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Abstract

We give a detailed account of the cyclic L∞-algebra formulation of general relativity with cos-

mological constant in the Einstein–Cartan–Palatini formalism on spacetimes of arbitrary dimen-

sion and signature, which encompasses all symmetries, field equations and Noether identities

of gravity without matter fields. We present a local formulation as well as a global covariant

framework, and an explicit isomorphism between the two L∞-algebras in the case of paralleliz-

able spacetimes. By duality, we show that our L∞-algebras describe the complete BV–BRST

formulation of Einstein–Cartan–Palatini gravity. We give a general description of how to ex-

tend on-shell redundant symmetries in topological gauge theories to off-shell correspondences

between symmetries in terms of quasi-isomorphisms of L∞-algebras. We use this to extend

the on-shell equivalence between gravity and Chern–Simons theory in three dimensions to an

explicit L∞-quasi-isomorphism between differential graded Lie algebras which applies off-shell

and for degenerate dynamical metrics. In contrast, we show that there is no morphism between

the L∞-algebra underlying gravity and the differential graded Lie algebra governing BF theory

in four dimensions.
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1 Introduction

Recent developments in string theory have suggested that the low-energy effective dynamics of
closed strings in non-geometric flux compactifications may be governed by noncommutative and
even nonassociative deformations of gravity [1–6]. The framework of nonassociative differential
geometry was developed in this context in [7–9]. However, the metric aspects of the theory have
proved more difficult to develop fully; in particular, a suitable generalization of the Einstein–Hilbert
action is not known. On the other hand, noncommutative and nonassociative deformations of gravity
are possible to study in the Einstein–Cartan formulation [10, 11], and this is the main motivation
behind the present paper: We wish to understand the symmetries of these deformed gravity theories,
their field equations and their Lagrangian formulations.

One possible path towards systematically understanding the symmetries and dynamics of non-
commutative and nonassociative gravity is through the language of L∞-algebras. L∞-algebras are
generalizations of differential graded Lie algebras with infinitely-many graded antisymmetric brack-
ets, related to each other by higher homotopy versions of the Jacobi identity. Their first appearence
in the physics literature can be traced back to higher spin gauge theories, where closure of the gauge
algebra necessitates using field dependent gauge parameters [12]. They first appeared systemati-
cally in closed bosonic string field theory, where they govern the “generalized” gauge symmetries
and dynamics of the theory [13]: both the gauge transformations and field equations of the theory
involve infinitely-many higher brackets of a cyclic L∞-algebra. They were systematically treated in
the mathematics literature [14], where they were shown to be dual to differential graded commu-
tative algebras. In [15] it was suggested that the complete data of classical field theories fit into
truncated versions of L∞-algebras with finitely many non-vanishing brackets, again encoding both
gauge transformations and dynamics; the prototypical examples are pure gauge theories such as
Yang–Mills theory and Chern–Simons theory. This was shown much earlier by [16] to be a conse-
quence of the duality with the BV–BRST formalism, the details of which were further explained
recently by [17]. Indeed, the BV–BRST complex is the familiar physics incarnation of the duality
between differential graded commutative algebras and L∞-algebras: One may directly convert the
BV complex of a classical field theory to an L∞-algebra, and vice versa. This explains why the “gen-
eralized” gauge symmetries and dynamics of every classical perturbative field theory are organised
by an underlying L∞-algebra structure.1

The framework of L∞-algebras naturally seems to allow the possibility for encoding noncommu-
tativity and nonassociativity, particularly the covariance of curvature fields and closure of the gauge
algebras which no longer follow the usual classical rules in general. Indeed, L∞-algebras are known
to play a crucial role in deformation theory, a famous example being Kontsevich’s formality theorem
in deformation quantization whose proof is based on L∞-quasi-isomorphisms of differential graded
Lie algebras [18]. It was shown in [19, 20] that noncommutative and nonassociative versions of the
standard gauge theories fit the same prescription as their classical counterparts, though typically
with infinitely-many brackets. This suggests the possibility of encoding nonassociative gravity in
the language of L∞-algebras, a setting where the symmetries and dynamics would become more
transparent and perhaps an action functional could even be identified. However, there is even more
power in the approach: The L∞-algebra formulation can also treat non-Lagrangian field theories,
which have no action principle.

Classical general relativity on a d-dimensional manifold M with metric g and dynamics governed

1This holds only for polynomial field theories whose underlying spaces of fields are vector spaces or affine spaces.
Otherwise, one is restricted to the pertubation theory around a classical solution.
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by the Einstein–Hilbert action functional

SEH(g) =
1

2κ2

∫

M

(R − 2Λ)
√−g ddx (1.1)

cannot be directly interpreted as a gauge theory of principal bundle connections. Of course, it does
define a ‘generalized’ gauge theory in a certain extended sense whose symmetries are diffeomorphisms
of M , and the corresponding BV formalism can be developed as in e.g. [21]. However, this requires
working on the space of non-degenerate metric tensors (as does the very definition (1.1)), which is an
open subset of the vector space of all symmetric rank 2 tensors on M , and so does not fit naturally
into an L∞-algebra framework wherein the space of dynamical fields is required to be a vector space.
The way around this is to remember that the L∞-algebra formulation works at the perturbative
level and to linearize the theory by expanding the metric g around a chosen background. The
space of metric fluctuations h is now a vector space, but the L∞-algebra formulation will involve
infinitely-many brackets of h from the expansion of the Einstein equations coming from (1.1) about
the fixed background, as described in [15]; the L∞-algebra approach to general relativity in this
linearized setting is also discussed by [22,23].

To avoid the introduction of an infinity of brackets, one may instead appeal to the Einstein–
Cartan formulation which rewrites general relativity as a gauge theory on a principal bundle over M ;
the corresponding action is the Palatini action whose definition allows for degenerate configurations,
hence having a linear space of fields. This is the theory that we shall work with in this paper; we
call it the Einstein–Cartan–Palatini (ECP) formulation of gravity.2 The purpose of this paper is
then twofold. Firstly, we will express ECP gravity in the framework of L∞-algebras, which should
be familiar to experts in the BV formalism, but perhaps not to a broader audience; the BV–BRST
formulation in four dimensions is developed in [24] and the L∞-algebras we present in d = 4 may
also be obtained by direct dualization, one of which we show explicitly. Working in the framework
of L∞-algebras, including degenerate metrics, allows for inversion up to homotopy of the relevant
morphisms, a fact we make use in the main text. The physical (or otherwise) nature of degenerate
solutions has been long studied, see for instance [25] [26] [27], but we shall not concern ourselves with
this matter in this paper. Secondly, the formalism of this paper is the first step towards setting up a
framework for a new approach to noncommutative and nonassociative deformations of gravity, and
a larger class of theories satisfying a certain module property. It is in the course of thinking about
this latter problem that we realised a complete and explicit account of the first order formalism for
general relativity in the framework of L∞-algebras does not seem to be available in the literature, and
in the following we focus on the classical case; its noncommutative and nonassociative deformations
will be treated in subsequent papers, see [28] for a glimpse of the advantages of the approach.
We translate the ECP formulation of gravity in arbitrary spacetime dimension d into the L∞-
algebra framework, including the dynamics, the local gauge and diffeomorphism symmetries, and
the corresponding Noether identities; as we work on a Lie algebraic level, the signature of spacetime
has no bearing on our calculations and we shall usually keep it arbitrary. Our formalism sets the
stage for many future investigations into the role played by L∞-algebras in classical general relativity.
For instance, deformations of the ECP functional and equivalences to other field theories via L∞-
quasi-isomorphisms could be investigated. Furthermore, one can reinterpret and construct on-shell
tree-level graviton scattering amplitudes as brackets for the minimal model corresponding to our
ECP L∞-algebra, along the lines of [23]. Moreover, quasi-isomorphisms have been recently shown to
underlie spontaneous symmetry breaking in terms of perturbation theory in gauge theories [29], that
is when the underlying L∞-algebras are interepreted as (derived) tangent complexes around classical
solutions. Identifying such equivalences for perturbations of gravity around classical backgrounds,
breaking full diffeomorphism symmetry, is certainly of interest.

2It is also (perhaps more correctly) known as the Einstein–Cartan–Sciama–Kibble theory.
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From the perspective of non-geometric string theory, it is natural to restrict the spacetime
manifold M to flat space Rd, hence all bundles considered are trivial. In this paper we will focus
mostly on non-covariant (local) gauge transformations, which are applicable only on parallelizable
manifolds M . This enables us to make most contact with the existing literature on the ECP
approach to general relativity, where global issues are typically ignored. Under some constraints,
this is not a big restriction. For example, all orientable three-manifolds are parallelizable. In the
initial value problem in general relativity, one usually assumes that the spacetime M is globally
hyperbolic. In four dimensions, global hyperbolicity implies M ≃ R × N , so that if the Cauchy
surface N is orientable then the spacetime M is also parallelizable. However, one can also consider
more general spacetime manifolds where this approach is insufficient. We shall address this point
in the following and demonstrate how to modify the L∞-algebra formulation to a global covariant
structure, which illustrates the power of working in the full L∞-algebra picture; for example, while
the local dynamics of three-dimensional general relativity can be formulated entirely in terms of
differential graded Lie algebras, the covariant framework requires extending to the larger category
of L∞-algebras as higher brackets are introduced. The covariant structure we describe is essentially
dual to the BV-BRST formalism developed in [24], and in this sense should be viewed as a review,
however in the L∞-algebra picture we clarify the geometric meaning behind the properties of the
covariant Lie derivatives and different terms appearing in the BV differential.

Nevertheless, the non-covariant L∞-algebra structure for parallelizable spacetimes will avoid the
global issues involved when twisting the framework to noncommutative principal bundles [28]. The
global approach that we present in this paper would be much more involved from the perspective
of twist deformation quantization, where one would have to deal with finite noncommutative gauge
transformations as putative “transition functions”. Furthermore, the noncommutative theory devel-
oped in [28] and subsequent papers will be viewed as a low-energy effective theory of gravity which
encodes corrections due to noncommutativity. Since this asymptotic expansion of the deformation
quantization is formal, and usually only makes sense on affine spaces, global issues are ignored from
the outset so that the extraction of explicit first order corrections is immediate.

Summary of results and outline

The main results and outline of the remainder of this paper are as follows. Sections 2 and 3
review the main background material needed in the rest of the paper. In Section 2 we introduce
the basic notions surrounding cyclic L∞-algebras and their morphisms that we will use, and how
they completely determine the symmetries and dynamics of classical perturbative field theories with
generalized gauge symmetries; we further describe the duality with differential graded commutative
algebras which connects the L∞-algebra formalism with the BV–BRST formalism. In Section 3 we
introduce the geometric formulation of Einstein–Cartan–Palatini gravity with cosmological constant
Λ in arbitrary spacetime dimension d and signature, including a description of its local gauge and
diffeomorphism symmetries, its action functional and field equations, and the corresponding Noether
identities.

In Section 4 we consider the L∞-algebra formulation of a simple class of topological field the-
ories that are related to our gravity theories, and which have gauge and shift symmetries. The
L∞-algebras in these instances are differential graded Lie algebras. By virtue of their topological
character, these theories are diffeomorphism-invariant, but diffeomorphisms are redundant symme-
tries: they are equivalent on-shell to local gauge and shift transformations with field dependent
parameters. We demonstrate how to extend this correspondence between symmetries to an off-shell

equivalence by explicitly constructing a quasi-isomorphism to an extended L∞-algebra. Working in
the larger category of L∞-algebras is crucial for this equivalence, as the morphism is not a quasi-
isomorphism of differential graded Lie algebras. In dimensions d ≥ 4 these theories also exhibit
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a simple instance of on-shell higher gauge symmetries. These observations are used in our later
attempts to connect ECP theories with topological gauge theories in the L∞-algebra framework.

In Section 5, we present our main construction of the cyclic L∞-algebra determining ECP gravity,
in any dimension d and spacetime signature. We give an explicit construction of the brackets and
the cyclic pairing underlying both local gauge and diffeomorphism symmetries, the field equations
and corresponding Noether identities, and the action functional. The structure of the L∞-algebra
is largely dependent on the spacetime dimension d. For instance, only for d = 3 is the L∞-algebra
a differential graded Lie algebra. We proceed in Section 6 to review the BV–BRST formalism for
ECP gravity in arbitrary dimension and signature, developed recently in [24] for d=4, and show
that it is dual to our formulation in terms of L∞-algebras.

The construction works either locally on M , or globally if the spacetime M is parallelizable. We
discuss the incompatibility issues with this construction in the case of non-parallelizable spacetimes
where the underlying bundles need not be trivial, and more generally (even when all bundles are
trivial) the incompatibility of infinitesimal diffeomorphisms of the physical spacetime with finite
gauge transformations. We rectify the problem by defining a ‘covariant’ version of our L∞-algebra,
dual to the construction of [24], which encompasses the symmetries and dynamics of ECP gravity on
general spacetimes with general bundles, and which is compatible with finite gauge transformations.
We review the geometric meaning of the “covariant” Lie derivative appearing, which has already been
widely used in the first order literature and beyond, and clarify its relation with the new brackets.
The covariant framework illustrates the necessity of working in the category of L∞-algebras: As
it always introduces higher brackets, the covariant L∞-algebra is never a differential graded Lie
algebra. It also demonstrates the importance of including Noether identities into the underlying
cochain complex in order to capture the covariance of the Euler–Lagrange derivatives of the theory.
For parallelizable spacetimes, we present a (strict) isomorphism between the local and covariant
L∞-algebras, dual to the symplectomorphism for four-dimensional gravity in the BV formalism
developed in [24].

We conclude by applying our constructions to some lower-dimensional cases of particular in-
terest. In Section 7 we look at three-dimensional gravity, whose underlying ECP L∞-algebra is a
differential graded Lie algebra. In this case, gravity is known to be equivalent to a Chern–Simons
gauge theory, where the diffeomorphism symmetry is recovered on-shell by the gauge symmetries
of Chern–Simons theory. Using the framework we develop in Section 4, we construct an explicit
L∞-quasi-isomorphism between the differential graded Lie algebras of the two theories, which ex-
tends the equivalence both off-shell and to degenerate metrics. This problem is also addressed
within the strictly non-degenerate setting using the BV formalism in [30] by providing a (different)
symplectomorphism to BF theory. Our result may be viewed as an extension to the degenerate
sector. The equivalence is also addressed in [31] using stacks. Finally, in Section 8 we consider
four-dimensional gravity, whose underlying ECP L∞-algebra is no longer a differential graded Lie
algebra. Abstract strictification theorems [32] imply that any L∞-algebra is quasi-isomorphic to a
differential graded Lie algebra, though in practise the construction of the quasi-isomorphism is very
difficult and not very convenient to make explicit. Applying this to four-dimensional gravity, the
strictification of its ECP L∞-algebra could possibly correspond to some deformation of BF theory
in four dimensions, as reviewed in [33]. Indeed, we show that there cannot exist any L∞-morphism
between the L∞-algebra underlying four-dimensional gravity and the differential graded Lie algebra
of BF theory.

Two appendices at the end of the paper contain illustrative examples of the details involved in
the long cumbersome calculations required to check the various homotopy relations for the ECP L∞-
algebras and the L∞-morphisms that we present in the main text, and to establish the duality with
the BV–BRST complex of ECP gravity. In view of the duality, one may start from the BV-BRST
framework and derive the algebras we present. However, the L∞-algebras presented in the text have
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been constructed using the bootstrap approach, unless otherwise explicitly noted. The duality then
served as an additional consistency check with known results. Indeed, this work serves as a starting
point in twisting the corresponding L∞-algebras and one needs not be fluent in BV–BRST to follow
the procedure [28], which applies to a general class of theories whose L∞-algebras are modules of
a certain Hopf algebra. For this reason, we present the material starting directly from the L∞-
algebra picture while making contact with BV–BRST later on. We hope these detailed calculations
are instructive and provide a useful reference for further investigations into the L∞-algebra picture
of gravity. They are utilized extensively in [28] and subsequent papers.

2 L∞-algebras, differential graded algebras and field theory

In this section we review the required algebraic constructions, and their applications to classical
field theories, that are needed in this paper.

2.1 L∞-algebras

We start by introducing notions of L∞-algebras, which form the central concept in this paper.

Brackets and homotopy relations

An L∞-algebra is a Z-graded vector space V =
⊕

k∈Z Vk equipped with graded antisymmetric
multilinear maps

ℓn : ∧nV −→ V , v1 ∧ · · · ∧ vn 7−→ ℓn(v1, . . . , vn)

for each n ≥ 1, which we call n-brackets. The graded antisymmetry translates to

ℓn(. . . , v, v
′, . . . ) = −(−1)|v| |v

′| ℓn(. . . , v
′, v, . . . ) , (2.1)

where we denote the degree of a homogeneous element v ∈ V by |v|. The n-bracket is a map of
degree |ℓn| = 2− n, that is

∣∣ℓn(v1, . . . , vn)
∣∣ = 2− n+

n∑

j=1

|vj | .

The n-brackets ℓn are required to fulfill infinitely many identities Jn(v1, . . . , vn) = 0 for each
n ≥ 1, called homotopy relations, with

Jn(v1, . . . , vn) :=
n∑

i=1

(−1)i (n−i)
∑

σ∈Shi,n−i

χ(σ; v1, . . . , vn) (2.2)

× ℓn+1−i

(
ℓi(vσ(1), . . . , vσ(i)), vσ(i+1), . . . , vσ(n)

)
,

where, for each i = 1, . . . , n, the second sum runs over (i, n − i)-shuffled permutations σ ∈ Sn of
degree n which are restricted as

σ(1) < · · · < σ(i) and σ(i+ 1) < · · · < σ(n) .

The Koszul sign χ(σ; v1, . . . , vn) = ± 1 is determined from the grading by

vσ(1) ∧ · · · ∧ vσ(n) = χ(σ; v1, . . . , vn) v1 ∧ · · · ∧ vn .
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For example, the first three identities are given by

0 = J1(v) = ℓ1
(
ℓ1(v)

)
,

0 = J2(v1, v2) = ℓ1
(
ℓ2(v1, v2)

)
− ℓ2

(
ℓ1(v1), v2

)
− (−1)|v1| ℓ2

(
v1, ℓ1(v2)

)
,

0 = J3(v1, v2, v3) (2.3)

= ℓ1
(
ℓ3(v1, v2, v3)

)

+ ℓ3
(
ℓ1(v1), v2, v3

)
+ (−1)|v1| ℓ3

(
v1, ℓ1(v2), v3

)
+ (−1)|v1|+|v2| ℓ3

(
v1, v2, ℓ1(v3)

)

+ ℓ2
(
ℓ2(v1, v2), v3

)
+ (−1)(|v1|+|v2|) |v3| ℓ2

(
ℓ2(v3, v1), v2

)
+ (−1)(|v2|+|v3|) |v1| ℓ2

(
ℓ2(v2, v3), v1

)
.

The first identity states that the map ℓ1 : V → V is a differential making V into a cochain complex

· · · ℓ1−−−→ Vk
ℓ1−−−→ Vk+1

ℓ1−−−→ · · · .
The second identity states that ℓ1 is a graded derivation with respect to the 2-bracket ℓ2, that is,
ℓ2 : Vk ∧Vl → Vk+l is a cochain map. For ℓ3 = 0 the third identity is just the graded Jacobi identity
for the 2-bracket ℓ2, while for ℓ2 = 0 it gives the graded Leibniz rule for the differential ℓ1 with
respect to the 3-bracket ℓ3; in general it expresses the coherence condition that makes the Jacobiator
for ℓ2 on Vk ∧Vl ∧Vm → Vk+l+m−1 a cochain homotopy, that is, the Jacobi identity is violated by a
homotopy. In this sense L∞-algebras are (strong) homotopy deformations of differential graded Lie
algebras which are the special cases where the ternary and all higher brackets vanish: ℓn = 0 for
all n ≥ 3. In general, the homotopy relations for n ≥ 3 are generalized Jacobi identities; for later
use, we note that the identity J4 = 0 is given by

J4(v1, v2, v3, v4) = ℓ1
(
ℓ4(v1, v2, v3, v4)

)

− ℓ4
(
ℓ1(v1), v2, v3, v4

)
− (−1)|v1| ℓ4

(
v1, ℓ1(v2), v3, v4

)

− (−1)|v1|+|v2| ℓ4
(
v1, v2, ℓ1(v3), v4

)
− (−1)|v1|+|v2|+|v3| ℓ4

(
v1, v2, v3, ℓ1(v4)

)

− ℓ2
(
ℓ3(v1, v2, v3), v4

)
+ (−1)|v3| |v4| ℓ2

(
ℓ3(v1, v2, v4), v3

)

+ (−1)(1+|v1|) |v2| ℓ2
(
v2, ℓ3(v1, v3, v4)

)
− (−1)|v1| ℓ2

(
v1, ℓ3(v2, v3, v4)

)

+ ℓ3
(
ℓ2(v1, v2), v3, v4

)
− (−1)|v2| |v3| ℓ3

(
ℓ2(v1, v3), v2, v4

)

+ (−1)(|v2|+|v3|) |v4| ℓ3
(
ℓ2(v1, v4), v2, v3

)
+ ℓ3

(
v1, ℓ2(v2, v3), v4

)

+ (−1)|v3| |v4| ℓ3
(
v1, ℓ2(v2, v4), v3

)
+ ℓ3

(
v1, v2, ℓ2(v3, v4)

)
. (2.4)

L∞-morphisms

The natural notion of a homomorphism from an L∞-algebra (V, {ℓn}) to another L∞-algebra
(V ′, {ℓ′n}) consists of a collection of multilinear graded antisymmetric maps

ψn : ∧nV −→ V ′ , v1 ∧ · · · ∧ vn 7−→ ψn(v1, . . . , vn)

of degree |ψn| = 1 − n for each n ≥ 1, which satisfies an appropriate identity intertwining the two
sets of brackets. The required identity is specified through the somewhat cumbersome relations

n∑

i=1

(−1)i (n−i)
∑

σ∈Shi,n−i

χ(σ; v1, . . . , vn) ψn+1−i

(
ℓi(vσ(1), . . . , vσ(i)), vσ(i+1), . . . , vσ(n)

)

=

n∑

k=1

1

k!
(−1)

1
2
k (k−1)

∑

i1+···+ik=n

∑

σ∈Shi1,...,ik

(−1)Z(σ;v1 ,...,vn) χ(σ; v1, . . . , vn) (2.5)

× ℓ′k
(
ψi1(vσ(1), . . . , vσ(i1)), . . . , ψik(vσ(n−ik+1), . . . , vσ(n))

)
,
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where, for each k = 1, . . . , n, the fifth sum runs over (i1, . . . , ik)-shuffled permutations σ ∈ Sn which
preserve the ordering within each block of length i1, . . . , ik of the partition of n = i1 + · · ·+ ik. The
additional sign factor is given by

Z(σ; v1, . . . , vn) =

k−1∑

j=1

(k − j) ij +

k∑

j=2

(1− ij)

i1+···+ij−1∑

l=1

∣∣vσ(l)
∣∣

for σ ∈ Shi1,...,ik . Such a homomorphism is called an L∞-morphism. Notice that the left-hand side
of (2.5) is formally identical to the homotopy relations (2.2) with ℓn+1−i replaced by ψn+1−i.

The first condition for n = 1 (internal degree 1) is given by

ψ1

(
ℓ1(v)

)
= ℓ′1

(
ψ1(v)

)
,

which states that the map ψ1 : V → V ′ is a cochain map with respect to the n = 1 differentials,
that is, it defines a map of the cochain complexes underlying the L∞-algebras that acts degreewise
as

· · · ℓ1
// Vk

ℓ1
//

ψ1

��

Vk+1
ℓ1

//

ψ1

��

· · ·

· · · ℓ′1
// V ′
k

ℓ′1
// V ′
k+1

ℓ′1
// · · ·

and so descends to a homomorphism of the corresponding cohomology groups

ψ1∗ : H
•(V, ℓ1) −→ H•(V ′, ℓ′1) . (2.6)

The second condition for n = 2 (internal degree 0) reads

ψ1

(
ℓ2(v1, v2)

)
− ℓ′2

(
ψ1(v1), ψ1(v2)

)
= ℓ′1

(
ψ2(v1, v2)

)
+ ψ2

(
ℓ1(v1), v2

)
+ (−1)|v1| ψ2

(
v1, ℓ1(v2)

)
,

which means that ψ1 preserves the 2-brackets up to a homotopy given by ψ2. In particular, if ψn = 0
for all n ≥ 2, then ψ1 generalizes a homomorphism of differential graded Lie algebras. On the other
hand, even if the underlying L∞-algebras are differential graded Lie algebras, an L∞-morphism is
not generally a morphism of differential graded Lie algebras. The third condition for n = 3 (internal
degree −1) is

ψ3

(
ℓ1(v1), v2, v3

)
+ (−1)|v1| ψ3

(
v1, ℓ1(v2), v3

)
+ (−1)|v1|+|v2| ψ3(v1, v2, ℓ1(v3)

)
− ℓ′1

(
ψ3(v1, v2, v3)

)

+ ψ1

(
ℓ3(v1, v2, v3)

)
− ℓ′3

(
ψ1(v1), ψ1(v2), ψ1(v3)

)

= (−1)|v1| ℓ′2
(
ψ1(v1), ψ2(v2, v3)

)
− (−1)|v2| (1+|v1|) ℓ′2

(
ψ1(v2), ψ2(v1, v3)

)

+ (−1)|v3| (1+|v1|+|v2|) ℓ′2
(
ψ1(v3), ψ2(v1, v2)

)

− ψ2

(
ℓ2(v1, v2), v3

)
− (−1)(|v1|+|v2|) |v3| ψ2

(
ℓ2(v3, v1), v2)

)
− (−1)(|v2|+|v3|) |v1| ψ2

(
ℓ2(v2, v3), v1

)
.

In general, an L∞-morphism preserves the n-brackets up to homotopy.

From the perspective of the underlying cochain complexes, the natural notion of isomorphism
between L∞-algebras would be an L∞-morphism whose induced map (2.6) is an isomorphism on the
cohomology of the complexes; in this case we call the collection {ψn} an L∞-quasi-isomorphism and
say that the L∞-algebras are quasi-isomorphic. Quasi-isomorphism defines an equivalence relation
on the broader set of all L∞-algebras [18], in contrast to the category of differential graded Lie
algebras where not every quasi-isomorphism has a homotopy inverse. A stronger notion demands
that the degree 0 cochain map ψ1 : V → V ′ itself is an isomorphism of the underlying vector spaces;
in this case the collection {ψn} is called an L∞-isomorphism and the L∞-algebras are said to be
isomorphic. From an L∞-isomorphism one can reconstruct all brackets of one L∞-algebra from the
brackets of the other by using the relations (2.5) if the inverse ψ−1

1 is known explicitly. Both notions
of isomorphism between L∞-algebras will play a role in this paper.
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Cyclic pairings

We will be particularly interested in the case where an L∞-algebra (V, {ℓn}) is further endowed
with a graded symmetric non-degenerate bilinear pairing 〈−,−〉 : V ⊗V → R which is cyclic in the
sense that

〈v0, ℓn(v1, v2, . . . , vn)〉 = (−1)n+(|v0|+|vn|)n+|vn|
∑n−1

i=0 |vi| 〈vn, ℓn(v0, v1, . . . , vn−1)〉

for all n ≥ 1. This is the natural notion of an inner product on an L∞-algebra, and if such a pairing
exists the resulting algebraic structure is called a cyclic L∞-algebra. If in addition the pairing is
odd, say of degree −p, then the only non-vanishing pairings are 〈−,−〉 : Vk ⊗ Vp−k → R for 2k < p

and the cyclicity condition simplifies to

〈ℓn(v0, v1, . . . , vn−1), vn〉 = (−1)(|v0|+1)n 〈v0, ℓn(v1, . . . , vn)〉 .

Given L∞-algebras (V, {ℓn}) and (V ′, {ℓ′n}) which are endowed with cyclic pairings 〈−,−〉 and
〈−,−〉′, then an L∞-morphism {ψn} between them is cyclic if it additionally preserves the pairing
in the sense that

〈ψ1(v1), ψ1(v2)〉′ = 〈v1, v2〉 ,

and
n−1∑

i=1

(−1)i−1+(n−i−1)
∑i

j=1 |vj | 〈ψi(v1, . . . , vi), ψn−i(vi+1, . . . , vn)〉′ = 0 , (2.7)

for all n ≥ 3 and v1, . . . , vn ∈ V .

2.2 Differential graded commutative algebras

There is a duality between semifree differential graded commutative algebras and L∞-algebras of
finite type, which we describe following the well-known mathematical treatment, see e.g. [14, 34].
A differential graded commutative algebra is a graded commutative algebra A =

⊕
k∈Z Ak, whose

multiplication we denote by · , which is endowed with a differential of degree 1 which is a graded
derivation, that is, a linear map d : Ak → Ak+1 such that d2 = 0 and

d(a · b) = d(a) · b+ (−1)|a| a · d(b)

for all a, b ∈ A with a homogeneous. A graded commutative algebra is said to be of finite type if
it is degreewise finite-dimensional; it is called semifree if it is isomorphic to the symmetric tensor
algebra of a graded vector space. Semifree differential graded commutative algebras of finite type
are in one-to-one correspondence with L∞-algebras of finite type [14, 34]. We briefly spell out one
direction of this correspondence which will be of use later on.

Let V =
⊕

k∈Z Vk be a graded vector space. Consider its suspension which is the degree shifted
graded space F := V [1], that is, Fk = Vk+1, and note that the two are related by the trivial
suspension isomorphism which decreases the grading by 1:

s : V −→ F , v 7−→ sv

with |sv| = |v| − 1.3 This induces an isomorphism of antisymmetric and symmetric tensor algebras
respectively, which is given by

s⊗n : ∧nV −→⊙n
F , v1 ∧ · · · ∧ vn 7−→ (−1)

∑n−1
j=1 (n−j) |vj | sv1 ⊙ · · · ⊙ svn

3One can think of the suspension F = V [1] as the tensor product Rs⊗ V with elements sv = s⊗ v, where s is a
fixed degree 1 element which has a dual s−1 with s−1 s = 1 = −s s−1.
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on each tensor power for n ≥ 1 and on homogeneous elements, and extended linearly.

Using these trivial isomorphisms, one may equivalently identify an L∞-algebra structure on V

as a coderivation D of degree 1 on ⊙•
F viewed as a free cocommutative coalgebra,4 such that

D2 = 0. Explicitly, if ∆F :⊙•
F →⊙•

F ⊗⊙•
F is the free coproduct then

∆F ◦D = (D⊗ 1 + 1⊗D) ◦∆F ,

which implies that the coderivation D :⊙•
F →⊙•

F is completely determined by its image in F

according to the decomposition

prF ◦D =
∞∑

n=1

Dn

with degree 1 component maps Dn : ⊙n
F → F , where prF : ⊙•

F → F is the projection to F .
Then the relation to the graded antisymmetric n-brackets defined on V , ℓn : ∧nV → V , is given by

ℓn := s−1 ◦Dn ◦ s⊗n : ∧nV
s⊗n

−−−→⊙n
F

Dn−−−→ F
s−1

−−−→ V . (2.8)

The homotopy relations are then equivalent to D2 = 0.

This coalgebra picture is arguably harder to work with: its main advantage is that the homotopy
relations become simple and natural, and in principle easier to check. Moreover, when V is of finite
type one may unambiguously pass to the dual algebra ⊙•

F ∗ which is a graded commutative algebra
under the usual symmetric tensor product. The coderivation then dualizes to a graded derivation

Q := D∗ :⊙•
F

∗ −→⊙•
F

∗

of degree 1, such that Q2 = 0 if and only if D2 = 0. It follows that an L∞-algebra structure on a
graded vector space of finite type is equivalent to a differential derivation of the symmetric algebra
of its suspended dual vector space.

Another advantage of the coalgebra formulation is that the notion of an L∞-morphism becomes
more natural and transparent. A morphism between two L∞-algebras determined by codifferen-
tial coalgebras (⊙•

F ,D) and (⊙•
F ′,D′) is then given by a cohomomorphism of codifferential

coalgebras:
Ψ :

(⊙•
F ,D

)
−→

(⊙•
F

′,D′
)
,

that is, a degree 0 cohomomorphism of the underlying free cocommutative coalgebras which in-
tertwines the codifferentials: Ψ ◦ D = D′ ◦ Ψ; with the same sign conventions for the components
ψn of Ψ as used in (2.8), this single cohomomorphism is equivalent to the collection of maps {ψn}
defining the L∞-morphism. The dual map Ψ∗ : ⊙•

F ∗ → ⊙•
F ′ ∗ is a degree-preserving algebra

homomorphism which intertwines the corresponding derivations:

Q ◦Ψ∗ = Ψ∗ ◦Q′ .

An L∞-quasi-isomorphism in this picture is then naturally an algebra homomorphism which is an
isomorphism between the degree 0 cohomology groups of the differentials Q and Q′, whereas an
L∞-isomorphism is equivalently a coalgebra isomorphism of the corresponding coalgebras.

Finally, a graded symmetric non-degenerate pairing 〈−,−〉 on V translates into a graded an-
tisymmetric pairing on the suspension F := V [1] defined by 〈−,−〉 ◦ (s−1 ⊗ s−1). Since it is
non-degenerate it qualifies as a graded symplectic pairing on F . This then canonically induces a

4One should actually consider the reduced tensor coalgebra, that is, excluding the zeroth tensor power which is a
copy of R.
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“constant” graded symplectic two-form ω ∈ Ω2(F ), which enables one to thus view F not only
as a graded symplectic vector space but also as a graded symplectic manifold. Cyclicity is then
equivalent to Q-invariance of ω [17]. To get an intuition for the condition (2.7), which is a shifted
version of the condition from [35], consider the case where F is concentrated in degree 0. Then
by restricting a coalgebra morphism Ψ : ⊙•

F → ⊙•
F ′ to the diagonal of ⊙•

F , the condition
that the non-linear smooth map prF ′ ◦ Ψ|F : F → F ′ is a symplectomorphism (of manifolds) is
equivalent to the cyclicity conditions of Section 2.1.

2.3 Generalized gauge field theories

We will now sketch how the algebraic constructions of this section find natural applications to the
treatment of classical field theories. The description we give is meant to provide a small bridge
between the physics community interested in bootstrapping L∞-algebras, the dual BV–BRST con-
struction and the properly rigorous treatment in terms of derived geometry, where the end product
is identified as the tangent complex to a derived stack (at the trivial solution) [36]. The procedure
outlined should be rather viewed as an algorithm in identifying the spaces and brackets of the
algebras in question.

Geometric formulation

In the physical applications of relevance to this paper, the kinematical data of a (classical) field
theory with generalized gauge symmetries on an oriented d-dimensional manifold M5 are encoded
in two vector spaces V0 and V1, which are respectively the vector spaces of (infinitesimal) gauge
parameters and dynamical fields, being typically sections of vector bundles over M. That is, we shall
assume V0 := Ωl(M, C) and V1 := Ωk(M,V) where V, C are vector bundles over M and 0 ≤ l, k ≤ d.6

The gauge transformations acting on the dynamical fields generate a distribution D on V1, which
may not be necessarily involutive on the whole of V1. By ‘generalized’ gauge transformations we
mean that we include symmetries which are not restricted to vertical automorphisms of principal
bundles, and so go beyond the usual realm of standard gauge theory. We shall also supplement
the picture with the vector spaces V2 := Ωd−k(M, V̌ ) and V3 := Ωd−l(M, Č ), where V̌, Č denote
the dual bundles. The physical content of these spaces will be explained below. In practice it is
often convenient to identify the internal dual bundles V̌ , Č with certain isomorphic bundles through
internal non-degenerate pairings entering the definition of field theories; we shall see this explicitly
in the theories considered in later sections.

The dynamics of the field theory is specified by an action functional S : V1 → R, which is a
local function of the fields and their jets that is gauge-invariant: δλS = 0 for all λ ∈ V0, where
δλ = δ ◦ ιλ + ιλ ◦ δ with δ the exterior derivative on V1 and ιλ the contraction with λ ∈ Γ(D)7. Its
variation δS is a section of the cotangent bundle of V1 whose fibers we shall consider of degree 2,
that is δS : V1 → T ∗[−3]V1, where [k] denotes a degree shift by k ∈ Z. Since V1 is a vector space,
we may define its cotangent bundle as the product of V1 with its dual, for which the correct model
in this infinite-dimensional setting is precisely V2 defined above. That is

T ∗[−3]V1 := V1 × V2 . (2.9)

5The discussion applies for non-orientable manifolds, but the pairings appearing in the following should instead
map into the density bundle over M .

6In the case where V1 is an affine space, such as a space of connections, the following discussion is trivially modified
by fixing a reference element.

7We abuse notation slightly and identify the gauge parameter with the vector field it generates on V1.
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In more detail, the variation of the action functional δS : V1 → T ∗[−3]V1, restricted to sections
of compact support, is a map

δS : V1 −→ V1 × V2

acting by δS|A(δA) = 〈δA,F(A)〉 on tangent vectors δA ∈ TAV1 ≃ V1 at a point A ∈ V1 in the space
of fields. The non-degenerate pairing 〈−,−〉 : V1×V2 → R appearing is the natural pairing, that is,
using the duality of the internal bundles and wedging the spacetime form parts to get a top form,
following with an integration over M , while F(A) ∈ V2 denotes the Euler–Lagrange derivatives
of the functional S. Using the above interpretation, we say V2 is the “space of field equations”.
The classical solution space, i.e. “on-shell” configurations, is defined as those A ∈ V1 such that
F(A) = 0. Thus the field equations are enforced by intersecting the image of δS with the image of
the zero section of T ∗V1, which defines the critical Euler–Lagrange locus of the action functional S;
the distribution D is involutive on this locus, that is, the gauge transformations close on-shell.

The natural pairing extends similarly to T ∗[−3]V0 := V0 × V3, where now one may use it to
prove Noether’s second theorem: For all λ ∈ V0, gauge-invariance of the action functional implies

δλS = 〈δλA,F(A)〉 = 0 ,

so that taking the Sturm–Liouville adjoint dA, with respect to the pairing, of δλ viewed as a
differential operator acting on a gauge parameter λ of compact support amounts to 〈λ, dAF(A)〉 = 0.
Here dA acts as a local differential operator on V2, which may depend on the fields, and its image
is valued in V3. By non-degeneracy of the extended pairing, the ‘Bianchi identities’ dAF(A) = 0,
expressing local differential relations among the Euler–Lagrange derivatives for any infinitesimal
local symmetry δλA, hold off-shell, which is simply a reformulation of Noether’s second theorem.
Given the above interpretation, we say V3 is the “space of Noether identities”. The converse of
Noether’s second theorem is a means of recovering gauge symmetries of an action functional S
which may be unknown a priori.8

From this geometric perspective, a classical generalized gauge theory is completely determined
by the moduli space M of its Euler–Lagrange locus F(A) = 0 modulo gauge transformations.
Two gauge theories are then physically equivalent, in the sense that there is a bijection between
their physical states, if the corresponding moduli spaces of solutions to the field equations are
isomorphic: M ≃ M ′. In the case of reducible symmetries9, the graded vector space may be
extended by adjoining V−1 containing the “higher” gauge parameters and V4 its dual containing
the “higher” Noether identities in a similar vein as above. Higher level reducibility parameters and
their duals may also be added, if they occur. Classically this augmentation does not offer much
new information, however it is essential in the dual (quantum) BV-BRST formulation where one is
interested in resolving degeneracies for the purpose of path integral methods.

L∞-algebra formulation

We can translate this geometric picture into the structure of a four-term L∞-algebra by linearizing
the gauge transformations, field equations and Noether identities to obtain the cochain complex

V0
ℓ1−−−→ V1

ℓ1−−−→ V2
ℓ1−−−→ V3 (2.10)

corresponding to the underlying graded vector space V := T ⋆[−3]
(
V0 ⊕ V1

)
, that is

V = V0 ⊕ V1 ⊕ V2 ⊕ V3 .

8See e.g. [37] for the proofs and comparisons of Noether’s first and second theorems, and [38] for their relation to
gauge symmetries in physics.

9For example, in the case where symmetries arise from a group action which is not free, i.e. has non-trivial
stabilisers.
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We then equip this complex with suitable higher brackets corresponding to the non-linear parts of
the theory subject to the homotopy relations in order the recover the full symmetries and dynamics
of the generalized gauge theory.

Given λ ∈ V0 and A ∈ V1, the gauge variations are encoded as the maps A 7→ A+ δλA where

δλA =
∞∑

n=0

1

n!
(−1)

1
2
n (n−1) ℓn+1(λ,A, . . . , A) ∈ V1 , (2.11)

where the brackets involve n insertions of the field A. The Euler–Lagrange derivatives are encoded
as

F(A) =

∞∑

n=1

1

n!
(−1)

1
2
n (n−1) ℓn(A, . . . , A) ∈ V2 , (2.12)

with the covariant gauge variations

δλF =
∞∑

n=0

1

n!
(−1)

1
2
n (n−1) ℓn+2(λ,F , A, . . . , A) ∈ V2 . (2.13)

We define successive applications of gauge variations by

(δλ1 δλ2)A :=

∞∑

n=0

1

n!
(−1)

1
2
n (n+1) ℓn+2(λ2, δλ1A,A, . . . , A) .

The closure relation for the gauge algebra then has the form

[δλ1 , δλ2 ]A = δ[[λ1,λ2]]AA+∆λ1,λ2A , (2.14)

where

[[λ1, λ2]]A = −
∞∑

n=0

1

n!
(−1)

1
2
n (n−1) ℓn+2(λ1, λ2, A, . . . , A) ∈ V0 ,

and

∆λ1,λ2A =

∞∑

n=0

1

n!
(−1)

1
2
(n−2) (n−3) ℓn+3(λ1, λ2,F , A, . . . , A) ∈ V1 .

The distribution D ⊂ TV1 spanned by the gauge parameters is involutive on-shell, that is, when
F(A) = 0, and on this locus the gauge algebra generally depends on the fields A. The homotopy
relations guarantee that the Jacobi identity is generally satisfied for any triple of maps δλ1 , δλ2
and δλ3 . The Noether identities are encoded by

dAF =
∞∑

n=0

1

n!
(−1)

1
2
n (n−1) ℓn+1(F , A, . . . , A) ∈ V3 , (2.15)

which vanishes identically as a consequence of the homotopy relations Jn(A, . . . , A) = 0, for all
n ≥ 1, of the L∞-algebra.

Given two generalized gauge theories with underlying L∞-algebras (V, {ℓn}) and (V ′, {ℓ′n}), an
L∞-morphism {ψn} between them relates their classical moduli spaces M and M ′ in the following
way [17]. A gauge field A ∈ V1 is sent by an L∞-morphism {ψn} into the gauge field

A′(A) =

∞∑

n=1

1

n!
(−1)

1
2
n (n−1) ψn(A, . . . , A) ∈ V ′

1 , (2.16)
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such that the corresponding Euler–Lagrange derivative F(A) ∈ V2 is mapped to

F ′(A′) = F ′(F , A) =
∞∑

n=0

1

n!
(−1)

1
2
n (n−1) ψn+1(F , A, . . . , A) ∈ V ′

2 . (2.17)

It follows that the Euler–Lagrange locus F(A) = 0 is mapped to the Euler–Lagrange locus F ′(A′) =
0. An L∞-morphism also sends gauge orbits into gauge orbits: A gauge variation δλA for λ ∈ V0 is
mapped by {ψn} to the gauge variation δλ′A

′ where

λ′(λ,A) =
∞∑

n=0

1

n!
(−1)

1
2
n (n−1) ψn+1(λ,A, . . . , A) ∈ V ′

0 . (2.18)

It follows that gauge equivalence classes of on-shell solutions F(A) = 0 are sent to gauge equivalence
classes of on-shell solutions F ′(A′) = 0:

A′(A+ δλA) = A′(A) + δ′λ′(λ,A)A
′(A) ,

F ′(F + δλF , A+ δλA) = F ′(F , A) + δ′λ′(λ,A)F ′(F , A) , (2.19)

with the closure relation (2.14) mapping as

A′(A+ δ[[λ1,λ2]]AA+∆λ1,λ2A) = A′(A) + δ′[[λ′1,λ
′
2]]

′
A′+λ

′(λ2,δλ1A)−λ
′(λ1,δλ2A)

A′(A) + ∆′
λ′1,λ

′
2
A′ . (2.20)

In particular, if {ψn} is an L∞-quasi-isomorphism, then the corresponding moduli spaces M and
M ′ of physical states are isomorphic [18,39,40]. However, it is important to note that the converse
is not true, and it may happen that two classical field theories have isomorphic moduli spaces while
their underlying L∞-algebras are not quasi-isomorphic; we shall see some explicit instances of this
later on. The transformations (2.16)–(2.20) are interpreted in terms of Seiberg–Witten maps in [41].

If the symmetries themselves have non-trivial symmetries, that is, there are further gauge re-
dundancies in the description and the gauge symmetries are reducible, then the cochain complex
(2.10) may be extended into negative degrees V−k for k ≥ 1, which are the spaces of “higher gauge
transformations”, together with their duals Vk+3; the space V−1 is the vector space of gauge trans-
formations of the gauge parameters, V−2 contains gauge variations of the gauge transformations of
gauge parameters, and so on. These higher gauge symmetries are encoded as

δ(λ−k−1,A)λ−k =
∞∑

n=0

1

n!
(−1)

1
2
n (n+1) ℓn+1(A, . . . , A, λ−k−1) ∈ V−k , (2.21)

where λ−k ∈ V−k for k ≥ 0. At the classical level in which we are presently working, their inclusion
is purely algebraic and only serves to alter the cohomology H•(V, ℓ1) of the underlying cochain
complex at its extremities, leaving the moduli space M of classical states unchanged.

One way to encode the action functional of the gauge field theory is via a symmetric non-
degenerate bilinear pairing 〈−,−〉 : V ⊗ V → R of degree −3, as described earlier, which makes V
into a cyclic L∞-algebra. More specifically, the pairing is only defined when restricted to compactly
supported sections due to the usual underlying integration. Said otherwise, the pairing is fiber-wise
non-degenerate when viewed as a map into the density bundle. The only non-trivial pairings are

〈−,−〉 : V1 ⊗ V2 −→ R and 〈−,−〉 : V0 ⊗ V3 −→ R ,

and we shall explicitly make use of the cyclicity properties

〈A0, ℓn(A1, A2, . . . , An)〉 = 〈A1, ℓn(A0, A2, . . . , An)〉 (2.22)
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and

〈λ, ℓn+1(E,A1, . . . , An)〉 = −〈E, ℓn+1(λ,A1, . . . , An)〉 (2.23)

for all λ ∈ V0, A0, A1, . . . , An ∈ V1, E ∈ V2 of suitable compact support and n ≥ 1. In this case it is
easy to see that the field equations F(A) = 0 follow from varying the action functional defined as

S(A) :=

∞∑

n=1

1

(n+ 1)!
(−1)

1
2
n (n−1) 〈A, ℓn(A, . . . , A)〉 , (2.24)

since then cyclicity implies δS(A) = 〈F , δA〉. Cyclicity also implies

δλS(A) = 〈F , δλA〉 = −〈dAF , λ〉 ,

so that gauge invariance of the action functional δλS(A) = 0 is then equivalent to the Noether
identities dAF(A) = 0. Cyclic L∞-morphisms relate the action functionals of generalized gauge
theories.

BV–BRST formulation

The convention we adopt here for the grading of our field theory L∞-algebra is opposite to the
convention of [15]. This bears no significant mathematical effect, except for rendering more direct
the duality to the BV–BRST formalism, which makes precise the relation between the L∞-algebra
formulation and the geometric formulation based on the cotangent bundle (2.9); we review this
framework in Section 6 for the specific gauge field theories of interest in this paper. In partic-
ular, this gives a rigorous description of the quotient defining the moduli space M of classical
solutions, by combining the Koszul–Tate resolution of the quotient by the ideal of Euler–Lagrange
derivatives and the Chevalley–Eilenberg resolution of the quotient by gauge transformations. The
duality between the L∞-algebras for classical gauge field theories and their BV–BRST formalism
is precisely the duality discussed in Section 2.2, see e.g. [17] for an extensive review; our sign con-
ventions also differ from those of [17] where a sign factor (−1)

1
2
n (n−1) is included in the definition

of the n-brackets (2.8) as well as in the definition of the L∞-morphism {ψn} corresponding to a
cohomomorphism Ψ. In this dual formulation, L∞-quasi-isomorphisms relate physically equivalent
generalized gauge field theories at the classical level of moduli spaces and observables, and can also
provide useful information in their pertubative quantisation; see e.g. [42] [43]. We will point out
instances of this throughout the text. Reducible symmetries now become important as gauge pa-
rameters are promoted to dynamical fields in the BV–BRST framework, called “ghosts”, and higher
gauge parameters become “ghosts-for-ghosts”, and so on with the purpose of resolving degeneracies
of the corresponding action functional.

Strictly speaking, the L∞-algebras that arise in field theories are not of finite type over R.
However, the underlying vector spaces consist of sections of vector bundles, and the brackets are
polydifferential operators of finite degree. Hence the L∞-algebras are ‘local’ in the sense of [36].
Thus after factoring the brackets through the appropriate jet bundles, these are all pointwise of
finite type over R. This will be enough for the formal dualization that is needed for our purposes
in the following.

3 d-dimensional gravity in the Einstein–Cartan–Palatini formalism

In this section we introduce the generalized gauge field theories of interest in this paper. We review
the formulation of general relativity in arbitrary dimension d and signature within the Einstein–
Cartan formulation, which enables us to treat gravity as a generalized gauge theory on a principal
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bundle. We shall then review the Palatini action functional for Einstein–Cartan gravity and the
role played by Noether identities in this theory.

3.1 Fields

The data of the Einstein–Cartan–Palatini (ECP) formulation of gravity in d dimensions is as follows.
The background spacetime consists of a smooth d-dimensional oriented manifold M that admits a
pseudo-Riemannian structure of signature (p, q), with

d = p+ q ,

where all constructions of this paper hold for any spacetime signature (p, q). Let V be a vector
bundle on M , isomorphic to the tangent bundle TM , which is equipped with a fixed metric η of
signature (p, q) and an orientation on its fibers; we shall sometimes refer to V as the “fake tangent
bundle”. The field content then consists of two fields which are a priori independent: a coframe
field and a spin connection.

The coframe field is an orientation-preserving bundle map e : TM → V , covering the identity,
from the tangent bundle TM to the vector bundle V ; it can be regarded as a one-form on M valued
in V and used to pull back η to a (possibly degenerate) metric g = e∗η on M of indefinite signature
(p, q). When the spacetime M is parallelizable, one can take V = M × Rp,q to be the trivial
bundle and regard e as a globally defined one-form on M with values in Rp,q. In that case we write
e = ea Ea ∈ Ω1(M,Rp,q), where ea ∈ Ω1(M) can be expanded as ea = eaµ dx

µ in a local holonomic
coframe on M . This satisfies10 eaµ ηab e

b
ν = gµν , µ, ν = 1, . . . , d which gives the components of the

(possibly degenerate) dynamical pseudo-Riemannian metric g in any local coordinate chart of M ,
where η is the standard metric on Rp,q and Ea, a = 1, . . . , d form the canonical oriented pseudo-
orthonormal basis of Rp,q. When M is not parallelizable the discussion which follows will only be
valid on local trivialisations of V . This subtlety is usually ignored in treatments of the first-order
formalism for general relativity in the literature, as for physical applications such global issues are
usually irrelevant, and in this paper we will also follow this convention for the most part. We shall
return to this point in Section 5.3.

The spin connection ω is an SO+(p, q)-connection on the principal SO+(p, q)-bundle P → M

associated to V , so that ω ∈ Ω1(P, so(p, q)); it corresponds to local pseudo-orthogonal transforma-
tions of the coframe field that are connected to the identity, which are parameterized by maps from
M to the connected component SO+(p, q) of the indefinite special orthogonal group SO(p, q). With
the same caveats as discussed above for the coframe fields, we shall usually regard it as a one-form
ω ∈ Ω1(M, so(p, q)) and write it as11

ω = ωab E
b
a = ωab Eba = ωab E[ba]

with ωab = −ωba ∈ Ω1(M), where indices are raised and lowered with the metric η and E
b
a are the

d× d matrix units with matrix elements (Eba)cd = δac δ
b
d.

The covariant derivative of e defines the torsion T of the SO+(p, q)-connection which can be
regarded as a two-form on M valued in V , while the covariant derivative of ω defines its curvature
R which can be regarded as a two-form on M with values in the endomorphism bundle of the vector
bundle V with structure group SO+(p, q); equivalently, R can be regarded as valued in the second

10Here and in the following we always use the Einstein summation convention: repeated upper and lower indices
are implicitly summed over.

11Here and in the following the square parantheses always mean antisymmetrization over the enclosed indices.

16



exterior power ∧2
V of V , which is isomorphic to the vector bundle P ×ad so(p, q) associated to

P by the adjoint representation of the structure group. Explicitly,

T := dωe = de+ ω ∧ e ∈ Ω2(M,V ) ,

R := dωω = dω + 1
2 [ω, ω] ∈ Ω2

(
M,P ×ad so(p, q)

)
.

In a local trivialisation, the wedges here mean matrix multiplication followed by the exterior product
on form entries, that is, ω ∧ e = ωab ∧ eb Ea and 1

2 [ω, ω] = ωab ∧ ωbc E[ca]. The Bianchi identities are

dωT = R ∧ e and dωR = 0 . (3.1)

3.2 Gauge symmetries

The natural internal symmetries of the fields are the finite SO+(p, q)-transformations h : M →
P ×Ad SO+(p, q) given by

e 7−→ h−1 e and ω 7−→ h−1 ω h+ h−1 dh ,

corresponding to vertical automorphisms of the principal SO+(p, q)-bundle P → M which cover
the identity diffeomorphism on M . There is also the action of finite diffeomorphisms φ : M → M

given by the pullbacks

e 7−→ φ∗e and ω 7−→ φ∗ω ,

which map the fields to sections and connections on the corresponding pullback bundles. The
infinitesimal version of diffeomorphisms is not compatible with the global structure of the fields
(e, ω), as we will discuss further in Section 5.3. For the time being we shall work with the local
formulation of the field content (e, ω) of the Einstein–Cartan–Palatini theory and hence consider
only the infinitesimal versions of these symmetries; that is, we consider a parallelizable spacetime
M and identify the fields as globally defined one-forms e ∈ Ω1(M,Rp,q) and ω ∈ Ω1(M, so(p, q)).

For any infinitesimal gauge parameter function ρ : M → so(p, q), which corresponds to a local
pseudo-orthogonal rotation, we may write ρ = ρab Eba for ρab = −ρba ∈ C∞(M). Then the internal
(infinitesimal) gauge transformations are given by

δρe = −ρ · e and δρω = dωρ := dρ+ [ω, ρ] . (3.2)

Since e transforms in the fundamental representation of SO+(p, q),12 the notation ρ · e literally
means matrix multiplication of a vector: ρ · e = ρab e

b
Ea.

In addition to local pseudo-orthogonal rotations, there is also the standard diffeomorphism
gauge symmetry of general relativity. Infinitesimal diffeomorphisms correspond to vector fields
on the spacetime M . For an infinitesimal diffeomorphism ξ ∈ Γ(TM), the corresponding gauge
transformations are given by the action of the Lie derivative Lξ on forms:

δξe = Lξe and δξω = Lξω . (3.3)

The Lie derivatives can be evaluated by using Cartan’s ‘magic formula’

Lξ = d ◦ ιξ + ιξ ◦ d (3.4)

12In gauge theory parlance, the coframe field e could be regarded as a matter field, as it is a section of V ⊗ T ∗M

with V the vector bundle associated to P by the fundamental representation, but since e represents a gravitational
field we refrain from using this terminology to avoid confusion.
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where ιξ denotes contraction with the vector field ξ.

Altogether, the involutive symmetry distribution D on the space of fields

Ω1(M,Rp,q)×Ω1
(
M, so(p, q)

)
(3.5)

is the Lie algebra of gauge symmetries generated by the action of the semi-direct product

Γ(TM)⋉ Ω0
(
M, so(p, q)

)
. (3.6)

Under the infinitesimal symmetries (ξ, ρ) ∈ Γ(TM) × Ω0
(
M, so(p, q)

)
, the torsion and curvature

fields transform as

δ(ξ,ρ)T = LξT − ρ · T and δ(ξ,ρ)R = LξR+ [R, ρ] .

Since ωab = −ωba, under the isomorphism so(p, q) ≃ ∧2(Rp,q) given by ωab E[ba] 7→ ω[ab]
Ea ∧ Eb,

we will consider the connection as an element ω = ωab Ea∧Eb ∈ Ω1(M,∧2(Rp,q)) and the curvature
as an element R = Rab Ea ∧ Eb ∈ Ω2(M,∧2(Rp,q)). This identification has the advantage of making
our formulas later on much more compact, avoiding extensive use of indices. This also shows that
there is an isomorphism of representations of SO+(p, q) given by

[ρ, ω] 7−→ ρ · (ωab Ea ∧ Eb) = ρac ω
cb
Ea ∧ Eb + ρbc ω

ac
Ea ∧ Eb ,

where the right-hand side is computed by using the Leibniz rule (or trivial coproduct) for the action
of so(p, q) on the two-vector representation ∧2(Rp,q). This can be used in comparing the actions of
a spin connection on another spin connection in the adjoint representation and on a coframe field
in the vector representation to get the useful identity

Lemma 3.7. If e1, . . . , ed−2 ∈ Ω1(M,Rp,q) and ω, ω′ ∈ Ω1(M, so(p, q)), then

e1 f · · · f ed−2 f [ω, ω′ ] =

d−2∑

i=1

e1 f · · · êi · · · f ed−2 f (ω ∧ ei)f ω′ (3.8)

in d ≥ 3 dimensions, where the f-product means the exterior products of both the differential form

parts and the internal vector space parts,13 while êi means omission of the i-th term in the product.

Proof. Using the invariance of a top exterior vector in Rp,q under SO+(p, q)-transformations yields

0 = ω ∧ (e1 f · · · f ed−2 f ω′ ) = ω ∧ (e1 f · · · f ed−2)f ω′ + (−1)d−2e1 f · · · f ed−2 f [ω, ω′ ] ,

and expanding ω ∧ (e1 f · · · f ed−2) using the Leibniz rule gives the sum on the right-hand side
of (3.8).

Throughout the text, when considering gravity we shall use the f-product to denote the double
exterior product, while the ∧-product will be reserved for acting via the multivector representation
and wedging the respective spacetime forms, unless otherwise explicitly noted.

13The f-product gives Ω•(M,∧•
R

p,q) the structure of a graded commutative algebra under the combined form
degrees. It does not associate with the ∧-product acting via multi-vector representations, as will be apparent in
calculations below.
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3.3 Field equations

Given the field content from Section 3.1, the action functional for Einstein–Cartan–Palatini gravity
in d > 2 dimensions is then given by

SECP(e, ω) :=
1

2κ2

∫

M

Tr
( 1

d− 2
ed−2

fR+
1

d
Λ ed

)
, (3.9)

where the square of the parameter κ ∈ R gives the gravitational constant and Λ ∈ R is the
cosmological constant. The integrands in (3.9) are d-forms on M with values in ∧d

V , and since
V has structure group SO+(p, q) it carries a natural volume form such that the Hodge duality
operator Tr : Ωd(M,∧d

V ) → Ωd(M) extracts the canonical choice of function defined by a section
of ∧d

V . The powers are taken with respect to the f-product, so that ed−2
fR and ed are elements

in Ωd(M,∧d
V ). In a local trivialization, the Hodge duality operator Tr : ∧d(Rp,q) → R on the

internal vector space has the normalization

Tr(Ea1 ∧ · · · ∧ Ead) = εa1···ad ,

where εa1···ad is the Levi–Civita symbol in d dimensions, thus yielding an R-valued d-form on the
d-dimensional manifold M , which we can integrate. The action functional (3.9) is invariant under
both finite and infinitesimal gauge symmetries of Section 3.2. For d > 3 one can also add to (3.9)
higher curvature terms ed−2 k

f Rk which give Lovelock theories of gravity, but we will shall not
consider such extensions in this paper.

The field equations which follow from varying the action functional (3.9) with respect to com-
pactly supported (e, ω) are given by

Fe(e, ω) := ed−3
f R+Λ ed−1 = 0 ∈ Ωd−1

(
M,∧d−1

V
)
,

Fω(e, ω) := ed−3
f T = 0 ∈ Ωd−1

(
M,∧d−2

V
)
, (3.10)

where the first equation comes from varying with respect to e and the second equation with respect
to ω using the identity (3.8). In the case of a gravitational field that has no singularities, where
the coframe field e is everywhere invertible and so defines a non-degenerate metric g = ηab e

a ⊗ eb,
this formulation is equivalent on-shell to the metric formulation with the Einstein–Hilbert action
functional (1.1): In this case the second equation is equivalent to T = 0, which is just the condition
that the SO+(p, q)-connection is torsion-free. This can be uniquely solved (up to gauge equivalence)
to give ω in terms of e, which may then be identified with the Levi–Civita connection for the metric
g; metric compatibility follows from the fact that ω is an SO+(p, q)-connection. The first equation
is then equivalent to the usual vacuum Einstein field equations with cosmological constant.

Thus the Einstein–Cartan–Palatani field theory, including degenerate coframes, only recovers the
standard Einstein–Hilbert metric formulation of general relativity on-shell as a particular subspace
of its Euler–Lagrange locus. The two theories are generally not equivalent, not even on-shell.
However, it is important in our case to allow for degenerate coframes, so that the space of fields
(3.5) is indeed a vector space, which is a necessary requirement for the L∞-algebra formulation.
This is not merely a technical burden, since the resulting module structures of the space of fields and
that of the L∞-algebras’14 render the theory very amenable to twisting methods [28]. Furthermore,
it allows for the study of invertible morphisms up to homotopy in the L∞-algebras category which
have direct physical content. This is in marked contrast to the Einstein–Hilbert formulation, which
necessitates a restriction to non-degenerate metrics in order to write down the action functional
(1.1); however, the space of non-degenerate metrics is not a vector space. In the remainder of this
paper, the gravitational constant will not play any role and we shall normalize the action functional
(3.9) so that 2κ2 = 1.

14The structures turn out to be modules of the enveloping algebra of vector fields on M .
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3.4 Noether identities

Noether’s first theorem, which asserts the existence of a weakly conserved current for each global
symmetry of an action functional, is not relevant in the present context because the action functional
for general relativity does not have global symmetries.15 On the other hand, Noether’s second
theorem, which relates the Euler–Lagrange derivatives of an action functional off-shell, applies to
the local pseudo-orthogonal and diffeomorphism gauge symmetries of the Einstein–Cartan–Palatini
theory, see e.g. [44, 45]. The corresponding Noether identities follow from gauge-invariance of the
action functional (3.9):

0 = δ(ξ,ρ)SECP(e, ω) =

∫

M

Tr
(
Fe(e, ω)f δ(ξ,ρ)e+ Fω(e, ω) f δ(ξ,ρ)ω

)
,

where δ(ξ,ρ)(e, ω) := (δξe+δρe, δξω+δρω), and then varying this equation with respect to compactly
supported (ξ, ρ) using the explicit expressions for the gauge transformations from (3.2) and (3.3).
This leads to a pair of strong differential identities among the Euler–Lagrange derivatives:

d(e,ω)(Fe,Fω) = (0, 0) ∈ Ω1
(
M,Ωd(M)

)
× Ωd

(
M,∧d−2(Rp,q)

)
, (3.11)

where

d(e,ω)(Fe,Fω) :=
(
− dxµ ⊗ Tr

(
ιµdef Fe + (−1)d−1 ιµdω f Fω − ιµef dFe

− (−1)d−1 ιµω f dFω
)
, −d− 1

2
Fe ∧ e+ (−1)d−1 dωFω

)
, (3.12)

and ιµ denotes the contraction with vectors ∂µ = ∂
∂xµ

of the local holonomic frame dual to the basis
{dxµ} of one-forms in a local coordinate chart on M . Here we identify the vector space of one-forms
valued in d-forms Ω1

(
M,Ωd(M)

)
with Ω1(M)⊗ Ωd(M), and

Fe ∧ e :=
(
Fa1···ad−2 k
e ∧ ηkl el

)
Ea1 ∧ · · · ∧ Ead−2

,

that is, one uses the flat metric to identify e with an element of Ω1(M, (Rp,q)∗) and then contracts
with the multivector part in ∧d−1(Rp,q), and takes the exterior product of the differential forms.16

The converse of Noether’s second theorem can be used to work backwards from this identity
to deduce that the action functional (3.9) has local pseudo-orthogonal and diffeomorphism gauge
symmetries [45]. The first component is the Noether identity corresponding to local diffeomorphism
invariance δξSECP = 0. The second component gives the Noether identity corresponding to the local
pseudo-orthogonal gauge symmetry δρSECP = 0, which also follows from the first Bianchi identity
in (3.1) by taking the covariant derivative of the second Euler–Lagrange derivative in (3.10):

dωFω = (d− 3) dωef ed−4
f T + (−1)d−3 ed−3

f dωT

= (d− 3)T f ed−4
f T + (−1)d−3 ed−3

f R ∧ e

= (−1)d−3 d− 1

2

(
Fe − Λ ed−1

)
∧ e

= (−1)d−3 d− 1

2
Fe ∧ e ,

where in the third equality we used T f T = 0 and the first Euler–Lagrange derivative from (3.10),
while in the last equality we used (e f e) ∧ e = (ea ∧ ηbc e

b ∧ ec) Ea = 0. The overall prefactor
appears due to our convenient conventions on ∧•(Rp,q), whereby the contraction in question may
be checked to act as a derivation with respect to the exterior product up to the overall factors. For
further discussion of Noether’s second theorem in the first order formalism for gravity, see [44].

15Of course, specific solutions may have symmetries generated by Killing vectors that can be used to produce
conserved quantities, but there are no global symmetries a priori.

16For d = 3 this reduces to the action of so(p, q) ≃ ∧2(Rp,q) on Rp,q .
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4 Topological gauge theories with redundant symmetries

The ECP action functional (3.9) bears a striking similarity with the action functionals of a class of
topological field theories known as BF theories. This observation has been the source of intense
investigations into the formulation of gravity as a deformation of BF theories, and particularly in
certain approaches to quantum gravity (see e.g. [33] for a review). We will come back to these
connections in Sections 7 and 8. Before coming to the L∞-algebra formulation of the ECP grav-
ity theory from Section 3, it is therefore a useful warm-up to look at some simpler examples of
Schwarz-type topological gauge theories17 whose dynamical L∞-algebras are straightfoward to for-
mulate, yet they involve many features of the more complicated L∞-algebras that we look at in
later sections. They also serve to illustrate some important points concerning the roles of diffeo-
morphisms, redundant symmetries, and classical equivalences between field theories, that will be
particularly pertinent to the discussions in Sections 7 and 8.

4.1 Chern–Simons theory in the L∞-algebra formalism

Chern–Simons theory in three spacetime dimensions provides the basic example of an L∞-algebra
in gauge theory with a very natural and simple bracket structure, see e.g. [15,17]. For later use, we
shall spell out the details and use them to illustrate how redundant symmetries of a field theory are
naturally handled by the L∞-algebra framework.

Let G be a Lie group whose Lie algebra g is endowed with an invariant quadratic form Trg :
g⊗ g → R; invariance means Trg([X,Y ]g ⊗Z) = Trg(X ⊗ [Y,Z]g) for all X,Y,Z ∈ g, where [−,−]g
is the Lie bracket in g. Let P → M be a principal G-bundle on an oriented three-dimensional
manifold M , which for simplicity we assume to be trivial, P =M × G, so that its connections can
be regarded as one-forms on M with values in g; this restriction will be enough for our purposes
later on. The Lie bracket on g is extended to Ω•(M, g) := Ω•(M)⊗ g by

[α⊗X,β ⊗ Y ]g := α ∧ β ⊗ [X,Y ]g .

The Chern–Simons action functional for a gauge field A ∈ Ω1(M, g) is then defined by 18

SCS(A) :=
1

2

∫

M

Trg

(
A ∧ dA+

1

3
A ∧ [A,A]g

)
. (4.1)

This action functional is invariant under the gauge transformations

δλA = dAλ := dλ+ [A,λ]g , (4.2)

where λ ∈ Ω0(M, g). The Chern–Simons field equations state that the G-connection A is flat, that
is, its curvature vanishes:

F(A) := F = dAA = dA+ 1
2 [A,A]g = 0 ∈ Ω2(M, g) , (4.3)

while the Noether identities are equivalent to the Bianchi identity19

dAF := dAF = dF + [A,F ]g = 0 ∈ Ω3(M, g) . (4.4)

17See e.g. [46] for a review.
18Here and in BF theory the wedge symbol within the Trace pairings denotes simply wedging the spacetime form

parts, in contrast to the ECP convention.
19Note that this is in contrast to what happens in Einstein–Cartan–Palatini theory, where the first Bianchi identity

in (3.1) implies the Noether identity for local pseudo-orthogonal rotations, but is not generally equivalent to it.
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The classical moduli space MCS of physical states of Chern–Simons theory is thus the moduli space
of flat G-connections on the three-manifold M .

The cochain complex underlying the L∞-algebra of Chern–Simons gauge theory is simply the
de Rham complex in three dimensions with values in the Lie algebra g:

0 −−−→ Ω0(M, g)
d−−−→ Ω1(M, g)

d−−−→ Ω2(M, g)
d−−−→ Ω3(M, g)

d−−−→ 0 .

The corresponding graded vector space

V CS = Ω•(M, g) = Ω0(M, g) ⊕ Ω1(M, g) ⊕ Ω2(M, g) ⊕ Ω3(M, g)

has non-zero graded components V CS

k = Ωk(M, g) for k = 0, 1, 2, 3, whose elements we denote
respectively by λ, A, A and Λ. This yields a four-term L∞-algebra with 1-bracket defined by the
exterior derivative as

ℓCS

1 (λ) = dλ ∈ V CS

1 , ℓCS

1 (A) = dA ∈ V CS

2 and ℓCS

1 (A) = dA ∈ V CS

3 .

The 2-brackets are given by the Lie bracket of g as

ℓCS

2 (λ1, λ2) = −[λ1, λ2]g ∈ V CS

0 ,

ℓCS

2 (λ,A) = −[λ,A]g ∈ V CS

1 ,

ℓCS

2 (λ,A) = −[λ,A]g ∈ V CS

2 ,

ℓCS

2 (λ,Λ) = −[λ,Λ]g ∈ V CS

3 ,

ℓCS

2 (A1, A2) = −[A1, A2]g ∈ V CS

2 ,

ℓCS

2 (A,A) = −[A,A]g ∈ V CS

3 ,

with all other brackets vanishing. Thus the gauge theory is organised by a differential graded
Lie algebra: The homotopy relations in this case easily follow from the nilpotence and Leibniz
rule for the exterior derivative d, together with the Jacobi identity for the Lie bracket of g. One
easily verifies the kinematical and dynamical structure of Chern–Simons gauge theory from these
brackets as designed by the prescription of Section 2.3; in particular the gauge transformations,
field equations and Noether identities are encoded as

δλA = ℓCS

1 (λ) + ℓCS

2 (λ,A) ,

F = ℓCS

1 (A)− 1

2
ℓCS

2 (A,A) ,

δλF = ℓCS

2 (λ, F ) ,

dAF = ℓCS

1 (F )− ℓCS

2 (A,F ) .

This can be made into a cyclic L∞-algebra by defining the pairing of g-valued forms in comple-
mentary degrees:

〈α, β〉CS :=

∫

M

Trg(α ∧ β) , (4.5)

for α ∈ Ωp(M, g) and β ∈ Ω3−p(M, g) with p = 0, 1, 2, 3. This defines a cyclic non-degenerate
pairing (of degree −3) on V CS

1 ⊗ V CS

2 → R and V CS

0 ⊗ V CS

3 → R, where cyclicity follows from
the invariance of the quadratic form on the Lie algebra g. The adjoint of the exterior derivative
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d : Ωp(M, g) → Ωp+1(M, g) with respect to this inner product is (−1)p+1 d, which yields the
appropriate cyclicity structure from which the Chern–Simons action functional (4.1) is reproduced
according to the general prescription of Section 2.3:

SCS(A) =
1

2
〈A, ℓCS

1 (A)〉CS − 1

3!
〈A, ℓCS

2 (A,A)〉CS .

In this sense, the L∞-algebra formulation of field theories is a generalization of Chern–Simons
theory, which is dual to the BV formalism for Lagrangian field theories; see [17] for further details
on this perspective.

4.2 Diffeomorphisms as redundant symmetries

Chern–Simons theory is also the prototypical example of a topological field theory: Its field equation
simply state that the G-connection A is flat. In addition, the theory is background independent:
There is no background structure assumed on the manifold M , aside from its orientation. Thus the
action functional is constructed solely of differential forms built from the dynamical field, and hence
it is automatically invariant under orientation-preserving diffeomorphisms of M .20 In particular, the
action of any infinitesimal diffeomorphism ξ ∈ Γ(TM) on a connection A is via the Lie derivative:

δξA := LξA , (4.6)

which leaves the Chern–Simons action functional (4.1) invariant:

δξSCS = 0 .

The corresponding Noether identity may then be read off by using the Cartan formula (3.4) and
integrating by parts to get the strong differential identity

dxµ ⊗ Trg(ιµdA ∧ F )− dxµ ⊗ Trg(ιµA⊗ dF ) = 0 ∈ Ω1
(
M,Ω3(M)

)
.

One may wonder how to reconcile this apparently “extra” symmetry with the usual gauge sym-
metry of Chern–Simons theory, and whether this can be incorporated in the L∞-algebra framework.
Of course, the answer to the first question is well-known to experts. The crucial point is that the
action of any vector field ξ ∈ Γ(TM) may be compensated by the action of a specially chosen gauge
transformation λξ ∈ Ω0(M, g), up to a term proportional to the field equations. To see this, note
that the variation (4.6) can be written as

δξA = dιξA+ ιξdA

= dιξA+ ιξdA+ 1
2 ιξ[A,A]g − 1

2 ιξ[A,A]g

= dιξA+ [A, ιξA]g + ιξF

=: dAλξ + ιξF(A)

where we defined the “field dependent” gauge transformation λξ := ιξA ∈ Ω0(M, g). Thus the gauge
orbits of the Γ(TM)-action are included in the gauge orbits of the standard gauge transformations,
on-shell. In other words, the traditional moduli space of physical states for Chern–Simons theory
MCS is unchanged if one further quotients by the action of (infinitesimal) diffeomorphisms.21 One

20Orientation-reversing diffeomorphisms change the sign of the Chern–Simons action functional.
21This statement holds at the infinitesimal level, but fails for finite diffeomorphisms which are not connected to

the identity.
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then declares the extra symmetries to be redundant – they do not extend the distribution D of
gauge transformations on the space of fields.

We will now demonstrate that the L∞-algebra framework actually serves as a useful tool for
encoding redundant symmetries and their relation to the smaller Lie algebra generating the distri-
bution D of symmetries of the corresponding generalized gauge theory. Indeed, the vector space
V CS underlying the L∞-algebra of Chern–Simons theory may be extended as

V ext
CS := Γ(TM)× Ω0(M, g) ⊕ Ω1(M, g) ⊕ Ω2(M, g) ⊕ Ω1

(
M,Ω3(M)

)
× Ω3(M, g) . (4.7)

That is, we simply extend the space of gauge transformations V CS
0 to include the extra diffeomor-

phism gauge symmetry, with elements ξ ∈ Γ(TM), while also extending the space V CS
3 to accom-

modate for the corresponding Noether identity, with elements X ∈ Ω1
(
M,Ω3(M)

)
. The brackets

are then modified to accommodate for the action of diffeomorphisms on the various spaces: The
1-bracket is modified trivially as

ℓext
1 (ξ, λ) = dλ , ℓext

1 (A) = dA and ℓext
1 (A) = (0,dA) , (4.8)

while the modified 2-brackets are given by

ℓext
2

(
(ξ1, λ1) , (ξ2, λ2)

)
=

(
[ξ1, ξ2] , Lξ1λ2 − Lξ2λ1 − [λ1, λ2]g

)
,

ℓext
2

(
(ξ, λ) , A

)
= LξA− [λ,A]g ,

ℓext
2

(
(ξ, λ) , A

)
= LξA− [λ,A]g , (4.9)

ℓext
2

(
(ξ, λ) , (X , Λ)

)
=

(
dxµ ⊗ Trg(ιµdλ⊗ Λ) + LξX , −[λ,Λ]g + LξΛ

)
,

ℓext
2 (A1, A2) = −[A2, A1]g ,

ℓext
2 (A,A) =

(
dxµ ⊗ Trg(ιµdA ∧ A)− dxµ ⊗ Trg(ιµA⊗ dA) , −[A,A]g

)
.

In particular, the first 2-bracket is the Lie bracket for the extended semi-direct product gauge algebra
Γ(TM)⋊Ω0(M, g). The proof of the homotopy relations for these brackets is formally identical to
the proof we present for the brackets of three-dimensional gravity in Appendix A.1. These brackets
encode all the dynamical data of the gauge theory as prescribed in Section 2.3, now including the
action of diffeomorphisms and the corresponding Noether identity.

Since V ext
1 = V CS

1 and V ext
2 = V CS

2 , the cyclic pairing 〈−,−〉ext is given by (4.5) on V ext
1 ⊗ V ext

2 .
It is further extended on V ext

0 ⊗ V ext
3 by defining

〈(ξ, λ) , (X , Λ)〉ext :=

∫

M

ιξX +

∫

M

Trg(λ⊗ Λ) .

The extended brackets may then be easily checked to be cyclic with respect to this pairing as well;
the calculation in question is carried out in the case of ECP gravity later on.

4.3 L∞-quasi-isomorphism

Although the moduli spaces of classical solutions in the two L∞-algebras from Sections 4.1 and 4.2
are the same, the cohomologies of the cochain complexes generated by the differentials ℓCS

1 and ℓext
1

are not isomorphic; this is immediately apparent by looking at the cohomology in degree 0 for the
two L∞-algebras:

H0
(
V CS, ℓCS

1

)
= H0(M, g) and H0

(
V ext

CS , ℓ
ext
1

)
= Γ(TM)×H0(M, g) .
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This means that there cannot exist an L∞-quasi-isomorphism between the two L∞-algebras. How-
ever, there is no contradiction here: While two field theories with quasi-isomorphic L∞-algebras
have isomorphic classical moduli spaces, the converse need not necessarily hold.

We can nevertheless describe the classical equivalence between the two L∞-algebra formulations
of Chern–Simons gauge theory as an L∞-quasi-isomorphism in the following way. The redundancy
may be encoded in the L∞-algebra framework by further extending the complex defined by the
vector space V ext

CS
. This is done by introducing a copy of the redundant subspace in degree −1:

V ext
−1 := Γ(TM) .

As with the rest of the complex, this should be supplemented with its dual in degree 4:

V ext
4 := Ω1

(
M,Ω3(M)

)
.

We denote elements of V ext
−1 by ξ̌ and elements of V ext

4 by X̌ to distinguish them from their copies
in degrees 0 and 3, respectively. The issue with the cohomology of ℓext

1 is then fixed by extending
it as the inclusion ℓext

1 : V ext
−1 → V ext

0 and the projection ℓext
1 : V ext

3 → V ext
4 :

ℓext
1

(
ξ̌
)
:=

(
ξ̌, 0

)
∈ V ext

0 and ℓext
1 (X , Λ) := X ∈ V ext

4 .

The differential condition ℓext
1 ◦ ℓext

1 = 0 is still satisfied on the extended complex, but now the
cohomologies agree as expected: H•(V CS, ℓCS

1 ) = H•(V ext
CS , ℓ

ext
1 ).

To complete the L∞-algebra extension, one should extend the 2-bracket ℓext
2 while still satisfying

the remaining homotopy relations. It is easy to see that the following definition does the job:

ℓext
2

(
ξ̌ , (ξ, λ)

)
:=

[
ξ̌, ξ

]
∈ V ext

−1 ,

ℓext
2

(
ξ̌, A

)
:=

(
0, ιξ̌A

)
∈ V ext

0 ,

ℓext
2

(
ξ̌,A

)
:= ιξ̌A ∈ V ext

1 ,

ℓext
2

(
ξ̌ , (X , Λ)

)
:= ιξ̌Λ ∈ V ext

2 ,

ℓext
2

(
ξ̌, X̌

)
:=

(
Lξ̌X̌ , 0

)
∈ V ext

3 ,

ℓext
2

(
(ξ, λ) , X̌

)
:= LξX̌ ∈ V ext

4 ,

ℓext
2

(
A , (X , Λ)

)
:= dxµ ⊗ Trg(ιµA⊗ Λ) ∈ V ext

4 ,

ℓext
2 (A1,A2) := dxµ ⊗ Trg(ιµA1 ∧ A2) ∈ V ext

4 ,

where also ℓext
2

(
ξ̌1, ξ̌2

)
:= 0 as this lands in V ext

−2 = 0. The pairing is further extended to V ext
−1 ⊗V ext

4

by
〈
ξ̌, X̌

〉ext
:=

∫

M

ιξ̌X̌ ,

and the new brackets are cyclic with respect to this pairing as well. The proofs of the homotopy
relations in this case follow exactly as for the calculations we spell out for gravity in Appendix A.1,
with the only non-trivial (but straightforward) check occuring in the graded Jacobi identity on a
pair of gauge parameters (ξ, λ), and two Euler–Lagrange derivatives A1 and A2.

The redundancy of the space of gauge transformations V ext
0 = Γ(TM)×Ω0(M, g) should really

be regarded in terms of the “higher gauge transformations” (2.21) which act on it by the redundant
symmetries in V ext

−1 : Any (ξ, λ) ∈ V ext
0 generates the gauge transformation

δext(ξ,λ)A = LξA+ dAλ ,

25



which is on-shell equivalent to the gauge transformation generated by

(ξ′, λ′) := (ξ, λ) + δext
(ξ̌,A)

(ξ, λ)

for any ξ̌ ∈ V ext
−1 with

δext
(ξ̌,A)

(ξ, λ) := ℓext
1

(
ξ̌
)
− ℓext

2

(
A, ξ̌

)
=

(
ξ̌,−ιξ̌A

)
∈ V ext

0 .

Given this equivalence, all vector fields are redundant in the following sense: For any (ξ, λ) ∈ V ext
0 ,

pick ξ̌ := −ξ ∈ V ext
−1 . Then

δext(ξ′,λ′)A = δext(0,λ+ιξA)
A

which is equivalent to δext(ξ,λ)A up to terms involving Euler–Lagrange derivatives.

This on-shell equivalence is made precise in terms of an off-shell L∞-quasi-isomorphism in the
following way. One can eliminate the redundant gauge symmetries by using a quasi-isomorphism
{ψCS

n } from the standard Chern–Simons L∞-algebra of Section 4.1 to the extended L∞-algebra here,
with the component multilinear graded antisymmetric maps

ψCS

n : ∧nV CS −→ V ext
CS

,

of degree |ψCS
n | = 1 − n for n ≥ 1. For ψCS

1 : V CS → V ext
CS , one uses the canonical embedding of the

underlying vector space V CS into V ext
CS to define a map of underlying cochain complexes

V CS
0

ℓCS
1

//

ψCS
1

��

V CS
1

ℓCS
1

//

ψCS
1

��

V CS
2

ℓCS
1

//

ψCS
1

��

ℓCS
1

// V CS
3

ψCS
1

��

V ext
−1

ℓext1
// V ext

0

ℓext1
// V ext

1

ℓext1
// V ext

2

ℓext1
// V ext

3

ℓext1
// V ext

4

given by

ψCS

1 (λ) = (0, λ) , ψCS

1 (A) = A , ψCS

1 (A) = A and ψCS

1 (Λ) = (0, Λ) .

For ψCS
2 : ∧2V CS → V ext

CS , the only non-vanishing components are

ψCS

2 (A,Λ) := −
(
dxµ ⊗ Trg(ιµdλ⊗ Λ) , 0

)
∈ V ext

3 ,

ψCS

2 (A1,A2) := −
(
dxµ ⊗ Trg(ιµA1 ∧ A2) , 0

)
∈ V ext

3 .

We set ψCS
n = 0 for all n ≥ 3.

It is easy to check that this defines an L∞-morphism, as one sees by writing out the two sides
of the relations (2.5). Furthermore, it is obviously a quasi-isomorphism, since ψCS

1 descends to
the identity on the corresponding cohomology groups H•(V CS, ℓCS

1 ) = H•(V ext, ℓext
1 ), and is easily

checked to be cyclic. In particular, this provides a simple example of an L∞-morphism between
differential graded Lie algebras which is not exactly a differential graded Lie algebra morphism, but
only up to homotopy proportional to ψCS

2 : As a quasi-isomorphism of differential graded Lie algebras,
it has an inverse only in the category of L∞-algebras. This quasi-isomorphism provides a further
way to see why infinitessimal diffeomorphisms are safely ignored in the pertubative quantisation of
Chern-Simons.
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4.4 BF theories in the L∞-algebra formalism

The next primary example of a topological field theory with the same properties is a BF theory,
and the exact analogue of the story spelled out thus far in this section can be easily adapted to BF
theories in arbitrary dimension d and for any gauge group G. The BF action functional is given by

SBF(B,A) :=

∫

M

TrW (B ∧ F ) (4.10)

where M is an oriented d-dimensional manifold, F = dAA is the curvature of a connection one-form
A ∈ Ω1(M, g) valued in a Lie algebra g, and B is a (d−2)-form valued in a fixed vector space W

which is a g-module. The pairing TrW : W ⊗ g → R is assumed to be invariant under the g-action:

TrW
(
(X · w)⊗ Y + w ⊗ [X,Y ]g

)
= 0 ,

for w ∈ W and X,Y ∈ g. In the conventional definition of BF theory [46], one usually takes W = g,
so that both fields are valued in the same Lie algebra, with W regarded as a g-module under the
canonical adjoint action of the Lie algebra on itself. However, this more general formulation will
act as a nice stepping stone between different theories suitable for our purposes.

The field equations are readily seen to be

FB := F = dA+ 1
2 [A,A]g = 0 ∈ Ω2(M, g) ,

FA := dAB = dB +A ∧B = 0 ∈ Ωd−1(M,W ) ,

where A ∧B computes the exterior product of the form components while pairing the components
in g and W via the g-action. Thus the Euler–Lagrange locus of BF theory are pairs of a flat
G-connection on M and a covariantly constant (d−2)-form valued in a representation W of g.

The action functional (4.10) is invariant under standard (infinitesimal) gauge transformations
ρ ∈ Ω0(M, g) acting as

δρ(B,A) =
(
− ρ ·B , dρ+ [A, ρ]g

)
.

Compared to Chern–Simons theory, however, for d ≥ 3 there is the extra “shift” symmetry generated
by (d−3)-forms τ ∈ Ωd−3(M,W ) valued in W , which act as

δτ (B,A) := (dAτ, 0) = (dτ +A ∧ τ, 0) . (4.11)

This symmetry is on-shell reducible in dimensions d ≥ 4. The corresponding Noether identities
coincide with the usual “Bianchi identities”

d(B,A)(FB ,FA) :=
(
(−1)d−3 dAFB , dAFA −FB ∧B

)
= (0, 0) ∈ Ω3(M, g)× Ωd(M,W ) ,

where the overall sign only serves to eliminate signs in the cyclic pairing and brackets below.

The cyclic L∞-algebra of BF theory in d dimensions is given by the underlying graded vector
space

V BF := V BF

0 ⊕ V BF

1 ⊕ V BF

2 ⊕ V BF

3

where

V BF

0 = Ωd−3(M,W )× Ω0
(
M, g

)
,

V BF

1 = Ωd−2(M,W )× Ω1
(
M, g

)
, (4.12)

V BF

2 = Ω2
(
M, g

)
× Ωd−1(M,W ) ,

V BF

3 = Ω3(M, g)× Ωd(M,W ) .
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We denote gauge parameters by (τ, ρ) ∈ V BF

0 , dynamical fields by (B,A) ∈ V BF

1 , Euler–Lagrange
derivatives by (B,A) ∈ V BF

2 , and Noether identities by (T ,P) ∈ V BF
3 . The non-trivial brackets are

then

ℓBF

1 (τ, ρ) = (dτ,dρ) ∈ V BF

1 ,

ℓBF

1 (B,A) = (dA,dB) ∈ V BF

2 ,

ℓBF

1 (B,A) = (dB,dA) ∈ V BF

3 ,

ℓBF

2

(
(τ1, ρ1) , (τ2, ρ2)

)
=

(
− ρ1 · τ2 + ρ2 · τ1 , −[ρ1, ρ2]g

)
∈ V BF

0 ,

ℓBF

2

(
(τ, ρ) , (B,A)

)
=

(
− ρ · B +A ∧ τ , −[ρ,A]g

)
∈ V BF

1 , (4.13)

ℓBF

2

(
(τ, ρ) , (B,A)

)
=

(
− [ρ,B]g , −ρ · A+ B ∧ τ

)
∈ V BF

2 ,

ℓBF

2

(
(τ, ρ) , (T ,P)

)
=

(
− [ρ,T ]g , −ρ · P + (−1)d−3 T ∧ τ

)
∈ V BF

3 ,

ℓBF

2

(
(B1, A1) , (B2, A2)

)
= −

(
[A1, A2]g , A1 ∧B2 +A2 ∧B1

)
∈ V BF

2 ,

ℓBF

2

(
(B,A) , (B,A)

)
= −

(
[A,B]g , A ∧ A− B ∧B

)
∈ V BF

3 ,

while all remaining brackets vanish. Thus the dynamics of BF theory in any dimension d is also
organised by a differential graded Lie algebra. The cyclic pairing is given naturally as

〈(B,A) , (B,A)〉BF :=

∫

M

TrW (B ∧ B +A∧A) ,

〈(τ, ρ) , (T ,P)〉BF :=

∫

M

TrW (τ ∧ T + ρ ∧ P) .

As with Chern–Simons theory, BF theory is invariant under infinitesimal diffeomorphisms, pa-
rameterized by vector fields in Γ(TM), acting via the Lie derivative. However, these are again
redundant: for any ξ ∈ Γ(TM) we compute

δξ(B,A) := (LξB,LξA)

= (dιξB + ιξdB,dιξA+ ιξdA)

=
(
dτξ + ιξdB + ιξ(A ∧B)− ιξ(A ∧B) , dρξ + ιξdA+ ιξ[A,A]g − ιξ[A,A]g

)

=
(
dτξ + ιξd

AB +A ∧ τξ − ρξ ·B , dρξ + [A, ρξ]g + ιξd
AA

)

=
(
dAτξ − ρξ ·B + ιξFA , dAρξ + ιξFB

)

= δ(τξ ,ρξ)(B,A) + (ιξFA , ιξFB) (4.14)

where we defined (τξ, ρξ) := (ιξB, ιξA) ∈ V BF
0 . Thus again the diffeomorphism symmetry is redun-

dant, as the further quotient of the moduli space of classical solutions MBF has no effect.

Of course, one may now augment the BF L∞-algebra with this symmetry and its corresponding
Noether identity, as we did for Chern–Simons theory. One can then follow the same procedure by
adding the redundancy at V ext

−1 and its dual at V ext
4 , and finally one ends up with a cyclic L∞-

algebra that is quasi-isomorphic to the one constructed here, which did not include the redundant
symmetries to begin with. One also observes that the Einstein–Cartan–Palatini action functional
(3.9) with Λ = 0 is a special instance of the BF action functional (4.10) with g = so(p, q), W =
∧d−2

R

p,q and the dynamical fields (B,A) = (ed−2, ω); however, this restriction of the field B to
diagonal decomposable forms in Ωd−2(M,∧d−2

R

p,q) breaks the shift symmetry of BF theory in
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d ≥ 4 dimensions. We will see how to interpret this observation in the L∞-algebra framework later
on.

Here we have worked in a local formulation of the field theory. There are different perspectives
on what the global structure of the fields (B,A) should be. The usual approach is to view A as
a connection on a principal G-bundle over M and B as a (d−2)-form valued in the vector bundle
associated to the representation W . In the case of non-trivial bundles, the diffeomorphism invariance
has to be treated in a somewhat different way, and this will be explored in the special case of ECP
gravity in Sections 5.3 and 5.4. There are also other interpretations, such as that of higher gauge
theory which considers the fields as forms valued in a strict Lie 2-algebra [47], or equivalently in a
2-term L∞-algebra. We shall not delve into this interpretation in the present paper, which however
is interesting in view of the L∞-algebra framework under consideration.

4.5 Higher shift symmetries

Another new feature of BF theories, compared to Chern–Simons theory, is that they possess addi-
tional redundant symmetries, in addition to diffeomorphisms: The shift symmetry (4.11) is on-shell
reducible in dimensions d ≥ 4. This means that, strictly speaking, we should also include in (4.12)
the negatively-graded vector spaces V BF

−k = Ωd−3−k(M,W ) for k = 1, . . . , d − 3, which parameter-
ize “higher gauge transformations”, together with their duals V BF

k+3 = Ωk+3(M, g) and the obvious
brackets in (4.13). We spell out this out explicitly for BF theories in the simplest case d = 4.

Any element τ ∈ Ω1(M,W ) generates the shift symmetry

δτB = dAτ ∈ Ω2(M,W ) .

Now take τ ′ := τ+dAǫ ∈ Ω1(M,W ) for any ǫ ∈ Ω0(M,W ). Then this generates the shift symmetry

δτ ′B = dAτ ′

= dAτ + (dA)2ǫ

= δτB + F · ǫ

= δτB + FB · ǫ ,

and so the two transformations differ by a term proportional to an Euler–Lagrange derivative, that
is, τ and τ ′ =: τ + δ(ǫ,A)τ generate the same symmetry on-shell. This leads to a further redundancy
in the subspace of V BF

0 generating the distribution of shift symmetries on V BF
1 ; the redundancy

lives in the subspace of covariantly exact one-forms valued in W . We may parameterize this by
V BF
−1 := Ω0(M,W ); for d = 4 this is enough and no further gauge redundancy in the description

exists, while in higher dimensions the form degrees change and similarly higher-to-higher gauge
transformations are required, and so on.

Let us now describe the complete extended BF L∞-algebra. We extend the cochain complex
by introducing

V BF

−1 := Ω0(M,W ) and V BF

4 := Ω4(M, g) ,

and denote the corresponding elements by ǫ ∈ V BF
−1 and E ∈ V BF

4 . The brackets (4.13) are extended
as

ℓBF

1 (ǫ) = (dǫ, 0) ∈ V BF

0 and ℓBF

1 (T ,P) = dT ∈ V BF

4 ,
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together with

ℓBF

2

(
ǫ , (τ, ρ)

)
= ρ · ǫ ∈ V BF

−1 ,

ℓBF

2

(
ǫ , (B,A)

)
= −(A · ǫ, 0) ∈ V BF

0 ,

ℓBF

2

(
ǫ , (B,A)

)
= −(B · ǫ, 0) ∈ V BF

1 ,

ℓBF

2

(
ǫ , (T ,P)

)
= −(0,T · ǫ) ∈ V BF

2 ,

ℓBF

2 (ǫ, E) = (0, E · ǫ) ∈ V BF

3 ,

ℓBF

2

(
(τ, ρ) , E

)
= −[ρ, E ]g ∈ V BF

4 ,

ℓBF

2

(
(B,A) , (T ,P)

)
= [A,T ]g ∈ V BF

4 ,

ℓBF

2

(
(B1,A1) , (B2,A2)

)
= [B1,B2]g ∈ V BF

4 .

The pairing extends naturally as

〈ǫ, E〉BF =

∫

M

TrW (ǫ ∧ E) .

All checks of the homotopy and cyclicity relations follow as before without any genuine novelty.

Observe in contrast with the redundancy of diffeomorphisms, one cannot simply pass to the
subcomplex by “deleting” V BF

−1 and V BF

4 via a quasi-isomorphism since H−1(V BF, ℓBF

1 ) = R does
not vanish. This is because there is no clear splitting of the gauge parameters V BF

0 into reducible
and irreducible components, as it happens with diffeomorphisms. It is in this sense that the ex-
tented BF complex is crucial in the pertubative BV quantisation to fully resolve degeneracies, while
diffeomorphisms may be safely ignored.

4.6 Three-dimensional BF and Chern–Simons theories

BF theories in three dimensions are particularly interesting in the present context. For d = 3, the
formulation of Section 4.4 is equivalent to the formulation of Section 4.1 for a specific Chern–Simons
gauge theory: one takes the Lie algebra of the Chern–Simons theory to be the semi-direct product

ĝ := W ⋊ g ,

where we view the vector space W as an abelian Lie algebra and use the action of g on W to define
the Lie bracket on ĝ. The invariant non-degenerate pairing on W ⊗g extends to ĝ⊗ĝ, acting trivially
on the g⊗ g and W ⊗ W parts, and by symmetry to the rest. Then any gauge field Â ∈ Ω1(M, ĝ)
has a unique decomposition

Â = (B,A)
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with B ∈ Ω1(M,W ) and A ∈ Ω1(M, g). With these choices, some simple algebra shows that the
Chern–Simons action functional coincides with the BF action functional in three dimensions:

SCS(Â) =
1

2

∫

M

Trĝ

(
Â ∧ dÂ+

1

3
Â ∧ [Â, Â]ĝ

)

=
1

2

∫

M

Trĝ

(
(B,A) ∧ (dB,dA) +

1

3

(
B,A

)
∧
(
A ∧B +A ∧B, [A,A]g

))

=
1

2

∫

M

TrW

(
2B ∧ dA+

2

3
A ∧ (A ∧B) +

1

3
B ∧ [A,A]g

)

=

∫

M

TrW

(
B ∧ dA+

1

2
B ∧ [A,A]g

)

=

∫

M

TrW (B ∧ F )

= SBF(B,A) .

The gauge symmetries map into each other as expected: the gauge transformation

δ(τ,ρ)(B,A) =
(
δτB + δρB , δτA+ δρA

)
:=

(
dτ +A · τ − ρ ·B , dρ+ [A, ρ]g

)

with λ̂ = (τ, ρ) ∈ Ω0(M, ĝ) maps to

δ
λ̂
Â := dλ̂+ [Â, λ̂]ĝ

= (dτ,dρ) +
[
(B,A) , (τ, ρ)

]
ĝ

=
(
dτ +A · τ − ρ · B , dρ+ [A, ρ]g

)
.

The two field theories are essentially related by identity type redefinitions. The same holds of
course at the level of the underlying L∞-algebras, which are (strictly) isomorphic: the isomorphism
is given by ψ̂1 : V BF → V CS as above, collecting the respective fields in each degree. In this sense,
higher-dimensional BF theory is one way of generalizing Chern–Simons gauge theory to higher
dimensions.

5 Einstein–Cartan–Palatini L∞-algebras

We are now ready to move on to the main constructions of this paper: the cyclic L∞-algebras
underlying the ECP formalism from Section 3.

5.1 Brackets

We will first write down the general form of the L∞-algebra structure for ECP gravity in an arbitrary
dimensionality d > 2 discussed in Section 3 for the case when the spacetime M is parallelizable.
Recalling the d-dimensional field equations (3.10) and Noether identities (3.11), the vector space V
underlying the corresponding L∞-algebra is

V := V0 ⊕ V1 ⊕ V2 ⊕ V3 (5.1)
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where

V0 = Γ(TM)× Ω0
(
M, so(p, q)

)
,

V1 = Ω1(M,Rp,q)× Ω1
(
M, so(p, q)

)
,

V2 = Ωd−1
(
M,∧d−1(Rp,q)

)
× Ωd−1

(
M,∧d−2(Rp,q)

)
,

V3 = Ω1
(
M,Ωd(M)

)
× Ωd

(
M,∧d−2(Rp,q)

)
.

In the following we denote gauge parameters by (ξ, ρ) ∈ V0, dynamical fields by (e, ω) ∈ V1, Euler–
Lagrange derivatives by (E,Ω) ∈ V2, and Noether identities by (X ,P) ∈ V3.

The brackets on V may then be given as follows. The non-vanishing 1-brackets are defined by

ℓ1(ξ, ρ) = (0,dρ) ∈ V1 and ℓ1(E,Ω) = (0, (−1)d−1 dΩ) ∈ V3 ,

while the non-vanishing 2-brackets are defined by

ℓ2
(
(ξ1, ρ1) , (ξ2, ρ2)

)
=

(
[ξ1, ξ2] , −[ρ1, ρ2] + ξ1(ρ2)− ξ2(ρ1)

)
∈ V0 ,

ℓ2
(
(ξ, ρ) , (e, ω)

)
=

(
− ρ · e+ Lξe , −[ρ, ω] + Lξω

)
∈ V1 ,

ℓ2
(
(ξ, ρ) , (E,Ω)

)
=

(
− ρ ·E + LξE , −ρ ·Ω + LξΩ

)
∈ V2 ,

ℓ2
(
(ξ, ρ) , (X ,P)

)
=

(
dxµ ⊗ Tr(ιµdρf P) + LξX , −ρ · P + LξP

)
∈ V3 , (5.2)

ℓ2
(
(e, ω) , (E,Ω)

)
=

(
dxµ ⊗Tr

(
ιµdefE + (−1)d−1 ιµdω fΩ − ιµe f dE − (−1)d−1 ιµω f dΩ

)
,

d− 1

2
E ∧ e− (−1)d−1 ω ∧Ω

)
∈ V3 .

The first bracket of (5.2) is simply the Lie bracket of the gauge algebra (3.6). The multivector
action of a gauge transformation ρ ∈ Ω0(M, so(p, q)) on the Euler–Lagrange derivatives (E,Ω) and
on the Noether identity P is via the trivial coproduct ∆0(ρ) = ρ⊗ 1 + 1⊗ ρ on the f-products of
fields, in the fundamental representation for e and in the adjoint representation for ω. For example,
on e1 f de2 ∈ Ω3(M,∧2(Rp,q)) the action is

ρ · (e1 f de2) = (ρ · e1)f de2 + e1 f (ρ · de2)

while on e f dω ∈ Ω3(M,∧3(Rp,q)) the action is

ρ · (e f dω) = (ρ · e)f dω + e f [ρ,dω] .

Similarly, the Lie derivative Lξ acts on X ∈ Ω1(M)⊗Ωd(M) via the Leibniz rule, that is, the trivial
coproduct ∆0(Lξ) = Lξ ⊗ 1 + 1⊗ Lξ.

Next, consider the brackets involving only dynamical fields. The d−2-bracket is defined by

ℓd−2

(
(e1, ω1) , . . . , (ed−2, ωd−2)

)

= (−1)
1
2
(d−2) (d−3)

∑

σ∈Sd−2

(
eσ(1) f eσ(2) f · · · f eσ(d−3) f dωσ(d−2) ,

eσ(1) f eσ(2) f · · · f deσ(d−2)

)

= (−1)
1
2
(d−2) (d−3) (d− 3)!

d−2∑

i=1

(
e1 f · · · êi · · · f ed−2 f dωi ,

e1 f · · · êi · · · f ed−2 f dei
)

∈ V2 .
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The d−1-bracket is defined by

ℓd−1

(
(e1, ω1) , . . . , (ed−1, ωd−1)

)

= (−1)
1
2
(d−1) (d−2)

∑

σ∈Sd−1

(
eσ(1) f · · · eσ(d−3) f

1
2 [ωσ(d−2), ωσ(d−1)] + Λ eσ(1) f · · · f eσ(d−1) ,

eσ(1) f · · · f eσ(d−3) f (ωσ(d−2) ∧ eσ(d−1))
)

= (−1)
1
2
(d−1) (d−2) (d− 3)!

d−1∑

i,j=1
i 6=j

(
e1 f · · · êi f ej · · · f ed−1 f

1
2 [ωi, ωj] , (5.3)

e1 f · · · êi f ej · · · f ed−1 f (ωi ∧ ej)
)

+ (−1)
1
2
(d−1) (d−2) (d− 1)! Λ (e1 f · · · f ed−1, 0) ∈ V2 .

The first expressions for the brackets ℓd−2 and ℓd−1 show that they are manifestly symmetric on V1
as required. The second simplified expressions are obtained by noting that ei f ej = ej f ei. For
d > 3 the 1-bracket on fields is given by

ℓ1(e, ω) = (0, 0) ∈ V2 ,

while for d > 4 the 2-bracket on fields is

ℓ2
(
(e1, ω1) , (e2, ω2)

)
= (0, 0) ∈ V2 .

The remaining brackets are all identically zero for all d ≥ 3.

By construction, these brackets encode the gauge transformations, field equations and Noether
identities of pure Einstein–Cartan–Palatini gravity in dimensions d ≥ 3 as given in (2.11)–(2.15).
For example, the gauge transformations are encoded by

δ(ξ,ρ)(e, ω) =
(
δ(ξ,ρ)e , δ(ξ,ρ)ω

)

=
(
− ρ · e+ Lξe , dρ− [ρ, ω] + Lξω

)

= ℓ1(ξ, ρ) + ℓ2
(
(ξ, ρ) , (e, ω)

)
∈ V1 ,

with the closure relation
[
δ(ξ1,ρ1) , δ(ξ2,ρ2)

]
(e, ω) = δ−ℓ2((ξ1,ρ1),(ξ2,ρ2))(e, ω) (5.4)

reflecting the module structure of the space of fields (3.5) for the Lie algebra of gauge transformations
(3.6). Similarly, one also easily verifies

δ(ξ,ρ)(Fe,Fω) = ℓ2
(
(ξ, ρ) , (Fe,Fω)

)
∈ V2 ,

and the Noether identities are encoded through

d(e,ω)(Fe,Fω) = ℓ1(Fe,Fω) + ℓ2
(
(Fe,Fω) , (e, ω)

)
∈ V3 .

The quickest and most economical way to obtain these brackets is by bootstrapping [15]. One
writes out the gauge transformations, Euler–Lagrange derivatives and Noether identities, and sepa-
rates the orders of fields within the pairing as in Section 2.3. Then we demand that they are equal
to a specific expansion in terms of linear, bilinear, trilinear, etc. brackets as in (2.11), (2.12) and
(2.15), and one reads off the brackets by direct comparison together with the demand of cyclicity
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(2.24). The extra non-zero brackets may be obtained by demanding that the homotopy relations
hold. For example, the extra 2-bracket ℓ2((ξ1, ρ1), (ξ2, ρ2)) carries information about the Lie algebra
structure of the gauge transformations, and of the action of Γ(TM) on Ω0(M, so(p, q)). Indeed, this
is the way we recovered the L∞-algebra. The “disadvantage” of the approach is that one needs to
check the homotopy relations explicitly. Another way to get the brackets is by developing and then
dualizing the BV–BRST complex of the field theory [17], which has the advantage of automatically
guaranteeing the homotopy relations, but at the cost of lengthy and cumbersome dualization cal-
culations. The proof of the homotopy relations is tedious, but largely independent of the spacetime
dimension d. We will explicitly prove the homotopy relations in Appendix A.1 in the simplest case
d = 3, the proof for higher dimensions being similar but requiring special care of the extra coframe
field factors which are manifested in the form of higher brackets. We review and dualise the BV–
BRST formalism of ECP developed by [24] for d = 4 in Section 6, confirming the above L∞-algebra
structure.

5.2 Cyclic pairing

Given the brackets of Section 5.1, we wish to write the Einstein–Cartan–Palatini action functional
(3.9) as in (2.24). For this, we need a suitable non-degenerate bilinear pairing 〈−,−〉 : V1⊗V2 → R,
which we shall show is given by

〈(e, ω) , (E,Ω)〉 :=
∫

M

Tr
(
e fE + (−1)d−1 ω fΩ

)
=

∫

M

Tr
(
e fE +Ω f ω

)
. (5.5)

This can be extended to make (5.1) into a cyclic L∞-algebra by introducing an additional pairing
〈−,−〉 : V0 ⊗ V3 → R given by

〈(ξ, ρ) , (X ,P)〉 :=
∫

M

ιξX +

∫

M

Tr
(
ρf P

)
. (5.6)

The most general possible bilinear pairing could in principle include two arbitrary constants in front
of each integrand. However, cyclicity demands they are set to unity, and we will now show that
the pairings (5.5) and (5.6) indeed have the right cyclicity properties. The only non-trivial checks
required in (2.22) are for the brackets ℓd−2 and ℓd−1. The explicit demonstration of the cyclicity
(2.23) for the pairing (5.5) is elementary as it involves only the bracket ℓ2 from (5.2).

Let us first establish cyclicity with respect to the bracket ℓd−2.

Lemma 5.7. If (ei, ωi) ∈ V1 for i = 0, 1, . . . , d− 2, then
〈
(e0, ω0) , ℓd−2

(
(e1, ω1), . . . , (ed−2, ωd−2)

)〉
=

〈
(e1, ω1) , ℓd−2

(
(e0, ω0), (e2, ω2), . . . , (ed−2, ωd−2)

)〉
.

Proof. We shall ignore the overall constants since they are the same on both sides of this equality.
Thus writing out the left-hand side we obtain

∫

M

Tr

( d−2∑

i=1

(
e0 f e1 f · · · êi · · · f ed−2 f dωi + (−1)d−1 ω0 f e1 f · · · êi · · · f ed−2 f dei

))

=

∫

M

Tr

(
e0 f e2 f · · · f ed−2 f dω1 +

d−2∑

i=2

(
e0 f e1 f · · · êi · · · f ed−2 f dωi

)
(5.8)

+ (−1)d−1 ω0 f e2 f · · · f ed−2 f de1

+ (−1)d−1
d−2∑

i=2

(
ω0 f e1 · · · êi · · · f ed−2 f dei

))
.
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Integrating by parts on the first and third terms, and dropping exact forms since we only consider
coframes with compact support, we get

∫

M

Tr

(
(−1)d−3 ω1 f e2 f · · · f ed−2 f de0 − ω1 f e0 f d(e2 f · · · f ed−2)

+

d−2∑

i=2

(
e0 f e1 f · · · êi · · · f ed−2 f dωi

)
+ ω0 f e1 f d(e2 f · · · f ed−2)

+ e1 f e2 f · · · f ed−2 f dω0 + (−1)d−1
d−2∑

i=2

(
ω0 f e1 f · · · êi · · · f ed−2 f dei

))
.

Now using

ω0 f e1 f d(e2 f · · · f ed−2) = −(−1)d−3
d−2∑

i=2

(
ω0 f e1 f · · · êi · · · f ed−2 f dei

)

we see that the fourth and sixth terms cancel. Substituting similarly for the second term, we get

∫

M

Tr

(
(−1)d−1 ω1 f e2 f · · · f ed−2 f de0 + (−1)d−1

d−2∑

i=2

(
ω1 f e0 f · · · êi · · · f ed−2 f dei

)

+

d−2∑

i=2

(
e1 f e0 f · · · êi · · · f ed−2 f dωi

)
+ e1 f e2 f · · · f ed−2 f dω0

)
.

This is just the equality (5.8) with the indices 1 and 0 interchanged, showing that the pairing is
indeed cyclic under ℓd−2 as claimed.

Next we establish cyclicity with respect to the bracket ℓd−1.

Lemma 5.9. If (ei, ωi) ∈ V1 for i = 0, 1, . . . , d− 1, then

〈
(e0, ω0) , ℓd−1

(
(e1, ω1), . . . , (ed−1, ωd−1)

)〉
=

〈
(e1, ω1) , ℓd−1

(
(e0, ω0), (e2, ω2), . . . , (ed−1, ωd−1)

)〉
.

Proof. Ignoring again overall prefactors, we compute

〈
(e0, ω0) , ℓd−1

(
(e1, ω1), . . . , (ed−1, ωd−1)

)〉

=

∫

M

Tr

( d−1∑

i,j=1
i 6=j

(
e0 f e1 f · · · êi f ej · · · f ed−1 f

1
2 [ωi, ωj ]

)

+ (−1)d−1
d−1∑

i,j=1
i 6=j

(
ω0 f e1 f · · · êi f ej · · · f ed−1 f (ωi ∧ ej)

))
.

Here we dropped the cosmological constant term as it is easily seen to contribute cyclically to this
pairing, since e0 f e1 = e1 f e0. We wish to write this in a manifestly symmetric form under the
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exchange of the indices 1 and 0. Since [ωi, ωj] = [ωj, ωi], the first term may be rewritten as

d−1∑

i,j=1
i 6=j

(
e0 f e1 f · · · êi f ej · · · f ed−1 f

1
2 [ωi, ωj ]

)

= 2

d−1∑

i,j=1
i<j

(
e0 f e1 f · · · êi f ej · · · f ed−1 f

1
2 [ωi, ωj]

)

=

d−1∑

i,j=2
i<j

(
e0 f e1 f · · · êi f ej · · · f ed−1 f [ωi, ωj ]

)

+
d−1∑

j=2

(
e0 f ê1 · · · êj · · · f ed−1 f [ω1, ωj ]

)
.

For the second term, we use ω f e = −ef ω to get

(−1)d−1 (−1)d−3
d−1∑

i,j=1
i 6=j

(
e1 f · · · êi f ej · · · f ed−1 f (ωi ∧ ej)f ω0

)

=

d−1∑

i,j=1
i 6=j

(
e1 f · · · êi f ej · · · f ed−1 f (ωi ∧ ej)f ω0

)
.

Next we use the identity (3.8) to write this as

d−1∑

i=1

(
e1 f · · · êi · · · f ed−1 f [ωi, ω0]

)
=

d−1∑

i=2

(
e1 f · · · êi · · · f ed−1 f [ωi, ω0]

)

+ e2 f · · · f ed−1 f [ω1, ω0] .

Finally collecting everything together, we get
〈
(e0, ω0) , ℓd−1

(
(e1, ω1), . . . , (ed−1, ωd−1)

)〉

=

∫

M

Tr

( d−1∑

i,j=2
i<j

(
e0 f e1 f · · · êi f ej · · · f ed−1 f [ωi, ωj ]

)

+

d−1∑

j=2

(
e0 f ê1 · · · êj · · · f ed−1 f [ω1, ωj ]

)

+

d−1∑

i=2

(
e1 f · · · êi · · · f ed−1 f [ωi, ω0]

)
+ e2 f · · · f ed−1 f [ω1, ω0]

)
.

This expression is manifestly symmetric under exchange of the indices 1 and 0: The first term
is invariant since e1 f e0 = e0 f e1, the last term is unchanged since [ω1, ω0] = [ω0, ω1], and the
remaining terms map into each other under the exchange. This completes the proof of cyclicity of
the pairing (5.5).

Now we establish cyclicity with respect to the bracket ℓ2. We only exhibit the non-trivial check,
with the rest following similarly.
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Lemma 5.10. If (ξi, ρi) ∈ V0 for i = 0, 1 and (X ,P) ∈ V3, then

〈
(ξ0, ρ0) , ℓ2

(
(ξ1, ρ1), (X ,P)

)〉
= −

〈
(ξ1, ρ1) , ℓ2

(
(ξ0, ρ0), (X ,P)

)〉
=

〈
(X ,P) , ℓ2

(
(ξ0, ρ0), (ξ1, ρ1)

)〉
.

Proof. By linearity, it suffices to prove the result for decomposable X = X1 ⊗ Xd ∈ Ω1(M,Ωd(M))
with X1 a one-form and Xd a d-form on M . Then

∫

M

ιξ0Lξ1X =

∫

M

(
ιξ0Lξ1X1Xd + ιξ0X1 dιξ1Xd

)

=

∫

M

(
ιξ0Lξ1X1Xd − dιξ0X1 ∧ ιξ1Xd

)

=

∫

M

(
ιξ0Lξ1X1Xd − ιξ1dιξ0X1Xd

)

=

∫

M

(
ιξ0Lξ1X1Xd − Lξ1ιξ0X1 Xd

)

=

∫

M

ι[ξ0,ξ1]X ,

where we firstly used the trivial coproduct to distribute the Lie derivative, then applied Cartan’s
magic formula, integrated by parts and used the derivation property of the contraction. Lastly we
used the Cartan identity

ι[ξ1,ξ0] = Lξ1 ◦ ιξ0 − ιξ0 ◦ Lξ1 . (5.11)

The final equality says that the initial quantity on the left-hand side is antisymmetric under the
exchange of the vector fields ξ0 and ξ1. Using this, the left-hand side of the cyclicity identity expands
as
〈
(ξ0, ρ0) , ℓ2

(
(ξ1, ρ1), (X ,P)

)〉
=

〈
(ξ0, ρ0) ,

(
dxµ ⊗ Tr(ιµdρ1 f P) + Lξ1X ,−ρ1 · P + Lξ1P

)〉

=

∫

M

ι[ξ0,ξ1]X +

∫

M

Tr
(
ιξ0dρ1 f P − ρ0 f ρ1 · P + ρ0 f Lξ1P

)

=

∫

M

ι[ξ0,ξ1]X +

∫

M

Tr
(
− ρ1 f Lξ0P + [ρ1, ρ0]f P + ρ0 f Lξ1P

)

where we used used the derivation propery of the contraction, integrated by parts and used the
invariance of a top exterior vector in Rp,q under so(p, q) rotations. This is manifestly antisymmetric
under the exchange of indices 0 and 1, thus proving the first cyclicity identity. Further manipulating,
noting that ιξ0dρ1 = Lξ0ρ1 since ρ1 is a zero-form, this is also equal to

∫

M

ι[ξ0,ξ1]X +

∫

M

Tr
(
(Lξ0ρ1 − Lξ1ρ0)f P − [ρ0, ρ1]f P

)

which gives the final cyclicity identity.

Finally, the proof of the cyclicity of
〈
(ξ, ρ) , ℓ2

(
(e, ω), (E,Ω)

)〉
contains essentially no new ideas,

apart from the fact that ρ · efE = −d−1
2 ρf (E ∧ e), which follows from 0 = (ρfE) ∧ e since the

internal vector space exterior products combine to a d+1-form in d dimensions, and then distributing
the contractions. To summarise, we have completely encoded the dynamical content of pure ECP
gravity in d > 2 dimensions in terms of an L∞-algebra equipped with a suitable cyclic pairing.
In Sections 7 and 8 we will consider two physically relevant examples explicitly to illustrate this
structure.
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5.3 Covariant L∞-algebra

We will now discuss the covariance problems associated with our L∞-algebra for the ECP theory,
and how to deal with them. This is done using the well known covariant Lie derivative [48] [49] [50],
whose geometric meaning we review and meet its avatar in the resulting brackets. The resulting
L∞-algebra is completely dual to the covariant version of the BV-BRST complex developed in [24]
for d = 4.

Finite gauge transformations

Recall from Sections 3.1 and 3.2 that in order for these formulas to make sense, one firstly has to
consider a parallelizable spacetime manifold M and fix the ‘fake tangent bundle’ V =M ×Rp,q.22

Under this choice, the coframe field e may be viewed globally as a one-form on M valued in Rp,q

and the connection ω as a one-form valued in so(p, q). For our original motivation on parallelisable
manifolds and noncommutative or nonassociative deformations this suffices [28], however one runs
into issues if finite gauge transformations and the possible non-parallelisability of spacetime are taken
into account. The coframe is globally encoded as a one-form ẽ ∈ Ω1(P,Rp,q) and the connection is
globally encoded as a one-form ω̃ ∈ Ω1(P, so(p, q)), on the associated principal SO+(p, q)-bundle
P → M . Given a local trivialisation of P, or equivalently a local section s : U → P for U ⊂ M ,
one defines the gauge field ω := s∗ω̃ ∈ Ω1(U, so(p, q)). Given another local section s′ : U → P with
ω′ := s′∗ω̃, the two pullbacks are related by

ω′ = h−1 ω h+ h−1 dh

where h : U → SO+(p, q) is the finite gauge transformation defined by s′ = s h.

The “problem” arises with the diffeomorphism symmetry of the theory: given an infinitessimal
diffeomorphism of the base manifold M , parameterized by a vector field ξ ∈ Γ(TM), it is clear that

ω′ + Lξω
′ 6= h−1 (ω + Lξω)h+ h−1 dh

for any h : U → SO+(p, q), and furthermore one cannot identify any section of P which pulls back
ω̃ to ω + Lξω. That is, the expressions ω + Lξω and ω′ + Lξω

′ no longer define a connection on
the same bundle P. This is apparent if one uses finite diffeomorphisms φ : M → M of the base,
where the pullbacks of the gauge fields φ∗ω and φ∗ω′ do define a connection, but on the pullback
principal bundle φ∗P over M instead. Thus, strictly speaking, our approach applies only when one
completely disregards global structures and thus also finite gauge transformations, viewing the fields
as globally defined defined one-forms on the base space ω ∈ Ω1(M, so(p, q)) and e ∈ Ω1(M,Rp,q)
which transform only under infinitesimal gauge transformations as expected.

Covariantization of diffeomorphisms

We have seen that a Lie derivative of the gauge field on the base space no longer defines a connection
on the same principal bundle, even if the bundle is trivial, and similarly for the coframe field when
viewed as a section of T ∗M ⊗ V . An equivalent way to spot the issue is from the fact that the
action of the Lie derivative does not commute with the action of a finite gauge transformation
h : U → SO+(p, q); for example, on the coframe field

Lξ(h
−1 e) 6= h−1 Lξe .

22Alternatively, they make sense in any fixed local trivialization of V , but then one has to face the problem of
patching together the locally defined L∞-algebras in a suitable way to an ‘L∞-algebroid stack’ on the spacetime M .
In the present paper we instead follow a more concrete approach to this problem, which is detailed in the following.
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Equivalently, for an infinitesimal pseudo-orthogonal rotation ρ :M → so(p, q),

[δξ , δρ] 6= 0 ,

as was already implied by the semi-direct product structure of the gauge algebra (3.6).

The resolution comes by identifying the correct way to act directly on the global fields ẽ, ω̃ living
on P, where they appear as genuine one-forms valued in fixed vector spaces. We briefly describe
this and skip the straightforward differential geometrical calculations, since they are well known
and not relevant for the rest of the section. Each connection identifies a horizontal distribution
Hor(P) ⊂ TP via its kernel, splitting the tangent bundle TP = Vert(P) ⊕ Hor(P) such that
Hor(P) ∼= TM via the differential of the bundle projection π : P → M and Vert(P) ≡ ker(dπ).
Using this identification, Γ(TM) ∼= Γ(Hor(P)) as vector spaces, and so we may act with the unique
lift ξ̃ ∈ Γ(Hor(P)) of any ξ ∈ Γ(TM), via the Lie derivative of the total space instead. Notice
although the connection gives a lift Γ(TM) ∼= Γ(Hor(P)), this is not a Lie algebra morphism, that
is

[ξ̃1, ξ̃2] = [̃ξ1, ξ2] + ι
ξ̃2
ι
ξ̃1
R̃ (5.12)

expressing that the non-integrability of the horizontal distribution is controlled by the curvature of
the connection. Acting on the global fields (ẽ, ω̃) using the equivariance, horizontal and vertical
properties of the fields along with Cartan calculus on P,

(L
ξ̃
ẽ,L

ξ̃
ω̃) =

(
(dω̃ ◦ ι

ξ̃
+ ι

ξ̃
◦ dω̃) ẽ , ι

ξ̃
R̃
)

where the right hand side is manifestly horizontal and equivariant. Hence (ẽ, ω̃)+(L
ξ̃
ẽ,L

ξ̃
ω̃) define

a coframe and a connection as expected. Using a local section s : U → P and equivariance, the
expressions pull down to define the infinitessimal action we are after

δcovξ (e, ω) :=
(
Lωξ e , ιξR

)
=

(
Lξe+ ιξω · e , ιξdω + [ιξω, ω]

)
, (5.13)

where the covariant Lie derivative

Lωξ := dω ◦ ιξ + ιξ ◦ dω

is defined on the spacetime as an appropriate modification of the Cartan formula (3.4). Notice, due
to (5.12) this does not form a Lie algebra action of Γ(TM) on the space of fields; however, we will
see the L∞-algebra framework is sufficient to accomodate such situations. As a further check, one
may confirm by working directly on the base spacetime manifold that the above infinitesimal action
is indeed covariant, i.e. it commutes with local pseudo-orthogonal rotations:

[δcovξ , δρ](e, ω) = (0, 0) .

In particular, they commute with finite pseudo-orthogonal rotations which are connected to the
identity, that is, the fields (e, ω) + δcovξ (e, ω) then do form a proper section of a vector bundle
and a connection on its associated principal bundle, as expected from the total space formulation.
Obviously, the above discussion applies for gauge fields with any internal group G and for matter
fields valued in any G-representation. As such, covariant Lie derivatives (also known as ‘covariant
general coordinate transformations’) have appeared in various contexts, to name a few: Studying
symmetries and conserved quantities of gauge theories on fixed background spacetimes [48]; More
specifically, these produce the correct symmetric and gauge invariant energy-momentum tensor in
Minkowski spacetime, avoiding the “adhoc” Belinfante procedure. They also appear necessarily in
the closure of local supersymmetry transformations in supergravity [49]. Furthermore, they have
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been recently used to study black hole thermodynamic laws in the case where non-trivial bundle
topologies underlie the dynamical fields [50].

The action functional (3.9) is indeed invariant under the new covariant diffeomorphisms. For
example, one can check

δcovξ (ed−2
fR) = Lξ(e

d−2
f R) + ιξω · (ed−2

fR)

where the first term vanishes upon integration over M by the usual diffeomorphism invariance, and
the second term vanishes by invariance under local pseudo-orthogonal transformations. Both at
the field transformation and at the action functional level we see the two diffeomorphism actions
differ by a local rotation, thus they are equivalent. We will see this equivalence translates to the
corresponding cyclic L∞-algebras being isomorphic. Expressing δcovξ SECP = 0 through

δcovξ SECP =

∫

M

Tr
(
Fe f δcovξ e+Fω f δcovξ ω

)

and isolating ξ as previously, the Noether identity corresponding to the covariant diffeomorphism
modifies only the first component of (3.12) to

d
cov
(e,ω)(Fe,Fω) :=

(
dxµ ⊗ Tr

(
ιµe f dFe − ιµdef Fe − (−1)d−1 ιµdω f Fω (5.14)

+ ιµω f

[d− 1

2
Fe ∧ e− (−1)d−1 ω ∧ Fω

])
, −d− 1

2
Fe ∧ e+ (−1)d−1 dωFω

)
.

Covariant brackets

We shall now spell out the brackets of the bootstrapped L∞-algebra corresponding to the covariant
gauge transformations (5.13). The L∞-algebra we obtain turns out to be dual to the covariant BV
differential obtained in [24] for the case of d = 4. The brackets involving solely dynamical fields
and the Euler–Lagrange derivatives are the same as those of Section 5.1, as only the gauge trans-
formations and Noether identities are affected in the covariant formulation, but not the dynamics.
The underlying vector space is locally as before, however we now consider the possibly non-trivial
bundle structures properly. For this, we parameterize SO+(p, q)-connections on the principal bundle
P →M by one-forms Ω1

(
M,P ×ad so(p, q)

)
on the base M valued in the adjoint bundle of P, in

the usual way by fixing some reference connection ω0. Then the graded vector space of the covariant
L∞-algebra is

V cov := V cov
0 ⊕ V cov

1 ⊕ V cov
2 ⊕ V cov

3

where

V cov
0 = Γ(TM)× Ω0

(
M,P ×ad so(p, q)

)
,

V cov
1 = Ω1(M,V )×Ω1

(
M,P ×ad so(p, q)

)
,

V cov
2 = Ωd−1

(
M,∧d−1

V
)
× Ωd−1

(
M,∧d−2

V
)
,

V cov
3 = Ω1

(
M,Ωd(M)

)
×Ωd

(
M,∧d−2

V
)
.

We denote elements of these vector spaces with the same symbols as previously.
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We will only write out the brackets ℓcovn which differ from those of the non-covariant formulation
of Section 5.1. The only existing brackets from (5.2) which are modified are

ℓcov2

(
(ξ1, ρ1) , (ξ2, ρ2)

)
=

(
[ξ1, ξ2] , −[ρ1, ρ2]

)
,

ℓcov2

(
(ξ, ρ) , (e, ω)

)
=

(
− ρ · e+ Lξe , −[ρ, ω] + ιξdω

)
,

ℓcov2

(
(ξ, ρ) , (E,Ω)

)
=

(
LξE − ρ · E , dιξΩ − ρ ·Ω

)
, (5.15)

ℓcov2

(
(ξ, ρ) , (X ,P)

)
=

(
LξX , −ρ · P

)
,

ℓcov2

(
(e, ω) , (E,Ω)

)
=

(
dxµ ⊗ Tr

(
ιµdefE + (−1)d−1 ιµdω fΩ − ιµef dE) ,

d− 1

2
E ∧ e− (−1)d−1 ω ∧Ω

)
.

There are also a number of new higher brackets that emerge. The non-trivial covariant 3-brackets
are given by

ℓcov3

(
(ξ1, ρ1) , (ξ2, ρ2) , (e, ω)

)
=

(
0 , −ιξ1ιξ2dω

)
,

ℓcov3

(
(ξ1, ρ1) , (ξ2, ρ2) , (X ,P)

)
=

(
0 , −dιξ1ιξ2P

)
,

ℓcov3

(
(ξ, ρ) , (e1, ω1) , (e2, ω2)

)
= −

(
ιξω1 · e2 + ιξω2 · e1 , [ιξω1, ω2] + [ιξω2, ω1]

)
,

ℓcov3

(
(ξ, ρ) , (E,Ω) , (e, ω)

)
=

(
ιξω · E , ω ∧ ιξΩ + (−1)d−1 d− 1

2
ιξ(E ∧ e)

)
, (5.16)

ℓcov3

(
(ξ, ρ) , (e, ω) , (X ,P)

)
=

(
dxµ ⊗ Tr(ιµιξdω f P) , 0

)
,

ℓcov3

(
(E,Ω) , (e1, ω1) , (e2, ω2)

)
= −

(d− 1

2
dxµ ⊗ Tr

(
ιµω1 f (E ∧ e2) + ιµω2 f (E ∧ e1)

)

− (−1)d−1 dxµ ⊗ Tr
(
ιµω1 f (ω2 ∧Ω) + ιµω2 f (ω1 ∧Ω)

)
, 0

)

while the non-trivial covariant 4-brackets are given by

ℓcov4

(
(ξ1, ρ1) , (ξ2, ρ2) , (e1, ω1) , (e2, ω2)

)
=

(
0 , ιξ1ιξ2 [ω1, ω2]

)
,

ℓcov4

(
(ξ1, ρ1) , (ξ2, ρ2) , (e, ω) , (X ,P)

)
=

(
0 , (−1)d−1 ω ∧ ιξ1ιξ2P

)
, (5.17)

ℓcov4

(
(ξ, ρ) , (e1, ω1) , (e2, ω2) , (X ,P)

)
=

(
dxµ ⊗ Tr(ιµιξ[ω1, ω2] f P) , 0

)
.

On all other fields and in all other degrees, the covariant brackets coincide with the brackets of
Section 5.1: ℓcovn = ℓn otherwise. The proof of the homotopy relations for these covariant brackets
is discussed in Appendix A.2.

It is straightforward to check that the covariant brackets continue to encode all kinematical and
dynamical information about Einstein–Cartan–Palatini gravity, now incorporating the covariant
infinitesimal action of diffeomorphisms discussed previously. Strictly speaking, the brackets written
above only make sense on local trivializations of the underlying vector bundles. However, the ℓcovn -
polynomial expressions of physical interest patch up to global objects, by covariance. For example,
the gauge transformations of the dynamical fields are now given by

δcov(ξ,ρ)(e, ω) = ℓcov1 (ξ, ρ) + ℓcov2

(
(ξ, ρ) , (e, ω)

)
− 1

2
ℓcov3

(
(ξ, ρ) , (e, ω) , (e, ω)

)
∈ V cov

1 ,

where a non-trivial 3-bracket ℓcov3 arises because (5.13) now involves third degree polynomial com-
binations. Similarly, one may read off the brackets from the polynomial expression for the Noether
identities, which now includes a non-trivial 3-bracket ℓcov3 by (5.14), so that

d
cov
(e,ω)(Fe,Fω) = ℓcov1 (Fe,Fω) + ℓcov2

(
(Fe,Fω) , (e, ω)

)
− 1

2
ℓcov3

(
(Fe,Fω) , (e, ω) , (e, ω)

)
∈ V cov

3 .
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However, it is not immediately obvious that these new brackets encode the expected covariance
of the Euler–Lagrange derivatives, that is,

δcov(ξ,ρ)(Fe,Fω) = ℓcov2

(
(ξ, ρ) , (Fe,Fω)

)
+ ℓcov3

(
(ξ, ρ) , (Fe,Fω) , (e, ω)

)
.

The part concerning local pseudo-orthogonal rotations is immediate, so that expanding the right-
hand side for ρ = 0 we confirm

(
LξFe , dιξFω

)
+

(
ιξω · Fe , ω ∧ ιξFω + (−1)d−1 d− 1

2
ιξ(Fe ∧ e)

)

=
(
LωξFe , LξFω − ιξdFω − ιξ(ω ∧ Fω) + ιξω · Fω + (−1)d−1 d− 1

2
ιξ(Fe ∧ e)

)

=

(
LωξFe , Lωξ Fω − ιξ

(
dωFω − (−1)d−1 d− 1

2
Fe ∧ e

))

=
(
LωξFe , LωξFω

)

= δcov(ξ,0)(Fe,Fω) ,

where in the first equality we used Lξ = ιξ ◦d+d◦ ιξ and ιξ(ω∧Fω) = ιξω ·Fω−ω∧ ιξFω, together
with the definition of Lωξ acting on the Euler–Lagrange derivatives which are forms valued in vector
bundles associated to multivector representations of SO+(p, q). In the second equality we used again
the definition of Lωξ together with dω, while in the fourth equality we used the Noether identity
corresponding to invariance under local pseudo-orthogonal rotations. From this perspective, the
input of the Noether identities is crucial. The naive bootstrap method, excluding the demand of
cyclicity, would result in a simpler version of the brackets avoiding the use of the Noether identities.
However, the resulting L∞-algebra would not be cyclic with respect to the natural pairing introduced
in Section 5.2: The requirement of cyclicity modifies the brackets via the application of the Noether
identities.

Another new feature which appears here is in the closure of the gauge transformations. The
covariant brackets also encode these, but now in the more general sense (2.14) where the bracket of
the gauge algebra is field-dependent (but closure still holds off-shell):

[
δcov(ξ1,ρ1)

, δcov(ξ2,ρ2)

]
(e, ω) = δcov[[(ξ1,ρ1),(ξ2,ρ2)]]cov(e,ω)

(e, ω) ,

where

[[(ξ1, ρ1) , (ξ2, ρ2)]]
cov
(e,ω) = − ℓcov2

(
(ξ1, ρ1) , (ξ2, ρ2)

)

− ℓcov3

(
(ξ1, ρ1) , (ξ2, ρ2) , (e, ω)

)
+

1

2
ℓcov4

(
(ξ1, ρ1) , (ξ2, ρ2) , (e, ω) , (e, ω)

)

=
(
− [ξ1, ξ2] , [ρ1, ρ2] + ιξ1ιξ2R

)
. (5.18)

This encodes directly the possible non-integrability of the horizontal lifting corresponding to each
connection (5.12). In particular, this means that the space of fields V cov

1 does not form a module
over the Lie algebra of gauge transformations on V cov

0 , in marked contrast with the non-covariant
approach, see (5.4). This formula is also noted in [24], albeit in the dual and shifted picture in which
the Lie derivative is viewed as an odd operator, where it is shown that the usual Cartan identity

L[ξ1,ξ2] = Lξ1 ◦ Lξ2 − Lξ2 ◦ Lξ1 (5.19)

is violated by the covariant Lie derivative Lωξ via a term involving the action of the contracted
curvature ιξ1ιξ2R ∈ Ω0

(
M,P ×ad so(p, q)

)
, as in (5.18).
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5.4 Cyclic L∞-isomorphism

In this section we have introduced two L∞-algebra formulations of ECP gravity, one local and the
other capturing the requisite covariance properties for non-trivial spacetimes M . We would now
like to show that these two formulations are physically equivalent locally, in the sense discussed in
Section 2.3. In fact, we exhibit a stronger result: In the case where the underlying manifold M is
parallelizable, the two theories are equivalent in the sense that their underlying L∞-algebras are
isomorphic. Indeed, all vector bundles in question are then trivial, and so the underlying vector
spaces of the covariant and non-covariant formulations are identical, V cov = V . The L∞-morphism
we present here has been constructed partly via the help of dualisation from the symplectomorphism
demonstrated in [24] for d=4. In fact since the map does not interact with dynamics, it has formally
the same form in any dimension.

Let {ψcov
n } be the collection of multilinear graded antisymmetric maps

ψcov
n : ∧nV cov −→ V ,

of degree |ψcov
n | = 1− n for n ≥ 1, defined as follows: ψcov

1 : V cov → V is the identity map

ψcov
1 (v) = v

for all v ∈ V cov, the map ψcov
2 : ∧2V cov → V has only non-trivial components given by

ψcov
2

(
(ξ, ρ) , (e, ω)

)
=

(
0 , −ιξω

)
∈ V0 ,

ψcov
2

(
(ξ, ρ) , (X ,P)

)
=

(
0 , −(−1)d−1 ιξP

)
∈ V2 ,

ψcov
2

(
(e, ω) , (X ,P)

)
=

(
− dxµ ⊗ Tr(ιµω f P) , 0

)
∈ V3 ,

while ψcov
n = 0 for all n ≥ 3. Then {ψcov

n } is a cyclic L∞-isomorphism between the cyclic L∞-
algebras

(
V cov, {ℓcovn }, 〈−,−〉

)
and

(
V, {ℓn}, 〈−,−〉

)
. One easily verifies the Seiberg–Witten maps

from (2.16)–(2.19) in this instance with

(e, ω)cov = (e, ω) , (Fe,Fω)cov = (Fe,Fω) and (ξ, ρ)cov = (ξ, ρ− ιξω) ,

so that δcov(ξ,ρ)(e, ω) = δ(ξ,ρ−ιξω)(e, ω) and δcov(ξ,ρ)(Fe,Fω) = δ(ξ,ρ−ιξω)(Fe,Fω) with the gauge algebra
mapping as

[[(ξ1, ρ1) , (ξ2, ρ2)]]
cov
(e,ω) = − ℓ2

(
(ξ1, ρ1 − ιξ1ω) , (ξ2, ρ2 − ιξ2ω)

)

+
(
ξ2 − ξ1 , ρ2 − ρ1 + ιξ1δ(ξ2,ρ2−ιξ2ω)

ω − ιξ2δ(ξ1,ρ1−ιξ1ω)
ω
)
.

Despite their simplicity, showing that the maps {ψcov
n } satisfy the required relations (2.5) of an

L∞-morphism is, like the proof of the homotopy relations, a tedious calculation which largely does
not depend on the spacetime dimension d. We give the proof for the case d = 3 in Appendix A.3;
the proof is similar for d ≥ 4.

Because {ψcov
n } is an L∞-morphism, since ψcov

1 is the identity it follows that {ψcov
n } is an L∞-

isomorphism. To check cyclicity of the map, since the cyclic pairing is the same on both L∞-algebras
of the gravity theory, it follows immediately that

〈ψcov
1 (v1), ψ

cov
1 (v2)〉 = 〈v1, v2〉

for all v1, v2 ∈ V cov, again because ψcov
1 is the identity. Furthermore, it is a straightforward degree-

wise calculation to check that

(−1)|v1| 〈ψcov
1 (v1), ψ

cov
2 (v2, v3)〉 − 〈ψcov

2 (v1, v2), ψ
cov
1 (v3)〉 = 0

and

〈ψcov
2 (v1, v2), ψ

cov
2 (v3, v4)〉 = 0 ,

for all v1, v2, v3, v4 ∈ V cov. The remaining cyclicity relations are all trivial.
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6 BV–BRST formalism for Einstein–Cartan–Palatini gravity

The duality between differential graded commutative algebras and L∞-algebras of finite type dis-
cussed in Section 2.2 converts the BV complex of a classical field theory into an L∞-algebra as
described in [15], and vice versa. In this section we shall explicitly demonstrate this fact in the case
of the non-covariant ECP formalism, after reviewing the BRST complex of ECP gravity [52–54]
and its augmented BV-BRST version [24], following the conventions of [17], where one may find a
detailed introduction to the subject. The covariant BV-BRST complex of [24] proceeds analogously
and is indeed dual to the covariant L∞-algebra presented in the last section.

6.1 BRST complex

The BRST complex for ECP gravity in d dimensions is obtained as the Chevalley–Eilenberg resolu-
tion for the quotient of the space of fields (3.5) by the gauge algebra (3.6). It has underlying vector
space

FBRST = FBRST 0 ⊕ FBRST −1 ,

where

FBRST 0 = Ω1(M,Rp,q)× Ω1
(
M, so(p, q)

)
,

FBRST −1 = Γ[1](TM) × Ω0[1]
(
M, so(p, q)

)
,

so that the dynamical fields are elements (e, ω) ∈ FBRST 0 and the gauge parameters are elements23

(ξ, ρ) ∈ FBRST −1 with e = ea Ea, ω = ωab Eba and ρ = ρab Eba. In the language of the BRST
formalism, the elements of the odd degree spaces of gauge parameters, which define sections of a
distribution D ⊂ TFBRST 0 with a degree shift of 1, are called ghosts.

On a local chart for M with coordinates x = (xµ), the fields are expanded in holonomic bases as
e = eaµ(x) dx

µ
Ea and ξ = ξµ(x) ∂µ, where ∂µ = ∂

∂xµ
, and similarly for the rest of the fields. Abusing

notation slightly, we shall consider the components eaµ as elements of the dual space F ⋆
BRST, thus

viewing eaµ(x) as coordinate functions on the infinite-dimensional vector space Ω1(M,Rp,q) via the
evaluation map

e′ aµ |x : Ω1(M,Rp,q) −→ R , e 7−→ eaµ(x) ,

and similarly for the rest of the fields. Abusing notation slightly, we will sometimes drop the primes
in the following.

The BRST differential QBRST should act on a suitable space of functionals of the field complex,
which we denote by O(FBRST). The precise definition of this space will not be of concern to us,
and it is often different depending on the context and goals. For our purposes, the following naive
description will suffice: Consider F ⋆

BRST
:= Hom(FBRST,R), the space of (continuous) R-linear

functionals on FBRST; note that these are not sections of the dual bundles. This space includes the
coordinate maps e′ aµ |x above, as well as maps factoring through the jet bundles, such as ∂νe′ aµ |x ,
which extract the values of derivatives of the fields at a point in a specified coordinate chart of the
underlying manifold M . We shall take O(FBRST) :=⊙•

R

F ⋆
BRST, the symmetric tensor algebra over

R of the dual of FBRST, as the space of polynomial functionals on the field complex. The usual

23Strictly speaking these should be denoted as (sξ, sρ), where (ξ, ρ) are the gauge parameters introduced in Section 3
and s is the suspension isomorphism in (6.2) below, but we do not indicate s explicitly in order to streamline our
formulas in the following.
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subtleties regarding the topology of F⋆
BRST

and in which category the tensor product is taken are
treated in detail in [36, 51]. For our purposes, it will be safe to treat this tensor product formally
as the algebraic tensor product.

Then QBRST is a degree 1 derivation QBRST : ⊙•
R

F ⋆
BRST → ⊙•

R

F ⋆
BRST such that Q2

BRST = 0. By
virtue of being a derivation, QBRST is completely determined by its action on the basis elements of
F ⋆

BRST. For Einstein–Cartan–Palatini gravity, this takes the form [52–54]

QBRSTe
a
µ = Lξe

a
µ − (ρ · e)aµ = (ξν ⊙ ∂νe

a
µ + eaν ⊙ ∂µξ

ν)− ρab ⊙ ebµ ,

QBRSTω
ab
µ = Lξω

ab
µ + dωρabµ = (ξν ⊙ ∂νω

ab
µ + ωabν ⊙ ∂µξ

ν) + ∂µρ
ab ⊙ 1 + ωacµ ⊙ ρc

b − ρac ⊙ ωcbµ ,

QBRSTξ
µ = 1

2 [ξ, ξ]
µ = ξν ⊙ ∂νξ

µ ,

QBRSTρ
ab = Lξρ

ab − 1
2 [ρ, ρ]

ab = ξν ⊙ ∂νρ
ab − ρac ⊙ ρcb . (6.1)

The BRST operator QBRST encodes the symmetries of ECP theory, that is, physical (gauge-invariant)
states modulo gauge transformations are classes in the degree 0 cohomology of the BRST complex;
in particular, the action functional SECP is a cocycle in degree 0: QBRSTSECP = 0. In a non-
holonomic basis of vector fields {pα} for Γ(TM) with Lie brackets [pα, pβ] = fγαβ pγ , the third
BRST transformation takes the form

QBRSTξ
α = 1

2 [ξ, ξ]
α = 1

2 f
α
βγ ξ

β ⊙ ξγ + ξβ ⊙ pβ(ξ
α) ,

which illustrates the similarity to the Chevalley–Eilenberg differential of a finite-dimensional Lie
algebra. However, this is not the Chevalley–Eilenberg dual of FBRST as a C∞(M)-module; for
instance, restricting to

(
Γ(TM), [−,−]

)
, this would give the de Rham complex

(
Ω•(M),d

)
instead.

The BRST differential contains all of the kinematical gauge structure of ECP gravity. For this,
we note that the differential QBRST dualizes to a codifferential

DBRST = Q⋆
BRST

:⊙•
FBRST −→⊙•

FBRST ,

which may be decomposed as

prFBRST
◦DBRST =

∞∑

n=1

DBRST n

where the components are maps DBRST n : ⊙n
FBRST → FBRST. Introduce the suspension isomor-

phism s : FBRST[−1] → FBRST, which induces an isomorphism of graded algebras given by

s⊗n : ∧n
FBRST[−1] −→⊙n

FBRST ,

s−1
v1 ∧ · · · ∧ s−1

vn 7−→ (−1)
∑n−1

j=1 (n−j) |s
−1
vj | v1 ⊙ · · · ⊙ vn . (6.2)

Then the graded antisymmetric brackets of the kinematical part of the L∞-algebra that we defined
in Section 5.1 are given exactly by

ℓn := s−1 ◦DBRST n ◦ s⊗n : ∧n
FBRST[−1] −→ FBRST[−1] ,

and nilpotence Q2
BRST = 0 translates to the homotopy relations for the brackets [17]. Dualizing back

and forth in this infinite-dimensional case is a delicate issue; however, the formal dualization below
make sense because one may interpret the brackets ℓn as maps between respective jet bundles, and
then dualize pointwise.
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We will now indicate how to explicitly calculate these brackets. For a diffeomorphism ξ ∈
FBRST −1 and a coframe field e ∈ FBRST 0, using the natural duality pairing 〈−|−〉 between ⊙•

FBRST

and ⊙•
R

F ⋆
BRST we get

〈QBRSTe
′ a
µ |ξ ⊙ e〉 = 〈ξ′ ν ⊙ ∂νe

′ a
µ + e′ aν ⊙ ∂µξ

′ ν |ξ ⊙ e〉

= (−1)|e
′| |ξ′| (ξν ∂νe

a
µ + eaν ∂µξ

ν)

= 〈e′ aµ |Lξe〉

=: 〈e′ aµ |(−1)|QBRST| |e′|DBRST 2(ξ ⊙ e)〉

= 〈e′ aµ |DBRST 2(ξ ⊙ e)〉

where we used |QBRST| = 1, |e′| = 0 and |ξ| = −1. Hence DBRST 2(ξ ⊙ e) = Lξe, and so24

ℓ2(
s−1

ξ ∧ s−1
e) = s−1 ◦DBRST 2 ◦ (s⊗ s)(s

−1
ξ ∧ s−1

e)

= (−1)|
s−1

ξ| |s| s−1 ◦DBRST 2(ξ ⊙ e)

= s−1 ◦DBRST 2(ξ ⊙ e)

= Ls−1
ξ
s−1

e ,

which agrees with (5.2). Similarly, for a local pseudo-orthogonal rotation ρ ∈ FBRST −1 we calculate

〈QBRSTe
′ a
µ |ρ⊙ e〉 = 〈−ρ′ ab ⊙ e′ bµ |ρ⊙ e〉

= −(−1)|ρ
′| |e′| ρab e

b
µ

= −〈e′ aµ |ρ · e〉

=: 〈e′ aµ | − (−1)|QBRST| |e′|DBRST 2(ρ⊙ e)〉 .

Hence DBRST 2(ρ⊙ e) = −ρ · e, and so

ℓ2(
s−1

ρ ∧ s−1
e) = s−1 ◦DBRST 2 ◦ (s⊗ s)(s

−1
ρ ∧ s−1

e)

= (−1)|
s−1

ρ| |s| s−1 ◦DBRST 2(ρ⊙ e)

= s−1 ◦DBRST 2(ρ⊙ e)

= −s−1
ρ · s−1

e ,

which also agrees with the corresponding brackets in (5.2). In a similar fashion one dualizes the
rest of QBRST and recovers all of the brackets containing the kinematical gauge structure of the field
theory, which in this case are guaranteed to satisfy the corresponding homotopy relations, since
Q2

BRST = 0.

6.2 BV–BRST complex

We now need to augment the kinematical gauge structure provided in the BRST formalism of
Section 6.1 by the dynamical data comprising the field equations and the Noether identities. Starting

24Yet another exterior product appears here: A wedge product inside a bracket denotes the exterior product of
∧•

FBRST[−1].
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from the classical BRST complex FBRST from Section 6.1, the BV complex provides the Koszul–
Tate resolution of its degree 0 cohomology (gauge equivalence classes of fields) modulo the ideal of
Euler–Lagrange derivatives. It is defined as the functionals O(FBV) on its shifted cotangent bundle:

FBV := T ∗[−1]FBRST . (6.3)

This takes the form

FBV = FBV −1 ⊕ FBV 0 ⊕ FBV 1 ⊕ FBV 2 , (6.4)

with

FBV −1 = Γ[1](TM) × Ω0[1]
(
M, so(p, q)

)
,

FBV 0 = Ω1(M,Rp,q)× Ω1
(
M, so(p, q)

)
,

FBV 1 = Ωd−1[−1]
(
M,∧d−1(Rp,q)

)
× Ωd−1[−1]

(
M,∧d−2(Rp,q)

)
,

FBV 2 = Ω1[−2]
(
M,Ωd(M)

)
× Ωd[−2]

(
M,∧d−2(Rp,q)

)
,

where elements of the degree 1 spaces are called antifields, which we denote by (e†, ω†), while
elements of the degree 2 spaces are called antighosts,25 denoted by (ξ†, ρ†). The antifields and
antighosts are transversal sections to the gauge orbits in the space of fields and ghosts (odd gauge
parameters) respectively, and they may be paired with fields and ghosts using the pairing which
defines the action functional SECP to give an R-valued d-form on M .

Explicitly, the pairing in the Einstein–Cartan–Palatini action functional may be regarded as a
non-degenerate bilinear form

Tr(−f−) : Ωd−k
(
M,∧d−k(Rp,q)

)
⊗ Ωk

(
M,∧k(Rp,q)

)
−→ Ωd(M)

which defines the BV pairing 〈−,−〉BV and dualizes the fields and ghosts to antifields and antighosts
through the assignments

e ∈ Ω1(M,Rp,q) =⇒ e† ∈ Ωd−1
(
M,∧d−1(Rp,q)

)
,

ω ∈ Ω1
(
M,∧2(Rp,q)

)
=⇒ ω† ∈ Ωd−1

(
M,∧d−2(Rp,q)

)
,

ρ ∈ Ω0
(
M,∧2(Rp,q)

)
=⇒ ρ† ∈ Ωd

(
M,∧d−2(Rp,q)

)
,

ξ ∈ Γ(TM) =⇒ ξ† ∈ Ω1
(
M,Ωd(M)

)
,

where the final duality is defined by ιξξ
† ∈ Ωd(M). Here the spaces of antifields and antighosts

correspond exactly to the spaces of Euler–Lagrange derivatives and of Noether identities; indeed,
the graded vector space (6.4) is just the vector space (5.1) underlying our L∞-algebra with degrees
shifted by 1:

FBV = V [1] ,

because of the degree shift by −1 in the cotangent bundle (6.3).

25These are not the antighost fields which are sometimes introduced in the BRST formalism, but this terminology
is convenient in the present context.
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The space FBV, being a cotangent bundle, further has the structure of a graded (infinite-
dimensional) (−1)-symplectic manifold, where the canonical symplectic two-form is given by

ωBV :=

∫

M

Tr
(
δe f δe† + δω f δω† − δρ f δρ†

)
−

∫

M

ιδξδξ
† . (6.5)

As expected, this is the shifted (and dual) version of the cyclic pairing 5.5. It induces a graded
Poisson bracket {−,−}BV of smooth functions on FBV, that we consider to be the space ⊙•

R

F ⋆
BV

as in Section 6.1, which is called the antibracket. In this sense, fields and their antifield partners
may be regarded as canonically conjugate variables.

We would now like to define the BV extension of the action functional SECP to a local action
functional SBV on FBV of degree 0 that satisfies the classical master equation

{SBV, SBV}BV = 0 . (6.6)

This is always possible for BV complexes which are built out of underlying BRST complexes [55],
and it automatically extends the BRST differential QBRST on FBRST to the BV differential QBV on
FBV as the cotangent lift

QBVF := {SBV, F}BV = −
∫

M

∑

A∈{e,ω,ρ,ξ}

(〈δSBV

δA
,
δF

δA†

〉⋆
BV

+
〈δSBV

δA†
,
δF

δA

〉⋆
BV

)
,

where 〈−,−〉⋆BV denotes the dual BV pairing and δ
δe

:= δ
δeaµ

⊗F
a ∂µ with F

a dual to Ea and ∂µ dual to

dxµ, and similarly for the other fields. The classical master equation (6.6) together with the graded
Jacobi identity for the antibracket guarantee that Q2

BV = 0.

A solution to (6.6) is given by the BV pairing as [55]

SBV = SECP +

∫

M

Tr
(
QBRSTe f e† +QBRSTω f ω† −QBRSTρf ρ†

)
−

∫

M

ιQBRSTξξ
† , (6.7)

where QBRSTe := QBRSTe
a
µ ⊗ Ea dx

µ ∈ ⊙•
R

F ⋆
BRST

⊗ FBRST, and similarly for the other fields. This
defines the minimal part of the BV extension of the Einstein–Cartan–Palatini theory; the non-
minimal part of the action functional is trivial from our classical perspective as it involves products
of auxiliary fields and antighosts, and so is the QBV-exact variation of a gauge fixing fermion.
Explicitly, the minimal BV extension of the action functional for d-dimensional gravity reads

SBV =

∫

M

Tr
( 1

d− 2
ed−2

f R+
1

d
Λ ed +

(
Lξe− ρ · e

)
f e† +

(
Lξω + dωρ

)
f ω†

)

− 1

2

∫

M

Tr
(
(2Lξρ− [ρ, ρ]) f ρ†

)
− 1

2

∫

M

ι[ξ,ξ]ξ
† .

From the form of the BV action functional (6.7), it immediately follows that the pullback of the
BV differential to the natural Lagrangian submanifold of FBV provided by the zero section is given
by

QBV|FBRST
= QBRST ,

and so this part of the BV differential QBV includes the kinematical gauge sector of our L∞-algebra
via dualization. The BV transformations of the antifields QBVe

† and QBVω
† incorporate the dy-

namical brackets of our L∞-algebra, while QBVρ
† and QBVξ

† encode brackets corresponding to
the Noether identities and the action of the gauge parameters on the space of Noether identi-
ties [17, 38, 56]. This, together with the fact that Q2

BV
= 0, guarantee that the homotopy relations
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are satisfied in any dimension d ≥ 3. The canonical symplectic two-form (6.5) corresponds to the
cyclic pairing of the L∞-algebra introduced in Section 5.2, with cyclicity being equivalent to the
QBV-invariance of ωBV, and the sign difference comes from the degree shifting. Then cyclic L∞-
morphisms correspond to cohomomorphisms of FBV, in the sense discussed in Section 2.2, whose
duals preserve the symplectic structures. In particular, cyclic quasi-isomorphisms result into equiv-
alent field theories, thus in our case relating equivalent gravity theories.

After some tedious but straightforward calculation, one may arrive at

QBVe
† a1···ad−1

µ1···µd−1
=− e

[a1
[µ1

· · · ead−3
µd−3 R

ad−2ad−1]
µd−2µd−1]

− Λ e
[a1
[µ1

· · · ead−1]
µd−1]

+ d
(
e†
a1···ad−1

[µ1···µd−1
∂σ]ξ

σ − e†
[a1···ad−1

µ1···µd−1
ρb]b

)
+ ∂σ

(
ξσ e†

a1···ad−1

µ1···µd−1

)
,

QBVω
† a1···ad−2

µ1···µd−1
=− e

[a1
[µ1

· · · ead−3
µd−3 T

ad−2]
µd−2µd−1]

+ (d− 1) ρ[bb ω
† a1···ad−2]
µ1···µd−1

+ dω† a1···ad−1

[µ1···µd−1
∂σ]ξ

σ + ∂σ
(
ξσ e†

a1···ad−1

µ1···µd−1

)
,

QBVρ
† a1···ad−2

µ1···µd
=− d− 1

2
eb[µ1 e

† ba1···ad−2

µ2···µd]
+ (−1)d−1 ωa1 b[µ1 ω

† ba2···ad−2

µ2···µd]
+ ∂[µ1ω

† a1···ad−2

µ2···µd]

− ρa1b ρ
† ba2···ad−2

µ1···µd
+ ∂σ

(
ξσ ρ†

a1···ad−2

µ1···µd

)
,

QBVξ
†
νµ1···µd

=− εa1···ad

(
∂νe

a1
[µ1
e†
a2···ad
µ2···µd]

− ∂[µ1e
a1
|ν| e

† a2···ad
µ2···µd]

− ea1|ν| ∂[µ1e
† a2···ad
µ2···µd]

+ (−1)d−1 ∂νω
a1a2
[µ1

ω† a3···ad
µ2···µd]

− (−1)d−1 ∂[µ1ω
a1a2
|ν|

ω† a3···ad
µ2···µd]

− (−1)d−1 ωa1a2|ν| ∂[µ1ω
† a3···ad
µ2···µd]

− ∂νρ
a1a2 ρ†

a3···ad
µ1···µd

)

+ ∂νξ
σ ξ†σµ1···µd + ∂σ

(
ξσ ξ†νµ1···µd

)
. (6.8)

These expressions should be understood as valued in ⊙•
R

F ⋆
BV, but for brevity we do not write

the symmetrized tensor products explicitly. The first two transformations dualize to the brackets
involving the Euler–Lagrange derivatives with respect to the coframe field e and the spin connection
ω respectively, and the actions of gauge transformations on them. The last two transformations
dualize to the brackets involving the Noether identities corresponding to local pseudo-orthogonal
and diffeomorphism gauge symmetries, and the action of gauge transformations on them. In general,
the explicit proof of this dualization is a long and cumbersome calculation, which is also largely
dependent on the spacetime dimension d. We illustrate how this works explicitly in Appendix B for
the case d = 4.

7 Three-dimensional gravity

We will now specialise our discussion to the three-dimensional case, which has special features com-
pared to higher dimensionalities. In particular, in this case the pertinent L∞-algebra is a differential
graded Lie algebra. Using the special feature of general relativity in three spacetime dimensions,
where it defines a topological field theory in the sense that it is absent of local propagating de-
grees of freedom, we can make contact with the L∞-algebra formulations of Section 4 through
explicit L∞-quasi-isomorphisms. This will show, in particular, that in the L∞-algebra framework,
three-dimensional gravity (including degenerate metrics) is pertubatively off-shell equivalent to a
Chern–Simons gauge theory, extending the well-known on-shell equivalence [57]. This result may be
interepreted as an extension of the recent analogue result which applies to the strictly non-degenerate
sector [30], phrased in the dual BV-BRST framework.
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7.1 Field equations

Specialising the discussion of Section 3, the Einstein–Cartan–Palatini action functional for gravity
in d = 3 dimensions including cosmological constant is given by

SECP(e, ω) : =

∫

M

Tr
(
e fR+

Λ

3
e f ef e

)

=

∫

M

Tr

((
ea ∧Rbc + Λ

3
ea ∧ eb ∧ ec

)
Ea ∧ Eb ∧ Ec

)

=

∫

M

εabc

(
ea ∧Rbc + Λ

3
ea ∧ eb ∧ ec

)
, (7.1)

where εabc is the Levi–Civita tensor. In this section we shall work in Lorentzian signature (p, q) =
(1, 2) for definiteness, but our considerations apply equally well in Euclidean signature without
substantial change. The field equations are

R+ Λ ef e = 0 and T = 0 . (7.2)

When e is invertible, these are equivalent to the three-dimensional Einstein field equations up
to local SO+(1, 2) Lorentz transformations, whose solutions are spacetimes of constant curvature.
This means that there are no gravitational waves on three-dimensional spacetimes, but even though
all classical spacetimes obtained as solutions to (7.2) are locally gauge equivalent, they can have
different topology [57].

7.2 L∞-algebra formulation

The L∞-algebra corresponding to the gravity theory in d = 3 dimensions from Section 7.1 is given
by the vector space

V := V0 ⊕ V1 ⊕ V2 ⊕ V3 (7.3)

where

V0 = Γ(TM)× Ω0
(
M, so(1, 2)

)
,

V1 = Ω1(M,R1,2)× Ω1
(
M, so(1, 2)

)
, (7.4)

V2 = Ω2
(
M,∧2(R1,2)

)
× Ω2(M,R1,2) ,

V3 = Ω1
(
M,Ω3(M)

)
× Ω3(M,R1,2) .
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The brackets of Section 5.1 reduce in this case to

ℓ1(ξ, ρ) = (0,dρ) ∈ V1 ,

ℓ1(e, ω) = (dω,de) ∈ V2 ,

ℓ1(E,Ω) = (0,dΩ) ∈ V3 ,

ℓ2
(
(ξ1, ρ1) , (ξ2, ρ2)

)
=

(
[ξ1, ξ2] , −[ρ1, ρ2] + ξ1(ρ2)− ξ2(ρ1)

)
∈ V0 ,

ℓ2
(
(ξ, ρ) , (e, ω)

)
=

(
− ρ · e+ Lξe , −[ρ, ω] + Lξω

)
∈ V1 , (7.5)

ℓ2
(
(ξ, ρ) , (E,Ω)

)
=

(
− [ρ,E] + LξE , −ρ ·Ω + LξΩ

)
∈ V2 ,

ℓ2
(
(ξ, ρ) , (X ,P)

)
=

(
dxµ ⊗ Tr(ιµdρf P) + LξX , −ρ · P + LξP

)
∈ V3 ,

ℓ2
(
(e1, ω1) , (e2, ω2)

)
= −

(
[ω1, ω2] + 2Λ e2 f e1 , ω1 ∧ e2 + ω2 ∧ e1

)
∈ V2 ,

ℓ2
(
(e, ω) , (E,Ω)

)
=

(
dxµ ⊗ Tr

(
ιµdef E + ιµdω fΩ − ιµef dE − ιµω f dΩ

)
,

E ∧ e− ω ∧Ω
)

∈ V3 ,

while all the rest of the brackets vanish. Thus three-dimensional gravity is organised by a differential
graded Lie algebra. Again the Lie derivative Lξ acts via the Leibniz rule on X ∈ Ω1(M)⊗ Ω3(M).
The proof of the homotopy relations in this case is given in Appendix A.1.

As designed by (2.11)–(2.15), these encode the Euler–Lagrange derivatives

F(e, ω) = (R+ Λ e f e, T )

= (dω,de) +
1

2
([ω, ω] + 2Λ e f e, 2ω ∧ e)

= ℓ1(e, ω) −
1

2
ℓ2
(
(e, ω) , (e, ω)

)
.

Moreover, the action functional (7.1) can be written as in (2.24) using the cyclic pairing (5.5):

SECP(e, ω) =

∫

M

Tr

(
ef

(
dω +

1

2
[ω, ω]

)
+

Λ

3
e f e f e

)

=

∫

M

Tr
(1
2
(e f dω + ω f de) +

1

3!

(
ef [ω, ω] + 2ω f (ω ∧ e) + 2Λ e f e f e

))

=
1

2

〈
(e, ω) , (dω,de)

〉
+

1

3!

〈
(e, ω) , ([ω, ω] + 2Λ e f e, 2ω ∧ e)

〉

=
1

2

〈
(e, ω) , ℓ1(e, ω)

〉
− 1

3!

〈
(e, ω) , ℓ2

(
(e, ω) , (e, ω)

)〉
,

where in the second equality we integrated by parts on e f dω and used e f [ω, ω] = ω f (ω ∧ e)
which follows from the identity (3.8).

7.3 L∞-quasi-isomorphism with BF and Chern–Simons formulations

Three-dimensional gravity is very similar to BF theory in three dimensions: The action functional
(7.1) is just the action functional (4.10) with W = R

1,2 and g = so(1, 2), along with an extra
cosmological constant term. The usual shift symmetry (4.11) of BF theory correspondingly contains
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a slight modification to accomodate for the cosmological constant term: for τ ∈ Ω0(M,R1,2), the
action is invariant under

δτe = dτ + ω · τ and δτω = 2Λ e f τ (7.6)

with corresponding Noether identity

dωFe = dωR+ 2Λdωe f e = 2ΛFω f e

in Ω3(M,∧2(R1,2)), where we wrote Fω := T = dωe and Fe := R + Λ e f e as before, and used
the second Bianchi identity dωR = 0. One may readily check the covariance of the Euler–Lagrange
derivatives under the new transformation:

δτ (Fe,Fω) = (2ΛFω f τ , Fe ∧ τ) ,

so that in this case covariance is preserved but through a mixing of the two Euler–Lagrange deriva-
tives.

Despite the cosmological constant modification, this symmetry may still be used to compensate
for the action of any infinitesimal diffeomorphism ξ ∈ Γ(TM). Indeed by choosing τξ := ιξe and
ρξ := ιξω, one can verify

δξ(e, ω) := (Lξe,Lξω) = δ(τξ ,ρξ)(e, ω) + (ιξFe, ιξFω) (7.7)

as in (4.14). When e is non-degenerate, that is, it is invertible as a bundle map, one may define
the vector field ξτ := e−1(τ) that generates a shift transformation by any τ ∈ Ω0(M,R1,2) via
(7.7). Thus if one restricts the action functional (7.1) to non-degenerate coframe fields e, then the
choice of generating set of gauge transformations is immaterial [57,58]. However, in the L∞-algebra
framework we need to allow for degenerate metrics in order for the space of dynamical fields to
be a vector space. In this case, the two transformations are not equivalent, and indeed the shift
symmetry generates a larger symmetry distribution on the space of fields. Hence, with this line of
reasoning one should attach the extra symmetries to the cochain complex of the L∞-algebra. Then
three-dimensional gravity (including degenerate metrics) is a special case of three-dimensional BF
theory, with an additional cosmological constant term.

Extending the three-dimensional ECP complex to include the extra shift symmetry and its
corresponding Noether identity leads to the graded vector space

V ext
ECP

:= V ext
0 ⊕ V ext

1 ⊕ V ext
2 ⊕ V ext

3

where

V ext
0 = Γ(TM)× Ω0(M,R1,2)× Ω0

(
M, so(1, 2)

)
,

V ext
1 = V1 = Ω1(M,R1,2)× Ω1

(
M, so(1, 2)

)
, (7.8)

V ext
2 = V2 = Ω2

(
M,∧2(R1,2)

)
× Ω2(M,R1,2) ,

V ext
3 = Ω1

(
M,Ω3(M)

)
× Ω3(M,∧2

R

1,2)× Ω3(M,R1,2) ,
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with the brackets extending as

ℓext
1 (ξ, τ, ρ) = (dτ,dρ) ∈ V ext

1 ,

ℓext
1 (e, ω) = (dω,de) ∈ V ext

2 ,

ℓext
1 (E,Ω) = (0,dE,dΩ) ∈ V ext

3 ,

ℓext
2

(
(ξ1, τ1, ρ1) , (ξ2, τ2, ρ2)

)
=

(
[ξ1, ξ2] , −ρ1 · τ2 + ρ2 · τ1 + ξ1(τ2)− ξ2(τ1) ,

− [ρ1, ρ2] + ξ1(ρ2)− ξ2(ρ1)
)

∈ V ext
0 , (7.9)

ℓext
2

(
(ξ, τ, ρ) , (e, ω)

)
=

(
− ρ · e+ ω · τ + Lξe , −[ρ, ω] + 2Λ e f τ + Lξω

)
∈ V ext

1 ,

ℓext
2

(
(ξ, τ, ρ) , (E,Ω)

)
=

(
− [ρ,E] + 2ΛΩ f τ + LξE , −ρ ·Ω + E ∧ τ + LξΩ

)
∈ V ext

2 ,

ℓext
2

(
(ξ, τ, ρ) , (X ,T ,P)

)
=

(
dxµ ⊗Tr(ιµdρf P + ιµdτ f T ) + LξX ,

− [ρ,T ] + LξT , −ρ · P + LξP
)

∈ V ext
3 ,

ℓext
2

(
(e1, ω1) , (e2, ω2)

)
= −

(
[ω1, ω2] + 2Λ e2 f e1 , ω1 ∧ e2 + ω2 ∧ e1

)
∈ V ext

2 ,

ℓext
2

(
(e, ω) , (E,Ω)

)
=

(
dxµ ⊗Tr(ιµdef E + ιµdω fΩ − ιµe f dE − ιµω f dΩ) ,

− [ω,E] + 2ΛΩ f e , E ∧ e− ω ∧Ω
)

∈ V ext
3 .

The extra homotopy relations follow from identical calculations to those of Appendix A.1. At this
point one should further augment the complex by introducing a copy of the redundant part of the
symmetries at degree −1 and its dual at degree 4. The final extended L∞-algebra is then quasi-
isomorphic to the L∞-algebra constructed here but excluding the diffeomorphisms, in exactly the
same way as in Section 4.4. Instead, we will circumvent this step in a more elegant way.

Recalling the equivalence between BF theory in three dimensions and Chern–Simons theory
from Section 4.6, it follows that for Λ = 0 the three-dimensional ECP theory is equivalent to
Chern–Simons theory based on the Lie algebra R1,2 ⋊ so(1, 2). Following the observation of [57],
this equivalence can be extended to Λ 6= 0, and we shall show that the extended L∞-algebra based
on (7.8) and (7.9) is isomorphic to the extended Chern–Simons L∞-algebra based on (4.7), (4.8) and
(4.9) for a special choice of Lie algebra. That is, Einstein–Cartan–Palatini theory can be formulated
as a Chern–Simons gauge theory of the sort discussed in Section 4.1 whose gauge group G is the
isometry group of the constant curvature three-dimensional spacetime determined by the Einstein
equations (7.2): the Poincaré group ISO(1, 2) = R1,2⋊ SO(1, 2) for vanishing cosmological constant
Λ = 0, the de Sitter group SO(1, 3) for Λ > 0, or the anti-de Sitter group SO(2, 2) for Λ < 0. The
generators Pa and Jab = −Jba of the Lie algebra g of G, with a, b = 1, 2, 3, have Lie brackets

[Pa, Pb]g = 2Λ Jab ,

[Jab, Pc]g =
1
2

(
ηbc Pa − ηac Pb

)
,

[Jab, Jcd]g =
1
2

(
ηbc Jad − ηac Jbd + ηad Jbc − ηbd Jac

)
,

and there is a natural invariant quadratic form Trg : g⊗ g → R of split signature defined by [57]

Trg(Jab ⊗ Pc) = εabc and Trg(Jab ⊗ Jcd) = 0 = Trg(Pa ⊗ Pb) .

By decomposing connections A ∈ Ω1(M, g) as

A = ea Pa + ωab Jab ∈ Ω1(M, g) , (7.10)
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a straightforward expansion of the Chern–Simons action functional (4.1) using these commutation
relations and invariant pairing shows that it coincides with the action functional (7.1) for Einstein–
Cartan–Palatini gravity in three dimensions:

SCS(A) = SECP(e, ω) .

Similarly, decomposing gauge parameters λ ∈ Ω0(M, g) as

λ = τa Pa + ρab Jab ∈ Ω0(M, g) , (7.11)

a straightforward expansion again shows that the standard gauge transformations δλA in (4.2) are
equivalent to δ(τ,ρ)(e, ω). Completely analogous statements follow for the action of diffeomorphisms,
and for the forms of the Euler–Lagrange derivatives and Noether identities.

The precise statement of the equivalence above is that the two underlying extended cyclic L∞-
algebras are (strictly) isomorphic. The isomorphism is given by

ψECP

1 : V ext
ECP

−→ V ext
CS

where

ψECP

1 (ξ, τ, ρ) = (ξ, τa Pa + ρab Jab) ,

ψECP

1 (e, ω) = ea Pa + ωab Jab ,

ψECP

1 (E,Ω) = Ωa
Pa + Eab Jab ,

ψECP

1 (X ,T ,P) = (X ,Pa
Pa + T ab

Jab) ,

while the remaining maps ψECP
n : ∧nV ext

ECP → V ext
CS are set to 0 for all n ≥ 2. Since both sides are

differential graded Lie algebras, and no higher morphisms ψECP
n arise, the only relation to check is

the condition that the map ψECP

1 is a morphism of differential graded Lie algebras. The calculations
follow by a straightforward expansion of the brackets involved. Furthermore, the map is a cyclic
L∞-morphism, which follows immediately by the definition of the pairing Trg.

Following the discussion of redundant symmetries in Chern–Simons theory from Section 4,
one may simply drop the redundant diffeomorphism symmetries by composing with the quasi-
isomorphism on the Chern–Simons side,26 with no effect on the moduli space of classical solutions.
Then this L∞-isomorphism shows that three-dimensional ECP theory is perturbatively off-shell
equivalent to Chern–Simons theory with the appropriate gauge algebra. Note that while on the
gravity side the cosmological constant Λ appears explicitly in the dynamical and kinematical brack-
ets, on the Chern–Simons side of the equivalence Λ does not appear in the definition of the n-
brackets: it is reinterpreted as part of the structure constants of the chosen Lie algebra, and in this
sense it is fully absorbed into the kinematical data instead.

We contrast the description we give here with that of the strong BV equivalence exhibited
by [30] between three-dimensional non-degenerate ECP gravity and non-degenerate BF theory. The
symplectomorphism the authors present uses explicitly the inversion property of non-degenerate
coframes, and as such it cannot be straightforwardly extended to the degenerate sector. From
the L∞-algebra point of view, it is obvious we cannot intepret their map as an L∞-morphism since
restricting to non-degenerate configurations automatically takes us out of the realm of vector spaces
and L∞-algebras. Furthermore, our quasi-isomorphism may be dualised to a map that preserves
the symplectic 2-form in the corresponding (degenerate) BV-BRST complexes which however will

26Strictly speaking we should also include vector spaces V ext
−1 and V ext

4 for this composition to work, but this is
easily done and we do not write them explicitly.
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not be a bijection. For the equivalence to be apparent one really needs to work on the underlying
L∞-algebras level, where we can invert maps -up to homotopy- which are not necessarily bijective.
Another remark is that our maps point out the well known equivalence of BF and certain Chern-
Simons models, thus encoding the cosmological constant in the structure Lie algebra of Chern-
Simons theory as in [57]. Indeed our interpretation of redundant symmetries and use of quasi-
isomorphisms, including degenerate coframes, comes more closely to that of Witten [57].

8 Four-dimensional gravity

In this final section we briefly describe the analogous four-dimensional case, wherein the L∞-algebra
formulation is no longer given by a differential graded Lie algebra.

8.1 Field equations

The discussion of Section 3 can also be specialised to yield the Einstein–Cartan–Palatini action
functional for gravity in d = 4 dimensions including cosmological constant, which is given by

SECP(e, ω) : =

∫

M

Tr
(1
2
ef ef R+

Λ

4
ef ef e f e

)

=

∫

M

Tr

((1
2
ea ∧ eb ∧Rcd + Λ

4
ea ∧ eb ∧ ec ∧ ed

)
Ea ∧ Eb ∧ Ec ∧ Ed

)

=

∫

M

εabcd

(1
2
ea ∧ eb ∧Rcd + Λ

4
ea ∧ eb ∧ ec ∧ ed

)
, (8.1)

where again we work in Lorentzian signature (p, q) = (1, 3) for definiteness and identify the curvature
as R = Rab Ea ∧ Eb ∈ Ω2(M,∧2(R1,3)). The field equations are now

ef R+ Λ ef ef e = 0 and ef T = 0 .

In this case, when e is invertible, the second equation is equivalent to the torsion-free condition
T = 0, because the map

e f− : Ω2
(
M,R1,3

)
−→ Ω3

(
M,∧2(R1,3)

)

is an isomorphism. This can be used to rewrite the action functional (8.1) in terms of the curvature
of the Levi–Civita connection for the metric g = ηab e

a⊗ eb. Then the first equation can be reduced
to the Einstein equations in four dimensions (up to gauge equivalence).

8.2 L∞-algebra formulation

Next we write out explicitly the L∞-algebra structure of four-dimensional gravity from Section 5.1,
specialised to the case d = 4. It is given by the vector space

V := V0 ⊕ V1 ⊕ V2 ⊕ V3

55



where

V0 = Γ(TM)× Ω0
(
M, so(1, 3)

)
,

V1 = Ω1(M,R1,3)×Ω1
(
M, so(1, 3)

)
,

V2 = Ω3
(
M,∧3(R1,3)

)
× Ω3

(
M,∧2(R1,3)

)
,

V3 = Ω1
(
M,Ω4(M)

)
× Ω4

(
M,∧2(R1,3)

)
.

The non-vanishing brackets may be read off as follows: The 1-bracket ℓ1 is defined by

ℓ1(ξ, ρ) = (0,dρ) ∈ V1 , ℓ1(e, ω) = (0, 0) ∈ V2 and ℓ1(E,Ω) = (0,−dΩ) ∈ V3 .

The 2-bracket ℓ2 is defined by

ℓ2
(
(ξ1, ρ1) , (ξ2, ρ2)

)
=

(
[ξ1, ξ2] , −[ρ1, ρ2] + ξ1(ρ2)− ξ2(ρ1)

)
∈ V0 ,

ℓ2
(
(ξ, ρ) , (e, ω)

)
= (−ρ · e+ Lξe,−[ρ, ω] + Lξω) ∈ V1 ,

ℓ2
(
(ξ, ρ) , (E,Ω)

)
= (−ρ · E + LξE,−[ρ,Ω] + LξΩ) ∈ V2 ,

ℓ2
(
(ξ, ρ) , (X ,P)

)
=

(
dxµ ⊗ Tr(ιµdρf P) + LξX , −[ρ,P] + LξP

)
∈ V3 ,

ℓ2
(
(e1, ω1) , (e2, ω2)

)
= −(e1 f dω2 + e2 f dω1, e1 f de2 + e2 f de1) ∈ V2 ,

ℓ2
(
(e, ω) , (E,Ω)

)
=

(
dxµ ⊗ Tr

(
ιµdef E − ιµdω fΩ − ιµef dE + ιµω f dΩ

)
,

3
2 E ∧ e+ [ω,Ω]

)
∈ V3 .

The 3-bracket ℓ3 is defined by

ℓ3
(
(e1, ω1) , (e2, ω2) , (e3, ω3)

)

= −
(
e1 f [ω2, ω3] + e2 f [ω1, ω3] + e3 f [ω2, ω1] + 3!Λ e1 f e2 f e3 ,

e1 f (ω2 ∧ e3) +(2↔3) +e2 f (ω1 ∧ e3) +(1↔3) +e3 f (ω2 ∧ e1) +(2↔1)

)
∈ V2 .

The calculations establishing the homotopy relations in this case are formally identical to those of
the three-dimensional case from Appendix A.1, now including an extra coframe field e where the
higher brackets occur. We do not detail these cumbersome calculations and instead illustrate how
the brackets follow from the dual picture of the BV–BRST formalism in Appendix B. Using the
nilpotency of the BV differential this may be seen as an alternative proof of the homotopy relations.

The Euler–Lagrange derivatives are encoded in the expected way as

F(e, ω) =
(
e f dω + e f 1

2 [ω, ω] + Λ e3, e f de+ ef (ω ∧ e)
)

= (0, 0) + (ef dω, ef de) +
(
e f 1

2 [ω, ω] + Λ e3, e f (ω ∧ e)
)

= ℓ1(e, ω)−
1

2
ℓ2
(
(e, ω) , (e, ω)

)
− 1

3!
ℓ3
(
(e, ω) , (e, ω) , (e, ω)

)
.

The action functional (8.1) can be written as in (2.24) using the cyclic pairing (5.5) and the iden-
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tity (3.8):

SECP(e, ω) =

∫

M

Tr

(
1

2
e2 f

(
dω +

1

2
[ω, ω]

)
+

Λ

4
e4
)

=

∫

M

Tr
( 1

3!
(e2 f dω − 2ω f ef de) +

1

4

(
e2 f [ω, ω]− 2ω f e f (ω ∧ e) + Λ e4

))

=
1

2

〈
(e, ω) , (0, 0)

〉
+

1

3!

〈
(e, ω) , (2 e f dω, 2 e f de)

〉

+
1

4!

〈
(e, ω) ,

(
3! e f 1

2 [ω, ω] + 3!Λ e3, 3! e f (ω ∧ e)
)〉

=
1

2

〈
(e, ω) , ℓ1(e, ω)

〉
− 1

3!

〈
(e, ω) , ℓ2

(
(e, ω) , (e, ω)

)〉

− 1

4!

〈
(e, ω) , ℓ3

(
(e, ω) , (e, ω) , (e, ω)

)〉
.

8.3 Differential graded Lie algebra formulations

In analogy to what we did in the case of three-dimensional gravity, it is natural at this point to ask
if there is an equivalent formulation of the four-dimensional ECP theory as a differential graded
Lie algebra, in the sense of a quasi-isomorphism with the L∞-algebra of Section 8.2; this would
correspond to a strictification of the L∞-algebra, which is known to exist on abstract grounds [32].
A natural place to look is again at the L∞-algebras underlying the BF theories from Section 4.4.
In particular, one may consider a four-dimensional BF theory with an additional “cosmological
constant term”: the action functional is given by27

SΛ
BF
(B,A) =

∫

M

Tr
(
B f F +

Λ

2
B fB

)
(8.2)

for B ∈ Ω2
(
M,∧2(R1,3)

)
and A ∈ Ω1

(
M,∧2(R1,3)

)
; equivalently, B is a two-form and A is a

connection one-form both valued in the Lie algebra so(1, 3).

As in three spacetime dimensions, the shift symmetry survives the cosmological constant modi-
fication: for τ ∈ Ω1(M,R1,3) we define

δτ (B,A) = (dAτ,Λ τ)

with the corresponding Noether identity

dAFB − ΛFA = 0 .

Again this symmetry renders diffeomorphisms redundant as in three dimensions: the shift symmetry
is again large enough to kill all local degrees of freedom, so that the gauge theory is again topological.
However, now the addition of a cosmological constant Λ 6= 0 breaks the higher shift symmetry
discussed in Section 4.5: if ǫ ∈ Ω0

(
M,∧2(R1,3)

)
, then

(
δτ+dAǫ − δτ

)
(B,A) =

(
(FB − ΛB) ∧ ǫ,ΛdAǫ

)
∈ V BF

1 ,

and this is not proportional to the Euler–Lagrange derivatives. Of course, when Λ = 0 the two
shift parameters τ +dAǫ and τ induce the same transformation on the space of fields, up to a term

27By dimension counting, such cosmological constant deformations of BF theories are only possible in dimensions
d = 3, 4.
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proportional to Euler–Lagrange derivatives, so that the shift symmetry is reducible as discussed in
Section 4.5.

The similarity between the four-dimensional ECP action functional (8.1) and the action func-
tional (8.2) is evident: the former is given by restricting B to decomposable diagonal two-forms in
Ω2

(
M,∧2(R1,3)

)
. Of course, this restriction breaks the shift symmetry invariance28 so that there

are gravitational waves in four dimensions: four-dimensional gravity contains local degrees of free-
dom. In the L∞-algebra framework, one can see this inequivalence between the two theories simply
by noting that there does not exist a cyclic morphism between the two L∞-algebras: This can be
immediately seen at the level of the degree-preserving component ψ1 : V

BF → V EPC, where the only
possible non-trivial map would be of the form

ψ1

(
(ξ, ρ) + (e, ω) + (E,Ω) + (X ,P)

)
:= (0, ρ) + (0, ω) + (0, Ω) + (0,P) ,

but this does not commute with the 1-brackets of the two sides, nor does it preserve the cyclic
pairings.29 Despite this, the relation of the Einstein–Cartan–Palatini formulation of gravity in three
and four spacetime dimensions to topological field theories has prompted studies of deformations
of the four-dimensional BF action functional (8.2) wherein the constraints above are implemented
dynamically, and thus taking the latter action functional as a candidate for quantization, see e.g. [33].
It would be interesting and potentially fruitful to study such deformations and their explicit relations
to four-dimensional gravity in the off-shell framework of L∞-algebras, which from a mathematical
perspective would give a concrete construction of the strictification of the ECP L∞-algebra.
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A Calculations in three dimensions

In this appendix we provide various explicit calculations for three-dimensional gravity, illustrating
the main steps needed to establish the L∞-algebra relations of Section 2.1.

28If one restricts to nondegenerate coframe fields, one may derive a certain generalization of the three-dimensional
shift symmetry [59], which is however equivalent to diffeomorphism invariance.

29The same is true if one tries to build a morphism in the opposite direction.
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A.1 Homotopy relations

The proof of the homotopy relations for the three-dimensional Einstein–Cartan–Palatini theory of
Section 7.2 is similar in spirit to the proof of the homotopy relations for three-dimensional Chern–
Simons theory from [15]. In the present setting we must deal with an extra field in the fundamental
representation of the gauge group and the extra diffeomorphism gauge symmetries. We check these
relations order by order in the total degree of the homotopy, remembering that |ℓn| = 2 − n. For
brevity, in the calculations below we set the cosmological constant term to zero, Λ = 0, with the
results following straightforwardly for Λ 6= 0.

Differential conditions

The homotopy relations J1 = 0 are the differential condition ℓ1 ◦ ℓ1 = 0. The only fields we need to
check this on is a pair of gauge parameters (ξ, ρ) in degree 0:

ℓ1
(
ℓ1(ξ, ρ)

)
= ℓ1(0,dρ) = (0,d2ρ) = (0, 0) ,

and a pair of dynamical fields (e, ω) in degree 1:

ℓ1
(
ℓ1(e, ω)

)
= ℓ1(dω,de) = (0,d2e) = (0, 0) .

Leibniz rules

The homotopy relations J2 = 0 are the graded Leibniz rule for the differential ℓ1 with respect to
the 2-bracket ℓ2. In this case, we may act non-trivially on fields whose total degrees are 0, 1 and 2.

Total degree 0 : We act on two pairs of gauge transformations (ξ1, ρ1) and (ξ2, ρ2), and we need
to check

ℓ1

(
ℓ2
(
(ξ1, ρ1) , (ξ2, ρ2)

))
= ℓ2

(
ℓ1(ξ1, ρ1) , (ξ2, ρ2)

)
+ ℓ2

(
(ξ1, ρ1) , ℓ1(ξ2, ρ2)

)
.

The left-hand side is

ℓ1
(
[ξ1, ξ2] , −[ρ1, ρ2] + ξ1(ρ2)− ξ2(ρ1)

)
=

(
0,−d

(
[ρ1, ρ2] + ξ1(ρ2)− ξ2(ρ1)

))

= −
(
0, [dρ1, ρ2] + [ρ1,dρ2] + dξ1(ρ2)− dξ2(ρ1)

)
,

while the right-hand side is

ℓ2
(
(0,dρ1) , (ξ2, ρ2)

)
+ ℓ2

(
(ξ1, ρ1) , (0,dρ2)

)

= −
(
0,−[ρ2,dρ1] + Lξ2dρ1

)
+

(
0,−[ρ1,dρ2] + Lξ1dρ2

)

= −
(
0, [dρ1, ρ2] + [ρ1,dρ2] + dξ1(ρ2)− dξ2(ρ1)

)
.

Total degree 1 : We act on a pair of gauge transformations (ξ, ρ) and one pair of dynamical fields
(e, ω), and we need to check

ℓ1

(
ℓ2
(
(e, ω) , (ξ, ρ)

))
= ℓ2

(
ℓ1(e, ω) , (ξ, ρ)

)
− ℓ2

(
(e, ω) , ℓ1(ξ, ρ)

)
.
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The left-hand side is

ℓ1(ρ · e− Lξe , [ρ, ω]− Lξω) =
(
d([ρ, ω]) − dLξω , d(ρ · e)− dLξe

)

= ([dρ, ω] + [ρ,dω]− Lξdω , dρ ∧ e+ ρ · de− Lξde)

where we used the Cartan identity

d ◦ Lξ = Lξ ◦ d ,

while the right-hand side is

ℓ2
(
(dω,de) , (ξ, ρ)

)
− ℓ2

(
(e, ω) , (0,dρ)

)
= ([ρ,dω]− Lξdω , ρ · de− Lξde) + ([dρ, ω] , dρ ∧ e) .

Total degree 2 : We may act on two pairs of dynamical fields (e1, ω1) and (e2, ω2), and we need
to check

ℓ1

(
ℓ2
(
(e1, ω1) , (e2, ω2)

))
= ℓ2

(
ℓ1(e1, ω1) , (e2, ω2)

)
− ℓ2

(
(e1, ω1) , ℓ1(e2, ω2)

)
.

The left-hand side is

ℓ1
(
− ([ω2, ω1], ω1 ∧ e2 + ω2 ∧ e1)

)
= (0,−dω1 ∧ e2 + ω1 ∧ de2 − dω2 ∧ e1 + ω2 ∧ de1) ,

while the right-hand side is

ℓ2
(
(dω1,de1) , (e2, ω2)

)
− ℓ2

(
(e1, ω1) , (dω2,de2)

)

= −
(
dxµ ⊗ Tr(ιµde2 f dω1 + ιµdω2 f de1) , dω1 ∧ e2 − ω2 ∧ de1

)

−
(
dxµ ⊗ Tr(ιµde1 f dω2 + ιµdω1 f de2) , dω2 ∧ e1 − ω1 ∧ de2

)
.

The second component here agrees with that of the left-hand side. The first component vanishes,
because we can write the argument of the Hodge duality operator using the Leibniz rule for the
contraction of a spacetime four-form in three dimensions:

ιµde2 f dω1 + ιµdω2 f de1 + dω2 f ιµde1 + de2 f ιµdω1 = ιµ(de2 f dω1 + dω2 f de1) = 0 .

We may also act on a pair of gauge transformations (ξ, ρ) and a pair of Euler–Lagrange deriva-
tives (E,Ω). Then we need to check

ℓ1

(
ℓ2
(
(ξ, ρ) , (E,Ω)

))
− ℓ2

(
ℓ1(ξ, ρ) , (E,Ω)

)
− ℓ2

(
(ξ, ρ) , ℓ1(E,Ω)

)
= (0, 0) .

Expanding out the brackets we get

ℓ1(−[ρ,E] + LξE,−ρ ·Ω + LξΩ)− ℓ2
(
(0,dρ) , (E,Ω)

)
− ℓ2

(
(ξ, ρ) , (0,dΩ)

)

=
(
0 , −d(ρ ·Ω) + LξdΩ

)
−

(
dxµ ⊗ Tr(−ιµdρf dΩ) , −dρ ∧Ω

)

−
(
dxµ ⊗ Tr(ιµdρf dΩ) , −ρ · dΩ + LξdΩ

)

= (0, 0) ,

where we used the Leibniz rule for the exterior derivative in the first bracket.

Jacobi identities

Since ℓ3 = 0 by definition, the homotopy relations J3 = 0 are the graded Jacobi identity for the
2-bracket ℓ2. In this case, we may act non-trivially on fields whose total degrees are 0, 1, 2 and 3.
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Total degree 0 : We act on three pairs of gauge parameters, and we need

ℓ2

(
ℓ2
(
(ξ1, ρ1) , (ξ2, ρ2)

)
, (ξ3, ρ3)

)
+ ℓ2

(
ℓ2
(
(ξ3, ρ3) , (ξ1, ρ1)

)
, (ξ2, ρ2)

)

+ ℓ2

(
ℓ2
(
(ξ2, ρ2) , (ξ3, ρ3)

)
, (ξ1, ρ1)

)
= (0, 0) .

Expanding the first term we get

ℓ2

((
[ξ1, ξ2] , −[ρ1, ρ2] + ξ1(ρ2)− ξ2(ρ1)

)
, (ξ3, ρ3)

)

=
([

[ξ1, ξ2], ξ3
]
,
[
[ρ1, ρ2], ρ3

]
− [ξ1(ρ2), ρ3] + [ξ2(ρ1), ρ3] + [ξ1, ξ2](ρ3)

+ ξ3([ρ1, ρ2])− ξ3
(
ξ1(ρ2)

)
+ ξ3

(
ξ2(ρ1)

))
.

Permuting the indices (1, 2, 3) and adding, one sees that the terms containing a composition of two
Lie brackets vanish due to the Jacobi identities for the Lie algebras Ω0(M, so(1, 2)) and Γ(TM).
The remaining terms vanish since they form a representation of Γ(TM) on Ω0(M, so(1, 2)) and a
derivation with respect to the Lie bracket of Ω0(M, so(1, 2)).

Total degree 1 : We act on two pairs of gauge parameters and one pair of dynamical fields, and
we need

ℓ2

(
ℓ2
(
(ξ1, ρ1) , (ξ2, ρ2)

)
, (e, ω)

)
= ℓ2

(
ℓ2
(
(ξ1, ρ1) , (e, ω)

)
, (ξ2, ρ2)

)

− ℓ2

(
ℓ2
(
(ξ2, ρ2) , (e, ω)

)
, (ξ1, ρ1)

)
. (A.1)

Expanding the left-hand side we get

ℓ2

((
[ξ1, ξ2] , −[ρ1, ρ2] + ξ1(ρ2)− ξ2(ρ1)

)
, (e, ω)

)

=
(
[ρ1, ρ2] · e− ξ1(ρ2) · e+ ξ2(ρ1) · e+ L[ξ1,ξ2]e ,[

[ρ1, ρ2], ω
]
− [ξ1(ρ2), ω] + [ξ2(ρ1), ω] + L[ξ1,ξ2]ω

)
,

while the first term in the right-hand side is

ℓ2
(
(−ρ1 · e+ Lξ1e , − [ρ1, ω] + Lξ1ω) , (ξ2, ρ2)

)

=
(
− ρ2 · (ρ1 · e) + ρ2 · (Lξ1e) + Lξ2(ρ1 · e)− Lξ2Lξ1e ,

−
[
ρ2, [ρ1, ω]

]
+ [ρ2,Lξ1ω]− Lξ2Lξ1ω + Lξ2 [ρ1, ω]

)
.

Interchanging the indices (1, 2) and subtracting in this last expression, we see that the two sides of
(A.1) match for the same representation theoretic reasons as in total degree 0.

Total degree 2 : We may act on collections of one pair of gauge parameters and two pairs of
dynamical fields, or of two pairs of gauge parameters and one pair of Euler–Lagrange derivatives.
For the former case we need

ℓ2

(
ℓ2
(
(e1, ω1) , (e2, ω2)

)
, (ξ, ρ)

)
= −ℓ2

(
ℓ2
(
(ξ, ρ) , (e1, ω1)

)
, (e2, ω2)

)

− ℓ2

(
ℓ2
(
(ξ, ρ) , (e2, ω2)

)
, (e1, ω1)

)
.
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Expanding the left-hand side gives

−ℓ2
(
([ω2, ω1], ω1 ∧ e2 + ω2 ∧ e1) , (ξ, ρ)

)

=
(
− [ρ, [ω2, ω1]] + Lξ[ω2, ω1] ,

− ρ · (ω1 ∧ e2)− ρ · (ω2 ∧ e1) + Lξ(ω1 ∧ e2) + Lξ(ω2 ∧ e1)
)
,

while the right-hand side expands into

ℓ2
(
(ρ · e1 − Lξe1 , [ρ, ω1]− Lξω1) , (e2, ω2)

)
+ ℓ2

(
(ρ · e2 − Lξe2 , [ρ, ω2]− Lξω2) , (e1, ω1)

)

= −
(
[ω2, [ρ, ω1]− Lξω1] , ([ρ, ω1]− Lξω1) ∧ e2 + ω2 ∧ (ρ · e1 − Lξe1)

)

−
(
[ω1, [ρ, ω2]− Lξω2] , ([ρ, ω2]− Lξω2) ∧ e1 + ω1 ∧ (ρ · e2 − Lξe2)

)

=
(
− [ρ, [ω2, ω1]] + Lξ[ω2, ω1] ,

− ρ · (ω1 ∧ e2)− ρ · (ω2 ∧ e1) + Lξ(ω1 ∧ e2) + Lξ(ω2 ∧ e1)
)

as required, where in the last equality we used the Leibniz rules for the Lie derivative Lξ and the
action of the gauge parameter ρ on the exterior products ω ∧ e and [ω2, ω1]. The check on collec-
tions of fields involving two pairs of gauge parameters and one pair of Euler–Lagrange derivatives
is formally identical to the proof of the total degree 1 relation (A.1), since the dynamical fields
and the Euler–Lagrange derivatives live in the same representations of SO+(1, 2) and the bracket
ℓ2
(
(ξ, ρ), (e, ω)

)
is formally identical to ℓ2

(
(ξ, ρ), (E,Ω)

)
.

Total degree 3 : The calculations now become considerably more involved and lengthy, so we will
organise the checks of the graded Jacobi identities in this case into a sequence of Lemmas.

Lemma A.2 (Contracted Schouten identity). If A,B ∈ so(1, 2) ≃ ∧2(R1,2) and v ∈ R1,2, then

εabcA
ab Bc

d v
d = −2 εabc B

a
dA

db vc . (A.3)

Proof. We use the three-dimensional Schouten identity30

εabc ηdh + εach ηbd − εbch ηad − εabh ηcd = 0 ,

where η is the Minkowski metric on R1,2. This identity holds since the left-hand side is antisymmet-
ric in four indices, whereas the indices vary through 1, 2, 3 as we are working in three dimensions,
and hence it vanishes identically. Contracting it with the components of A = Aab Eba, B = Ba

b E
b
a

and v = va Ea yields (A.3).

Lemma A.4. If (e1, ω1), (e2, ω2) and (e3, ω3) are three pairs of dynamical fields in V1, then

ℓ2

(
ℓ2
(
(e1, ω1) , (e2, ω2)

)
, (e3, ω3)

)
+ ℓ2

(
ℓ2
(
(e3, ω3) , (e1, ω1)

)
, (e2, ω2)

)

+ ℓ2

(
ℓ2
(
(e2, ω2) , (e3, ω3)

)
, (e1, ω1)

)
= (0, 0) . (A.5)

Proof. Expanding the first term of (A.5), we get

ℓ2
(
(−[ω2, ω1],−ω1 ∧ e2 − ω2 ∧ e1) , (e3, ω3)

)

= −
(
dxµ ⊗ Tr

(
ιµde3 f (−[ω2, ω1]) + ιµdω3 f (−ω1 ∧ e2 − ω2 ∧ e1)

− ιµe3 f d(−[ω2, ω1])− ιµω3 f d(−ω1 ∧ e2 − ω2 ∧ e1)
)
,

− [ω2, ω1] ∧ e3 + ω3 ∧ ω1 ∧ e2 + ω3 ∧ ω2 ∧ e1
)
.

30This identity also holds in Euclidean signature.
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The other two terms are the cyclic permutations among the indices (1, 2, 3). Writing these out
one sees that the terms in the second component cancel each other as required, by representation
theoretic reasons.

Showing that the first component vanishes requires a bit more work. Writing out the other two
permutations among the indices (1, 2, 3), we collect terms involving the fields ω1, ω2, e3 and evaluate
the Hodge operator explicitly to obtain

εabc
(
2 ιµde3

a ∧ ω2
b
d ∧ ω1

dc − 2 ιµe3
a d(ω2

b
d ∧ ω1

dc) + ιµdω1
bc ∧ ω2

a
d ∧ e3d

− ιµω1
bc d(ω2

a
d ∧ e3d) + ιµdω2

bc ∧ ω1
a
d ∧ e3d − ιµω2

bc d(ω1
a
d ∧ e3d)

)
. (A.6)

We then rewrite the fourth term of (A.6) as

εabc ιµω1
bc d(ω2

a
d ∧ e3d) = 2 εbca ιµω1

bd d(ω2d
c ∧ e3a)

= 2 εabc (e3
a ∧ ιµω1

bd ∧ dω2d
c − de3

a ∧ ιµω1
bd ∧ ω2d

c)

where in the first equality we used the contracted Schouten identity (A.3) and in the last equality the
Leibniz rule for the exterior derivative. The sixth term is obtained from this by simply interchanging
the indices (1, 2). For the third term of (A.6), going through exactly the same steps as for the fourth
term allows us to rewrite it as

ιµdω1
bc ∧ ω2

a
d ∧ e3d = 2 εabc e3

a ∧ ιµdω1
bd ∧ ω2d

c ,

and the fifth term is simply obtained from this by interchanging the indices (1, 2). Collecting all
the terms, the expression (A.6) becomes

2 εabc
(
ιµde3

a ∧ ω2
b
d ∧ ω1

dc − ιµe3
a d(ω2

b
d ∧ ω1

dc)− e3
a ∧ ιµω1

b
d ∧ dω2

dc

+ de3
a ∧ ιµω1

b
d ∧ ω2

dc + e3
a ∧ dω1

b
d ∧ ιµω2

dc − de3
a ∧ ω1

b
d ∧ ιµω2

dc

+ e3
a ∧ ιµdω1

b
d ∧ ω2

dc + e3
a ∧ ω1

b
d ∧ ιµdω2

dc
)

= 2 εabc ιµd(e3
a ∧ ω2

b
d ∧ ω1

dc)

= 0

where we successively used the Leibniz rules for the exterior derivative and the contraction, and
the last quantity vanishes because it is the contraction of a four-form in three dimensions. The
remaining terms are simply permutations of the indices (1, 2, 3), and so they all vanish as well. This
completes the proof of the homotopy identity (A.5).

Lemma A.7. If (ξ, ρ) ∈ V0 is a pair of gauge parameters, (e, ω) ∈ V1 is a pair of dynamical fields,

and (E,Ω) ∈ V2 is a pair of Euler–Lagrange derivatives, then

ℓ2

(
ℓ2
(
(ξ, ρ) , (e, ω)

)
, (E,Ω)

)
+ ℓ2

(
ℓ2
(
(E,Ω) , (ξ, ρ)

)
, (e, ω)

)

+ ℓ2

(
ℓ2
(
(e, ω) , (E,Ω)

)
, (ξ, ρ)

)
= (0, 0) . (A.8)

Proof. The first term of (A.8) expands as

ℓ2
(
(−ρ · e+ Lξe,− [ρ, ω] + Lξω) , (E,Ω)

)

=
(
dxµ ⊗Tr

(
ιµd(−ρ · e+ Lξe)fE + ιµd(−[ρ, ω] + Lξω)fΩ (A.9)

− ιµ(−ρ · e+ Lξe)f dE − ιµ(−[ρ, ω] + Lξω)f dΩ
)
,

E ∧ (−ρ · e+ Lξe)− (−[ρ, ω] + Lξω) ∧Ω
)
.
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The second term expands as

−ℓ2
(
(−[ρ,E] + LξE,− ρ ·Ω + LξΩ) , (e, ω)

)

=
(
dxµ ⊗ Tr

(
ιµdef (−[ρ,E] + LξE) + ιµdω f (−ρ ·Ω + LξΩ) (A.10)

− ιµef d(−[ρ,E] + LξE)− ιµω f d(−ρ ·Ω + LξΩ)
)
,

(−[ρ,E] + LξE) ∧ e− ω ∧ (−ρ ·Ω + LξΩ)
)
.

The third term expands as

ℓ2

((
dxµ ⊗Tr(ιµdef E + ιµdω fΩ − ιµe f dE − ιµω f dΩ) , E ∧ e− ω ∧Ω

)
, (ξ, ρ)

)
(A.11)

= −
(
dxµ ⊗ Tr

(
ιµdρf (E ∧ e− ω ∧Ω)

)

+ Lξ
(
dxµ ⊗ (ιµdef E − ιµef dE + ιµdω fΩ − ιµω f dΩ)

)
,

− ρ · (E ∧ e− ω ∧Ω) + Lξ(E ∧ e− ω ∧Ω)
)
.

The second components in all three expanded expressions cancel each other out, as a consequence
of the Leibniz rules for both gauge transformations in (ξ, ρ). Again, for the first components we
need to work a bit harder.

Firstly, we collect terms in the first components involving the local Lorentz fields (ρ, e) and dE.
These amount to

dxµ ⊗Tr(ρ · ιµef dE + ιµe f ρ · dE) = dxµ ⊗ Tr
(
ρ · (ιµef dE)

)
= 0

where the vanishing of the last term follows since the local infinitesimal Lorentz transformation ρ acts
on the top exterior vector inR1,2, hence it is invariant under finite SO+(1, 2) Lorentz transformations
and so the infinitesimal transformation is zero; this is exactly the same argument which shows that
the action functional (7.1) is invariant under local Lorentz transformations. Similar arguments show
that the terms involving (ρ, ω) and dΩ, (ρ,de) and E, and (ρ,dω) and Ω cancel each other out.

Secondly, we collect terms involving (dρ, e) and E. These amount to

dxµ ⊗ Tr
(
− ιµ(dρ ∧ e)f E + ιµef (dρ ∧ E)− ιµdρf (E ∧ e)

)

= dxµ ⊗ Tr
(
dρ ∧ (ιµef E)

)
− dxµ ⊗ Tr

(
(ιµdρ) ∧ ef E − ιµdρf (E ∧ e)

)
.

The first term is zero using the SO+(1, 2)-invariance as before. For the last two terms, we evaluate
the Hodge operator explicitly to write them as

εabc (∂µρ
a
d e

d ∧ Ebc − ∂µρ
abEcd ∧ ed) .

Now using the contracted Schouten identity (A.3), the first term here becomes

εabc ∂µρ
a
d e

d ∧ Ebc = −2 εabc ∂µρ
adEd

b ∧ ec

and similarly for the second term:

−εabc ∂µρabEcd ∧ ed = −2 εabc ∂µρ
a
dE

db ∧ ec .

Hence the two terms cancel when added. Similarly the terms involving (dρ, ω) and Ω cancel.
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Thirdly, we check the terms in the first components involving (ξ, e) and E. For this, we assume
that the coframe field e = ea Ea is invertible, so that {ea} forms a basis for one-forms Ω1(M).31 The
coframe basis obeys Maurer–Cartan equations

dec = 1
2 k

c
ab e

a ∧ eb

where the local structure functions kcab are antisymmetric in their lower indices. We can similarly
write dxµ⊗ ιµ = ea⊗ ιa, where ιa are the contractions with vectors in the corresponding dual basis
for vector fields Γ(TM), that is, ιa(eb) = δba. Collecting the relevant terms from the first expansion
(A.9) and expressing the arguments of the Hodge operator Tr in this basis gives

−Lξe
a ⊗ (Ea f dE) + (Lξk

c
ab) e

a ⊗ (eb Ec f E) + kcab Lξe
a ⊗ (eb Ec fE)− kcba e

a ⊗ (Lξe
b
Ec f E) .

Similarly, from the second expansion (A.10) we get

kcba e
b ⊗ (ea Ec f LξE)− eb ⊗ (Eb f dLξE)

and lastly from the third expansion (A.11) we get

−Lξ(k
c
ba e

b)⊗ (ea Ec fE)− kcba e
b ⊗ Lξ(e

a
Ec f E) + Lξe

b ⊗ (Eb f dE) + eb ⊗ (Eb f LξdE) .

Using the Leibniz rule for the Lie derivative Lξ and the fact that it commutes with the exterior
derivative d, the third term completely cancels with the first two terms. One similarly checks
the vanishing of the terms containing (ξ, ω) and Ω. This completes the proof of the homotopy
identity (A.8).

Lemma A.12. If (ξ1, ρ1) and (ξ2, ρ2) are two pairs of gauge transformations in V0, and (X ,P) ∈ V3
is a pair of Noether identities, then

ℓ2

(
ℓ2
(
(ξ1, ρ1) , (ξ2, ρ2)

)
, (X ,P)

)
+ ℓ2

(
ℓ2
(
(X ,P) , (ξ1, ρ1)

)
, (ξ2, ρ2)

)

+ ℓ2

(
ℓ2
(
(ξ2, ρ2) , (X ,P)

)
, (ξ1, ρ1)

)
= (0, 0) . (A.13)

Proof. The first term of (A.13) expands as

ℓ2
(
([ξ1, ξ2],−[ρ1, ρ2] + Lξ1ρ2 − Lξ2ρ1) , (X ,P)

)

=
(
dxµ ⊗Tr

(
∂µ(−[ρ1, ρ2] + Lξ1ρ2 − Lξ2ρ1)f P

)
+ L[ξ1,ξ2]X ,

− (−[ρ1, ρ2] + Lξ1ρ2 − Lξ2ρ1) · P + L[ξ1,ξ2]P
)
.

The second term expands as

−ℓ2
((

dxµ ⊗ Tr(∂µρ1 f P) + Lξ1X ,−ρ1 · P + Lξ1P
)
, (ξ2, ρ2)

)

=
(
dxµ ⊗ Tr

(
∂µρ2 f (−ρ1 · P + Lξ1P)

)
+ Lξ2

(
dxµ ⊗ Tr(∂µρ1 f P)

)
+ Lξ2Lξ1X ,

+ ρ2 · (ρ1 · P)− ρ2 · Lξ1P − Lξ2(ρ1 · P) + Lξ2Lξ1P
)
.

The third term is just the negative of the second term with the indices (1, 2) interchanged. The
second component of the identity (A.13) is verified by simply noting that the space Ω3(M,R1,2) in

31If {ea} is degenerate, one can always choose another basis and perform similar calculations. Here we make this
assumption in order to streamline the computation.
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which it lives is a module over the Lie algebra Γ(TM)⋊ Ω0
(
M, so(1, 2)

)
, just like in the proof for

two pairs of gauge parameters and one pair of dynamical fields in total degree 1.

For the first component we verify this by collecting similar terms in turn, starting with the terms
involving the action of two Lie derivatives:

L[ξ1,ξ2]X + Lξ2Lξ1X − Lξ1Lξ2X = 0 ,

where we used the Cartan identity (5.19). Next we collect terms in the first component with one
Lie derivative acting:

dxµ ⊗ (∂µLξ1ρ2 f P)− dxµ ⊗ (∂µLξ2ρ1 f P) + dxµ ⊗ (∂µρ2 f Lξ1P) + Lξ2
(
dxµ ⊗ (∂µρ1 f P)

)

−dxµ ⊗ (∂µρ1 f Lξ2P)− Lξ1
(
dxµ ⊗ (∂µρ2 f P)

)
= 0 ,

where the vanishing is easily seen by using the Leibniz rule for the Lie derivatives acting in the
fourth and sixth terms, which is possible in this case as the Lie derivatives here act on functions.
Lastly we collect terms with no Lie derivatives acting, which are the leftover terms involving ρ1
and ρ2:

−dxµ ⊗ Tr
(
∂µ([ρ1, ρ2])f P

)
− dxµ ⊗ Tr

(
∂µρ2 f ρ1 · P

)
+ dxµ ⊗ Tr

(
∂µρ1 f ρ2 · P

)
.

Applying the derivatives ∂µ using the Leibniz rule, the terms involving ∂µρ2 give

−dxµ ⊗ Tr
(
[ρ1, ∂µρ2] f P

)
− dxµ ⊗ Tr

(
∂µρ2 f ρ1 · P

)
= −dxµ ⊗ Tr

(
ρ1 · (∂µρ2 f P)

)
= 0

since the top exterior vector component is invariant under SO+(1, 2)-transformations, as before.
Similarly the terms involving ∂µρ1 vanish, which completes the proof of the final homotopy identity
(A.13) in total degree 3.

As all higher homotopy relations vanish trivially, this completes the proof that the structure
defined by (7.3)–(7.5) is indeed an L∞-algebra.

A.2 Covariant homotopy relations

We shall now provide details of some illustrative checks of the homotopy relations for the covariant
L∞-algebra of Section 5.3 (in the case d = 3 and Λ = 0). Since all 1-brackets are unchanged by the
covariantization, the differential conditions J cov

1 = 0 hold just like in the non-covariant case. On the
other hand, the 2-brackets are almost all modified. For example, in the first bracket of (5.15) the Lie
derivatives are removed as they would otherwise spoil the closure relation for gauge transformations,
while in the sixth bracket the last term from the first component is removed by the new covariant
Noether identity (5.14). It is then a straightforward proof, very similar to the non-covariant case,
that the remaining modifications ensure that altogether the Leibniz rules J cov

2 = 0 hold.

Compared to the non-covariant case of Appendix A.1, the main new features that arise are due to
the fact that the covariant L∞-algebra for three-dimensional gravity is no longer a differential graded
Lie algebra: there are new non-vanishing higher brackets (5.16) and (5.17). These incorporate
the covariant gauge transformations (5.13) and their closure, together with the covariant Noether
identity (5.14). Correspondingly, new higher homotopy identities should be checked, so we will
focus on those.
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Homotopy Jacobi identities

The modification of the 2-brackets leads to the six non-trival 3-brackets (5.16), and these have to
be included when proving the homotopy relations J cov

3 = 0, which are given in general in (2.3).
The calculations are very similar to the non-covariant case, bearing in mind that some of the terms
that came from non-covariant 2-brackets will now appear as a part of the covariant 3-brackets. We
illustrate this by explicitly demonstrating the identity

J cov
3

(
(ξ1, ρ1) , (ξ2, ρ2) , (e, ω)

)
= (0, 0) . (A.14)

Firstly, we write out the homotopy relation explicitly to get

J cov
3

(
(ξ1, ρ1) , (ξ2, ρ2) , (e, ω)

)

= ℓcov1

(
ℓcov3

(
(ξ1, ρ1) , (ξ2, ρ2) , (e, ω)

))
+ ℓcov3

(
ℓcov1 (ξ1, ρ1) , (ξ2, ρ2) , (e, ω)

)

+ ℓcov3

(
(ξ1, ρ1) , ℓ

cov
1 (ξ2, ρ2) , (e, ω)

)
+ ℓcov3

(
(ξ1, ρ1) , (ξ2, ρ2) , ℓ

cov
1 (e, ω)

)

+ ℓcov2

(
ℓcov2

(
(ξ1, ρ1) , (ξ2, ρ2)

)
, (e, ω)

)
+ ℓcov2

(
ℓcov2

(
(e, ω) , (ξ1, ρ1)

)
, (ξ2, ρ2)

)

+ ℓcov2

(
ℓcov2

(
(ξ2, ρ2) , (e, ω)

)
, (ξ1, ρ1)

)
.

Then we separately consider terms coming from 3-brackets and terms coming from 2-brackets. The
non-vanishing 3-bracket terms are given by

ℓcov1

(
0 , −ιξ1ιξ2dω

)
+ ℓcov3

(
(0,dρ1) , (ξ2, ρ2) , (e, ω)

)
+ ℓcov3

(
(ξ1, ρ1) , (0,dρ2) , (e, ω)

)

=
(
ιξ2dρ1 · e− ιξ1dρ2 · e , −dιξ1ιξ2dω + ιξ2 [dρ1, ω]− ιξ1 [dρ2, ω]

)

=
(
Lξ2ρ1 · e− Lξ1ρ2 · e , −dιξ1ιξ2dω + ιξ2 [dρ1, ω]− ιξ1 [dρ2, ω]

)
, (A.15)

where in the last line we used ιξdρ = Lξρ. The 2-bracket terms are given by

ℓcov2

(
([ξ1, ξ2] , −[ρ1, ρ2]) , (e, ω)

)
− ℓcov2

(
(−ρ1 · e+ Lξ1e , −[ρ1, ω] + ιξ1dω) , (ξ2, ρ2)

)

+ ℓcov2

(
(−ρ2 · e+ Lξ2e , −[ρ2, ω] + ιξ2dω) , (ξ1, ρ1)

)

=
(
Lξ1ρ2 · e− Lξ2ρ1 · e , ι[ξ1,ξ2]dω − ιξ2 [dρ1, ω] + ιξ1 [dρ2, ω] + ιξ2dιξ1dω − ιξ1dιξ2dω

)

=
(
Lξ1ρ2 · e− Lξ2ρ1 · e , −dιξ2ιξ1dω − ιξ2 [dρ1, ω] + ιξ1 [dρ2, ω]

)
, (A.16)

where in the last line we used the Cartan identity (5.11). Adding (A.15) and (A.16) together then
proves (A.14). With similar techniques, one can show the remaining homotopy relations J cov

3 = 0.

Higher homotopy identities

The remaining new homotopy relations to consider are J cov
4 = 0, which are generally given by (2.4).

We will only prove here the homotopy relations involving non-zero 4-brackets. Recall that there are
three non-zero 4-brackets given by (5.17).
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Total degree 2 : The first non-trival homotopy relation is given by

J cov
4

(
(ξ1, ρ1) , (ξ2, ρ2) , (e1, ω1) , (e2, ω2)

)

= ℓcov1

(
ℓcov4

(
(ξ1, ρ1) , (ξ2, ρ2) , (e1, ω1) , (e2, ω2)

))
(A.17)

− ℓcov2

(
ℓcov3

(
(ξ1, ρ1) , (ξ2, ρ2) , (e1, ω1)

)
, (e2, ω2)

)
− ℓcov2

(
ℓcov3

(
(ξ1, ρ1) , (ξ2, ρ2) , (e2, ω2)

)
, (e1, ω1)

)

− ℓcov2

(
(ξ1, ρ1) , ℓ

cov
3

(
(ξ2, ρ2) , (e1, ω1) , (e2, ω2)

))
+ ℓcov2

(
(ξ2, ρ2) , ℓ

cov
3

(
(ξ1, ρ1) , (e1, ω1) , (e2, ω2)

))

+ ℓcov3

(
ℓcov2

(
(ξ1, ρ1) , (ξ2, ρ2)

)
, (e1, ω1) , (e2, ω2)

)
− ℓcov3

(
ℓcov2

(
(ξ1, ρ1) , (e1, ω1)

)
, (ξ2, ρ2) , (e2, ω2)

)

− ℓcov3

(
ℓcov2

(
(ξ1, ρ1) , (e2, ω2)

)
, (ξ2, ρ2) , (e1, ω1)

)

− ℓcov3

(
(ξ1, ρ1) , ℓ

cov
2

(
(ξ2, ρ2) , (e1, ω1)

)
, (e2, ω2)

)
− ℓcov3

(
(ξ1, ρ1) , ℓ

cov
2

(
(ξ2, ρ2) , (e2, ω2)

)
, (e1, ω1)

)

where we wrote only the non-vanishing brackets. We split this long equation into three types of
contributions:

J cov
4

(
(ξ1, ρ1) , (ξ2, ρ2) , (e1, ω1) , (e2, ω2)

)
= I(2)(ℓcov1 ◦ ℓcov4 ) + II(2)(ℓcov2 ◦ ℓcov3 ) + III(2)(ℓcov3 ◦ ℓcov2 ) .

The first term is given by
I(2) = (0,dιξ1ιξ2 [ω1, ω2]) .

The second term has four contributions:

II(2) = II
(2)
1 + II

(2)
2 + II

(2)
3 + II

(2)
4

where

II
(2)
1 =(−ιξ1ιξ2dω1 · e2,−[ιξ1ιξ2dω1, ω2]) ,

II
(2)
2 =II

(2)
1 (e1 ↔ e2, ω1 ↔ ω2) ,

II
(2)
3 =

(
− ρ1 · (ιξ2ω1 · e2)− ρ1 · (ιξ2ω2 · e1) + Lξ1(ιξ2ω1 · e2) + Lξ1(ιξ2ω2 · e1) ,

−
[
ρ1, [ιξ2ω1, ω2]

]
−

[
ρ1, [ιξ2ω2, ω1]

]
+ ιξ1d[ιξ2ω1, ω2] + ιξ1d[ιξ2ω2, ω1]

)
,

II
(2)
4 = − II

(2)
3 (ξ1 ↔ ξ2, ρ1 ↔ ρ2) .

The third term has five contributions:

III(2) = III
(2)
1 + III

(2)
2 + III

(2)
3 + III

(2)
4 + III

(2)
5

where

III
(2)
1 = −

(
(ι[ξ1,ξ2]ω1) · e2 + (ι[ξ1,ξ2]ω2) · e1 , [ι[ξ1,ξ2]ω1, ω2] + [ι[ξ1,ξ2]ω2, ω1]

)
,

III
(2)
2 = −

(
− [ρ1, ιξ2ω1] · e2 + ιξ2ιξ2dω1 · e2 − ιξ2ω2 · (ρ1 · e1) + ιξ2ω2 · Lξ1e1 ,

−
[
[ρ1, ιξ2ω1], ω2

]
+ [ιξ2ιξ2dω1, ω2]−

[
ιξ2ω2, [ρ1, ω1]

]
+ [ιξ2ω2, ιξ1dω1]

)
,

III
(2)
3 =III

(2)
2 (e1 ↔ e2, ω1 ↔ ω2) ,

III
(2)
4 = − III

(2)
2 (ξ1 ↔ ξ2, ρ1 ↔ ρ2) ,

III
(2)
5 =III

(2)
4 (e1 ↔ e2, ω1 ↔ ω2) .

68



We now collect all the terms in the first slots of the brackets. Most of the terms cancel straight-
forwardly and we are left with

(Lξ1ιξ2ω1 − ιξ1Lξ2ω1) · e2 + (Lξ1ιξ2ω1 − ιξ1Lξ2ω2) · e1 .

Using the Cartan formula for the Lie derivative and noting that ιξ1ιξ2ω = 0, since ω is a one-form,
we see that the remaining terms also cancel. In this way we have shown that the first slot of the
brackets in (A.17) is equal to zero. Collecting all the terms in the second slots of the brackets, we
notice that the double commutators combine into Jacobi identities and thus vanish. Some of the
single commutators cancel straightforwardly. The remaining ones also cancel, but one has to use
the Cartan formula for the Lie derivative and the identity (5.11). This completes the proof of the
homotopy relation J cov

4 = 0 for (A.17).

Total degree 4 : Finally, we have to check that the homotopy relation

J cov
4

(
(ξ1, ρ1) , (ξ2, ρ2) , (e, ω) , (X ,P)

)
= (0, 0) (A.18)

holds. This relation has 13 non-vanishing terms given by

J cov
4

(
(ξ1, ρ1) , (ξ2, ρ2) , (e, ω) , (X ,P)

)

= ℓcov1

(
ℓcov4

(
(ξ1, ρ1) , (ξ2, ρ2) , (e, ω) , (X ,P)

))

− ℓcov4

(
ℓcov1 (ξ1, ρ1) , (ξ2, ρ2) , (e, ω) , (X ,P)

)
− ℓcov4

(
(ξ1, ρ1) , ℓ

cov
1 (ξ2, ρ2) , (e, ω) , (X ,P)

)

− ℓcov2

(
ℓcov3

(
(ξ1, ρ1) , (ξ2, ρ2) , (e, ω)

)
, (X ,P)

)
− ℓcov2

(
ℓcov3

(
(ξ1, ρ1) , (ξ2, ρ2) , (X ,P)

)
, (e, ω)

)

− ℓcov2

(
(ξ1, ρ1) , ℓ

cov
3

(
(ξ2, ρ2) , (e, ω) , (X ,P)

))
+ ℓcov2

(
(ξ2, ρ2) , ℓ

cov
3

(
(ξ1, ρ1) , (e, ω) , (X ,P)

))

+ ℓcov3

(
ℓcov2

(
(ξ1, ρ1) , (ξ2, ρ2)

)
, (e, ω) , (X ,P)

)
− ℓcov3

(
ℓcov2

(
(ξ1, ρ1) , (e, ω)

)
, (ξ2, ρ2) , (X ,P)

)

− ℓcov3

(
ℓcov2

(
(ξ1, ρ1) , (X ,P)

)
, (ξ2, ρ2) , (e, ω)

)

− ℓcov3

(
(ξ1, ρ1) , ℓ

cov
2

(
(ξ2, ρ2) , (e, ω)

)
, (X ,P)

)
− ℓcov3

(
(ξ1, ρ1) , ℓ

cov
2

(
(ξ2, ρ2) , (X ,P)

)
, (e, ω)

)
.

As previously, we group terms according to the order of brackets as

J cov
4

(
(ξ1, ρ1) , (ξ2, ρ2) , (e, ω) , (X ,P)

)
= I(4)(ℓcov1 ◦ ℓcov4 ) + II(4)(ℓcov2 ◦ ℓcov3 ) + III(4)(ℓcov3 ◦ ℓcov2 ) .

The first term has three contributions:

I(4) = I
(4)
1 + I

(4)
2 + I

(4)
3

where

I
(4)
1 =

(
0 , dω ∧ ιξ1ιξ2P − ω ∧ dιξ1ιξ2P

)
,

I
(4)
2 =

(
dxµ ⊗ Tr(ιµιξ2 [dρ1, ω] f P) , 0

)
,

I
(4)
3 = −I

(4)
2 (ξ1 ↔ ξ2, ρ1 ↔ ρ2) .

The second term has four contributions:

II(4) = II
(4)
1 + II

(4)
2 + II

(4)
3 + II

(4)
4
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where

II
(4)
1 =

(
0 , −ιξ1ιξ2dω · P

)
,

II
(4)
2 = −

(
dxµ ⊗ Tr(ιµdω f dιξ1ιξ2P) , −ω ∧ dιξ1ιξ2P

)
,

II
(4)
3 =

(
Lξ2

(
dxµ ⊗ Tr(ιµιξ1dω f P)

)
, 0

)
,

II
(4)
4 = −II

(4)
3 (ξ1 ↔ ξ2, ρ1 ↔ ρ2) .

Finally, the third term has five contributions:

III(4) = III
(4)
1 + III

(4)
2 + III

(4)
3 + III

(4)
4 + III

(4)
5

where

III
(4)
1 =

(
dxµ ⊗ Tr(ιµι[ξ1,ξ2]dω f P) , 0

)
,

III
(4)
2 =

(
dxµ ⊗ Tr

(
ιµιξ2d(−[ρ1, ω] + ιξ1dω)f P

)
, 0

)
,

III
(4)
3 = −

(
dxµ ⊗ Tr

(
ιµιξ2dω f (ρ1 · P)

)
, 0

)
,

III
(4)
4 = −III

(4)
2 (ξ1 ↔ ξ2, ρ1 ↔ ρ2) ,

III
(4)
5 = −III

(4)
3 (ξ1 ↔ ξ2, ρ1 ↔ ρ2) .

The terms in the second slots combine into

dω ∧ ιξ1ιξ2P − ιξ1ιξ2dω · P = ιξ1(dω ∧ ιξ2P)− ιξ1dω ∧ ιξ2P + ιξ2ιξ1dω · P

= ιξ1(dω ∧ ιξ2P) + ιξ2(ιξ1dω ∧ P)

= 0 ,

since the remaining two terms are contractions of four-forms, which are identically equal to zero in
three dimensions. For the terms in the first slots, we split them into terms with gauge parameters
ρ and terms without them. The terms with gauge parameters combine into

dxµ ⊗ Tr
(
− [ρ1, ιµιξ2dω]f P − ιµιξ2dω f (ρ1 · P) + [ρ2, ιµιξ1dω]f Pιµιξ1dω f (ρ2 · P)

)

= dxµ ⊗ Tr
(
− ρ1 · (ιµιξ2dω f P) + ρ2 · (ιµιξ1dω f P)

)

= 0 ,

where the vanishing of the last terms follows again from the invariance of a top exterior vector under
local Lorentz transformations. The terms without gauge parameters are given by

− dxµ ⊗ Tr(ιµdω f dιξ1ιξ2P) + Lξ2
(
dxµ ⊗Tr(ιµιξ1dω f P)

)
− Lξ1

(
dxµ ⊗ Tr(ιµιξ2dω f P)

)
(A.19)

+ dxµ ⊗ Tr(ιµι[ξ1,ξ2]dω f P) + dxµ ⊗ Tr
(
(ιµιξ2dιξ1dω)f P

)
− dxµ ⊗ Tr

(
(ιµιξ1dιξ2dω)f P

)
.

Using the Cartan identity (5.11), the Leibniz tule for the Lie derivative and noting that

(Lξ2dx
µ)⊗ Tr

(
ιµιξ1dω f P

)
= dxµ ⊗ Tr

(
ιµLξ2ιξ1dω − Lξ2ιµιξ1dω f P

)
,
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the terms (A.19) combine into

−dxµ ⊗ Tr
(
ιµdω f dιξ1ιξ2P + ιµιξ1dω f dιξ2P − ιµιξ2dω f dιξ1P
+ (ιµιξ2dιξ1dω − ιµιξ1dιξ2dω − ιµdιξ1ιξ2dω)f P

)

= −dxµ ⊗ Tr
(
ιµdω f ι[ξ2,ξ1]P − ι[ξ2,ξ1]ιµdω f P

)

= −dxµ ⊗ Tr
(
− ι[ξ2,ξ1](ιµdω f P)

)

= 0 ,

where the final term vanishes since it is a contraction of a four-form, which is identically zero in
three dimensions. This completes the proof of the homotopy relation (A.18).

A.3 L∞-morphism relations

We will now prove that the maps {ψcov
n } defined in Section 5.4 satisfy the L∞-morphism relations

given by (2.5) (for the case d = 3). We shall use the facts V cov = V , ψcov
1 = idV and ψcov

n = 0
for n ≥ 3 implicitly with no further mention below. As with the homotopy relations, we shall
proceed by degree n, remembering that |ψcov

n | = 1− n. Since ℓcovn = ℓn for n = 1 and for all n ≥ 5,
the relations are immediate and trivially satisfied in these degrees. As previously, we set Λ = 0
throughout to simplify the presentation.

n = 2: Internal degree 0

To show that the map ψcov
1 preserves the 2-brackets up to a homotopy generated by ψcov

2 , we may
act non-trivially on fields whose total degrees are 0, 1, 2 and 3.

Total degree 0 : We act on two pairs of gauge transformations (ξ1, ρ1) and (ξ2, ρ2), and we need
to check

−ψcov
2

(
ℓcov1 (ξ1, ρ1) , (ξ2, ρ2)

)
+ ψcov

2

(
ℓcov1 (ξ2, ρ2) , (ξ1, ρ1)

)
+ ℓcov2

(
(ξ1, ρ1) , (ξ2, ρ2)

)

= ℓ1

(
ψcov
2

(
(ξ1, ρ1) , (ξ2, ρ2)

))
+ ℓ2

(
(ξ1, ρ1) , (ξ2, ρ2)

)
.

Expanding the left-hand side we get

(0,−ιξ2dρ1) + (0, ιξ1dρ2) +
(
[ξ1, ξ2],−[ρ1, ρ2]

)
=

(
[ξ1, ξ2],Lξ1ρ2 − Lξ2ρ1 − [ρ1, ρ2]

)

where we used ιξ1dρ2 = Lξ1ρ2 since ρ2 is a zero-form, and similarly for ρ1. This is easily seen to
coincide with the right-hand side, since ψcov

2 ((ξ1, ρ1), (ξ2, ρ2)) = (0, 0).

Total degree 1 : We act on a pair of gauge transformations (ξ, ρ) and one pair of dynamical fields
(e, ω), and we need to check

−ψcov
2

(
ℓcov1 (ξ, ρ) , (e, ω)

)
+ ψcov

2

(
ℓcov1 (e, ω) , (ξ, ρ)

)
+ ℓcov2

(
(ξ, ρ) , (e, ω)

)

= ℓ1

(
ψcov
2

(
(ξ, ρ) , (e, ω)

))
+ ℓ2

(
(ξ, ρ) , (e, ω)

)
.

Expanding the left-hand side we get

−ψcov
2

(
(0,dρ) , (e, ω)

)
+ ψcov

2

(
(dω,de) , (ξ, ρ)

)
+

(
Lξe− ρ · e , ιξdω − [ρ, ω]

)

=
(
Lξe− ρ · e , ιξdω − [ρ, ω]

)
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while the right-hand side is given by

(0,−dιξω) +
(
Lξe− ρ · e , Lξω − [ρ, ω]

)
=

(
Lξe− ρ · e , ιξdω − [ρ, ω]

)

where we used the Cartan formula (3.4).

Total degree 2 : Checking the L∞-morphism relation on two pairs of dynamical fields (e1, ω1) and
(e2, ω2) is immediate, since all values of ψcov

2 vanish by definition and ℓcov2

(
(e1, ω1) , (e2, ω2)

)
=

ℓ2
(
(e1, ω1) , (e2, ω2)

)
. We may also act on a pair of gauge transformations (ξ, ρ) and a pair of Euler–

Lagrange derivatives (E,Ω). Then we need to check

−ψcov
2

(
ℓcov1 (ξ, ρ) , (E,Ω)

)
+ ψcov

2

(
ℓcov1 (E,Ω) , (ξ, ρ)

)
+ ℓcov2

(
(ξ, ρ) , (E,Ω)

)

= ℓ1

(
ψcov
2

(
(ξ, ρ) , (E,Ω)

))
+ ℓ2

(
(ξ, ρ) , (E,Ω)

)
.

Expanding the left-hand side gives

(0, ιξdΩ) + (LξE − ρ ·E,dιξΩ − ρ ·Ω) = (LξE − ρ ·E,LξΩ − ρ ·Ω)

where we used the Cartan formula (3.4), which easily agrees with the right-hand side.

Total degree 3 : We may act on a pair of gauge transformations (ξ, ρ) and a pair of Noether
identities (X ,P). We need to check

−ψcov
2

(
ℓcov1 (ξ, ρ) , (X ,P)

)
+ ψcov

2

(
ℓcov1 (X ,P) , (ξ, ρ)

)
+ ℓcov2

(
(ξ, ρ) , (X ,P)

)

= ℓ1

(
ψcov
2

(
(ξ, ρ) , (X ,P)

))
+ ℓ2

(
(ξ, ρ) , (X ,P)

)
.

Expanding the left-hand side we get
(
dxµ ⊗ Tr(ιµdρf P), 0

)
+ (LξX ,−ρ · P) =

(
LξX + dxµ ⊗ Tr(ιµdρf P) , −ρ · P

)
,

while the right-hand side is

(0,−dιξP) +
(
LξX + dxµ ⊗ Tr(ιµdρf P) , −ρ · P + LξP

)
=

(
LξX + dxµ ⊗Tr(ιµdρf P) , −ρ · P

)

where we used the fact that P is a top form, so that LξP = dιξP.

We may also act on a pair of dynamical fields (e, ω) and a pair of Euler–Lagrange derivatives
(E,Ω). We need to check

−ψcov
2

(
ℓcov1 (e, ω) , (E,Ω)

)
+ ψcov

2

(
ℓcov1 (E,Ω) , (e, ω)

)
+ ℓcov2

(
(e, ω) , (E,Ω)

)

= ℓ1

(
ψcov
2

(
(e, ω) , (E,Ω)

))
+ ℓ2

(
(e, ω) , (E,Ω)

)
.

Expanding the left-hand side gives
(
dxµ ⊗ Tr(−ιµdω fΩ + ιµdefE + ιµdω fΩ − ιµef dE) , E ∧ e− ω ∧Ω

)

which easily coincides with the right-hand side.

n = 3: Internal degree −1

The non-trivial L∞-morphism relations in this case comprise fields whose total degrees are 1, 2, 3
and 4. We will also implicitly use the fact that the non-covariant L∞-algebra in three dimensions
is a differential graded Lie algebra, so the bracket ℓ3 vanishes identically.
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Total degree 1 : We may act on two pairs of gauge transformations (ξ1, ρ1) and (ξ2, ρ2), and a pair
of dynamical fields (e, ω). We need to check

ψcov
2

(
ℓcov2

(
(ξ1, ρ1) , (ξ2, ρ2)

)
, (e, ω)

)
+ ψcov

2

(
ℓcov2

(
(e, ω) , (ξ1, ρ1)

)
, (ξ2, ρ2)

)

+ ψcov
2

(
ℓcov2

(
(ξ2, ρ2) , (e, ω)

)
, (ξ1, ρ1)

)
+ ℓcov3

(
(ξ1, ρ1) , (ξ2, ρ2) , (e, ω)

)

= ℓ2

(
ψcov
1 (ξ1, ρ1) , ψ

cov
2

(
(ξ2, ρ2) , (e, ω)

))
− ℓ2

(
ψcov
1 (ξ2, ρ2) , ψ

cov
2

(
(ξ1, ρ1) , (e, ω)

))

− ℓ2

(
ψcov
1 (e, ω) , ψcov

2

(
(ξ1, ρ1) , (ξ2, ρ2)

))
.

The left-hand side expands as
(
0,−ι[ξ1,ξ2]ω

)
+

(
0,−ιξ2ιξ1dω + [ρ1, ιξ2ω]

)
−

(
0,− ιξ1ιξ2dω + [ρ2, ιξ1ω]

)
+ (0,−ιξ1ιξ2dω

)

=
(
0, ιξ2dιξ1ω − ιξ1dιξ2ω + [ρ1, ιξ2ω]− [ρ2, ιξ1ω]

)

where we used the Cartan identity (5.11). Expanding the right-hand side yields
(
0,−Lξ1ιξ2ω + [ρ1, ιξ2ω]

)
−

(
0,− Lξ2ιξ1ω + [ρ2, ιξ1ω]

)

=
(
0,−ιξ1dιξ2ω + [ρ1, ιξ2ω] + ιξ2dιξ1ω − [ρ2, ιξ1ω]

)

where we used Lξ1ιξ2ω = ιξ1dιξ2ω, since ω is a one-form.

Total degree 2 : We may act on two pairs of gauge transformations (ξ1, ρ1) and (ξ2, ρ2), and a pair
of Euler–Lagrange derivatives (E,Ω); in this case all pairings appearing involve ψcov

2 and ℓ3, which
vanish individually by definition. We may also act on a pair of gauge transformations (ξ, ρ), and
two pairs of dynamical fields (e1, ω1) and (e2, ω2). Then we need to check

ψcov
2

(
ℓcov2

(
(ξ, ρ) , (e1, ω1)

)
, (e2, ω2)

)
− ψcov

2

(
ℓcov2

(
(e2, ω2) , (ξ, ρ)

)
, (e1, ω1)

)

+ ψcov
2

(
ℓcov2

(
(e1, ω1) , (e2, ω2)

)
, (ξ, ρ)

)
+ ℓcov3

(
(ξ1, ρ1) , (ξ2, ρ2) , (e, ω)

)

= ℓ2

(
ψcov
1 (ξ, ρ) , ψcov

2

(
(e1, ω1) , (e2, ω2)

))
+ ℓ2

(
ψcov
1 (e1, ω1) , ψ

cov
2

(
(ξ, ρ) , (e2, ω2)

))

+ ℓ2

(
ψcov
1 (e2, ω2) , ψ

cov
2

(
(ξ, ρ) , (e1, ω1)

))
.

Expanding the left-hand side we get

−
(
ιξω1 ∧ e2 + ιξω2 ∧ e1 , [ιξω1, ω2] + [ιξω2, ω1]

)
,

which is equal to the expansion of the right-hand side.

Total degree 3 : The L∞-morphism relation involving three pairs of dynamical fields (e1, ω1),
(e2, ω2) and (e3, ω3) is immediate, since the brackets involved in the dynamics are identical in
both versions of the theory and the map ψcov

2 is trivial on the vectors involved. We may also act
on two pairs of gauge transformations (ξ1, ρ1) and (ξ2, ρ2), and a pair of Noether identities (X ,P).
We need to check

ψcov
2

(
ℓcov2

(
(ξ1, ρ1) , (ξ2, ρ2)

)
, (X ,P)

)
+ ψcov

2

(
ℓcov2

(
(X ,P) , (ξ1, ρ1)

)
, (ξ2, ρ2)

)

+ ψcov
2

(
ℓcov2

(
(ξ2, ρ2) , (X ,P)

)
, (ξ1, ρ1)

)
+ ℓcov3

(
(ξ1, ρ1) , (ξ2, ρ2) , (X ,P)

)

= ℓ2

(
ψcov
1 (ξ1, ρ1) , ψ

cov
2

(
(ξ2, ρ2) , (X ,P)

))
− ℓ2

(
ψcov
1 (ξ2, ρ2) , ψ

cov
2

(
(ξ1, ρ1) , (X ,P)

))

− ℓ2

(
ψcov
1 (X ,P) , ψcov

2

(
(ξ1, ρ1) , (ξ2, ρ2)

))
.
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Expanding the left-hand side, we get

(0,−ι[ξ1,ξ2]P) +
(
0, ιξ2(ρ1 · P)

)
−

(
0, ιξ1(ρ2 · P)

)
− (0,dιξ1ιξ2P)

=
(
0,−2 dιξ1ιξ2P − ιξ1dιξ2P + ιξ2dιξ1P + ρ1 · ιξ2P − ρ2 · ιξ1P

)

where we used the Cartan identity (5.11). The right-hand side expands as

(
0,−ρ1 · (−ιξ2P) + Lξ1(−ιξ2P)

)
−

(
0,−ρ2(−ιξ1P)− Lξ2(−ιξ1P)

)

=
(
0, ρ1 · ιξ2P − ρ2 · ιξ1P − ιξ1dιξ2P + ιξ2dιξ1P − 2 dιξ1ιξ2P

)

where we used Cartan’s magic formula.

We may further act on a pair of gauge transformations (ξ, ρ), a pair of dynamical fields (e, ω)
and a pair of Euler–Lagrange derivatives (E,Ω). We need to check

ψcov
2

(
ℓcov2

(
(ξ, ρ) , (e, ω)

)
, (E,Ω)

)
+ ψcov

2

(
ℓcov2

(
(E,Ω) , (ξ, ρ)

)
, (e, ω)

)

+ ψcov
2

(
ℓcov2

(
(e, ω) , (E,Ω)

)
, (ξ, ρ)

)
+ ℓcov3

(
(ξ, ρ) , (e, ω) , (E,Ω)

)

= ℓ2

(
ψcov
1 (ξ, ρ) , ψcov

2

(
(e, ω) , (E,Ω)

))
+ ℓ2

(
ψcov
1 (e, ω) , ψcov

2

(
(ξ, ρ) , (E,Ω)

))

+ ℓ2

(
ψcov
1 (E,Ω) , ψcov

2

(
(ξ, ρ) , (e, ω)

))
.

Expanding the left-hand side, we have

(
0, ιξ(E ∧ e− ω ∧Ω)

)
+

(
− ιξω · E,−ω ∧ ιξΩ − ιξ(E ∧ e)

)
=

(
− ιξω ·E,−ιξω ·Ω

)

where we used ιξ(ω ∧Ω) = ιξω ·Ω − ω ∧ ιξΩ. This easily agrees with the right-hand side.

Total degree 4 : The L∞-morphism relation involving a pair of gauge transformations (ξ, ρ), and
two pairs of Euler–Lagrange derivatives (E1, Ω1) and (E2, Ω2), is trivial since all terms vanish
individually, by definition of ψcov

2 and ℓcov3 . We may also act on a pair of gauge transformations
(ξ, ρ), a pair of dynamical fields (e, ω) and a pair of Noether identities (X ,P). We need to check

ψcov
2

(
ℓcov2

(
(ξ, ρ) , (e, ω)

)
, (X ,P)

)
− ψcov

2

(
ℓcov2

(
(X ,P) , (ξ, ρ)

)
, (e, ω)

)

+ ψcov
2

(
ℓcov2

(
(e, ω) , (X ,P)

)
, (ξ, ρ)

)
+ ℓcov3

(
(ξ, ρ) , (e, ω) , (X ,P)

)

= ℓ2

(
ψcov
1 (ξ, ρ) , ψcov

2

(
(e, ω) , (X ,P)

))
+ ℓ2

(
ψcov
1 (e, ω) , ψcov

2

(
(ξ, ρ) , (X ,P)

))

+ ℓ2

(
ψcov
1 (X ,P) , ψcov

2

(
(ξ, ρ) , (e, ω)

))
.

Expanding the left-hand side, we have
(
− dxµ ⊗ Tr

(
(ιµιξdω − [ρ, ιµω])f P

)
, 0
)
+

(
− dxµ ⊗ Tr

(
ιµω f (−ρ · P)

)
, 0
)

+
(
dxµ ⊗ Tr

(
ιµιξdω f P

)
, 0
)

=
(
dxµ ⊗ Tr

(
ρ · (ιµω f P)

)
, 0
)

= (0, 0) ,
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where we used the Leibniz rule to pull out ρ as an action on a top exterior vector-valued form,
which vanishes by invariance of top exterior vectors under Lorentz transformations. On the other
hand, the right-hand side expands as

(
− Lξ

(
dxµ ⊗ Tr(ιµω f P)

)
, 0

)
−

(
dxµ ⊗ Tr

(
ιµdω f ιξP − ιµω f dιξP

)
, −ω ∧ ιξP

)

+
(
dxµ ⊗ Tr

(
ιµdιξω f P

)
, −ιξω · P

)

=
(
dxµ ⊗Tr

(
(−ιµιξdω − ιµdιξω)f P − ιµω f dιξP − ιµdω f ιξP + ιµω f dιξP

)

+ dxµ ⊗ Tr
(
ιµdιξω f P

)
, ιξ(ω ∧ P)

)

=
(
dxµ ⊗Tr

(
− ιµιξdω f P − ιµdω f ιξP

)
, 0

)

=
(
dxµ ⊗Tr

(
− ιµιξdω f P + ιµιξdω f P

)
, 0

)

= (0, 0) ,

where in the first equality we expanded the Lie derivative using Cartan’s magic formula, along with
the derivation property of the contraction, and in the second equality we used ω ∧ P = 0 as it is a
four-form in three dimensions. Then using the Cartan identity

ιξ1 ◦ ιξ2 = −ιξ2 ◦ ιξ1
we wrote ιµdω f ιξP = −ιξ(ιµdω f P) + ιξιµdω f P = −ιµιξdω f P.

Lastly, we can also act on two pairs of dynamical fields (e1, ω1) and (e2, ω2), and one pair of
Euler–Lagrange derivatives (E,Ω). We need to check

ψcov
2

(
ℓcov2

(
(e1, ω1) , (e2, ω2)

)
, (E,Ω)

)
+ ψcov

2

(
ℓcov2

(
(E,Ω) , (e1, ω1)

)
, (e2, ω2)

)

− ψcov
2

(
ℓcov2

(
(e2, ω2) , (E,Ω)

)
, (e1, ω1)

)
+ ℓcov3

(
(e1, ω1) , (e2, ω2) , (E,Ω)

)

= −ℓ2
(
ψcov
1 (e1, ω1) , ψ

cov
2

(
(e2, ω2) , (E,Ω)

))
− ℓ2

(
ψcov
1 (e2, ω2) , ψ

cov
2

(
(e1, ω1) , (E,Ω)

))

+ ℓ2

(
ψcov
1 (E,Ω) , ψcov

2

(
(e1, ω1) , (e2, ω2)

))
.

Expanding the left-hand side, we have
(
dxµ ⊗ Tr

(
ιµω2 f (E ∧ e1 − ω1 ∧Ω)

)
, 0
)
+

(
dxµ ⊗ Tr

(
ιµω1 f (E ∧ e2 − ω2 ∧Ω)

)
, 0
)

−
(
dxµ ⊗ Tr

(
ιµω1 f (E ∧ e2) + ιµω2 f (E ∧ e1)− ιµω1 f (ω2 ∧Ω)− ιµω2 f (ω1 ∧Ω)

)
, 0
)

= (0, 0) ,

while the right-hand side vanishes since all terms vanish individually by definition of ψcov
2 .

n = 4: Internal degree −2

The L∞-morphism relations in this case act non-trivially on fields whose total degrees are 2, 3,
4 and 5. We will also implicitly use the fact that the non-covariant brackets ℓ3 and ℓ4 vanish
identically. One may easily check that all terms in the identity vanish individually for all possible
combinations of fields of total degree 3, so the only non-trivial checks required are in the remaining
three total degrees.
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Total degree 2 : When acting on three pairs of gauge transformations (ξ1, ρ1), (ξ2, ρ2) and (ξ3, ρ3),
and a pair of Euler–Lagrange derivatives (E,Ω), all terms vanish individually by definition of ψcov

2 ,
ℓcov3 and ℓcov4 . We may also act on two pairs of gauge transformations (ξ1, ρ1) and (ξ2, ρ2), and two
pairs of dynamical fields (e1, ω1) and (e2, ω2). We need to check

− ψcov
2

(
ℓcov3

(
(ξ1, ρ1), (ξ2, ρ2), (e1, ω1)

)
, (e2, ω2)

)
− ψcov

2

(
ℓcov3

(
(ξ1, ρ1), (ξ2, ρ2), (e2, ω2)

)
, (e1, ω1)

)

− ψcov
2

(
ℓcov3

(
(ξ1, ρ1) , (e1, ω1) , (e2, ω2)

)
, (ξ2, ρ2)

)

+ ψcov
2

(
ℓcov3

(
(ξ2, ρ2) , (e1, ω1) , (e2, ω2)

)
, (ξ1, ρ1)

)
+ ℓcov4

(
(ξ1, ρ1) , (ξ2, ρ2) , (e1, ω1) , (e2, ω2)

)

= −ℓ2
(
ψcov
2

(
(ξ1, ρ1) , (ξ2, ρ2)

)
, ψcov

2

(
(e1, ω1) , (e2, ω2)

))

− ℓ2

(
ψcov
2

(
(ξ1, ρ1) , (e1, ω1)

)
, ψcov

2

(
(ξ2, ρ2) , (e2, ω2)

))

+ ℓ2

(
ψcov
2

(
(ξ2, ρ2) , (e1, ω1)

)
, ψcov

2

(
(ξ1, ρ1) , (e2, ω2)

))
.

Expanding the left-hand side, we get

−
(
0,−[ιξ1ω1, ιξ2ω2]− [ιξ1ω2, ιξ2ω1]

)
+

(
0,−[ιξ2ω1, ιξ1ω2]− [ιξ2ω2, ιξ1ω1]

)
+

(
0, ιξ1ιξ2 [ω1, ω2]

)

=
(
0,−[ιξ2ω1, ιξ1ω2]− [ιξ2ω2, ιξ1ω1]

)
,

after expanding ιξ1ιξ2 [ω1, ω2] using the Leibniz rule and cancelling terms by antisymmetry. This is
easily seen to be the same as the simple expansion of the right-hand side.

Total degree 4 : The only non-trivial check required in this case, whereby not every term in the
identity vanishes individually, is when acting on two pairs of gauge transformations (ξ1, ρ1) and
(ξ2, ρ2), a pair of dynamical fields (e, ω) and a pair of Noether identities (X ,P). Excluding terms
that vanish by definition of ψcov

2 , it remains to check

ℓcov4

(
(ξ1, ρ1) , (ξ2, ρ2) , (e, ω) , (X ,P)

)
= −ℓ2

(
ψcov
2

(
(ξ1, ρ1) , (e, ω)

)
, ψcov

2

(
(ξ2, ρ2) , (X ,P)

))

+ ℓ2

(
ψcov
2

(
(ξ2, ρ2) , (e, ω)

)
, ψcov

2

(
(ξ1, ρ1) , (X ,P)

))
.

The left-hand side expands as

(0, ω ∧ ιξ1ιξ2P) =
(
0,−ιξ1(ω ∧ ιξ2P) + ιξ1ω · ιξ2P

)

=
(
0, ιξ1ιξ2(ω ∧ P)− ιξ1(ιξ2ω · P) + ιξ1ω · ιξ2P

)

=
(
0,−ιξ2ω · ιξ1P + ιξ1ω · ιξ2P

)
,

which is precisely the expansion of the right-hand side.

Total degree 5 : Again there is only one non-trivial check required, now when acting on a pair
gauge transformations (ξ, ρ), two pairs of dynamical fields (e1, ω1) and (e2, ω2), and a pair of Noether
identities (X ,P). Excluding again terms that vanish by definition of ψcov

2 , it remains to check

− ψcov
2

(
ℓ3
(
(ξ, ρ) , (e1, ω1) , (e2, ω2)

)
, (X ,P)

)
+ ℓcov4

(
(ξ, ρ) , (e1, ω1) , (e2, ω2) , (X ,P)

)

= ℓ2

(
ψcov
2

(
(ξ, ρ) , (e1, ω1)

)
, ψcov

2

(
(e2, ω2) , (X ,P)

))

+ ℓ2

(
ψcov
2

(
(ξ, ρ) , (e2, ω2)

)
, ψcov

2

(
(e1, ω1) , (X ,P)

))
.
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Expanding the left-hand side, we get

ψcov
2

(
(ιξω1 ∧ e2 + ιξω2 ∧ e1, [ιξω1, ω2] + [ιξω2, ω1]) , (X ,P)

)

+
(
dxµ ⊗ Tr

(
(ιµ[ιξω1, ω2] + ιµ[ιξω2, ω1])f P

)
, 0

)

= −
(
dxµ ⊗ Tr

(
(ιµ[ιξω1, ω2] + ιµ[ιξω2, ω1])f P

)
, 0

)

+
(
dxµ ⊗ Tr

(
(ιµ[ιξω1, ω2] + ιµ[ιξω2, ω1])f P

)
, 0

)

= (0, 0) ,

while the right-hand side expands as

ℓ2

((
0,−ιξω1

)
,
(
− dxµ ⊗ Tr(ιµω2 f P), 0

))
+(1↔2) = (0, 0) .

This completes the proof that the maps {ψcov
n } from Section 5.4 indeed do define an L∞-

morphism (in the case d = 3).

B Calculations in four dimensions

In this appendix we illustrate the explicit dualization of the BV–BRST formalism, focusing on the
case d = 4. That is, we will show that the brackets defined in Section 8.2 are dual to the non-
covariant BV differential of [24]. We have already done this in Section 6.1 for the kinematical sector
of the Einstein–Cartan–Palatini theory in any dimension d, so we only need to check that the BV
transformations of the antifields, given in (6.8), dualize to the remaining brackets of the dynamical
sector and those on the space of Noether identities. This may be seen as an alternative proof of
the d = 4 homotopy relations by appealing to the duality with the BV–BRST formalism from
Section 6, where they are automatically guaranteed to hold by nilpotency of the BV differential
Q2

BV
= 0. Again we shall set Λ = 0 for brevity in these calculations.

Dynamical brackets

We start from the first transformation of (6.8) specialised to the case d = 4:

QBVe
† a1a2a3
µ1µ2µ3

= −e[a1[µ1
R
a2a3]
µ2µ3]

+ 4
(
e†
a1a2a3
[µ1µ2µ3 ∂σ]ξ

σ − e†
[a1a2a3
µ1µ2µ3

ρd]d
)
+ ∂σ

(
ξσ e†

a1a2a3
µ1µ2µ3

)
. (B.1)

Dualizing we retrieve the dynamical brackets of our L∞-algebra for the coframe field e in four
dimensions, as we now demonstrate.

For (e, ω) ∈ FBV 0, using the natural duality pairing 〈−|−〉 between ⊙•
FBV and ⊙•

R

F ⋆
BV

we
obtain

〈QBVe
′ † a1a2a3
µ1µ2µ3

|e⊙ ω〉 = 〈−e′ [a1[µ1
⊙ ∂µ2ω

′ a2a3]
µ3]

|e⊙ ω〉

= −e[a1[µ1
∂µ2ω

a2a3]
µ3]

= 〈e′ † a1a2a3µ1µ2µ3
| − e f dω〉

=: (−1)|QBV| |e′ †| 〈e′ † a1a2a3µ1µ2µ3
|DBV 2(e⊙ ω)〉 ,
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where
DBV := Q⋆

BV
:⊙•

FBV −→⊙•
FBV

is determined by the decomposition

prFBV
◦DBV =

∞∑

n=1

DBV n

with component maps DBV n :⊙n
FBV → FBV. Thus DBV 2(e⊙ ω) = ef dω, and so

ℓ2(
s−1

e ∧ s−1
ω) = s−1 ◦DBV 2 ◦ (s⊗ s)(s

−1
e ∧ s−1

ω)

= (−1)|
s−1

e| s−1 ◦DBV 2(e⊙ ω)

= −s−1
e f ds

−1
ω

as required.

Similarly, for e, ω1, ω2 ∈ FBV 0 we get

〈QBVe
′ † a1a2a3
µ1µ2µ3

|e⊙ ω1 ⊙ ω2〉 = 〈−e′ [a1[µ1
⊙ ω′ a2

|c|µ2 ⊙ ω
′ |c|a3]
µ3]

|e⊙ ω1 ⊙ ω2〉

= −
(
e
[a1
[µ1
ω1

a2
|c|µ2 ω2

|c|a3]
µ3]

+ e
[a1
[µ1
ω2

a2
|c|µ2 ω1

|c|a3]
µ3]

)

= 〈e′ † a1a2a3µ1µ2µ3
| − ef [ω1, ω2]〉

=: 〈e′ † a1a2a3µ1µ2µ3
| − (−1)|QBV| |e′ †|DBV 3(e⊙ ω1 ⊙ ω2)〉 .

Thus DBV 3(e⊙ ω1 ⊙ ω2) = e f [ω1, ω2], and so

ℓ3(
s−1

e ∧ s−1
ω1 ∧ s−1

ω2) = s−1 ◦DBV 3 ◦ (s⊗ s⊗ s)(s
−1
e ∧ s−1

ω1 ∧ s−1
ω2)

= (−1)2 |
s−1

e|+|s
−1
ω1| (s

−1
e f [s

−1
ω1,

s−1
ω2])

= −s−1
e f [s

−1
ω1,

s−1
ω2]

as required.

Next, we note that the Lie derivative appears explicitly in (B.1), as the fourth and second terms
expand into

∂σξ
σ e†

a1a2a3
µ1µ2µ3

+ ξσ ∂σe
†a1a2a3
µ1µ2µ3

+ e†
a1a2a3
µ1µ2µ3

∂σξ
σ − e†

a1a2a3
[µ1µ2|σ| ∂µ3]ξ

σ + e†
a1a2a3
[µ1|σ|µ2 ∂µ3]ξ

σ − e†
a1a2a3
σ[µ1µ2 ∂µ3]ξ

σ

= ξσ ∂σe
† a1a2a3
µ1µ2µ3

+ ∂[µ3ξ
σ e†

a1a2a3
µ1µ2]σ + ∂[µ2ξ

σ e†
a1a2a3
µ1|σ|µ3] + ∂[µ1ξ

σ e†
a1a2a3
|σ|µ2µ3]

where we used |ξ| = 1 and |e†| = −1. This expression extracts the components of the Lie derivative
of a three-form by dualization, as expected. Explicitly, for ξ ∈ FBV −1 and e† ∈ FBV 1 we get

〈QBVe
′ † a1a2a3
µ1µ2µ3

|ξ ⊙ e†〉

= 〈ξ′ σ ⊙ ∂σe
′ † a1a2a3
µ1µ2µ3

+ ∂[µ3ξ
′σ ⊙ e′ †

a1a2a3
µ1µ2]σ + ∂[µ2ξ

′σ ⊙ e′ †
a1a2a3
µ1|σ|µ3] + ∂[µ1ξ

′σ ⊙ e′ †
a1a2a3
|σ|µ2µ3]|ξ ⊙ e†〉

= (−1)|ξ
′| |e′ †| (Lξe

†)a1a2a3µ1µ2µ3

= 〈e′ † a1a2a3µ1µ2µ3
|Lξe†〉

=: −(−1)|QBV| |e′ †| 〈e′ † a1a2a3µ1µ2µ3
|DBV 2(ξ ⊙ e†)〉 .
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Thus DBV 2(ξ ⊙ e†) = Lξe
†, and so

ℓ2(
s−1

ξ ∧ s−1
e†) = s−1 ◦DBV 2 ◦ (s ⊗ s)(s

−1
ξ ∧ s−1

e†) = Ls−1
ξ
s−1

e†

as required.

Lastly, we note that the part concerning the local Lorentz transformations in (B.1) may be
expanded as

4 ρ[dd e
† a1a2a3]
µ1µ2µ3

= −ρ[a1d e†
|d|a2a3]
µ1µ2µ3

− ρ[a2d e
† a1|d|a3]
µ1µ2µ3

− ρ[a3d e
† a1a2]d
µ1µ2µ3

where we used antisymmetry of ρab. This contains the action of an infinitesimal Lorentz transfor-
mation on a three-vector: Indeed, the corresponding Euler–Lagrange derivative transforms as

ρ · (e fR) = ρ · ef R+ ef [ρ,R] =
(
ρad e

d ∧Rbc + ea ∧ ρbdRdc + ea ∧ ρcdRbd
)
Ea ∧ Eb ∧ Ec .

Dualizing for ρ ∈ FBV −1 and e† ∈ FBV 1 we obtain

〈QBVe
′ † a1a2a3
µ1µ2µ3

|ρ⊙ e†〉 = 〈−ρ′ [a1d ⊙ e′ †
|d|a2a3]
µ1µ2µ3

− ρ′ [a2d ⊙ e′ †
a1|d|a3]
µ1µ2µ3

− ρ′ [a3d ⊙ e′ †
a1a2]d
µ1µ2µ3

|ρ⊙ e†〉

= −(−1)|ρ
′| |e′ †|

(
ρ[a1d e

†|d|a2a3]
µ1µ2µ3

− ρ[a2d e
† a1|d|a3]
µ1µ2µ3

− ρ[a3d e
† a1a2]d
µ1µ2µ3

)

= 〈e′ † a1a2a3µ1µ2µ3
|ρ · e†〉

=: (−1)|QBV| |e′ †| 〈e′ † a1a2a3µ1µ2µ3
|DBV 2(ρ⊙ e†)〉 .

Thus DBV 2(ρ⊙ e†) = −ρ · e† and so

ℓ2(
s−1

ρ ∧ s−1
e†) = s−1 ◦DBV 2 ◦ (s⊗ s)(s

−1
ρ ∧ s−1

e†) = −s−1
ρ · s−1

e†

as desired. Hence we have recovered the full dynamical L∞-algebra for the coframe field e given
in Section 8.2. One similarly obtains the dynamical brackets for the connection ω from the second
transformation in (6.8).

Noether identity brackets

Now we consider the third transformation of (6.8) specialised to d = 4 dimensions:

QBVρ
† a1a2
µ1µ2µ3µ4

= − 3
2 ed[µ1 e

† da1a2
µ2µ3µ4] − ωa1d[µ1 ω

† da2
µ2µ3µ4] + ∂[µ1ω

† a1a2
µ2µ3µ4]

− ρa1d ρ
† da2
µ1µ2µ3µ4

+ ∂σ
(
ξσ ρ†

a1a2
µ1µ2µ3µ4

)
. (B.2)

The first three terms extract the components of the brackets corresponding to the Noether identity
for local SO+(1, 3) Lorentz transformations:

−dωFω − 3
2 Fe ∧ e = 0 , (B.3)

as we now demonstrate.

Dualizing as we did previously, for ω† ∈ FBV 1 we get

〈QBVρ
′ † a1a2
µ1µ2µ3µ4

|ω†〉 = ∂[µ1ω
†
µ2µ3µ4]

= 〈ρ′ † a1a2µ1µ2µ3µ4
|dω†〉 =: 〈ρ′ † a1a2µ1µ2µ3µ4

|DBV 1ω
†〉

where we used |QBV| = 1 and |ω†| = 2. Thus DBV 1ω
† = dω† and so

ℓ1(
s−1

ω†) = s−1 ◦DBV 1 ◦ s(s
−1
ω†) = ds

−1
ω† .
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Next, for e ∈ FBV 0 and e† ∈ FBV 1 we obtain

〈QBVρ
′ † a1a2
µ1µ2µ3µ4

|e⊙ e†〉 = −3
2 ed[µ1 e

† da1a2
µ2µ3µ4]

= −3
2 (e

† ∧ e)a1a2µ1µ2µ3µ4

= 〈ρ′ † a1a2µ1µ2µ3µ4
| − 3

2 e
† ∧ e〉

=: 〈ρ′ † a1a2µ1µ2µ3µ4
|DBV 2(e⊙ e†)〉 .

Thus DBV 2(e⊙ e†) = −3
2 e

† ∧ e and so

ℓ2(
s−1

e ∧ s−1
e†) = s−1 ◦DBV 2 ◦ (s ⊗ s)(s

−1
e ∧ s−1

e†) = −s−1 ◦DBV 2(e⊙ e†) = 3
2
s−1

e† ∧ s−1
e .

Continuing in an identical fashion, for ω ∈ FBV 0 and ω† ∈ FBV 1 we find

ℓ2(
s−1

ω ∧ s−1
ω†) = s−1

ω ∧ s−1
ω† .

The Noether identity (B.3) is then encoded in Q2
BV
ρ† = 0.

It is easy to see that the fourth term in (B.2) dualizes to the action of a local Lorentz transfor-
mation on a two-vector: For ρ ∈ FBV −1 and ρ† ∈ FBV 2, via similar manipulations we find

ℓ2(
s−1

ρ ∧ s−1
ρ†) = −s−1

ρ · s−1
ρ† .

Lastly, the fifth term in (B.2) extracts the components of the Lie derivative of a four-form: For
ξ ∈ FBV −1 and ρ† ∈ FBV 2 we obtain

〈QBVρ
′ † a1a2
µ1µ2µ3µ4

|ξ ⊙ ρ†〉 = ∂σ
(
ξσ ρ†

a1a2
µ1µ2µ3µ4

)
= 〈ρ′ † a1a2µ1µ2µ3µ4

|Lξρ†〉 =: 〈ρ′ † a1a2µ1µ2µ3µ4
|DBV 2(ξ ⊙ ρ†)〉

and so
ℓ2(

s−1
ξ ∧ s−1

ρ†) = s−1 ◦DBV 2 ◦ (s ⊗ s)(s
−1
ξ ∧ s−1

ρ†) = Ls−1
ξ
s−1

ρ† .

These thus recover the actions of local Lorentz transformations and diffeomorphisms on the Noether
identities corresponding to the SO+(1, 3) gauge symmetry. One similarly obtains the brackets
for the Noether identities corresponding to diffeomorphisms, together with the action of gauge
transformations on them, from the fourth transformation in (6.8).
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