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Abstract

We consider the framework of competitive prediction, where one provides guar-

antees compared to other predictive models that are called experts. We propose

a universal algorithm predicting finite-dimensional distributions, i.e. points from

a simplex, under Kullback-Leibler game. In the standard framework for predic-

tion with expert advice, the performance of the learner is measured by means

of the cumulative loss. In this paper we consider a generalisation of this setting

and discount losses with time. A natural choice of predictors for the probabil-

ity games is a class of multinomial logistic regression functions as they output

a distribution that lies inside a probability simplex. We consider the class of

multinomial logistic regressions to be our experts. We provide a strategy that

allows us to ‘track the best expert’ of this type and derive the theoretical bound

on the discounted loss of the strategy. We provide the kernelized version of

our algorithm, which competes with a wider set of experts from Reproducing

Kernel Hilbert Space (RKHS) and prove a theoretical guarantee for the kernel-

ized strategy. We carry out experiments on three data sets and compare the

cumulative losses of our algorithm and multinomial logistic regression.
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1. Introduction

In statistical learning, usually some assumptions are made about the data

generation process, and guarantees are given for a method working under these

assumptions. Unlike in statistical learning theory, we consider the adversarial

setting, where no stochastic assumptions are made about the data. We consider

an online sequential prediction protocol where at each trial t = 1, 2, . . . a learner

observes xt and attempts to predict an outcome yt, which is shown to the

learner later. We work in the framework of competitive prediction and look for

performance guarantees relative to other predictive models called experts. In the

standard setting of prediction with expert advice, the performance of a learner

is measured by its cumulative loss. In this paper, we consider a generalisation

of this setting and discount losses by some factor αt ∈ (0, 1] revealed at the

beginning of each trial. When all αt = 1, our framework reverts to the standard

one.

An important class of games of prediction are probability forecasting games,

where the predictions and outcomes are probability distributions on some finite

set. In this paper, we consider the Kullback-Leibler game, which is one of the

most important probability games. Our experts are a wide class of multinomial

logistic regression functions. Each expert follows a particular strategy, which

means that it uses some particular parameters of a logistic regression function.

Our goal is to develop a merging strategy that suffers loss comparable to the

retrospectively best expert. If we use weights decreasing for old data, we get

a strategy that performs as well as the best expert on recent trials; this can

be thought of as a way of tracking the best expert alternative to fixed share

techniques.

In this paper we develop a universal algorithm for predicting finite- dimen-

sional distributions, i.e., points from a simplex, under Kullback-Leibler loss.

Related problems have been considered in the literature. Online convex opti-

mization is a similar area where a decision-maker makes a sequence of decisions

from a fixed feasible set. After each point is chosen, it encounters a convex
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cost functions. In [1] a logarithmic regret bound was obtained for α-convex cost

functions, which have a lower bound on the second derivative; these bounds are

not applicable here for the lack of such bound. A similar problem was consid-

ered in [2], where the authors proposed a general additive algorithm based on

gradient descent and derived loss bounds that compare the loss of the result-

ing online algorithm to the best offline predictor from the relevant model class.

They considered a softmax transfer function (Example 4 in [2]) and achieved a

theoretical bound with a multiplicative coefficient of two in front of the loss of

the best expert; whereas we achieved a multiplicative coefficient of one, which

indicates that our theoretical bound is better for large losses.

Our approach is based on the Aggregating Algorithm (AA), which was first

introduced in [3]. AA works as follows: we assign initial weights to experts

and at each step the weights of experts are updated according to their current

performance. The approach is similar to the Bayesian method, where the pre-

diction is the average over all models based on the likelihood of the available

data. For the case of finitely many experts, AA gives a guarantee ensuring that

the learner’s loss is as small as best expert’s loss plus a constant.

We formulate AA for the case of discounted loss along the lines of [4]. Dis-

counting allows us to give less importance to older losses, which is an important

property for practical applications. Discounted loss in the online prediction

framework was analyzed in [5] in the setting where only the losses of the ex-

perts are known. In [5] the authors noticed that in the context of prediction

with expert advice, the discounted loss provides an alternative to ‘tracking the

best expert’ framework of [6]. Indeed, if the best expert changes after some

steps, an algorithm that competes under discounted loss will not take into ac-

count small losses of the old best expert because they are strongly discounted,

and will switch to track the new best expert. An important special case is ex-

ponential discounting where αt = α ∈ (0, 1), which is widely used in finance,

time series analysis and other applications (see [7] for a review of exponential

smoothing). Note that for the standard undiscounted loss αt = 1 at each step

t and the algorithm coincides with AA.
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Interesting results were achieved for the class of problems with an infinite

decision pool of experts. Aggregating Algorithm for Regression was proposed in

[8] for the case of linear experts under the squared loss. The generalisation for

the case of discounted squared loss for linear regression was proposed in [4]. The

case of generalised linear regression experts under log-loss was introduced in [9],

and the case of the squared loss was considered in [10]. The multidimensional

prediction problem was considered in [11], where the authors introduced an

algorithm competitive with linear functions under the squared loss. One of the

drawbacks of introducing linear experts for probability games is that predictions

of linear experts could lie outside a probability simplex. In all the above cases the

authors achieved the theoretical bounds which were logarithmic in the number

of steps. In a recent paper [12] an algorithm was constructed for the case where

outcomes and predictions are distributions on a finite set, the loss function is

logarithmic, and competitors are linear functions with softmax applied on top

of them. The paper contains an excellent survey of application domains. We

propose an algorithm for the similar setting, but improve the regret term in

the upper bound on the loss. Our regret bound has a lower growth rate w.r.t.

the number of dimensions and does not contain the linear term on the number

of steps. Asymptotically in T the regret is still of the order C lnT , but our

multiplicative constant C is lower.

In this paper we provide an explicit universal algorithm for predicting prob-

ability distributions, which can ‘track the best expert’ in terms of discounted

cumulative Kullback-Leibler loss function. Kullback-Leibler game is one of the

most important probability games ([8]). Kullback-Leibler divergence is a mea-

sure of discrepancy between two probability distributions ([13]), and it is widely

used in different areas such as applied statistics, econometrics, risk manage-

ment and machine learning. An excellent survey of application of entropy and

divergence measures in econometrics can be found in [14]. Useful applications

of the entropy and Kullback-Leibler divergence for studying income inequality

and welfare economics are described in [15] and [16]. The Kullback-Leibler loss

function is also used in optimal portfolio selection and solving portfolio diversi-
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fication problem ([17]).

We apply AA with Discounting to multinomial logistic regression experts.

Multinomial logistic regression predictors are a natural choice for probability

games as they output predictions that lie inside a probability simplex. We pro-

vide a strategy that ‘tracks the best expert’ of this type and derive the theoreti-

cal bound on the discounted loss of the strategy. We generalise our algorithm to

allow it to compete with wider set of experts from Reproducing Kernel Hilbert

Space (RKHS) and prove the theoretical guarantee for the kernelized strategy.

Theoretical bounds obtained for Kullback-Leibler game are valid for loga-

rithmic loss game. Indeed, Kullback-Leibler loss function is a generalisation of

log-loss function where outcome space is the whole simplex instead of only ver-

tices of the simplex as in the case of log-loss game. Therefore, theoretical bounds

obtained for Kullback-Leibler game can be applied to the important problem of

probabilistic multi-class classification under logarithmic loss function.

We conduct experiments to compare the performance of our algorithm with

multinomial logistic regression. In our experiments we check that the theoretical

bound for our algorithm is not violated. Our prediction algorithm is using

Markov chain Monte Carlo (MCMC) method in a way which is similar to the

algorithm introduced in [10], where AAR was applied to the generalised linear

regression class of functions for making a prediction in a fixed interval. MCMC

is only a method for evaluating the integral and it can be replaced by a different

numerical method. Theoretical convergence of the Metropolis-Hastings method

in this case follows from Theorems 1 and 3 in [18]. Estimating the convergence

speed is more difficult. With the experiments provided we show that by tuning

parameters online, our algorithm moves fast to the area of high values of the

probability function and gives a good approximation of the prediction, and

theoretical bounds are not violated.
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2. Framework

A game of prediction contains three components: a space of outcomes Ω, a

decision space Γ, and a loss function λ : Ω×Γ→ R . We consider a probability

game on some finite set Ξ = {1, . . . , d}, where space of outcomes Ω = P(Ξ) =

{(y(1), . . . , y(d)) :
∑d
i=1 y

(i) = 1, 0 ≤ y(i) ≤ 1}, decision space Γ = P(Ξ) =

{(γ(1), . . . , γ(d)) :
∑d
i=1 γ

(i) = 1, 0 ≤ γ(i) ≤ 1} are simplices in d-dimensional

space, and for any y ∈ Ω and γ ∈ Γ we define the Kullback-Leibler loss

λ(y, γ) =

d∑
i=1

y(i) ln
y(i)

γ(i)
, (1)

where y(i) and γ(i) are the i-th coordinate of the respective vectors. As in ([13],

Section 2.3) we assume that for p, q > 0 we have 0 ln 0
q = 0, p ln p

0 = +∞,

and 0 ln 0
0 = 0. The loss function λ defined in this way is continuous in γ and

satisfies Assumptions 1–4 from [19].

Learner and experts work according to the following protocol:

Protocol 1.

L0 := 0

Lθ0 := 0

for t = 1, 2, . . .

Accountant announces αt−1 ∈ (0, 1]

Nature announces xt ∈ X ⊆ Rn

Experts output ξt(θ), θ ∈ Θ

Learner outputs γt ∈ Γ ⊆ Rd

Nature announces yt ∈ Ω ⊆ Rd

Lθt := αt−1L
θ
t−1 + λ(yt, ξt(θ)), θ ∈ Θ

Lt := αt−1Lt−1 + λ(yt, γt)

end for

The learner in the game of prediction plays against experts θ from some pool

Θ, and also accountant and nature. The aim of the learner is to keep his total

loss Lt small as compared to the total losses Lθt of all experts θ ∈ Θ.

6



In the standard framework of online learning the performance of learners is

evaluated by means of cumulative loss. The standard protocol of prediction with

expert advice is a special case of Protocol 1 where accountant always announces

αt = 1 at each step. In this paper, we consider the generalisation where we

discount the previous losses with the discount factor which is announced at

each time step.

The cumulative losses of the learner are discounted with a factor αt ∈ (0, 1]

at each step. If LT−1 is the discounted cumulative loss of the learner at step

T − 1, then the discounted cumulative loss of the learner at step T is defined by

LT := αT−1LT−1 + λT (yT , γT ) =

T−1∑
t=1

T−1∏
j=t

αj

λt(yt, γt) + λT (yT , γT ). (2)

If LθT−1 is the discounted cumulative loss of the prediction strategy θ at the

step T − 1, then the discounted cumulative loss of the prediction strategy θ at

the step T is defined by

LθT := αT−1L
θ
T−1 +λT (yT , ξT (θ)) =

T−1∑
t=1

T−1∏
j=t

αj

λt(yt, ξt(θ))+λT (yT , ξT (θ)).

(3)

In the beginning the losses L0, Lθ0 are initialized to zero. If all the discount

factors are the same, i.e. α1 = · · · = αT = α, then we have a case of exponential

smoothing. At each step the dependence on the loss at the previous steps

exponentially decreases: the initial loss is discounted by αT−1 at the step T .

We want to find a strategy which is capable of competing in terms of cu-

mulative losses with all prediction strategies which at step t output ξt(θ) =

(ξ1
t (θ), . . . , ξdt (θ)):

ξit(θ) = σi(θ, xt), i = 1, . . . , d, (4)

where σi(θ, xt) is multinomial logistic regression function:

σi(θ, xt) =
eθ
′
ixt∑d−1

j=1 e
θ′jxt + 1

, i = 1, . . . , d− 1, (5)
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σd(θ, xt) =
1∑d−1

j=1 e
θ′jxt + 1

, (6)

and θ = (θ′1, . . . , θ
′
d−1)′ ∈ Rn(d−1), θi = (θi,1, . . . , θi,n)′ ∈ Rn.

3. Theoretical Bounds

Theorem 1. Let a > 0. There exists a prediction strategy for Learner such

that for every positive integer T , every sequence of outcomes of length T and

every sequence αt ∈ (0, 1], t = 1, . . . , T , and every θ ∈ Rn(d−1) the cumulative

loss LT of the Learner satisfies

LT ≤ LθT + a‖θ‖2 +
d− 1

2
ln det

(
I +

d− 1

8a
X ′WTX

)
, (7)

where X is the matrix with rows x′1, . . . , x
′
T , and WT = diag(w1,T , . . . , wT,T ),

where wt,T =
∏T−1
j=t αj. If in addition ‖xt‖∞ ≤ B for all t then

LT ≤ LθT + a‖θ‖2 +
n(d− 1)

2
ln

(
1 +

d− 1

8a
B2

T∑
t=1

wt,T

)
. (8)

Note that for the undiscounted losses we have:

Corollary 1. Let a > 0. There exists a prediction strategy for Learner such

that for every positive integer T , every sequence of outcomes of length T , and

every θ ∈ Rn(d−1) the cumulative loss LT of Learner satisfies

LT ≤ LθT + a‖θ‖2 +
d− 1

2
ln det

(
I +

d− 1

8a

T∑
t=1

xtx
′
t

)
. (9)

If in addition ‖xt‖∞ ≤ B for all t then

LT ≤ LθT + a‖θ‖2 +
n(d− 1)

2
ln

(
1 +

d− 1

8a
B2T

)
. (10)

4. Aggregating Algorithm

We will use prediction with expert advice to create the strategy for Kullback-

Leibler game. In the framework of prediction with expert advice we have access
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to experts’ predictions at each time step and the learner has to make a prediction

based on experts’ past performances. We use an approach based on the AA.

The AA is given a parameter η and an initial distribution on experts P0(dθ).

After each step t it updates the experts’ weights according to their losses:

Pt(dθ) = e−ηλ(yt,ξt(θ))Pt−1(dθ). (11)

The weights of experts which suffer large loss at some step will have a smaller

importance for making further predictions.1

First, we introduce the Aggregating Pseudo-Algorithm (APA) which at step

t outputs generalised prediction

gt(y) = −1

η
ln

∫
Θ

e−ηλ(y,ξt(θ))P ∗t−1(dθ), (12)

where P ∗t−1(dθ) are normalized weights:

P ∗t−1(dθ) =
Pt−1(dθ)

Pt−1(Θ)
,

where Θ is a parameter space, i.e. experts θ ∈ Θ can output prediction ξt(θ) ∈ Γ

at time t.

The generalised prediction can be seen as a weighted average of the experts’

predictions in a way which is similar to the Bayesian method.

The AA is obtained from the APA by replacing each generalised prediction gt

by a permitted prediction Σ(gt), where the substitution function Σ maps every

generalised prediction g : Ω → [0,∞] into a permitted prediction Σ(g) ∈ Γ

satisfying

∀y : λ(y,Σ(g)) ≤ g(y). (13)

Let us define P (Θ) as the set of all probability measures over Θ. If a sub-

stitution function satisfying (13) for any distribution P ∗t−1(dθ) ∈ P (Θ) exists,

we say that the loss function is η-mixable. The loss function is mixable if it is

η-mixable for some η > 0. The game is called mixable if the loss function of it

is mixable in the setting of the game.

1For t = 1 we have Pt−1(dθ) = P0(dθ), which is an arbitrary distribution. Thus, any

distribution can appear as Pt−1(dθ).
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Lemma 1. (Lemma 4 in [8]). The Kullback–Leibler game is 1-mixable.

The AA for the Kullback–Leibler game with learning rate 1 coincides with the

Bayesian mixture.

In Section 7 we will obtain this result by reducing the Kullback-Leibler game

to the logarithmic game.

5. Aggregating Algorithm with Discounting

In this section, we formulate AA for the case of discounted loss. It is es-

sentially equivalent to the method in [4]. The Aggregating Algorithm with

Discounting (AAD) differs from AA only by the use of the weights in the com-

putation of generalised prediction gt and the update of the weights.

The pseudocode for AAD is given below

The Aggregating Algorithm with Discounting

Initialize prior distribution on experts P0(dθ), θ ∈ Θ.

Initialize discounted weights of experts P̃ ∗0 (θ) = P̃0(θ) = 1.

for t = 1, 2, . . . do

Get discount αt−1 ∈ (0, 1].

Get experts’ predictions ξt(θ), θ ∈ Θ.

gt(y) = − 1
η ln

∫
θ∈Θ

P0(dθ)
(
P̃ ∗t−1(θ)

)αt−1

e−ηλ(y,ξt(θ)), for all y ∈ Ω.

Output γt := Σ(gt) ∈ Γ.

Update the weights P̃t(θ) =
(
P̃t−1(θ)

)αt−1

e−ηλ(yt,ξt(θ)), θ ∈ Θ.

Normalize the weights P̃ ∗t−1(θ) = P̃t−1(θ)∫
θ∈Θ

P0(dθ)P̃t−1(θ)
.

end for

Lemma 2. For any learning rate η > 0, prior P0 and T = 1, 2, . . . ,

LT (AAD(η, P0)) ≤ −1

η
ln

∫
Θ

e−ηL
θ
TP0(dθ). (14)

Proof The weights update for AAD is

P̃t(θ) =
(
P̃t−1(θ)

)αt−1

e−ηλ(yt,ξt(θ)) = e−ηL
θ
t . (15)
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We will prove (14) by induction. At step t + 1 we can re-write inequality

(13) as follows

e−ηλ(yt+1,γt+1) ≥
∫

Θ

P0(dθ)
(
P̃ ∗t (θ)

)αt
e−ηλ(yt+1,ξt+1(θ))

=

∫
Θ

P0(dθ)
e−ηαtL

θ
t(∫

Θ
P0(dθ)e−ηL

θ
t

)αt e−ηλ(yt+1,ξt+1(θ)). (16)

Suppose that (14) is true for the step t. By putting the inequality (14) for

step t in the power 0 < αt ≤ 1 we obtain

e−ηαtLt ≥
(∫

Θ

P0(dθ)e−ηL
θ
t

)αt
.

By putting the last inequality in the denominator of (16) we obtain

e−ηλ(yt+1,γt+1) ≥
∫

Θ
e−ηλ(yt+1,ξt+1(θ))−ηαtLθtP0(dθ)

e−ηLtαt
.

By multiplying by the denominator we have

e−ηLt+1 ≥
∫

Θ

e−ηL
θ
t+1P0(dθ).

By taking a natural logarithm of both parts and multiplying by − 1
η we

obtain (14).

6. Proof of Theoretical Bounds

In this section we provide the proof of Theorem 1. We choose the normal

initial distribution of parameters

P0(dθ) = (a/π)n(d−1)/2 exp(−a‖θ‖2)dθ (17)

for some a > 0.

Applying Lemma 2 for initial distribution (17) and putting η = 1 from

Lemma 1 for Kullback- Leibler loss function we obtain

T∑
t=1

wt,T

d∑
i=1

yit ln
yit
γit
≤ − ln

(
(a/π)n(d−1)/2

∫
Θ

e−J(θ)dθ

)
, (18)
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where

wt,T =

T−1∏
j=t

αj , wT,T = 1

and

J(θ) :=

T∑
t=1

wt,T

d∑
i=1

yit ln
yit

σi(θ, xt)
+ a‖θ‖2.

We use Taylor expansion (Section 1.7c in [20]) of J(θ) at the point θ0 where

min J(θ) is obtained:

J(θ) = J(θ0) +
1

2
(θ − θ0)′H(φ)(θ − θ0),

where φ is a convex combination of θ0 and θ, and H is the Hessian matrix of

J(θ).

The second partial derivative of J(θ) by the l-th, j-th components of θk and

θm respectively is expressed as follows:

∂2J(θ)

∂θk,l∂θm,j
= 2aδjl δ

m
k +

T∑
t=1

wt,T

d∑
i=1

(
yit

1

σ2
i (θ, xt)

∂σi(θ, xt)

∂θk,l

∂σi(θ, xt)

∂θm,j

− yit
1

σi(θ, xt)

∂2σi(θ, xt)

∂θk,l∂θm,j

)
, (19)

where

δmk =

1, if k = m

0, if k 6= m

is Kronecker delta.

The first and second partial derivatives of the function σi(θ, xt) are as follows:

∂σi(θ, xt)

∂θk,l
= xt,lσi(θ, xt)(δ

k
i − σk(θ, xt)),

∂2σi(θ, xt)

∂θk,l∂θm,j
= xt,lxt,jσi(θ, xt)

(
δmk − δmk σk(θ, xt)− δki σm(θ, xt)− δmi σk(θ, xt)

+ 2σk(θ, xt)σm(θ, xt)
)
.

Expression (19) can be re-written as follows:

∂2J(θ)

∂θk,l∂θm,j
= 2aδjl δ

m
k +

T∑
t=1

wt,Txt,lxt,jfk,m(θ, xt), (20)
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where

fk,m(θ, xt) = σk(θ, xt)(δ
m
k − σm(θ, xt)).

We denoteWT = diag(w1,T , w2,T , . . . , wT,T ) the diagonal matrix T by T . Let

X be the T × n matrix with the rows x′1, . . . , x
′
T and Γk,m(φ) be the diagonal

T × T matrix that has fk,m(φ, x1, y1), . . . , fk,m(φ, xT , yT ) on the diagonal. Let

Z be the block matrix as follows:

Z =


X1,1 . . . X1,d−1

...
. . .

...

Xd−1,1 . . . Xd−1,d−1

 ,

where

Xk,m =


√
WTX, if k = m

O, if k 6= m

Let Γ(φ) to be a block matrix as follows:

Γ(φ) =


Γ1,1(φ) . . . Γ1,d−1(φ)

...
. . .

...

Γd−1,1(φ) . . . Γd−1,d−1(φ)

 .

Then Hessian matrix of J(θ) can be written in the matrix form:

H(φ) = 2aI + Z ′Γ(φ)Z. (21)

Since Γ(φ) is a symmetric matrix, we can see (Theorem 21.5.6 in [21]) that:

ψ′Γ(φ)ψ ≤ ψ′λmax(Γ(φ))ψ,

for any ψ ∈ RT (d−1) where λmax(Γ(φ)) is the supremum over maximum eigen-

values of Γ(φ).

We will now show that matrix Γ(φ) is positive definite. The absolute value

of the diagonal element of Γ(φ) is

|fk,k(θ, xt)| = σk(θ, xt)(1− σk(θ, xt)),
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the sum of the absolute values of non-diagonal elements on the row is

∑
m 6=k

|fk,m(θ, xt)| =
∑
m 6=k

| − σk(θ, xt)σm(θ, xt)|

= σk(θ, xt)
∑
m 6=k

σm(θ, xt) = σk(θ, xt)(1− σk(θ, xt)− σd(θ, xt)).

As |fk,k(θ, xt)| >
∑
m 6=k |fk,m(θ, xt)|, for all k = 1, . . . , d− 1, t = 1, . . . , T , then

by Diagonal Dominance Theorem 6.1.10 in ([22]) Γ(φ) is positive definite.

By Theorem 3 (see Appendix), we can upper bound λmax(Γ(φ)), the maxi-

mum eigenvalue of Γ(φ), by the sum of maximum eigenvalues of diagonal blocks

Γi,i(φ):

λmax(Γ(φ)) ≤
d−1∑
i=1

λmax(Γi,i(φ)).

Since Γi,i(φ) is diagonal then:

λmax(Γi,i(φ)) = sup
θ∈Rn(d−1), xt∈Rn

fi,i(θ, xt)

= sup
θ∈Rn(d−1), xt∈Rn

σi(θ, xt)(1− σi(θ, xt)) =
1

4
.

By taking ψ = Z(θ − θ0) and using (21):

J(θ) ≤ J(θ0) + (θ − θ0)′(aI +
d− 1

8
Z ′Z)(θ − θ0).

We can obtain the lower bound on the integral in (18):∫
Θ

e−J(θ)dθ ≥ e−J(θ0)

∫
Θ

e−(θ−θ0)′(aI+ d−1
8 Z′Z)(θ−θ0)dθ.

The integral in the right-hand side can be calculated analytically (see Section

15.12 in [21]):∫
Θ

e−(θ−θ0)′(aI+ d−1
8 Z′Z)(θ−θ0)dθ =

π
n(d−1)

2√
det(aI + d−1

8 Z ′Z)

14



After putting this expression in (18) we obtain the upper bound:

LT ≤ − ln

e−J(θ0)
( a
π

)n(d−1)
2

π
n(d−1)

2
1√

det(aI + d−1
8 Z ′Z)


= J(θ0) +

1

2
ln det(I +

d− 1

8a
Z ′Z) = Lθ0T + a‖θ0‖2

+
d− 1

2
ln det

(
I +

d− 1

8a
X ′WTX

)
.

If ‖xt‖∞ ≤ B the determinant of a symmetric positive definite matrix is

upper bounded by the product of its diagonal elements (see Chapter 2, Theorem

7 in [23]):

det

(
I +

d− 1

8a
X ′WTX

)
≤

(
1 +

d− 1

8a
B2

T∑
t=1

wt,T

)n
.

7. Prediction Strategy

In this section we will provide a strategy for calculating predictions for

Kullback-Leibler game. First, we will define a log-loss game. A log-loss game of

prediction contains three components: a space of outcomes Ω, a decision space

Γ, and a loss function λ : Ω× Γ→ R. We consider the problem of probabilistic

classification with d classes Ξ = {1, . . . , d}. As the outcome space Ω we take

d-dimensional unit vectors e1, . . . , ed, i.e. the distributions concentrated on the

vertices of the simplex. The vectors e1, e2, . . . , ed form the standard basis in

Rd; the vector ei has one at the i-th position and zeros elsewhere. The decision

space Γ = P(Ξ) = {(γ(1), . . . , γ(d)) :
∑d
i=1 γ

(i) = 1, 0 ≤ γ(i) ≤ 1} is a simplex in

d-dimensional space, and for any y ∈ Ω we define the logarithmic loss function

λ(y, γ) = −
d∑
i=1

y(i) ln γ(i),

where y(i) and γ(i) are the i-th coordinates of the respective vectors.

Kullback-Leibler game is a generalisation of log-loss game where outcome

space is the whole simplex instead of only vertices of the simplex as in the

case of log-loss game. Therefore, theoretical bounds obtained in Theorem 1

15



and Corollary 1 are valid for the problem of multi-class classification under

logarithmic loss game.

Lemma 3. Let γ ∈ Γ is a permitted prediction for log-loss game, i.e. λ(ei, γ) ≤

gT (ei), for i = 1, . . . , d. Then γ is a permitted prediction for Kullback-Leibler

game, i.e. λ(y, γ) ≤ gT (y) for all y ∈ P(Ξ).

Proof. Let γ ∈ Γ be a permitted prediction for log-loss game. From (1)

Kullback-Leibler loss function is

λ(y, γ) =

d∑
i=1

y(i) ln
y(i)

γ(i)
=

d∑
i=1

y(i) ln y(i) −
d∑
i=1

y(i) ln γ(i)

=

d∑
i=1

y(i) ln y(i) +

d∑
i=1

y(i)λ(ei, γ).

Generalised prediction (12) for Kullback-Leibler game is

gT (y) = −1

η
ln

∫
Θ

e−ηλ(y,γ)P ∗T−1(dθ)

=

d∑
i=1

y(i) ln y(i) − 1

η
ln

∫
Θ

e−η
∑d
i=1 y

(i)λ(ei,γ)P ∗T−1(dθ)

=

d∑
i=1

y(i) ln y(i) − 1

η
ln

∫
Θ

d∏
i=1

e−ηy
(i)λ(ei,γ)P ∗T−1(dθ)

≥
d∑
i=1

y(i) ln y(i) − 1

η
ln

d∏
i=1

∫
Θ

(
e−ηλ(ei,γ)P ∗T−1(dθ)

)y(i)

=

d∑
i=1

y(i) ln y(i) +

d∑
i=1

y(i)

(
−1

η
ln

∫
Θ

e−ηλ(ei,γ)P ∗T−1(dθ)

)

=
d∑
i=1

y(i) ln y(i) +
d∑
i=1

y(i)gT (ei)

≥
d∑
i=1

y(i) ln y(i) +

d∑
i=1

y(i)λ(ei, γ) = λ(y, γ).

The first inequality follows from the generalised Hölder inequality (this fol-

lows from the version of the inequality in Section 9.3 of [24] by induction). The

second inequality follows from the fact that γ is a permitted prediction for log-

loss game. We showed that prediction γ satisfies the inequality (13) for any

y ∈ P(Ξ). Therefore, γ is a permitted prediction for Kullback-Leibler game. �
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We calculate generalised prediction for AAD from unnormalised weights (15)

and taking initial parameter distribution (17)

GT (ek) = −1

η
ln

∫
Θ

P0(dθ)
(
P̃T−1(θ)

)αT−1

e−ηλ(ek,ξT (θ))

= −1

η
ln

∫
Θ

P0(dθ)e−ηLT (ek,ξT (θ))

= −1

η
ln (a/π)

n(d−1)/2
∫

Θ

(ξkT (θ))ηe
−η

∑T−1
t=1 (

∏T−1
j=t αj)

∑d
i=1 y

i
j ln

yij

ξi
j
(θ)
−a‖θ‖2

dθ,

k = 1, . . . , d. (22)

Generalised prediction (22) calculated from unnormalized weights will differ

from the generalised prediction (12) calculated from normalized weights by only

an additive constant.

By putting η = 1 from Lemma 1 and applying substitution function e−(.)

prediction at step T predicts is expressed as follows

γkT =

∫
Θ

ξkT (θ)q∗T−1(θ)dθ, k = 1, . . . , d, (23)

where

q∗T (θ) = CqT (θ) = C exp
(
−
T−1∑
t=1

T−1∏
j=t

αj

 d∑
i=1

yit ln
yit
ξit(θ)

− a‖θ‖2
)
, (24)

and C is the normalising constant ensuring that
∫

Θ
q∗T (θ)dθ = 1.

Integral (23) is a Bayesian mixture, where function ξkT (θ) needs to be in-

tegrated with respect to the normalized distribution q∗T (θ). It is possible to

avoid the calculation of normalization constant C as it is a computationally

inefficient operation, and integrate function ξkT (θ) from the unnormalized dis-

tribution qT (θ). In order to calculate the integral (23), it is possible to use

MCMC algorithms. MCMC techniques are often applied to solve integration

and optimisation problems in large dimensional spaces. MCMC is a strategy

for generating samples while exploring the state space using a Markov chain

mechanism. This mechanism is constructed so that the chain spends more time

in the most important regions. The good introduction of MCMC for Machine

Learning can be found in [25].
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We will use Metropolis-Hastings algorithm for sampling parameters θ from

the posterior distribution P. As a proposal distribution we chose Gaussian dis-

tributionN (0, σ2) with some parameter σ. We start with some initial parameter

θ0 and at each step m we update:

θm = θm−1 +N (0, σ2), m = 1, . . . ,M,

where M is a maximum number of iterations in MCMC method.

The update parameter θm at step m is accepted with probability

min
(

1, fP(θm)
fP(θm−1)

)
, where fP(θ) is the density function for the distribution P

at point θ. At each step by accepting and rejecting the updates of parameters

θ we move closer to the maximum of the density function. At the beginning

it is common to use ‘burn-in’ stage when the integral is not calculated till we

will not reach the area of high values of density function fP . Thus, we per-

form integration only from the area with high density of P. Some values of θ

are accepted even when the calculated probability is less than 1, it allows the

algorithm to move away from local minimum of the density function. Because

we are interested only in the ratio of density functions of generated parameters,

we can generate new parameters θ from the unnormalized posterior distribu-

tion qT (θ) and avoid the weights normalization at each step, which is more

computationally efficient.

At time t = 0 the algorithm starts with the initial estimate of the parameters

θ0 = 0. At each iteration t > 0 we start with parameter θM calculated at the

previous step t − 1. It allows the algorithm to converge faster to the correct

location of the main mass of the distribution.

Algorithm

Parameters: number M > 0 of MCMC iterations,

standard deviation σ > 0,

regularization coefficient a > 0

η := 1

initialize θM0 := 0 ∈ Θ

18



define q0(θ) := exp(−aη‖θ‖2)

for t = 1, 2, . . . do

γit := 0, i = 1, . . . , d

read xt ∈ Rn

initialize θ0
t = θMt−1

for m = 1, 2, . . . ,M do

θ∗ := θm−1
t +N (0, σ2I)

flip a coin with success probability

min
(
1, qt−1(θ∗)/qt−1(θm−1

t )
)

if success then

θmt := θ∗

else

θmt := θmt−1

end if

γit := γit + ηξit(θ
m
t ), i = 1, . . . , d

end for

output predictions γit = γit/M, i = 1, . . . , d

end for

8. Kernelized Algorithm

In this section we kernelize the algorithm and prove upper bounds on the

Kullback-Leibler loss of the algorithm competing with wider class of experts.

We start with the following lemma restating Theorem 1 in the dual form.

Lemma 4. Under the conditions of Theorem 1, the cumulative loss LT of the

Learner satisfies

LT ≤ LθT + a‖θ‖2 +
d− 1

2
ln det

(
I +

d− 1

8a

√
WTX

′
TXT

√
WT

)
, (25)

where
√
WT = diag(

√
w1,T ,

√
w2,T , . . . ,

√
wT,T ).

Proof. The lemma follows from (7) and the Sylvester identity (Lemma 7). �

19



The lemma opens the way for the kernelization of the loss bound along the

usual lines, but one should be careful. We do not have an explicit formula for

the universal algorithm and cannot state it in the dual form straightforwardly.

We will now define the kernel form of the algorithm. Our starting point is

the representation given by (23).

Lemma 5. Let J be an orthogonal (n×n)-matrix. If all vectors xt are replaced

by Jxt, t = 1, 2, . . . , T , the value of γkt given by (23) will not change.

Proof. Vectors xt appear in the integral of (23) only in scalar products x′tθi.

Let us replace all xt by Jxt. We have (Jxt)
′θi = x′t(J

′θi). The substitution

θ̃i = J ′θi reduces the integral to the same form as before because ‖θ̃‖2 =∑d−1
i=1 θ

′
iJ
′Jθi =

∑d−1
i=1 ‖θi‖2 = ‖θ‖2 and |det(diag(J, J, . . . , J))| = 1. �

Lemma 6. Let all xt, t = 1, 2, . . . , T , belong to an m-dimensional subspace Sm

of Rn, m < n. Then the integral in (23) can be taken over Θm = (Sm)d−1, so

that

γkT =

∫
Θm

ξkT (θ)q̃∗T−1(θ)dθ,

with

q̃∗T−1(θ) = C̃ exp

− T−1∑
t=1

T−1∏
j=t

αj

 d∑
i=1

yit ln
yit
ξit(θ)

− a‖θ‖2
 , (26)

where C̃ is such that
∫

Θm
q̃∗T (θ) = 1.

Proof. Lemma 5 implies that without restricting the generality we can assume

that vectors in Sm have their last n−m coordinates equal to 0. We can then split

θi as θ′i = (θ̃′i, θ̂
′
i), where θ̃i has m and θ̂i has n−m coordinates (i = 1, 2, . . . , d−

1), and take θ̃ = (θ̃′1, . . . , θ̃
′
d−1)′ and θ̂ = (θ̂′1, . . . , θ̂

′
d−1)′. Since xt ∈ Sm, one can

split them as x′t = (x̃′t, 0), where 0 is of dimension n−m. We have x′tθi = x̃′tθ̃i,

and therefore ξkT ((θ̃′1, θ̂
′
1, . . . , θ̃

′
d−1, θ̂

′
d−1)′) = ξkT ((θ̃′1, 0, . . . , θ̃

′
d−1, 0)′).
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We have

γkT =

∫
Θ

ξkT (θ)q∗T−1(θ)dθ =

=

∫
Rm(d−1)

∫
R(n−m)(d−1)

ξkT ((θ̃′1, 0, . . . , θ̃
′
d−1, 0)′)

× Cq̃∗T−1(θ̃) exp

(
−a

d−1∑
i=1

‖θ̂i‖

)
dθ̃dθ̂, (27)

where C is such that

C

∫
Θ

q̃∗T−1(θ̃) exp

(
−a

d−1∑
i=1

‖θ̂i‖

)
dθ = 1.

An application of Fubini’s theorem to 27 completes the proof. �

Let k : X×X→ R, where X is some domain, be a kernel and let F with the

scalar product 〈·, ·〉F and norm ‖ · ‖F be the corresponding RKHS (see [26] for

definitions). Let Φ : X→ F be the feature mapping given by Φ(x) = k(x, ·).

Consider the kernelized modification of Protocol 1 with nature outputting

xt ∈ X. We want to compete with predictors of the following kind. Take an

array of d−1 functions f = (f1, f2, . . . , fd−1) ∈ Fd−1. At step t array f outputs

ξt(f) = (ξ1
t (f), . . . , ξdt (f)) such that

ξit(f) = σi(f , xt), i = 1, . . . , d, (28)

where σi(f , xt) are multinomial logistic regression functions:

σi(f , xt) =
efi(xt)∑d−1

j=1 e
fj(xt) + 1

, i = 1, . . . , d− 1, (29)

σd(f , xt) =
1∑d−1

j=1 e
fj(xt) + 1

. (30)

The discounted cumulative loss Lf
t is defined similar to (3).

We will now construct a universal algorithm working according to the ker-

nelized Protocol 1. The algorithm works as follows.

On step T let FT ⊆ F be the span of Φ(x1),Φ(x2), . . . ,Φ(xT ). It is a

space of finite dimension T ′ ≤ T and it is isomorphic to RT ′ . We define γkT
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by (23) with Θ = RT ′(d−1) and x′t ∈ RT ′ being the values corresponding to

Φ(xt), t = 1, 2, . . . , T . Lemma 5 implies that the algorithm is well-defined and

independent of the choice of a linear isomorphism.

The values of γkT can be computed by evaluating the integral in (23) as

follows. Each θ in Θ corresponds to a predictor (σ1(h, x), . . . , σd(h, x)), where

h = (h1, h2, . . . , hd−1) ∈ Fd−1 is defined by hi(x) =
∑T
t=1 a

i
tk(xt, x), where

ai1, a
i
2, . . . , a

i
T ∈ R are some constants. The density

q∗T (θ) ∝ exp

− T−1∑
t=1

T−1∏
j=t

αj

 d∑
i=1

yit ln
yit

ξit(h)
− a

d−1∑
i=1

‖hi‖2F

 , (31)

where ‖hi‖2F =
∑T
t1,t2=1 a

i
t1a

i
t2k(xt1 , xt2), may be evaluated (up to a multiplica-

tive constant) once we know ai1, a
i
2, . . . , a

i
T . Therefore we can use MCMC doing

a random walk over the space of coefficients ait, i.e., RT (d−1).

Theorem 2. Let a > 0. There exists a prediction strategy S for the learner such

that for every positive integer T , for every sequence of outcomes of the length T ,

and every sequence αt ∈ (0, 1], t = 1, . . . , T , and any f = (f1, . . . , fd−1) ∈ Fd−1

, the loss LT of the learner satisfies

LT ≤ Lf
T + a

d−1∑
i=1

‖fi‖2F +
d− 1

2
ln det

(
I +

d− 1

8a

√
WTKT

√
WT

)
, (32)

where

KT =


k(x1, x2) . . . k(x1, xT )

...
. . .

...

k(xT , x1) . . . k(xT , xT )

 ,

and WT = diag(w1,T , w2,T , . . . , wT,T ), where wt,T =
∏T−1
j=t αj.

Proof. Fix a positive integer T . The distribution γt output by our algorithm

is constructed using FT of dimension T ′ isomorphic to some RT ′ . For t < T the

construction relies on a different Ft isomorphic to Rt′ . However, Ft ⊆ FT and

Ft is isomorphic to a subspace of RT ′ . Lemmas 5 and 6 imply that γt could be

calculated by integration over the same RT ′(d−1) with the same x′1, . . . , x
′
t.
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Let f1, f2, . . . , fd−1 ∈ FT . Then each is isomorphic to a θi with the same

norm and the theorem follows from Lemma 4.

Let f1, f2, . . . , fd−1 ∈ F be arbitrary functions from the RKHS. Using the

Representer Theorem argument, we can project each fi on FT and write fi =

f
‖
i + f⊥i , where f

‖
i ∈ FT and f⊥i is orthogonal to FT . By the construction

of FT , we have fi(xt) = f
‖
i (xt) i = 1, 2, . . . , d − 1 and t = 1, 2, . . . , T , but

‖f‖i ‖F ≤ ‖fi‖F . Thus the orthogonal component does not affect predictions

but increases the norm. The theorem follows. �

Note that for the undiscounted losses we have:

Corollary 2. Let a > 0. There exists a prediction strategy S for the learner

such that for every positive integer T , for every sequence of outcomes of the

length T , and any f = (f1, . . . , fd−1) ∈ Fd−1 , the loss LT of the learner satisfies

LT ≤ Lf
T + a

d−1∑
i=1

‖fi‖2F +
d− 1

2
ln det

(
I +

d− 1

8a
KT

)
, (33)

where

KT =


k(x1, x2) . . . k(x1, xT )

...
. . .

...

k(xT , x1) . . . k(xT , xT )

 .

The order of the regret term in 33 may vary. However, we show that it has

the order O(
√
T ) in many cases. We will use the notation c2F = supz∈X k(z, z)

and assume c2F <∞.

Corollary 3. Under the conditions of Corollary 2 and if the number of steps

T is known in advance, the kernelized algorithm with a = cF
√
T achieves loss

satisfying

LT ≤ Lf
T +

(
d−1∑
i=1

‖fi‖2F +
(d− 1)2

16

)
cF
√
T . (34)

Proof. The determinant of a symmetric positive definite matrix is upper

bounded by the product of its diagonal elements (see Chapter 2, Theorem 7 in
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[23]) and thus

ln det

(
I +

d− 1

8a
KT

)
≤ T ln

(
1 +

(d− 1)c2F
8a

)
≤ T (d− 1)c2F

8a
.

If we know the number of steps T in advance, then we can choose a specific

value a = cF
√
T .

In a case when the number of trials is not known in advance, it is still possible

to use a suitable initial weights distribution over the parameter a to achieve a

similar bound using the AA (see [27]). �

9. Experiments

In this section we apply our algorithm on three data sets and compare its

performance with the multinomial logistic regression. For simplicity we apply

our algorithm for multi-class classification problems and put αt = 1 for all

t = 1, . . . , T . We obtained the best parameters of multinomial logistic regression

by using function ‘multinom’ from library ‘nnet’ in R. 2

9.1. Synthetic Data Set

We generated the synthetic ‘Smiley’ data set that consists of two Gaussian

eyes, a trapezoid nose and a parabola mouth. The function for generating this

data set was taken from R library ‘mlbench’. Figure 1 shows the data set which

contains 1000 observations with two features and four classes: left eye, right eye,

nose, and mouth. We divide our data in a way that each class will have half of

its observations in training and test data sets. Figure 2 illustrates the generated

training data set. The split of the training and test data set is not random to

show that sometimes the training data set does not describe the ‘underlying

nature’ of the data. The training data set is obtained so that there are infinite

number of linear classifiers that could classify the training data set correctly.

First, we will run our algorithm and train the multinomial logistic regression

on training data set and compare their performance. We run our algorithm for

2The code written in R is available at https://github.com/RaisaDZ/LogisticRegression.
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the number of MCMC iterations M = 3000 and ‘burn-in’ period M0 = 1000 for

different parameters of regularization a and standard deviation σ.

Table 1 shows the total loss of our algorithm on training data set. Low

values of losses are achieved with small regularization parameters a and large

standard deviation σ. Very small values of σ lead to big losses as the algorithm

is not able to reach the area of high values of density function fP .

Table 2 illustrates the acceptance ratio of new sampling parameters of our

algorithm. Large values of σ and large values of regularization parameter a

result in low acceptance ratios. With large values of σ we move faster to the

area of high values of density function while smaller values of σ can lead to

more expensive computations as our algorithm would require more iterations

to find the optimal parameters. Figure 3 illustrates logarithm of parameters

likelihood q(θ) defined in (24) for a = 0.001 and σ = 0.1 and 1.5. We can see

from the graphs that for σ = 1.5 the algorithm reachs maximum value of log-

likelihood quite fast while for σ = 0.1 it still tries to find maximum value after

3000 iterations. It is important to keep track on the acceptance ratio of the

algorithm, as high acceptance ratio means that we move too slowly and need

more iterations and larger ‘burn-in’ period to find the optimal parameters.

Now we want to demonstrate the ‘power’ of online learning compared to

batch learning. We train the multinomial logistic regression on training data

set and will compare its performance with our algorithm applied to test data

set. We choose parameters of algorithm to be M = 3000, ‘burn-in’ period

M0 = 1000, regularization parameter a = 0.001 and standard deviation σ = 1.5.

Note, that even we though use the prior knowledge about optimal parameters

of our algorithm using results on training data set, we do not actually train our

algorithm, and start with initial value θ0 = 0. Figure 4 shows the difference

between cumulative losses of the multinomial logistic regression and our algo-

rithm Lθ
∗

T −LT on test data set, where θ∗ was obtained by multinomial logistic

regression model on training data set. We can see from the graph that our al-

gorithm needs a little time to train and after a few steps it becomes better than

multinomial logistic regression trained on training data set. It is obvious from
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Figure 2 that there are infinite number of linear classifiers that could classify

data correctly as training data set contains linearly separable classes. Training

data set does not describe the ‘underlying nature’ of the generated data. As a

result, retrespectively best model that was trained on training data set does not

perform good on test data set.

Now we will train multinomial logistic regression on test data set to find

retrospectively the best model with parameters θ∗. Figure 5 shows the difference

between cumulative losses of retrospectively best expert θ∗ on test data set and

the cumulative loss of our algorithm. We also plot the theoretical bound for

our algorithm. The initial large gap corresponds to the value −a‖θ∗‖2, which

gives the initial start to Learner on expert θ∗. As time increases, we add an

additional value −n(d−1)
2 ln(1 + d−1

8a X
2T ) to the bound. We can see from the

graph that initially the loss difference is decreasing fast which means that loss

of our algorithm becomes larger compared to the loss of multinomial logistic

regression model. The initial start −a‖θ∗‖2 gives us some time for training.

After the initial training time passes, the difference between cumulative losses

becomes smoother and behaves in a similar way with the theoretical bound of

our algorithm which is decreasing logarithmically with the number of steps.
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Figure 1: Smiley data set
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Figure 2: Training data set

9.2. Glass Identification Data Set

We conduct similar experiments on Glass Identification data set which is the

part of the library ‘mlbench’ in R or could be downloaded from UCI Machine
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Table 1: Total Losses of our algorithm on training set

a \ σ 0.1 0.5 1.0 1.5 3.0

0.001 218.52 2.11 0.82 0.68 1.10

0.005 220.23 2.31 2.24 2.05 1.44

0.010 219.93 2.93 2.95 3.18 3.89

0.050 207.49 9.99 10.06 10.21 7.65

0.100 226.51 16.72 16.50 22.15 7.30

0.500 214.10 54.74 54.05 71.29 307.79

0.700 207.18 69.12 73.36 65.90 312.76

1.000 222.63 86.55 99.73 79.63 278.83

Table 2: Acceptance ratio of our algorithm on training set

a \ σ 0.1 0.5 1.0 1.5 3.0

0.001 0.82 0.74 0.58 0.38 0.03

0.005 0.81 0.75 0.39 0.10 0.01

0.010 0.81 0.70 0.29 0.05 0.00

0.050 0.82 0.56 0.08 0.01 0.00

0.100 0.80 0.46 0.05 0.01 0.00

0.500 0.80 0.24 0.01 0.01 0.00

0.700 0.82 0.21 0.01 0.01 0.00

1.000 0.82 0.16 0.01 0.00 0.00
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Figure 3: Log-likelihood of parameters depending on iteration step

Learning Repository. The goal is to classify the six type of glasses. The study

of classification of types of glass was motivated by criminological investigation.

At the scene of the crime, the glass left can be used as evidence. The data set

contains nine features and total 214 observations. As there were no timestamps

in the data sets, observations were randomly shuffled, and this order was used

as a time. We normalise all the features between -1 and 1 and add addition bias

1 to all observations.

Similar to the previous experiment, we find retrospectively the best multino-

mial logistic regression with parameters θ∗ using the whole data set. We want to

compare the performance of retrospectively best expert θ∗ with the performance

of our algorithm.

Now we will show how the performance of our algorithm and the behavior

of the loss bound depend on the different parameters of regularization a. We

choose number of steps M = 3000, ‘burn-in’ period M0 = 1000 and σ = 0.1.

First, we run our algorithm for small regularization a = 0.001. Figure 6 shows

the difference between cumulative losses of multinomial logistic regression and
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trained on training set
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Figure 5: Comparison with retrospectively

best logistic regression

our algorithm. Small values of regularization gives small start on the initial

parameters −a‖θ∗‖2 at time t = 0. However, the theoretical bound will grow

faster with time −n(d−1)
2 ln(1 + d−1

8a X
2T ) as it is inversely proportional to the

logarithm of the regularizalion parameter a.

We will conduct the second experiment for larger regularization a = 0.01.

Figure 7 shows the difference between cumulative losses of logistic regression

and our algorithm Lθ
∗

T − LT . For larger regularization we allow larger initial

start on the parameters −a‖θ∗‖2. Hovewer, the theoretical bound decreases

slower with time compared to the previous experiment.

The choice of the regularization parameter a is important as it affects the

behaviour of the theoretical bound of our algorithm. Larger parameters of

regularization gives larger start on the parameters of the best model, however

the theoretical bound will have smaller growth rate as time increases.
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Figure 6: Glass data set, a = 0.001
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Figure 7: Glass data set, a = 0.01

9.3. Football Data Set

The third data set was compiled from historical information on football

matches and bookmakers odds 3. The data set covers three seasons, 2014/2015,

2015/2016 and 2016/2017 of the English Premier League and total 1140 matches.

Each match can have three outcomes: ‘home win’, ‘draw’, or ‘away win’. The

data contains the historical information such as total number of goals, shots,

corners, yellow and red cards after half-time and full-time and bookmakers’ odds

from different providers. For each team we generated features such as average

number of games won / lost, average number of goals scored / conceded, average

number of shots during the first-half, etc. In addition, we combined the odds of

different bookmakers provided for the current match. There were total 46 gen-

erated features. The first two seasons were used for the training of multinomial

logistic regression and the last season was left for test. We want to check if our

algorithm could perform close to the model of logistic regression that will be

trained in online mode. We choose the parameters of our algorithm M = 2000,

‘burn-in’ period M0 = 500, regularization parameter a = 0.05 and standard

deviation σ = 0.2. At the initial step multinomial logistic regression uses the

3Available at http://football-Data.co.uk
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parameters of the model that was trained on the first two seasons. After that,

we add data sequentially and re-train the model after each match. Figure 8 illus-

trates the difference between cumulative losses of multinomial logistic regression

trained online and our algorithm Lθ
∗

T − LT . Initially our algorithm performes

much worse than logistic regression in online mode as the difference of cumu-

lative losses decreases fast. However, after around 200 steps the difference of

cumulative losses stabilizes and becoming more ‘flattened’ which indicates that

the performance of our algorithm becomes close to the performance of logistic

regression.
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Figure 8: Comparison with multinomial logistic regression trained in online mode

9.4. Conclusions

We carry out the experiments on artificial data set to evaluate the perfor-

mance of our algorithm. Results show that our algorithm could outperform the

model of retrospectively best model of multinomial logistic regression trained

on training data set. We also compare the difference between the cumulative

losses of retrospectively best multinomial logistic regression trained on the test
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data set and our algorithm, and we check that the theoretical bound of our

algorithm is not violated.

One of the disadvantages of our algorithm is that it might perform much

worse with non-optimal input parameters of regularization a and standard de-

viation σ. If no prior knowledge is available, one can start with some reasonable

values of input parameters and keep track on the acceptance ratio of new gen-

erated θ. If the acceptance ratio is too high it might indicate that the algorithm

moves too slowly to the area of high values of the probability function of θ, and

standard deviation σ should be increased. Another option is to take very large

number of steps and larger ‘burn-in’ period. The choice of the regularization

parameter a is important as it affects the behaviour of the theoretical bound of

our algorithm. Larger parameters of regularization gives larger start on the pa-

rameters θ∗ of the best model, however the theoretical bound will have smaller

growth rate as time increases. The choice of the regularization parameter de-

pends on the particular task and goals that desired to be achieved. Another

disadvantage of our algorithm against the competitors is in its training speed.

Increasing the training speed of our algorithm is an interesting area of future

research.
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Appendix

Theorem 3. Let A is positive symmetric semidefinite block matrix such as

A =


A1,1 A1,2 . . . A1,d

A2,1 A2,2 . . . A2,d

...
...

. . .
...

Ad,1 Ad,2 . . . Ad,d

 ,

where Ai,i, i = 1, . . . , d are square matrices. Then Ai,i, i = 1, . . . , d are positive

semidefinite and λmax(A) ≤
∑d
i=1 λmax(Ai,i).

Proof. Let A be an n× n-matrix and Ai,i be an ni × ni-matrix, i = 1, . . . , d.

Every vector x ∈ Rn, ‖x‖ = 1 can be partitioned as x = (x′1, . . . , x
′
d)
′, where

xi ∈ Rni , i = 1, . . . , d. Define ci and ui by xi = ‖xi‖ · xi
‖xi‖ = ciui, where∑d

i=1 c
2
i =

∑d
i=1 ‖xi‖2 = 1, and ‖ui‖ = xi

‖xi‖ = 1 for i = 1, . . . , d. If xi = 0 we

put ci = 0 and ui be any vector such that ‖ui‖ = 1 for i = 1, . . . , d.

We have

λmax(A) = max
‖x‖=1

x′Ax

and

x′Ax =
∑

i,j:xi,xj 6=0

x′iAi,jxj =
∑
i,j

c′iu
′
iAi,jujcj =

∑
i,j

c′iãi,jcj , (35)

where ãi,j = u′iAi,juj and

Ã =


ã1,1 . . . ã1,d

...
. . .

...

ãd,1 . . . ãd,d

 .

Matrices Ai,i, i = 1, . . . , d are positive semidefinite (by Observation 7.1.2 in

[22]) and Ã is positive semidefinite by (35). Then

∑
i,j

c′iãi,jcj ≤ λmax(Ã) ≤ tr Ã =

d∑
i=1

ãi,i =

d∑
i=1

u′iAi,iui ≤
d∑
i=1

λmax(Ai,i).

�
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Lemma 7. (Sylvester Identity) For any n×m matrix B, any m×n matrix

C, and any number a

det(aIn +BC) = det(aIm + CB),

where In, Im are unit matrices n× n and m×m, respectively.

Proof. It follows from matrix multiplication rules thatIn B

O Im

aIn +BC O

−C aIm

 =

aIn aB

−C aIm


=

aIn O

−C aIm + CB

In B

O Im

 .

Taking the determinant of both sides and using rules of taking the determinant

of block matrices we get the statement of the lemma. �
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