
ORIGINAL PAPER

Dynamic response of the spherical pendulum subjected
to horizontal Lissajous excitation

Grzegorz Litak . Jerzy Margielewicz . Damian Gąska . Daniil Yurchenko .
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Abstract This paper examines the oscillations of a

spherical pendulum with horizontal Lissajous excita-

tion. The pendulum has two degrees of freedom: a

rotational angle defined in the horizontal plane and an

inclination angle defined by the pendulumwith respect

to the vertical z axis. The results of numerical

simulations are illustrated with the mathematical

model in the form of multi-colored maps of the largest

Lyapunov exponent. The graphical images of geo-

metrical structures of the attractors placed on Poincaré

cross sections are shown against the maps of the

resolution density of the trajectory points passing

through a control plane. Drawn for a steady-state, the

graphical images of the trajectory of a tip mass are

shown in a three-dimensional space. The obtained

trajectories of the moving tip mass are referred to a

constructed bifurcation diagram.

Keywords Nonlinear oscillations � Spherical
pendulum � Strange attractor � Chaos � Lyapunov
exponents � Lissajous curves � Amplitude–frequency

spectrum

1 Introduction

Some dynamical systems are very sensitive to small

changes of initial conditions leading the system to

different responses. Consequently, even subtle

changes of parameters may cause huge deviations in

the response of such a system making the long-term

predictions of the system response impossible. Such

systems are called chaotic, and their mathematical

model, i.e., their governing differential equations of

motion, has no analytical solutions. Besides, several

solutions can coexist for various initial conditions. The

influence of initial conditions on coexisting solutions

is most often presented in the form of multi-colored

maps of basins of attraction. However, the basins of

attraction are difficult to implement in higher-dimen-

sional phase space. Bifurcation diagrams and Lya-

punov exponents (which shows divergence in close

trajectories defined in phase space) are most often used

to distinguish a chaotic response from a periodic

response. Another popular numerical tool used to

analyze nonlinear systems is the Poincare cross

section. In the case of periodic responses, there are

single points, the number of which corresponds to the
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periodicity. On the other hand, in the case of chaotic

solutions, on Poincare cross sections, complex geo-

metric structures, called chaotic attractors, are

observed [1, 2].

Since Galileo’s time pendulums have fascinated

physicists to learn nature and to study natural

phenomena. Moreover, this is the simplest nonlinear

system manifesting a chaotic behavior. A physical

model of such a pendulum may show a transition from

regular to chaotic dynamics. Complex dynamics of a

spherical pendulum has been attracting attention of

scientists for a long time. Miles [3] was one of the first

who considered the dynamics of a lightly damped

spherical pendulum subjected to an in-plane harmonic

excitation. Neglecting terms of order three and higher,

the approximate analytical analysis has shown that a

planar harmonic motion of the spherical pendulum is

unstable. Later, Miles [4] returned to this problem and

reported a number of bifurcation diagrams on the

stability of planar and non-planar motion. Braynt

studied analytically the transition of chaos [5],

whereas [6] observed these transitions experimentally.

Krasnopolskaya and Shvets [7] considered the chaotic

motion of deterministic parametric oscillations of a

kinematically driven spherical pendulum. Later,

Shvets [8] investigated the appearance, development,

and vanishing of deterministic chaos in a ‘‘spherical

pendulum–electric motor of limited power’’ dynami-

cal system. He described discovered chaotic attractors.

Aston [9] studied the bifurcations that breaks the

reflectional symmetry of the problem and lead to non-

planar oscillations. Dynamics of the spherical pendu-

lum under harmonic excitation in both horizontal and

vertical directions was investigated in [10] using

Melnikov approach. Later, the spherical pendulum

excited vertically was studied experimentally and

theoretically by Naprstek and Fischer [11, 12],

Pospı́šil et al. [13], and Fischer et al. [14]. They

provided a large number of solutions with some

approximate considerations. These solutions were

classified by the Lyapunov exponent. In this paper,

we continue this line of research.

As a spherical pendulum can perfectly model a

behavior of a crane with a suspended payload, the

dynamics of the spherical pendulum can help in

understanding the payload dynamics for hoisting as

well as other operations [15]. Ghigliazzaa and Holmes

[16] considered the dynamics of a spherical pendulum

with a moving support, studying the payload motion of

a tower crane under linear acceleration and moving on

a circular support. With a similar application in mind,

the dynamics of a spherical pendulum under stochastic

excitation and the first passage problem was studied in

[17]. Perig et al. concentrated on small oscillations of a

spherical pendulum with a uniformly rotating suspen-

sion center for modeling slewing crane motion [18].

La and Nguyen presented numerical simulations and

laboratory tests of spherical pendulum, modeling rope

using radial spring-damper, to reduce the load-carry-

ing structure vibration [19].

The subject of the research contained in this paper

is a spherical pendulum, whose mathematical model

can be used to simulate the movement of payload of

cranes and other reloading machines. From the point

of view of the dynamics of the handling machines,

such as overhead cranes or jib cranes, the spatial

movement of the payload takes place when at least two

drives of the winch and crane mechanisms are

activated. In this paper, the phenomenological model

of the spherical pendulum, which is affected by

kinematic excitations along the x and y axes, has been

formulated. Such model can simulate overhead-trav-

eling cranes, which are characterized by negligible

small deflections, and the impact of rail unevenness is

neglected. (Kinematic vertical excitations are absent.)

2 Formulation of the mathematical model

Regarding the clearness of the schematics, the dissi-

pating energy elements were not mapped (Fig. 1).

Two kinds of elements were put into account, the first

damps oscillations of the generalized coordinate w

Fig. 1 Phenomenological model of the spherical pendulum

being examined
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whereas the second one maps aerodynamic resistance.

It is also worth mentioning that in the context of load

positioning, the model based on a spherical pendulum

with a rigid rope is an over-idealization of the

problem. Therefore, in the case of this type of analysis,

the elastic properties of the hoisting rope should

always be taken into account. In the analyzed case, the

elastic properties of the rope were not taken into

account, as the positioning case was not considered.

The formal basis for derivation of differential

equations are Cartesian coordinates, which uniquely

define the position of the moving point A in three-

dimensional space. The position of point A in the

classic spherical pendulum is determined as the result

of the assembly of two rotations, relative to the z and y

axes and the translation of the local coordinate system

along the z axis, by the value equal to the length of the

rope. In the case of kinematically enforced, a column

matrix of excitation q should be added to such

equations:

PA ¼ RZ uð Þ � RY wð Þ � TZ þ q;

PA ¼
aX cos xXtð Þ � L sin wð Þ cos uð Þ
aY cos xY tð Þ � L sin wð Þ sin uð Þ
�L cos wð Þ

2
4

3
5; ð1Þ

where

RZ uð Þ ¼
cos uð Þ � sin uð Þ 0

sin uð Þ cos uð Þ 0

0 0 1

2
4

3
5;

RY wð Þ ¼
cos wð Þ 0 sin wð Þ

0 1 0

� sin wð Þ 0 cos wð Þ

2
4

3
5;

TZ ¼
0

0

�L

2
4

3
5;

q ¼
fX
fY
0

2
4

3
5 ¼

aX cos xXtð Þ
aY cos xY tð Þ
0

2
4

3
5:

Whereby the kinematic excitation are harmonic

functions, potential energy and Rayleigh’s dissipation

function were given by equations:

V ¼ mgL 1� cos wð Þð Þ; R ¼ 1

2
b1 _w

2 þ b2v
2
A

� �
:

ð2Þ

In the examined model, the velocity of the mass

suspended on flexible connector is given by the

following mathematical expression:

v2A ¼ L2 sin2 wð Þ _u2 þ _w2
� �

þ a2Xx
2
X sin

2 xXtð Þ þ a2Yx
2
Y sin

2 xY tð Þ

þ 2LxYaY sin xY tð Þ cos uð Þ sin wð Þ _uþ sin uð Þ cos wð Þ _w
� �

þ 2LxXaX sin xXtð Þ cos uð Þ cos wð Þ _w� sin uð Þ sin wð Þ _u
� �

;

ð3Þ

After applying Lagrange equations of the second

kind and taking into account adequate functions, we

obtain the system of two nonlinear differential equa-

tions of the form:

sin2 wð ÞL2m €uþ 2L2m _u _w cos wð Þ sin wð Þ þ L2 sin2 wð Þb2 _u
� xXL sin wð Þ sin uð ÞaX b2 sin xXtð Þ þ mxX cos xXtð Þð Þ
þ xYL sin wð Þ cos uð ÞaY b2 sin xY tð Þ þ mxY cos xY tð Þð Þ ¼ 0;

L2m €wþ _w b1 þ b2L
2

� �
� L2m _u2 cos wð Þ sin wð Þ þ Lmg sin wð Þ

þ xXL cos uð Þ cos wð ÞaX b2 sin xXtð Þ þ mxX cos xXtð Þð Þ
þ xYL cos wð Þ sin uð ÞaY b2 sin xY tð Þ þ mxY cos xY tð Þð Þ ¼ 0:

8>>>>>>>>><
>>>>>>>>>:

ð4Þ

Taking into consideration the possibility of making

quantity and quality investigations at this stage, the

mathematical notation of the motion equations was

simplified, which mainly brings to dividing by sides

the first equation by L2m sin wð Þ and the second by

L2m. We obtain the mathematical model given by the

equations:

sin wð Þ €uþ 2 cos wð Þ _u _wþ sin wð Þb2 _u
� Plx sin uð Þ b2 sin lxxsð Þ þ lxx cos lxxsð Þð Þ
þ Px cos uð Þ b2 sin xsð Þ þ x cos xsð Þð Þ ¼ 0;

€wþ b1 þ b2ð Þ _w� cos wð Þ sin wð Þ _u2 þ sin wð Þ
þ Plx cos uð Þ cos wð Þ b2 sin lxxsð Þ þ lxx cos lxxsð Þð Þ
þ Px cos wð Þ sin uð Þ b2 sin xsð Þ þ x cos xsð Þð Þ ¼ 0:

8>>>>>>>>><
>>>>>>>>>:

ð5Þ

To so transformed system of differential Eqs. (5),

there were applied given transformations:

x2
0 ¼

g

L
; lA ¼ aX

aY
; lx ¼ xX

xY
; l ¼ lxlA;

b2 ¼
b2
x0m

; b1 ¼
b1

x0L2m
; P ¼ aY

L
; s ¼ x0t;

x ¼ xY

x0

:

The presented mathematical model of the spherical

pendulum excited kinematically in relation to the
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x and y axes, constitutes a formal basis for conducting

quantitative and qualitative research.

3 The results of modeling investigation

For quality assessment of the nature of solutions, one

can apply the so-called Lyapunov Exponent

[2, 20–23]. This index is a pivotal concept in chaos

theory, which provides a tool for distinguishing an

unpredictable chaotic behavior from a predictable pe-

riodic. It is considered to be a reliable and authoritative

criterion of investigating nonlinear equations of

motion. On this basis, the rate of separation of the

initially infinitely close trajectories on the phase plane

is determined e(0):

k ¼ lim
e 0ð Þ!0;n!1

1

ns

Xn
i¼1

ln
ei sð Þ
e 0ð Þ

� �
: ð6Þ

In the above equation, ei(t) represents the vectors

connecting the examined trajectory of motion with the

reference one. In practical applications, the computing

procedure leads to averaging after multiple iterations

within the adequate embedded space. Positive values

of the Lyapunov exponent k[0 indicate a chaotic

behavior of the system. In the opposite case k\0, the

trajectories tend to existing stable points or periodic

orbits. The results of the numerical simulation are

multi-color contour maps of the solution of the largest

Lyapunov exponent. The procedure of the simulations

does not differ in fact from the calculations carried out

for a single control parameter. The generated multi-

color maps allow determining the regions of change-

ability characterizing the external load with irregular

chaotic motion. The exemplary results of the largest

Lyapunov exponent for the given initial conditions

and parameters characterizing the dynamical system

being investi-

gated:w 0ð Þ ¼ 0:01; _w 0ð Þ ¼ 0; u 0ð Þ ¼ 0; _u 0ð Þ ¼ 0;

lA=1, b1= 0.7, b2=0.7, x2
0 = 0.981 are shown in

Fig. 2. The results of the included numerical simula-

tions were obtained from the generalized coordinate u
and depict the influence of the parameter lx, on

localization of the regions where the motion of the

pendulum is chaotic. The use of harmonic functions

(fX and fY) for numerical simulations results in the

trajectories that take the shape of Lissajous curves.

The multi-color distributions of the largest Lya-

punov exponent were calculated with the resolution of

500 9 500 points over the range of each control

parameter P and x. The map enables us to distinguish

two predominant bands in which the motion of the

pendulum becomes unpredictable. The first band

comprises the range of parameter P[ (0.4, 0.7), the

beginning of the second one is determined by the value

P =1.8. It is worth mentioning that the predictable mo-

tion of the pendulum occurs for the value x =0.5 over

the entire range of values P. If the frequency ratio is

lx=0.5 (Fig. 2b), a similar distribution of the largest

Lyapunov’s exponent is observed but the range of the

control parameter p is slightly smaller and within the

boundaries P[ (0.5, 0.7). In reference to the observed

second band, it is slightly wider because it starts

around P & 1.7. If the frequency ratio takes the value

lx=0.5, the predicted motion is limited by x =1. The

above-mentioned values establish the starting point

and the width of the bands is given for the non-

dimensional frequency x =10. Let us assume that the

multi-color maps of the largest Lyapunov exponent

(Fig. 2) were plotted on elastic surfaces. Their detailed

comparison suggests that the map (Fig. 2b) is gener-

ated as a result of the uniform stretching of the map

from Fig. 2a along the x frequency axis so the side of

a map determined by the valuex =0 is anchored along

the entire range of parameter P. Mathematically, this

stretching comes down to rescaling the x coordinate

using the scale coefficient which in our case takes the

value of 2.

To confirm the compatibility of stretching, multi-

colored maps of the extended Lyapunov exponent

(Fig. 2), Poincaré cross sections and amplitude–

frequency spectra (Fig. 3) were plotted. In the ampli-

tude–frequency spectrum (Fig. 3a), which corre-

sponds to the case lx = 2, the dominant

subharmonics and components are the multiple of

the excitation frequency. In regard to the spectrum

(Fig. 3b), the harmonic component representing the

frequency of kinematic excitations plays a dominant

role in the remaining harmonics being excited.

Graphical images of geometric structures of chaotic

attractors are presented against the background of a

multi-colored density map of Poincare cross-sectional

distribution points, corresponding to the intersection

of the phase trajectory with the control plane. This was

done because a multi-colored distribution map pro-

vides information on where the phase stream most
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often crosses the control plane. In the classic terms, the

Poincare cross section most frequently is shown as the

set of points laid on the phase plane. In order to

improve results interpretation, a real nonnegative

function f(x) defines the probability of a given random

event:

PDF Bð Þ ¼
Z

B

f xð Þdx; ð7Þ

where the integral of x represents integration over the

phase space.

As the probability density function defined in Eq. 7

can take values greater than one, it is normalized to

unity by integrating the surface area of available

system states in the state space. This paper uses the

Wolfram Mathematica software function, which, by

default, generates a multi-colored map of the proba-

bility density function.

The direct comparison of the attractors and the

amplitude–frequency spectrum (Fig. 3) does not indi-

cate important discrepancies in reference to: attrac-

tors’ geometrical structures, density resolution maps

of the points of Poincaré cross section, excited

harmonic components of Fourier-type spectrum.

Graphically shown in the Cartesian three-dimen-

sional space of xyz, the load trajectories were drawn

for a steady-state response over seven excitation

periods, whereas the steady-state motion was assumed

to occur after 100 periods of excitation. The red color

(Fig. 4) indicates the motion of the anchor point of the

spherical pendulum. The differences in graphic

images of Cartesian trajectories result from the

characteristics of the excitation and in particular from

the trajectory of the pendulum suspension point.

The bifurcation diagram is considered one of the

basic tools to study the dynamics of nonlinear systems.

Theoretically, it can be generated in several ways,

based, among others, on time sequence or phase

stream. In the majority of cases, these algorithms

fulfill their task, nevertheless, in relation to our model,

the obtained results were burdened with an error

because they did not accurately reflect the periodicity

of the system response in a wide frequency range. For

this reason, in our modeling studies, bifurcation

diagrams were generated using an algorithm based

on Poincaré cross-sectional points. These points are

uniquely determined by means of two coordinates

defining displacement u and velocity _u so it is

sufficient to know one of them to draw a diagram. The

Fig. 2 Multi-color maps of the largest Lyapunov’s exponent generated for generalized coordinate u under the assumption of the

frequency ratio: a lx = 2, b lx = 0.5 for nodal initial conditions
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Fig. 3 Poincare cross sections generated for the generalized coordinateu, on the assumption of the frequency ratio: a lx = 2, b lx = 0.5
for nodal initial conditions. Dc denotes correlation dimension whose fractional value indicates chaotic solutions

Fig. 4 Motion trajectories of the load for the frequency ratio: a lx = 2, b lx = 0.5. Red curves indicate the excitation trajectory of the

anchor point of the spherical pendulum. (Color figure online)
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coordinate in our case was the quantity determining

the angular displacement u. The results of numerical

simulations are shown as two- and three-dimensional

parametric plots for six different values of dimension-

less frequencies x. The obtained results of computer

simulations were carried out for the frequency ratio lx
= 2 (Fig. 5) and lx = 0.5 (Fig. 6), illustrating the

influence of x on the shape of the trajectory of the

payload movement.

In the range of predictable periodic solutions

(points I, II, III on the bifurcation diagrams in Figs. 5,

6), the identified motion trajectories of the pendulum

do not differ in the geometrical shape. The solutions

recorded in the zones with period doubling (points IV

and V on the bifurcation diagrams Figs. 5, 6) substan-

tially do not indicate the important differences in the

geometry of the trajectory. Nevertheless, in the case of

points IV and V, the calculated indicators defined as

the average values of squared velocity of generalized

coordinate of mathematical model show differences of

observed solutions. The further increase in the

frequency of kinematic excitation intensifies the

phenomenon of period doubling, which results in the

rapid increase of the average value of squared velocity

of the generalized coordinate w (points V on the

bifurcation diagrams Figs. 5, 6). Geometrically, the

observed differences in the trajectories in the points

from I to V come down only to their rotation of the

constant angular value equal to - p/2 and mirroring

relative to the horizontal axis unlike in chaotic

solutions where the differences in the trajectory course

are directly noticeable (point VI on the bifurcation

diagrams Figs. 5, 6). In such cases, estimated indica-

tors representing the average value of the squared

velocity of the generalized coordinate w were essen-

tially limited.

Despite the trajectories corresponding to the solu-

tions in the points from I to V do not differ

topologically, the generated on their basis Poincaré

cross sections indicate important differences. It should

be explained here that the intersection points of the

load trajectory with the control plane are marked with

crosses to represent predictable solutions. In the case

of chaotic motion, the transition places through the

control plane were mapped with blacked out points to

make the diagrams legible. In the case of solutions

obtained for lx = 2, on the cross sections there are

single constant points.Whereas in the case of solutions

obtained lx=0.5, the constant points are double. In the

points VI, the geometrical structure of the Poincaré

cross sections is shaped in the form of chaotic

attractors. Accordingly, the attractor placed on Fig. 6

is a result of the rotation and mirror reflection of the

attractor on Fig. 5.

3.1 Impact of kinematic excitation

on the dynamics of the spherical pendulum

The dynamics of the spherical pendulum model,

considered in the work, is significantly determined

by the external excitation forced into a system. For this

reason, the influence of external kinematic excitations

on the trajectory of the load movement was examined.

In particular, the focus was on the parameter charac-

terizing the relationships between the frequencies of

horizontal excitations lx. The presented bifurcation

diagrams, plotted for the u coordinate responsible for

the rotation of the payload in the xy plane, were

generated assuming the initial conditions:

u(0) = 0.00001, _u 0ð Þ = 0, w(0) = 0, _w 0ð Þ = 0.

For lx= n, n integer (Fig. 7), the chaotic motion

zones are shifted toward lower frequencies. Until the

unpredictable chaotic solutions appear, the time

responses of the generalized coordinates reflect 1T-

periodic vibrations. It is worth noting that in the

considered range of the control parameter variability

x, the geometric structure of bifurcation diagrams

does not change significantly because periodic solu-

tions with low periodicity dominate outside the

chaotic motion zones x[1. The case below is

examined when the frequency ratio of horizontal

kinematic excitations is given by the relation lx = 1/n.

The bifurcation diagrams (Fig. 8) clearly show that

in the case of lx equal to the reciprocal of an integer,

the system’s solution is represented by vibrations

whose periodicity is determined by the denominator of

the defining relation l. This situation occurs until the

dimensionless frequency x does not reach the chaotic

motion zone. It is also worth noting that in the range

interval x[\ 1,2[ , the fixed points of the Poincaré

cross sections are closer to each other. In addition,

regardless of the value of the parameter lx = 1/n,

unpredictable system responses appear roughly at

x & 2.1. If the dimensionless frequency x goes

outside the chaotic motion zone, the periodicity of the

solution doubles. As in the case analyzed previously,
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the situation occurs when the ratio of kinematic

excitation frequency is given in the form of a rational

number and defined by the relation lx = n1/n2. The

periodicity of the solution for this case is also

determined by the number appearing in the denomi-

nator, the relation defining the lx factor (Fig. 9). In

contrast to the cases considered so far, the situation is

presented in relation to chaotic motion zones because

on the bifurcation diagrams drawn out the zones of

unpredictable solutions increased in width. The width

of the zones of unpredictable solutions increases if the

fractional part of the ratio of kinematic excitations

tends to unity.

So far, cases have been considered when the

parameter lx was given in the form of an integer or

rational number. The last possibility of the frequency

of external excitations affecting the spherical pendu-

lum is chance when the frequency ratio lx ¼ xX

xY
is an

irrational number. Sample bifurcation diagrams plot-

ted for irrational values of the parameter lx are

presented in the charts (Fig. 10).

The bifurcation diagrams, plotted for the sample

values of irrational numbers, clearly indicate an

increase in the range of unpredictable behavior of

the system. In the graphs presented, it is difficult to

identify zones with periodic solutions of low period-

icity. Quasi-periodic solutions can occur only in the

range of very low values of the control parameter x.
The presented results illustrate the impact of the ratio

of the frequency of external excitations on the

periodicity of solutions of the spherical pendulum.

At the same time, the results of model tests will be

limited only to the factor lx based on the number p,
because for the case presented in the previous section

lx = 1=
ffiffiffi
2

p
, we are dealing with solutions with very

high periodicity. Such high periodicity suggests the

presence of quasi-periodic or chaotic solutions in the

whole range of control parameter variability x. It is
reasonable to ask whether the solutions obtained in

relation to lx given by irrational number are quasi-

periodic or periodic with high periodicity. The results

of numerical calculations were depicted in the form of

Poincaré cross sections, which were plotted on the

basis of the Cartesian trajectory of tip mass movement

projected on the xy plane (Fig. 11).

In order to unequivocally state which character is

assumed by the system response, DC correlation

dimensions were calculated for the plotted Poincaré

cross sections. In the case of periodic solutions, the

correlation dimension takes values close to zero. With

regard to quasi-periodic solutions, the value of the DC

indicator is on the level of one.

3.2 Identification of multiple solutions

in the vicinity of chaotic motion zones

We limit the test results included in this section to the

case of lx = 2 because the similar results are obtained

for the state of lx = 0.5, shifted with respect to the

frequency axis. The modeling tests were carried out

for the considered ranges of changes in the control

parameter x to identify coexisting solutions. Coexist-

ing multiple periodic solutions were identified by

searching a four-dimensional phase space (u, _u,w, _w).
Each periodic solution was assigned a four-element set

of initial conditions which was still the basis for

plotting the three-dimensional Cartesian trajectory

along which the inertial element of the spherical

pendulum travels. If the dimensionless frequency of

external forcing x is in the range from 0 to about

0.725, there is a single 1T-periodic solution. On the

other hand, we deal with two coexisting Cartesian

trajectories of payload movement in the range

x[\ 0.725, 0.818[, and their periodicity is corre-

lated with the bifurcation diagram (Fig. 5). Examples

of their graphic images are illustrated in the charts

(Fig. 12). It should be signaled here that the symmetry

of coexisting solutions, relative to the xz plane, is not

caused by the symmetrical location of the initial

conditions because this fact leads to the same Carte-

sian trajectory. If we interact the system with the

frequency x = 0.775, we deal with two symmetrical

1T-periodic solutions, which are mapped with the

initial conditions: the first solutions u = - 3.0032,

_u = - 0.8383, w = - 0.3474, _w = 0.2775 and the

second ones: u = 2.8072, _u = - 0.9641,

w = - 0.9973, _w = 0.2899 (Fig. 12a), whereas the

initial conditions characterizing the 2T-period solu-

tions graphically illustrated (Fig. 12b) take the values:

bFig. 5 Trajectories of the payload motion referred to the

bifurcation diagram (see the inset) with respect to the coordinate

w against x, for parameter values: lx= 2 and P = 0.75 and

nodal initial conditions. The central red lines indicate the

excitation Lissajous route of the pendulum support, while

Poincaré points are denoted in black. (Color figure online)
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first u = - 2.7958, _u = - 0.9903, w = - 0.2187,
_w = 0.2809 and second: u = - 2.7514,

_u = - 1.0662, w = - 1.0969, _w = 0.2457.

Sample detailed results of the simulation tests to

illustrate coexisting multiple solutions related to

specific dimensionless frequencies x are shown in

the diagram (Fig. 13). Much more multiple solutions

are observed in the vicinity of zones where chaotic

motion occurs. Sample results of the modeling tests

were referred to the bifurcation diagram. If the system

is affected by external excitation with a frequency of

bFig. 6 Trajectories of the payload motion referred to the

bifurcation diagram (see the inset) lx= 0.5 and P = 0.75. The

central red lines indicate the excitation Lissajous route of the

pendulum support, while Poincaré points are denoted in black.

(Color figure online)

Fig. 7 Bifurcation diagrams plotted for different values of the frequency ratio of horizontal kinematic excitations lA = 1: a lx =3,

b lx =4, c lx =5, d lx =6

Fig. 8 Bifurcation diagrams plotted for different values of the frequency ratio of horizontal kinematic excitations lA = 1: a lx =1/3,

b lx =1/4, c lx =1/5, d lx =1/6
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x = 0.83, two symmetrical chaotic solutions coexist.

At this point, we assume that the numerical values

defining the initial conditions of individual system

responses will be limited to the cases of periodic

solutions only. The relatively small increase in

frequency x to 0.833 means that motion of load in

the Cartesian space can take four different forms and

two of them take the form of periodic motion with a

periodicity of 3T. In the diagram (Fig. 13), these

Cartesian trajectories are marked in blue

(u = - 2.8078, _u = - 0.8874, w = - 0.4644,
_w = 0.3292) and red (u = - 2.7163, _u = - 1.0899,

w = - 1.1293, _w = 0.24). The other two data are as

chaotic motion. It is worth noting here that both

periodic and chaotic symmetrical trajectories are

relative to the xz plane and, moreover, chaotic

trajectories are ‘‘limited’’ by periodic trajectories. At

Fig. 9 Bifurcation diagrams plotted for different values of the frequency ratio of horizontal kinematic excitations lA = 1: a lx = 2/3,

b lx =3/2, c lx = 2/5, d lx =5/2, e lx =3/4, f lx =4/3, g lx =3/5, h lx =5/3
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this frequency of extortion, the bifurcation diagram

does not show the presence of chaotic motion. This

situation occurs because the bifurcation diagram

reproduces the dynamics of the spherical pendulum

with zero initial conditions.

A similar situation occurs when x = 0.837, but

here periodic solutions represented in blue

(u = - 2.8402, y = - 0.9037, w = - 0.5129, _w =

0.3349) and red (u = 2.7064, _u = - 1.0995, w =

-1.1398, _w = 0.2377) have a periodicity of 6T. Only

two symmetrical chaotic solutions occur when the

frequency of the external motion source is 0.846. Two

coexisting periodic solutions with 4T periodicity

occur at a frequency of x = 0.85. The first solution

mapped in blue is determined by the initial conditions

(u = - 2.9636, _u = - 0.9605, w = - 0.6554, _w =

0.3354). The second one, represented in red, sets the

initial conditions (u = 2.6722, _u = - 1.1561, w =

-1.1705, _w = 0.2223). Multiple solutions that are not

symmetrical to each other most often occur in the

vicinity of chaotic motion zones.

With regard to the frequency of external excita-

tions, given as irrational numbers, coexisting solutions

for selected values of dimensionless frequency are

presented. In the case of the frequency of kinematic

excitations lx=1/p interacting in the xy plane, coex-

isting solutions are observed in the range x[\ 1.95,

2.65[. At this point, the two cases will be considered

only. We claim, however, that in the range of low

values of the control parameterx, the load swing from
the horizontal axis is much smaller than the one in the

solutions obtained when the parameter lx is defined

by a rational number. However, this situation occurs

for lx=1/p because for the cases illustrated in the

diagrams (Fig. 10a, b), the ‘‘working’’ space of the

load trajectory is comparable or smaller than the space

for the coefficient determined by a rational number.

The ‘‘working’’ space is understood as points located

on the surface of the sphere with a radius L.

Three solutions coexist at the dimensionless fre-

quency x = 2: two of them are quasi-periodic with a

periodicity of 20T and the third one corresponds to

chaotic motion (Fig. 14a). It is worth noting that the

chaotic solution is characterized by a significantly

Fig. 10 Bifurcation diagrams plotted for different values of frequency ratio of horizontal kinematic excitations lA = 1: a lx = p, b
lx=1/p, c lx =

ffiffiffi
2

p
, d lx =1=

ffiffiffi
2

p

123

Dynamic response of the spherical pendulum



smaller pendulum deviation from the z axis. If the

dimensionless frequency x increases to 2.4, we also

deal with three coexisting solutions, i.e., two quasi-

periodic ones with a 24T periodicity and one chaotic

(Fig. 14b).

4 Summary and conclusions

The oscillations of a spherical pendulum with a

horizontal excitation were analyzed by means of

phase portraits, Poincare cross sections with their

probability densities, bifurcation diagrams and Lya-

punov exponents. In particular, we studied sub- and

super-harmonic (Lissajous) with respect to x and

y horizontal excitation. The response amplitude was

growing with the frequency of excitation leading to

series of period doubling bifurcations and finally the

transition to the chaotic solution. As expected, the

variation in the phase of the Lissajous type of

kinematic excitation does not change much the

solutions. Furthermore, for the same system

Fig. 11 Poincaré cross sections of 3d Cartesian trajectories projected to the x–y plane lA= 1: a lx =1=p, b lx =1=
ffiffiffi
2

p
. The shadow

corresponds to the PDF (as defined in Eq. 7)
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parameters the topology of periodic trajectories with

different phases in excitation coincides. The chaotic

solution is realized for a fairly high frequency. Note

that this solution is characterized by the nonzero

winding (which refers to the node x = 0 and y = 0)

number which reflects the nonlinear composition of

rotation and oscillation modes.

In handling machines such as cranes, the executive

mechanisms should be controlled in such a way that

the positioning procedure of the load goes smoothly.

Bearing in mind the obtained results of the modeling

tests, it is possible to formulate a conclusion about

engineering nature:

• The executive mechanisms of cranes should be

controlled in such a way that the ratio of the

frequency of dynamic interactions takes the integer

value. Parameters of mechanisms settings should

be received so that the working point of the

machine is outside the chaotic motion zone.

• It is absolutely necessary to avoid the case that the

coefficient lx assumes irrational numbers, because

such frequency association favors the induction of

unpredictable phenomena.

Fig. 12 Coexisting Cartesian trajectories lA = 1, lx= 2: a x =0.775, b x =0.825
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Fig. 13 Coexisting Cartesian trajectories related to the bifurcation diagram lA = 1, lx = 2
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