used to determine an erosion rate, 

because the concentration of 10Be at the surface of a steadily eroding outcrop surface is inversely 

proportional to the outcrop’s erosion rate (Balco et al., 2008; Gillespie and Bierman, 1995; Portenga et al., 

2013). Erosion rates calculated in this way are limited to rock outcrops and boulders. A detailed discussion of 

erosion rates is beyond the scope of this chapter. Here, this section focuses on the importance and 

significance of erosion rates for the production of surface exposure ages.  
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 Calculators require an erosion rate (cm yr-1 or mm kyr-1) to account for the impact of this on the surface 

exposure age (Granger et al., 2013). Typically low erosion rates of 0.5 to 2.5 mm kyr-1 for resistant lithologies 

in temperate regions will have little impact on samples younger than ~30 kyr (Balco, 2011; Davies et al., 

2020; Gosse and Phillips, 2001). Erosion rates are increasingly important for older deposits, even with low 

erosion rates of 1 mm kyr-1 (Hein et al., 2009). However, measured erosion rates are sparse in many regions, 

and may be spatially and temporally variable, as well as variable according to lithology sampled. 

Practitioners presenting surface exposure ages should therefore present data with a zero erosion rate, 

providing a minimum age for the deposit, and one under a clearly reported constant, estimated rate of 

erosion that is appropriate for the regional climate and lithology (Darvill, 2013).   

Typical erosion rates were reviewed by Portenga and Bierman (2011), who compiled and normalized 

published 10Be erosion rate data (n = 1599). They found that outcrops had a mean erosion rate of 12 ± 1.3 

mm kyr-1, median 5.4 mm kyr-1, lower than the mean drainage basin erosion rate of 218 mm kyr-1. These 

rates varied according to climate zone, rock type and tectonic setting. Erosion rates on sedimentary outcrops 

are typically 20 ± 2.0 mm kyr-1, metamorphic outcrops have a mean erosion rate of 11 ± 1.4 mm kyr-1, and 

igneous outcrops have a mean erosion rate of 8.7 ± 1.0 mm kyr-1. Erosion rates of outcrops in polar climates 

have a mean of 3.9 ± 0.39 mm kyr-1, whilst temperate climates have a mean of 25 ± 2.5 mm kyr-1 (Portenga 

and Bierman, 2011). Measurements on homogenous crystalline rocks have typically yielded low erosion 

rates of 0.2 mm kyr-1, with 1 mm kyr-1 for biotite-rich crystalline rocks, and 5 mm kyr-1 for carbonate 

sedimentary rocks (André, 2002). Estimates of erosion rates on granite in temperate Patagonia include 1.4 

mm kyr-1 (Kaplan et al., 2005), 0.049 ± 0.02 to 1.31 mm kyr-1 (Bourgois et al., 2016) and 0.2 mm kyr-1 

(Douglass, 2007). Bedrock outcrop erosion rates from the central Appalachian Mountains produced mean 

ridgeline erosion rates of 9 mm kyr-1 (Portenga et al., 2013). Sandstone erosion rates in Antarctica are mostly 

< 1 mm kyr-1 (Hein et al., 2016).  

 

3.3.8 Geological scatter in cosmogenic nuclide dating 

Geological scatter is a common issue in exposure-age dating. Moraine exposure ages from a single landform 

may produce ages that differ by more than the measurement uncertainty (Balco, 2011). The main causes of 

this in colder environments such as Antarctica is inheritance (Figure 6). Here, clasts may be recycled and 

undergo repeated periods of exposure, resulting in an inherited signal (Bentley et al., 2010). Bedrock and 

erratic clasts may be (repeatedly) passively overridden by cold-based, non-erosive ice (Bentley et al., 2006). 

These incidences, with repeated exposure and shielding, result in a complex exposure history and 

anomalously old, scattered ages. As a result, Antarctic studies often use the youngest apparent exposure age 

from a landform as the most reliable in cases of geological scatter (Bentley et al., 2006; Hein et al., 2016).  

Co-isotope analysis using 26Al and 10Be, which have different half-lives (Table 2), can also be used to screen 

for inheritance (Balco, 2011; Bentley et al., 2006; Corbett et al., 2013). The two isotopes will decay at 

different rates during periods of burial; the 26Al/10Be ratio will therefore evolve from the production ratio of 

~6.75. Plotting the 26Al/10Be ratio against 10Be concentration (Figure 5) can illuminate complex inheritance, 

erosion and burial. In Figure 5, the burial pathways (grey arrows) show how in samples that are buried 

following initial exposure, it moves left (as 10Be nuclides decay) and downwards (because 26Al decays faster 

with a shorter half-life) on the co-isotope plot (Corbett et al., 2013). Samples plot in the Burial Zone (light 

grey shading) if have had one episode of exposure followed by burial (a complex exposure history). Samples 

for exposure age dating should, ideally, when uncertainties are taken into account, plot within the ‘erosion 

island’ (dark grey on Figure 5). They plot here if they have experienced constant (simple) exposure with 
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erosion. The erosion paths taken according to different erosion rates are highlighted by the finely dashed 

lines. Samples plot along the constant exposure pathway if they have experienced constant exposure with 

no erosion. Screening with co-isotope plots such as this can help identify samples for exclusion, but it will 

only identify samples that have been buried for several tens of thousands of years (Bentley et al., 2006).  

 

 

Figure 5. Schematic showing two-isotope cosmogenic data. Modified from Corbett et al. (2013). Pathways for 

different erosion rates are given in mm yr-1.  

 

Moraines with glacially transported and abraded erratic boulders make good targets for exposure-age dating 

(Granger et al. 2011), marking a decisive point in the glacier’s history. In the ideal case, boulders with no 

prior exposure history are plucked, abraded and transported by the glacier, and deposited on a moraine in a 

stable position (Figure 6A) (Heyman et al., 2011). In temperate environments, glacial processes are likely to 

be more erosive and inheritance less problematic. However, post-depositional processes can result in 

scatter. This includes rock surface erosion, movement or rolling of boulders as the moraine degrades, 

exhumation of boulders from within the moraine as the moraine degrades and surface cover is eroded, or 

soil creep (Applegate et al., 2012; Balco, 2011; Putkonen and Swanson, 2003). The destruction of boulders 

originally exposed through weathering and the exhumation of younger boulders through surface lowering is 

a significant challenge when dating moraines that predate the last glacial cycle (Chevalier et al., 2011). This 

incomplete exposure due to post-depositional shielding followed by moraine degradation causes an 

underestimation of moraine age, with anomalously young exposure ages and geological scatter (Figure 6C) 

(Heyman et al., 2011).  

 Large boulders in stable positions on moraines are least likely to have undergone movement or exhumation 

in this way, and so make better targets for surface exposure age dating (Granger et al., 2013; Heyman et al., 

2016). Exposure ages from larger boulders have a larger fraction of well-clustered exposure ages (Heyman et 

al., 2016). Short boulders tend to produce younger exposure ages than taller boulders from the same group, 

with incomplete exposure likely dominating. Shorter, smaller boulders on moraines are more likely to have 

undergone shielding followed by exhumation during moraine degradation (Heyman et al., 2016).  
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Single exposure ages from a landform are considered less reliable, and practitioners should seek multiple 

replicate samples per moraine. For moraines dating from the last glacial maximum or younger, 3 to 5 

boulder samples are appropriate, with more boulders required for older, larger moraines (Putkonen and 

Swanson, 2003). Ideally, cosmogenic nuclide exposure age datasets should include multiple boulders dating 

a sequence of moraines, which will allow easier identification of outliers. Strategies for dealing with outliers 

in this case range from excluding anomalously old ages to applying a range of statistical treatments 

(Applegate et al., 2012; Jones et al., 2019). 

 

 

Figure 6. Principles of prior exposure and incomplete exposure and resulting apparent exposure ages. A: the 

ideal case. The sample has been completely shielded from cosmic rays prior to glaciation, and then 

continuously exposed since deglaciation. B: the sample is exposed to cosmic rays prior to glaciation and 

experiences no post-glacial shielding (prior exposure). The apparent exposure age exceeds the deglaciation 

age. C: If a sample is incompletely shielded from cosmic rays prior to glaciation and partially shielded 

following deglaciation (incomplete exposure), the apparent exposure age will be younger than the 

deglaciation age. Adapted from Earth and Planetary Science Letters 302, Heyman et al., “Too young or too 

old: evaluating cosmogenic exposure dating based on analysis of compiled boulder ages”, pages 71-80, 

Copyright 2011, with permission from Elsevier. 

 

3.4 Sampling methodologies in glacial environments 

3.4.1 Exposure-age sampling methodologies 

Sampling strategies for exposure-age dating will depend upon the research objectives, the rock type and 

target minerals available and resultant choice of isotope, and the local environment. Researchers should in 
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all cases aim to collect multiple replicate samples where possible, especially in the case where a particular 

landform (such as a moraine) is to be dated. A fundamental knowledge of the principles of the six 

cosmogenic nuclides is required in order to design such a sampling strategy. Fundamentally, the sample 

should contain sufficient target mineral to obtain measurable quantities of the required nuclide. 

Careful geomorphological mapping is critical to understand the depositional processes affecting boulders 

and any post-depositional modification (e.g. Kelley et al., 2014; Koffman et al., 2017; Schaefer et al., 2009). 

For example, it is important to understand the relationship between moraines, boulders, slope processes 

and any ice-dammed palaeolakes, as boulders deposited below lake water will have an exposure age that 

records the timing of lake-level fall, rather than deglaciation (Davies et al., 2020, 2018; Hein et al., 2010; 

Thorndycraft et al., 2019).  

Boulders should only be sampled if the operator can be sure that they were glacially transported, and not 

deposited by rockfall or other geomorphic processes. Both bedrock and glacially transported boulders 

should show signs of glacial transport, abrasion, and erosion (faceting, striations, polish, edge-rounding, of a 

erratic lithology), so that any inherited nuclides have ideally been removed. Multiple boulders should be 

sampled per moraine, as geological scatter is a common issue in exposure-age dating. This is because 

moraines degrade over time, and boulders can be weathered away, exhumed, buried, or destroyed by 

erosion. They may have an inheritance, with cosmogenic isotopes dating from a prior exposure. This can lead 

to geological scatter (Applegate et al., 2012; Heyman et al., 2016, 2011). Sampling 3 to 5 boulders for 

moraines dating to the Last Glacial Maximum or younger can help with identification of outliers (Putkonen 

and Swanson, 2003). Larger boulders more than 0.5 m above the ground height should be targeted in order 

to minimize the risk of exhumation and post-depositional processes causing geological scatter (cf. Heyman et 

al., 2016). Boulders should only be sampled where they are in a stable position in the landscape or on the 

moraine and there is no possibility that they have rolled, rotated, or otherwise moved significantly since 

deposition (Figure 7). For moraines, ideally boulders should be situated on the moraine crest (e.g. Figure 8). 

Cobbles may be sampled where they lie on flat bedrock, and the possibility of cycling through the active 

layer as a result of periglacial processes can be excluded. Cobbles should be marked with the uppermost 

surface marked. If they are less than ca 5 cm thick, then attenuation through the sample and self-shielding 

can be effectively disregarded. Cobbles should however be large enough that they are not moved due to 

strong winds. They should be sampled from exposed locations where snow cover is likely to be thin or 

inconsequential.  Cobbles should weigh ca 1 kg minimum, so as to increase the likelihood of the required 

nuclide. They should show signs of glacial transport (abrasion, striations, faceting) and ideally be of an erratic 

lithology, so that local production of the cobbles can be excluded. 

The ideal boulder, rock, landform surface or bedrock surface for sampling should be sufficiently extensive, 

flat, and horizontal. The angle of the surface will affect the shielding and so should be recorded. Samples 

should be collected at least 50 cm away from any edges (Gosse and Phillips, 2001). Samples with less 

topographic shielding are preferable, to avoid the need for additional corrections. Flat surfaces also require 

fewer corrections for shielding, and so have a greater precision and accuracy. Edges are susceptible to ‘edge 

effects’, particularly for nuclides such as 36Cl that are produced by muon capture, as cosmic rays could 

penetrate from multiple directions. Samples should ideally be taken from the flattest, central, uppermost 

surface of the boulder, but this can in reality be challenging unless a rock saw or small explosive charge is 

used. Shielding from snow cover and vegetation can be minimized by choosing boulders that are large and 

upstanding and above the local topography (e.g. Figure 8A, B, F), as they are more likely to be windswept 

(Gosse and Phillips, 2001).  
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A thorough sample description is required in order to calculate shielding and production rate scaling. A 

hypothetical proforma to assist with this is presented in Figure 7, which follows best-practice guidelines 

(Darvill, 2013; Gosse and Phillips, 2001). Samples should be sketched, photographed from all angles, and 

details of location (decimal degrees), elevation (m asl) and geomorphic context should be very carefully 

recorded. In order to calculate the shielding, the dip and dip direction of the surface and the angle of 

elevation to the skyline should be recorded at regular intervals. This can be checked with a digital elevation 

model (DEM) in a geographic information system (GIS) if the horizon is not always visible (Codilean, 2006). 

The boulder’s characteristics should be carefully described, including dimensions and height above ground 

surface, signs and measurements of weathering or erosion (upstanding quartz veins, weathering pits, 

flaking), lithology, grain size and quartz content. Sample thickness should be recorded as well. 

Samples should be collected with the aim of leaving as little permanent scarring as possible on the 

landscape. Sampling with a hammer and rock chisel or small charge can be best, as these methods take small 

flakes and leave little permanent visual impact. Sampling with a rock saw can be easier and quicker, and 

allows the operator to choose more precisely where to sample, but if this method is used, some time should 

be spent afterwards to obscure and roughen the straight cuts. Samples should only be taken with the 

permission of the landowner, and permits may be required in some localities. Ideally, samples should be 

stored in a durable cloth bag, clearly marked with permanent marker pen.  

The volume of sample required depends on the proportion of the target mineral, grain size of the target 

mineral, and required isotope. Around 1 mg of 10Be/9Be is required for AMS analysis. For 10Be dating of 

quartz-rich rocks (such as a typical granite, with 10% quartz), a minimum of 500 g but ideally around 1 kg of 

sample should be obtained. Samples from rocks with a younger exposure age should be larger, to obtain the 

required level of precision (Gosse and Phillips, 2001). In sample processing, material could be lost due to 

accidental chemistry, and offcuts may be required for thin section or duplicate chemistry. Larger samples will 

be needed in rocks with a lower quartz content. 5 kg of rock could be required, for example, for the analysis 

of fine-grained quartz-poor rocks (ibid). Whole-rock analyses of 36Cl do not require mineral separates, and so 

smaller samples of 500 g may be appropriate. 
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Figure 7. Example of a sampling proforma for sampling boulders, cobbles or bedrock for exposure ages. Notes 

for field workers are shown in grey text. Using a sampling proforma limits the chance of critical information 

being missed or not collected in the field. GPS: Geographic Positioning System. dGPS: Differential GPS.  
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Figure 8. Examples of boulders sampled for cosmogenic nuclide dating. A, B: Granite erratic boulders on 

moraines in Patagonia (Davies et al., 2018; Thorndycraft et al., 2019). C: Erratic granite boulder on moraine, 

James Ross Island. D: Well embedded granite erratic boulder at Ablation Point Massif, Alexander Island, 

Antarctic Peninsula (Davies et al., 2017).  E: Sandstone boulder on moraine ridge crest, Ablation Point Massif, 

Alexander Island (Davies et al., 2017). F: Granite erratic boulder on Carboniferous sandstone bedrock, James 

Ross Island, Antarctic Peninsula (Glasser et al., 2014). 
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3.4.2 Burial dating sampling methodologies 

Sampling methodologies are outlined in Gosse and Phillips (2001). Much of the discussion for sampling 

boulders or bedrock for exposure ages also applies to depth profiles of allochthonous sediments. However, 

sediments may contain clasts with a previous exposure and so have an inheritance. Clast cycling within the 

active layer, bioturbation and pedoturbation may cause vertical mixing (Gosse and Phillips, 2001; Ivy-Ochs et 

al., 2013). Depth profiles should be sampled where sedimentary analysis suggests no mixing (e.g., original 

fluvial bedding structures, soil horizons). Samples should be taken below rooting depth in forested surfaces. 

Areas of high relief such as knolls, or depressions, should be avoided.  

Samples are taken through a deep (e.g. >1.5 m) exposure in the sedimentary unit, either as bulk mixtures or 

selected lithologies (e.g. targeting quartz-rich clasts or sand). Selecting fractions greater than sand-size may 

affect profile modelling (Hidy et al., 2010). The method assumes that the unit was deposited in a single 

geologic event, and that nuclide accumulation through the sediments attenuates with depth (Anderson et 

al., 1996; Repka et al., 1997).  

 

3.5 Reporting and analysing cosmogenic nuclide data 

3.5.1 Calculating and presenting cosmogenic nuclide ages 

A number of calculators are available for the calculation of cosmogenic nuclide ages. These presently include 

IceTEA (Jones et al., 2019), CREp (Martin et al., 2017) and the online calculators formerly known as the 

CRONUS-Earth online calculators (Balco et al., 2008; Marrero et al., 2016a; Phillips et al., 2016). These 

calculators allow for the selection of various scaling schemes and production rates and allow cosmogenic 

nuclide ages to be easily recalculated. These calculators require that data is formatted in a particular way. 

Essential required data include sample ID, AMS standard, 10Be/9Be ratio, latitude, longitude, altitude, AMS 

measurement of nuclide concentration and measurement uncertainty, sample thickness, shielding, sample 

density, erosion rate, and date of sample collection (Balco, 2011; Balco et al., 2008; Dunai and Stuart, 2009; 

Gosse and Phillips, 2001). The practitioner should present and justify their chosen production rate and 

scaling scheme. These data will allow readers to recalibrate ages with different production rates or scaling 

schemes. The practitioner should explain their chosen erosion rate, and ideally present results with a zero 

erosion rate as well as any other erosion rate used. Any other corrections used (e.g. snow cover) should also 

be explained and evaluated. Elevation change due to isostatic uplift may be a significant cause of age 

variation, and can be taken into account by some calculators (such as IceTEA, Jones et al., 2019). 

Exposure-age calculators will produce internal and external uncertainties. Both should be presented. Internal 

uncertainties are those only associated with the measurement error in the nuclide concentration. They are 

the same for all scaling schemes (Balco, 2011; Balco et al., 2008). External uncertainties include those 

corresponding to the production rate and scaling scheme, with production rate sites that may be hundreds 

to thousands of kilometres apart and elevational scaling over thousands of metres. External uncertainties 

are systematic when all cosmogenic nuclide data is processed in the same way, and so exposure ages can be 

compared within a given area using internal uncertainties. However, when comparing exposure age data to 

other independent dating methods (such as radiocarbon dating), external uncertainties should be used. 
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3.5.2 Statistical treatment of outliers 

There is a wide range of tools available for practitioners to deal with outliers, summarized in Balco (2011) 

and Jones et al. (2019). In cases where inheritance is an expected issue, such as polar environments, 

excluding anomalously old ages may be sufficient (Bentley et al., 2006; Hein et al., 2016). Inheritance can 

also be screened for using a co-isotope plot, and boulders with a complex exposure history excluded in this 

way (cf. Balco, 2011; Bentley et al., 2006; Corbett et al., 2013). Alternatively, if processes such as exhumation 

and moraine degradation are considered to be more important, imparting a young bias, excluding 

anomalously young ages may be more appropriate (Putkonen and Swanson, 2003). 

Cosmogenic nuclide exposure ages are frequently presented on Gaussian (normal) probability density 

functions or kernel density estimates (sometimes known as ‘camel plots’) (Balco, 2009; Chevalier et al., 

2011; Darvill et al., 2018; Davies et al., 2019; Jones et al., 2019; Joy et al., 2014; Kaplan et al., 2020; Putnam 

et al., 2010; Schimmelpfennig et al., 2014; Spencer et al., 2017). These plots present a Gaussian for each 

sample with mean and standard deviation. The area under the curve is the same for each sample, so the 

narrower and higher the peak, the more precise the age measurement. The height of the curve is inversely 

proportional to the measurement uncertainty. These plots can be useful for describing the frequency 

distribution of observations, and for visual identification of outliers without overlapping uncertainties, for a 

particular landform such as a moraine.  

They can be summed to present a summary curve. If the summary curve has only one discrete peak, then 

the age measurements for the landform dated are both inaccurate measurements of the same thing (e.g. 

Figure 9). If the data do not agree within their uncertainties, then the summed Gaussian plot may have two 

or more peaks, which can highlight geological scatter and aid outlier identification (Jones et al., 2019).   
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Figure 9. Example Gaussian probability density functions for several ages from northern England, Britain 

(ages from Davies et al., 2019). Coloured lines are individual ages and the black line is the summed 

probability curve.  The summed plot highlights that the age of 12.2 ± 1.5 ka is an outlier. 

 

Balco (2011) and Jones et al. (2019) provide further criteria for the identification of outliers from single 

landforms such as moraines. These include a reduced chi-squared statistic. The expected value of this is 1 if 

measurement uncertainty is the only source of scatter (Balco, 2011). However, most exposure-age datasets 

from temperate glacier moraines have chi-squared values greater than 1, indicating that it is unlikely that 

measurement uncertainty is the only source of scatter. Other tests that have been applied include 

Chauvenet’s criterion (Rinterknecht et al., 2006), Grubb’s Test (Putnam et al., 2010) or assessments of data 

skew (Applegate et al., 2010). Jones et al. (2019) provide a series of statistical tools in the IceTEA calculator 

to identify outliers, including a two-tailed generalised extreme Studentized deviate (gESD) test. This test can 

account for multiple outliers.  

Finally, Bayesian age modelling also provides a means to test for outliers by including a series of dated 

moraine margins that can be placed into an order using the concept of morphostratigraphy, proximity to the 

ice divide, or independent age measurements. This method assumes that ages take place within a spatial 

and temporal framework (Chiverrell et al., 2013; Laabs et al., 2013, 2007; Small et al., 2017; Thorndycraft et 

al., 2019). It assumes, for example, that outer moraines are older than inner moraines, and allows for an 

independently constructed sequence of events (a ‘prior’ model). Bayesian age modelling of this kind robustly 

handles outliers, and can reduce modelled age uncertainties. It can be used for surface exposure ages, 

bracketing radiocarbon ages or other chronological tools, and different tools can be integrated together 

(Blockley et al., 2007; Bronk Ramsey, 2009; Buck et al., 1996).  
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3.5.3 Moraine mean ages 

Where multiple boulders from a moraine have been analysed for cosmogenic nuclide analysis, and outliers 

have been excluded, it is often desirable to produce a mean age for the moraine. If measurement errors for 

individual ages are independent and normally distributed, as is the case for analytical measurements, then 

scatter due to measurement uncertainty can be eliminated by averaging multiple ages (Balco, 2011). The 

mean of many cosmogenic nuclide measurements will yield a more accurate and precise landform age than 

one age alone.  There are multiple ways to do this: giving the full age range of the boulders on the moraine, 

a mean age with a standard deviation, and uncertainty weighted means (Applegate et al., 2012).   

Uncertainty weighted means are commonly used to summarise data, where the mean age of the landform 

with an uncertainty based on the measured uncertainty from each sample is calculated (Jones et al., 2019; 

Rinterknecht et al., 2008; Schaefer et al., 2009). Uncertainty weighted means may be appropriate on 

samples that have a reduced chi-squared statistic that suggests that scatter is due to measurement 

uncertainty alone (Balco, 2011).  

Uncertainty weighted means can however be problematic (cf. Davies et al., 2020). As most of the uncertainty 

on the individual ages comes from the uncertainties in the production rate and scaling scheme, the 

uncertainties of the ages within the same group of samples from the same region are usually quite 

homogeneous. Further, the scatter of the ages within the same group is typically higher than the individual 

age uncertainties, suggesting that the natural “noise” in the 10Be ages due to the geological characterisation 

of the samples (i.e. position on the moraine, weathering, flaking, exhumation and denudation) is higher than 

the uncertainties considered in the age calculations (laboratory systematic errors, AMS precision, production 

rate and scaling uncertainties). Older moraines may be especially susceptible to these issues, where erosion 

may be more statistically important and where uncertainties in age calculations are higher. Therefore, the 

calculated mean ages and standard deviations represent landform ages better than uncertainty weighted 

means. In addition, different samples may be more or less difficult to process in the laboratory; for instance, 

having more or less non-quartz minerals. This leads to samples having different precision on their 

measurements, but this is not reflective of sample quality (i.e. position on moraine, weathering, flaking, 

exhumation or denudation). In an uncertainty weighted mean, this would disproportionately weight the 

mean in a non-accurate way.  

A simpler way to reduce the data is to firstly, exclude outliers, and secondly, to provide the arithmetic mean 

landform age (μ) and the standard deviation (1σ), which gives an indication of the spread of ages on the 

landform (Davies et al., 2020; Nimick et al., 2016). This should only use high quality ages that pass the quality 

assurance protocols (below), and exclude outliers without overlapping uncertainties at 2σ. This can reduce 

and simplify the data, and can facilitate inter-regional comparisons. It also allows an assessment of the 

spread of ages on the landform, without being biased by measurement uncertainty.  

Moraine or landform mean ages should be presented with a standard deviation in the format following 

standard protocols (Curran-Everett and Benos, 2004; Davies et al., 2020; Ludbrook, 2008) with the age and 

unit, and the standard deviation in brackets after. For example, presented as 5.2 ka (SD 0.5). They should not 

use a plus and minus sign, as the standard deviation is always positive and does not represent uncertainty, 

only a spread of the ages. Individual ages with a measured uncertainty around the age should be presented 

as, for example, 5.2 ± 0.5 ka.  Weighted means with a weighted uncertainty estimate should also be 

presented as 5.2 ± 0.5 ka.   
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3.6 Cosmogenic nuclide quality assurance protocols 

High quality cosmogenic nuclide surface-exposure ages should sample multiple (ideally 3 or more) replicate 

boulders from the same landform from each site. Outliers should be assessed and identified. The ages 

should be internally consistent, with a spread of ages similar to the measurement uncertainty. The data to 

recalibrate ages using the latest published calibration models should be provided. Geological and 

geomorphological context should be clear and ideally field sample photographs provided so that the reader 

can assess their suitability for dating. 

High quality cosmogenic depth profiles should have a modelled profile age compared to separate surface 

cobble ages. There should be multiple samples in a profile (ideally ≥5), including at least one sample >1.5 m 

deep. High quality profiles would have ages that are internally consistent and clustered. The 

geomorphological situation should be accounted for; this should include that any terraces stabilised shortly 

after moraine stabilisation, that the nuclide inheritance is low, that post-depositional shielding is minimal, 

and that terrace sediment is not mixed post-depositionally.   

 

4 Optically stimulated luminescence (OSL) 

4.1 Principles of OSL dating 

Luminescence dating can directly determine the time since a mineral grain was last deposited and buried. It 

quantifies the time since mineral grains were last exposed to sunlight (Small et al., 2017). It can be applied to 

sediments from decades old to up to 200,000 years old (Smedley, 2018). Strengths of the technique include 

that it can directly determine the time since sediment burial across a wide range of depositional settings, 

and that it can date dust, sands and rocks. Numerous detailed reviews are available (Lian, 2013; Lowe and 

Walker, 2014; Rhodes, 2011; Smedley, 2018; Smedley et al., 2019; Stokes, 1999), so principles are discussed 

only briefly here. 

The technique relies upon the ability of quartz or K-feldspar grains to store energy within the crystal 

structure and release it when stimulated using light (optically stimulated luminescence; OSL) or heat 

(thermoluminescence; TL). During transport, grains are exposed to sunlight, which releases the accumulated 

charge within the crystal lattice. After burial, grains are exposed to ionising radiation from radioactive 

elements naturally occurring within the sediment (U, Th, K and Rb), and from cosmic rays. This ionising 

radiation excites the electrons, which then become trapped within crystal imperfections (electron traps) in 

the crystal lattice (Lian, 2013; Small et al., 2017). The rate at which electrons are accumulated is termed the 

“environmental dose rate”. The total dose to which the grains were exposed to during burial (the 

“equivalent dose”) can be determined in the laboratory, and divided by the environmental dose rate, to 

determine the time since deposition.  

Luminescence dating is best applied in settings where grains are well-bleached during transport (e.g. 

aeolian). In glacial settings, the luminescence signal is typically partially bleached, where sediments are 

transported rapidly and over short distances, in environments such as turbid, sediment-laden meltwater 

flow (Smedley and Skirrow, 2020). Compared with sands deposited as part of a moraine, glaciofluvial 

sediments maximise the opportunity for bleaching, but the OSL signals of individual grains are still typically 

incompletely bleached prior to burial (King et al., 2014). The development of the single-aliquot regenerative 



TREATISE ON GEOMORPHOLOGY, 2ND EDITION. Editor: Umesh Haritashya 

41 

 

(SAR) protocol (Murray and Wintle, 2000) has allowed OSL to be used in glaciofluvial settings (Duller, 2006; 

Glasser et al., 2006). Single grain optical dating allows for statistical analysis and rejection of grains that have 

incomplete bleaching, allowing the age of the sample to be determined. Single-grain analysis dramatically 

improves the accuracy of luminescence ages for partially bleached sediments (Smedley, 2018). 

OSL is most frequently applied to quartz and feldspar, as these minerals are ubiquitous in sedimentary 

environments. Quartz is often preferred, as it bleaches more rapidly in sunlight than the post-IR IRSL signal 

of K-feldspar (Smedley et al., 2019). However, K-feldspars in glaciofluvial environments may be more 

efficient than quartz at determining the population of interest for age calculations. Commonly, only 5% or 

fewer grains of quartz emit a detectable OSL signal, and in some environments, such as glaciofluvial 

environments in Chile, fewer than 0.5% of quartz grains could be detected (Duller, 2006; Smedley et al., 

2016). In these environments, a larger proportion of K-feldspar grains emit a detectable infra-red stimulated 

luminescence (IRSL) signal (Smedley et al., 2016; Smedley and Pearce, 2016). As a result, K-feldspar single-

grain dating may make luminescence dating more efficient and precise in areas characterised by short 

sediment transport pathways of where the sensitivity of quartz is poor. Dating feldspars also has the 

potential to extend further back in time than OSL dating of quartz grains (Smedley, 2018). However, K-

feldspars are prone to anomalous fading, which can lead to an underestimation of the burial age (Smedley et 

al., 2016). Protocols for this are outlined in several publications, which detail how to account for fading 

(Huntley and Lamothe, 2001), or methods for determination using more stable signals such as the post-IR 

IRSL signal in K-feldspars (Thomsen et al., 2011, 2008).  

Dose Rate calculators such as DRAC (Dose Rate and Age Calculator) provides an open-access, web-based 

program that enables rapid calculation of dose rates (Durcan et al., 2015). This facilitates inter-laboratory 

comparisons and enables easier dose-rate calculations.  

 

4.2 Application in glacial environments 

Direct dating of sands deposited by ice masses (e.g. within till or moraines) is challenging due to the 

likelihood of impartial bleaching. However, in glacial settings, OSL applied to glacial outwash sediments that 

can be directly linked to a moraine can constrain the position of the ice margin when it was at that moraine 

(Harrison et al., 2012; Smedley et al., 2016), or can be used to date perched deltas associated with ice-

dammed palaeolakes (Glasser et al., 2016). OSL ages from sands directly above or below glacial sediments 

can also provide bracketing ages for a glacial event (Bateman et al., 2015).  

Sources of uncertainty in glacial environments for OSL dating include partial bleaching and resetting of the 

OSL signal during transportation and deposition (King et al., 2014; Small et al., 2017). This should be 

addressed using small multi-grain aliquots or single aliquots; standard aliquots of ~2500 grains can average 

out the effects of variable grain bleaching (Duller, 2008). Large numbers of replicate measurements and 

statistical analysis can be used to characterise the distribution and diagnose the presence of partial 

bleaching (Small et al., 2017).  

In recent years, practitioners have used OSL to date buried clasts in sizes from centimetres to decimetres in 

diameter (Sohbati et al., 2012). This has advantages in that water content variability can be excluded, and 

the degree of bleaching that occurred before burial can be assessed using data from the rock sample itself 

(Jenkins et al., 2018). In glacial environments, where partial bleaching is a common challenge, OSL dating of 

cobbles may allow more straightforward interpretations of past bleaching history. New methods are 
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developing that use OSL principles in rock cores drilled in granite cobbles on glaciofluvial outwash fans 

(Jenkins et al., 2018). Grains within the rocks were completely bleached to a depth of 12 mm.  

 

4.3 OSL Sampling Strategies 

A sampling strategy must take careful note of depositional environments and the geomorphic context in 

order to ensure the most appropriate samples are taken. Samples are usually taken by inserting opaque 

plastic tubes into a cleaned section face (Lian, 2013). The container is excavated and sealed. This can be 

done under a black tarpaulin to ensure no light penetrates the tube. Samples can also be carved out in 

cohesive blocks, and wrapped in aluminium foil for protection. Typically, around 1 kg of sample is required. 

For sampling cobbles in glaciofluvial sands, orientated cobbles from bar-top depositional environments are 

most appropriate for sampling (Jenkins et al., 2018). 

 

4.4 Optically Stimulated Luminescence dating quality assurance protocols 

High quality optically stimulated luminescence ages would ensure that any potential for partial bleaching has 

been addressed by using small aliquot or single grain measurements. The stratigraphic context should be 

well understood, and proglacial outwash can be directly linked to a moraine or ice marginal position. There 

should be multiple or stratigraphically consistent ages, and dose rate information and equivalent described 

in the source. The age should not be determined using an experimental analysis protocol.  

 

5 K/Ar and Ar/Ar ages 
40Ar/39Ar dating of basaltic lava sequences interbedded with moraines can provide a chronological 

framework for dating moraines. The technique is based on the radioactive decay of 40K to 40Ar. In most 

studies, the derivative 40Ar/39Ar method is used, where 39Ar is used as a proxy for 40K. This allows for smaller 

single aliquot samples (Briner, 2011; Jull, 2018; Wijbrans and Kuiper, 2013). This method can be applied to 

sediments that are very young (~24 ka) (Turrin et al., 2007) to those that are billions of years old. It is usually 

applied to K-rich volcanic rocks. Dating of moraine sequences by dating the overlapping and interbedded 

lava flows using Ar/Ar (e.g., Singer et al., 2004a, 2004b) could be considered indirect dating by providing 

bracketing ages. 

In Patagonia, older Mid Pleistocene moraines interbedded with lava flows were dated with bracketing 
40Ar/39Ar ages (Singer et al., 2004a). These ages date basalt lava flows from Cerro Volcán to 760 ± 14 ka and 

109 ± 3 ka, with the older age underlying six moraines, and the older age overlying and burying the 

moraines. In Hawaii, K-Ar dating of lava flows that underlie and overlie glacial sediments provided bracketing 

ages for the glacial advances (Porter, 2005).  

 

6 Summary and conclusions 

This chapter has summarized the application of radiometric methods (cosmogenic nuclide dating, 

radiocarbon dating, optically stimulated luminescence dating, argon-argon and potassium-argon dating) to 

glacial environments. These numerical radiometric techniques can be used in conjunction with archival 
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methods, relative dating methods such as morphostratigraphy and Schmidt hammer dating, and incremental 

methodologies such as lichenometry, varve counting and dendroglaciology to date glacial landforms across a 

wide range of different glacial environments and different timescales.  

The rapid pace of developments in radiometric dating glacial landforms provides glacial geologists a 

powerful toolbox for fixing in time past glacier-climate interactions. Dating features such as moraines allows 

the timing of significant stabilisations of outlet glaciers to be characterized. All of these dating techniques 

rely upon a sound understanding of the regional glacial geomorphology and geology, and must be 

underpinned by a thorough geomorphological mapping campaign that seeks to understand the 

morphometric and stratigraphic relationships between landforms. Chronologies should be constructed with 

adherence to quality assurance protocols, which also allow tools for the analysis and comparison of new 

datasets to legacy data. Outliers can be assessed using a range of tools, including Bayesian age modelling, 

which allows chronologies to be built from different dating methods if depositional contexts are sufficiently 

understood to build a ‘prior’ model. These methods together can be applied to derive highly confident mean 

age estimates for glacial landforms.  

Careful application of these methodologies, together with improving understanding of their assumptions 

and limitations, and improving protocols for sample selection, laboratory analysis, age calculation and 

identification and treatment of outliers, has resulted in large datasets for every ice sheet. Compilations of 

these geomorphological and chronological data, together with an understanding of their age reliability, now 

allow an unprecedented view into past ice-sheet behavior through time (Batchelor et al., 2019; Dalton et al., 

2020; Davies et al., 2020; Hughes et al., 2016; Margold et al., 2018; Ó Cofaigh et al., 2014). These datasets 

highlight key gaps in knowledge and can emphasise priorities for future research, evaluate regional 

disparities, and calculate regional rates of horizontal and vertical recession (Davies et al., 2020).  

Robust glacial chronologies using numerical ages that can be used to carefully correlate ice extents over 

wide regional areas are vital to understand past ice sheet or glacier response to palaeoclimate. Integration of 

these empirical datasets with numerical simulations requires a robust treatment of uncertainties. These 

empirical datasets are increasingly used to calibrate numerical simulations (Albrecht et al., 2020a; Golledge 

et al., 2014; Patton et al., 2016, 2017; Stokes and Tarasov, 2010) and define ice-ocean-atmosphere 

interactions by linking ice flow and mass balance with ice extent and thickness data (Albrecht et al., 2020a, 

2020b; Ely et al., 2019; Gandy et al., 2019). These exciting developments herald a new understanding in ice 

mass response to external drivers of change (ocean and atmospheric temperatures) compared with internal 

drivers, such as ice divide migration, topography, calving, or ice-dammed proglacial lakes. These efforts will 

help to understand likely drivers of change in current ice masses, and future rates and magnitudes of sea 

level change, mountain glacier recession and meltwater supply, and changing glacier-related hazards. Large 

empirical datasets of geomorphology and carefully collected and analysed chronological data, grounded in a 

thorough understanding of glacial process, is critical to this effort.  

 

Relevant Websites 

• https://hess.ess.washington.edu/ (accessed on 01.02.2020). The online calculators formerly known 

as the CRONUS-Earth online calculators 

• http://ice-tea.org/en/ (accessed on 01.02.2020). Tools for Exposure Ages from ice margins 

• http://calibration.ice-d.org/ (accessed on 30.03.2020). Production rate calibration data.  
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http://calibration.ice-d.org/
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• https://c14.arch.ox.ac.uk/oxcal.html (accessed on 01.02.2020). A tool for radiocarbon calibration. 

• http://calib.org/calib/ (accessed on 01.02.2020). A tool for radiocarbon calibration. 

• http://calib.org/marine (accessed on 31.10.2020). A database of global ΔR values. 

• https://www.aber.ac.uk/en/dges/research/quaternary/luminescence-research-laboratory/dose-

rate-calculator/ (accessed on 06.04.2020). Dose Rate Calculator for OSL dating (DRAC).  
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